
S-STE: Continuous Pruning Function for
Efficient 2:4 Sparse Pre-training

Yuezhou Hu1, Jun Zhu1, Jianfei Chen1†
1Dept. of Comp. Sci. & Tech., Institute for AI, BNRist Center,

Tsinghua-Bosch Joint ML Center, THBI Lab, Tsinghua University.
huyz21@mails.tsinghua.edu.cn, {dcszj,jianfeic}@tsinghua.edu.cn

Abstract

Training deep neural networks (DNNs) is costly. Fortunately, Nvidia Ampere
and Hopper GPUs can accelerate matrix multiplications twice as fast as a dense
equivalent by implementing 2:4 sparsity. However, previous STE-based 2:4 pre-
training methods (e.g. STE with hard-thresholding, SR-STE) suffer from opti-
mization difficulties because of discontinuous pruning function. In this study, we
comprehensively analyse the bottleneck of traditional N:M sparse training and
recognize three drawbacks with discontinuity: incorrect descending direction, in-
ability to predict the amount of descent and sparse mask oscillation. In light of
this, we propose S-STE, a simple yet powerful 2:4 training method that contains
two parts: to continuously project weights to be 2:4 sparse, and to rescale sparse
weights with a per-tensor fixed scaling factor. Besides, we adopt minimum-variance
unbiased estimation for activation gradient and FP8 quantization for whole pro-
cess. Results show that our method surpasses previous 2:4 pre-training recipes
and is comparable even with full parameter models. Our toolkit is available at
https://github.com/huyz2023/2by4-pretrain.

1 Introduction

Large scale transformers have achieved many impressive results such as chatbots [43], text-to-video
generation [27], and robot manipulation [53]. However, the pre-training of these models is extremely
expensive, typically requiring thousands of GPUs to train for months [5]. One possible way to
accelerate deep learning computation is sparsity. N:M sparsity [31] is a hardware-friendly sparsity
pattern, where every group of M dimensions only has N non-zero entries. Nvidia Ampere GPUs can
multiply a 2:4 sparse matrix with a dense matrix, twice as fast as multiplying two dense matrices.

While N:M sparsity has been successfully applied to accelerate inference [31, 40, 15, 35, 9], extending
the acceleration to pre-training is highly challenging. To accelerate pre-training, the sparse model
must be trained from scratch (random initialization), and the network must stay sparse at all training
iterations. To meet these requirements, the algorithm should be able to actively explore connectivity
patterns within the constrained N:M parameter space. Therefore, popular pruning methods such
as single-shot pruning [24], iterative magnitude pruning [13, 29], and RigL [11] cannot be directly
applied to this scenario. Moreover, besides forward propagation, the matrix multiplications in back
propagation must be sparsified as well, to provide reasonable training speedup.

Methods based on the straight-through estimator (STE) [52, 2] have shown promise towards solving
the challenging problem of sparse pre-training. They maintain a dense weight, which is sparsified in
each iteration for fast forward&backward computation, and the dense weight is then updated with
STE gradients. In this way, connectivity patterns can be learned jointly with weights in an end-to-end

†Corresponding author.

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

https://github.com/huyz2023/2by4-pretrain


fashion with stochastic gradient optimizers. SR-STE [52] is such a method to train sparse networks
from scratch, with a regularization term to stabilize the training. Several subsequent works [21, 51, 8]
further accelerate back propagation with sparse computations, and Hu et al. [20] applied it for
pre-training language models. However, these sparse training methods still have an accuracy gap
compared to dense training. Moreover, SR-STE introduces a regularization strength hyper-parameter,
which is hard to tune. Due to these limitations, N:M sparsity is not yet used to accelerate pre-training.

In this work, we study STE-based pre-training from the optimization perspective. We point out that
STE-based pre-training defines a discontinuous loss function, which existing optimization theory
and algorithms cannot handle. We reveal several intriguing phenomena highlighting the difficulty
of discontinuous optimization, including incorrect descending direction, inability to predict the
amount of descent, and oscillation. We sidestep the curse of discontinuity by proposing smooth
straight-through estimator (S-STE) as a solution. Cruically, S-STE introduces a new pruning function,
which uses a continuous projection function to prune weights to be 2:4 sparse, and scales all nonzero
elements to minimize the mean-square-error between original dense weight vector and sparse weight
vector. The proposed 2:4 soft-thresholding function is continuous but can still generate N:M sparse
weights at all times. In this way, the objective function is continuous, and gradient-based optimizers
can be readily used. Furthermore, S-STE does not introduce any hyper-parameter, so its practical
adoption is easier than SR-STE.

We devise comprehensive pre-training experiments on S-STE, including WMT machine translation,
GPT-2 pre-training and, DeiT image classification. Results show that our method surpass previous
2:4 pre-training recipes on a wide range of tasks.

2 Formulation of sparse pre-training

The training a neural network can be formalized as an optimization problem minw F (w), where
w ∈ Rd is the parameter and F is a differentiable empirical risk function: F (w) = Rn(w) =

1
n

n∑
i=1

f(w; ξ[i]). Here, f is the loss function, n is the size of data set D = {ξ[i]}ni=1 and ξ[i] is the i-th

sample. The optimization can be solved with standard stochastic gradient method (SG) [4]. Suppose
the network is initialized with w1, {αk} is a positive learning rate sequence, and ξ[ik] is randomly
chosen from {ξ[i]}ni=1. Then, iteratively we have wk+1 = wk−αk∇wk

f(wk; ξ[ik]). As we consider
pre-training tasks, w1 is simply a random initialization.

The training of a sparse network involves optimizing the parameter w in a constrained space W ⊂ Rd.
For an N:M-sparse network, the parameter can only have N non-zero elements in each contiguous
M dimensions.

Alternative to constrained optimization, we can solve the unconstrained problem:

min
w

F (w̃) where w̃ = S(w). (1)

Here, S is a pruning function which converts a dense weight w to a sparse weight w̃ ∈ W . One
common choice is the hard-thresholding pruning function [52, 45]. For every block of four adjacent
elements a = [a1, ..., aM ]⊤ ∈ RM in the weight vector w, the pruning function can be defined as

(Sh(a))i =

{
ai if |ai| ≥ t

0 if |ai| < t
, for i = 1, ...,M, (2)

where t is N -th largest element in a.1 This essentially performs magnitude-based pruning, by
zeroing out the two smallest elements. The hard thresholding function can also be written as
Sh(a) = a⊙mh(a), where mh(a) is a 0/1 mask vector, with (mh(a))i = 1 if |ai| > t.

However, Eq. (1) cannot be directly optimized since the pruning function S is not differentiable.
Particularly, the derivative of the hard-thresholding function Sh is undefined on boundary where
the second largest and third largest element have the same magnitude. Therefore, straight-through
estimator (STE) [52] is for training, by approximating ∇wf ≈ ∇w̃f and therefore ∂Sh(a)/∂a ≈ I:

wk+1 = wk − αk∇w̃k
f(w̃k; ξ[ik]). (3)

1In this paper, when talking about large and small, we refer to the magnitude. For example, “second largest
element” means the element with second largest absolute value.

2



With the pruning function and STE, each iteration of sparse training involves: (1) prune the dense
weight to get the sparse weight: w̃ = S(w); (2) compute the loss and gradient with the sparse weight;
and (3) update the dense weight with the gradient. Among these, step 2 is most time-consuming, and
it can be accelerated with sparse tensor cores given w̃ is N:M-sparse. Next, we will focus on the
optimization aspects of sparse training and defer the discussion of computation details to Sec. 4.

3 The curse of discontinuity

Classical stochastic optimization theory [4] guarantees the convergence for nonconvex and smooth
(i.e., differentiable with Lipschitz continuous gradients) objective F . It can be also extended to
handle non-differentiable functions such as ReLU [25]. The real problem of STE-based sparse
training is the discontinuity of the pruning function Sh, as visualized in Fig. 2. For a discontinuous
function, an arbitrarily small change in input a can cause an unbounded change of the output
Sh(a). Such discontinuity appears on the boundary when the N -th and N + 1-th largest elements
have same magnitude. For example, for a 1:2-sparse pruning function, Sh(1, 0.999) = (1, 0), but
Sh(0.999, 1) = (0, 1), and the boundary is the line a1 = a2.

Figure 1: Scatter plot of ∆F1 with ∆F2 and their
distributions on GPT-2 small 124M for iteration
k ∈ [1, 6000].

When Sh is discontinuous, the parameter space
Rd can be partitioned into regions {Wm|m ∈
M}, where M ⊂ {0, 1}d is the space of
0/1 masks with N:M pattern, and all the pa-
rameters in each region w ∈ Wm have the
same mask mh(w) = m. The loss landscape
F (Sh(w)) = F (mh(w) ⊙ w) is continuous
and differentiable within each region, where
gradient-based algorithms can work well. How-
ever, when the optimization trajectory crosses
the boundary: mh(wk+1) ̸= mh(wk), the be-
havior is unpredictable. We highlight several
intriguing phenomena observed in optimizing
such discontinuous objective. We study these
phenomena in both a toy problem and real neural
networks.

3.1 Phenomenon 1: incorrect descending direction

Here, we run a gradient descent algorithm (without stochasticity) on a small dataset. For a dense
model where F is differentiable, with Taylor’s formula we should have

F (wk)− F (wk+1) ≈ (∇wk
F (wk))

⊤(wk −wk+1) = αk ∥∇wk
F (wk)∥2 ≥ 0. (4)

That is, the objective function will monotonically decrease in each iteration once the learning rate
αk is sufficiently small. However, it is not the case for sparse training. In Fig. 2(d), we measure the
distribution of the amount of descent (AoD) ∆Fk := F (wk)− F (wk+1) for training a GPT-2 large
774M model with Eq. (2, 3), across each iteration k. The results clearly shows that the objective
frequently fails to descent.

We can take a closer look to the weight and mask sequence (wk,mh(wk)) generated by the training
algorithm. We compare the following two quantities: the AoD by updating both weight and mask
∆F1 = F (wk ⊙ mk) − F (wk+1 ⊙ mk+1) and the AoD by only updating the weight ∆F2 =
F (wk ⊙mk)− F (wk+1 ⊙mk). In Fig. 1, we can observe ∆F2 is mostly positive due to the piece-
wise continuity of F . However, ∆F1 is frequently negative and very often even smaller than ∆F2

(updating mask is worse than not updating). This indicates that the main problem is the discontinuity
make it hard to estimate the correct descending direction of m.

3.2 Phenomenon 2: inability to predict the amount of descent

Besides making mistakes in finding the correct descending direction, algorithms do not know that they
make a mistake, in the sense that they fail to predict the AoD at each step. From Eq. (4), we should
have F (wk) − F (wk+1) ≈ (∇wk

F (wk))
⊤(wk − wk+1), where the left hand side is the actual

3



AoD, and the right hand side is the predicted AoD. We plot the actual AoD against predicted AoD for
dense (Fig. 2(a)) and sparse training (Fig. 2(b)). While for dense training, the two quantities closely
matches, for hard-thresholding the actual AoD is often lower for the predicted AoD, particularly
when the predicted AoD is large. To understand this, note that Eq. (4) only holds for w ∈ Wmh(w).
Once wk+1 −wk is large enough that mh(wk+1) ̸= mh(wk), the function crosses a border of Sh,
and F will have a sudden change which is unpredictable by the gradient.

Figure 2: (a)-(c) shows scatter plots of the predicted and actual loss reduction of dense, hard-
thresholding and S-STE with GPT-2 large 774M model for iteration k ∈ [1, 3000]. The diagonal line
is for reference. (d) shows empirical cumulative distribution of their actual AoD for k ∈ [1, 6000].

3.3 Phenomenon 3: oscillation

Oscillation is probably the most significant problem in STE-based sparse training. Here, we revisit
existing discussions about oscillation [52, 28, 20], and then illustrate this issue using a toy example.

Flip rate Flip rate is a simple metric to measure the stability of sparse training [20]: rk =
∥mh(wk)⊕mh(wk−1)∥1 /d, where ⊕ indicates XOR operation. As Hu et al. [20] points out,
taking the flip rate of the dense model as standard, they observe larger flip rate of hard-thresholding:
when training transformers, the flip rate can stay at 6% in the entire training process. However, a
healthy training process should have a large flip rate in the early stage to explore connectivity patterns,
and the flip rate should decrease to zero in later stage for the optimization to converge. Hu et al. [20]
describe this phenomenon as “flip rate explosion”, which is harmful to sparse training.

An exemplar toy problem Modern deep neuron networks have billions of parameters and is not
strictly convex. These non-ideal conditions make our analysis more difficult with sparse weights. To
analyze the characteristics of STE and hard-thresholding on the smallest problem, we devise a simple
toy problem that contains two parameters: minw1,w2

g(w1, w2) = (w1 −w2)
2. This may differ from

the real DNN optimization problem, but can help us understand what happens in the process. We
are going to show that while using a feasible αk that can make the dense model converge to global
minima, STE with hard-thresholding fails to converge and it oscillates back and forth.

First, for the dense model, the global minima lies on the line w1 = w2. Suppose we start from
w1 = [0.2, 0.1]⊤, by taking αk = 0.25 we can reach global minima in one step. On the other hand,
if we are in 1:2 sparse situation, the global minima should be the point w1 = w2 = 0. By starting
from w1 = [0.2, 0.1]⊤ and taking αk = 0.25, we invariably jumps between w2t+1 = [0.2, 0.1]⊤ and
w2t = [0.1, 0.2]⊤, and g never decreases.

High flip rate is harmful, because there are frequent changes on the connection of neurons, which
means that a number of previous optimization steps on the neuron is deprecated. That is fatal at
the end of training [20]. The reason of high flip rate on hard-thresholding can be explained by
discontinuity: as there are no gentle transitions on both sides of the border, the gradient on the
boundary is inaccurate and is unable to indicate the right descending direction. This misalignment is
easy to make the tuple a to oscillate back and forth near the boundary, and cause extremely higher
flip rate than the dense model.

3.4 Overcoming the curse of discontinuity

One way to mitigate discontinuity is sparse-refined straight-through estimator (SR-STE), which
adds a sparse-refined regularization on the gradients [52]: minw F (w̃) + λW

2 ∥w ⊙m(w)∥22. While

4



SR-STE works on a wide range of tasks and optimization algorithms [52, 20], it still has some issues.
First, the performance is quite sensitive to the hyper-parameter λW . Second, the new regularization
term leads to a competition between loss function and sparse regularization. Finally, the loss function
is still discontinuous unless λW → ∞.

From the above analysis, discontinuity causes optimization problems. It would be ideal to have a
continuous pruning function, yet the iterates (w̃k) still need to be sparse during the entire training
process.

Figure 3: Pruning function of hard-thresholding and soft-thresholding for 1:2-sparsity. (a)(b) show
the outputs of hard-thresholding, and (c)(d) show that of soft-thresholding. A sudden jump exists in
hard-thresholding if |a1| = |a2|, while soft-thresholding is continuous in the domain.

4 Methodology

Table 1: Validation loss and test accuracy
of S-STE with different γ on Transformer-
base.

γ Val loss Test BLEU

0 4.007 26.30
0.33 4.014 26.01
0.67 4.015 26.16
1 4.072 25.63

In this section we propose a training algorithm (smooth
straight-through estimator, S-STE) that contains two
main parts combined with STE: 2:4 specific soft-
thresholding, and fixed weight rescaling . They together
work as the sparsifying function described in Sec. 2:
w̃ = S(w) = βSsoft(w). Results in Fig. 2(c)(d)
and 4(d) show that S-STE successfully overcome the
three curses of discontinuity. Notably, flip rate curves
of S-STE are surprisingly consistent with their dense
counterparts, indicating that S-STE is more natural and
feasible than SR-STE.

4.1 2:4 specific soft-thresholding Ssoft

Motivation for the design As discussed in Sec. 3,
hard-thresholding suffer from the discontinuous problem near the boundary of taking a flip. When
input vector changes continuously across the border, two of the four elements simultaneously jump
between zeroes and none-zero values. In a continuous pruning function, we need to overcome
this drawback and keep these two elements zero on both sides of the border. This means when
a flip happens in a four-element block, at lease three of the target elements should be zeroed out
simultaneously (except the largest one).

With the above analysis, we modify soft-thresholding function for traditional pruning in Van-
derschueren and Vleeschouwer [45] as our 2:4 specific soft-thresholding. Given a vector a =
[a1, a2, a3, a4]

⊤ ∈ R4, S-STE picks out the largest two elements and meanwhile, subtracts the third
largest element from weight magnitudes. Assume, without loss of generality, that [t1, t2, t3, t4] is an
rearrangement of a⊤, s.t.|t1| ≤ |t2| ≤ |t3| ≤ |t4|. Then, the pruning function can be defined as

(Ssoft(a))i =


ai − t if ai ∈ [t,+∞)

0 if ai ∈ (−t, t)

ai + t if ai ∈ (−∞,−t]

, where t = |t2|. (5)

The plots of soft-thresholding is drawn in Fig. 3, showing Ssoft is continuous everywhere. Note that
although we define Ssoft by a block a ∈ R4, Ssoft can be extended to arbitrary a ∈ R4t for t ≥ 1,
by doing block-wise pruning.
Theorem 4.1. Ssoft(a) is a continuous projection for a ∈ Rd.

A detailed discussion of the proof can be found in Appendix A.1.

5



Choosing optimal threshold Theoretically, any real number in [|t2|, |t3|] can be used as a feasible
threshold. This gives us infinite options and we describe it with an interpolation as t = γ|t2|+ (1−
γ)|t3| with γ ∈ [0, 1]. The larger γ is, the closer t is to |t3|, and the smaller ∥Ssoft(a)∥ is. This
may affect model’s capacity. In order to maximize the retention of information, using a small γ is
necessary. In our method we propose to set γ = 0. Experimental results in Table 1 also show that the
network has the best accuracy when γ = 0, i.e., t = |t2|.

4.2 Fixed weight rescaling β

Because Ssoft reduce the total magnitude of w, it is not a close simulation of dense weights. Like
Vanderschueren and Vleeschouwer [45], we scale up Ssoft(w) in our method as S(w) = βSsoft(w),
but we modify weight rescaling in their study to adapt to our approach. First, we use a per-tensor
scale β rather than a per-channel β for simplicity. Besides, two important improvements are made: to
compute scale factor only at the beginning of training, rather than to dynamically update scale factor
during training, and to minimize the mean-square-error (MSE) between original dense weights and
sparse weights, rather than to keep the total magnitude of weights unchanged.

Freezing scaling factor As Vanderschueren and Vleeschouwer [45] use a dynamic β for every
iteration, we argue that this doesn’t align with our approach. We explain our solutions in two parts.

Figure 4: (a) Flip rate curve over the training process with different β on Transformer-base. (b)
Dynamically recalculated β at each layer on different epochs. Results show that frequently updating
β will cause it to be unexpectedly large. (c) Flip rate curve over the training process with fixed
and dynamic β on Transformer-base. (d) Flip rate of dense, SR-STE and S-STE algorithm on
Transformer-base.

First, we find it interesting that β have a subtle correlation with flip rate: in a sparse model, larger β
usually results in higher flip rate. The reason can be explained by the accuracy of gradients. As we
use STE in the backward pass, the approximation ∇wf ≈ ∇w̃f is valid when w̃ and w are close
enough. However, if scale is too large then optimal, w and w̃ are too far apart to guarantee this.
Such a mismatch leads to incorrectness in descending directions, and thus unstability in optimization
increase flip rate; see Fig. 4(a).

Second, we argue that dynamically computing scaling factor for each iteration leads to high flip rate
in our training process. Fig. 4(b) shows the results dynamically changing β will make it increase
with iterations, especially for later layers. Fig. 4(c) shows flip rate of this network, which has a
significantly higher tail than the dense one. Considering high flip rate is harmful, we propose to
compute scaling factor β only in the first iteration. After that, we use the same β in the rest of the
training. Fig. 4(d) shows the flip rate of our fixed scaling S-STE, which perfectly aligns with the
dense one.

Minimizing MSE Vanderschueren and Vleeschouwer [45] choose to scale up Ssoft(w) to have
the same L1-norm as w: β = ∥w∥1 / ∥Ssoft(w)∥1. However, we choose to minimize the MSE gap
of Ssoft(w) and w. As [8] point out, sparsifying weights in the forward pass should minimize MSE
rather than an unbiased estimation. In our method, to determine an optimal scale β, we need to
minimize

MSE = ∥w − βSsoft(w)∥2 = ∥w∥2 − 2w⊤Ssoft(w)β + ∥Ssoft(w)∥2 β2. (6)

Rearrange the terms and taking partial derivative of β, we choose β = w⊤Ssoft(w)/ ∥Ssoft(w)∥2.
The comparison between no scaling, our minimizing MSE and keeping L1-norm can be found in
Table 2. Result show that our method yields the best results in practice.

6



Table 2: Experimental result of different β on Transformer-base.

β Recipe Test BLEU Val loss Avg epoch loss

No scaling 25.28 4.044 4.670
Keeping L1-norm same [45] 25.85 4.019 4.627
Minimizing MSE (S-STE) 26.3 4.007 4.605

Table 3: Results of different MVUE strategies on GPT-2 774M with 4000 steps. Sparsifying S(W)⊤

introduces huge loss of accuracy while sparsifying ∇⊤
Z is acceptable with little loss.

S-STE MVUE(S(W)⊤) MVUE(∇⊤
Z ) comment loss

- % % dense 3.3948
- % % SR-STE 3.4739
! % % 3.4333
! ! % 3.4644
! ! ! 3.4773
! % ! 3.4480

5 Other implementation skills

5.1 Minimum-variance unbiased estimation

To accelerate the backward propagation, Chmiel et al. [8] suggest using a minimum-variance unbiased
estimator (MVUE). For every linear layer Zl = XlS(Wl)

⊤, there are two matrix multiplications
of the backward pass in total: ∇Xl

= ∇Zl
S(Wl) and ∇Wl

= ∇⊤
Zl
Xl, where Xl is the input

of the l-th layer, Wl and Zl are the weight matrix and output activation. We conduct MVUE on
both two matrix multiplications and compare their results: ∇Xl

= ∇Zl
MVUE(S(Wl)

⊤)⊤ and
∇Wl

= MVUE(∇⊤
Zl
)Xl. Specifically, we choose S(Wl) and ∇Zl

because they both have built-in
sparsity [26]. However, we only choose to sparsify the latter one. Firstly, it is proven by Hu et al.
[20] and Chmiel et al. [8] that minimum loss of accuracy is guaranteed for MVUE on ∇Zl

. Secondly,
using MVUE on S(Wl) will make errors accumulate along the back propagation, and results in large
standard deviation of gradient for the first few layers. Besides, results in Table 3 also show minimum
loss of accuracy of MVUE on ∇Zl

while obvious accuracy loss on S(Wl). Thus, we choose to
sparsify only ∇Zl

in the backward pass.

5.2 FP8 training

To further accelerate pre-training of networks, we utilize popular FP8 workflow in training. Similar
to Transformer Engine 2, we use FP8 e3m4 in forward pass and e5m2 in backward pass. Besides, we
use per-tensor rescaling before casting to FP8 formats.

Theoretical acceleration of S-STE While 2:4 sparsity can accelerate GEMMs up to 2x faster, FP8
quantization can accelerate an additional 2x on this basis. Thus, the three GEMMs in Sec. 5.1 can be
4x, 2x, 4x faster. To sum up, we have theoretically 3x faster in forward and backward pass.

6 Experiments

We validate the feasibility of our proposed method S-STE on machine translation (Transformer [46]),
image classification (DeiT [42]) and generative large language models (GPT-2 [38] series). For all
models, we replace the two linear layers in the feed forward network of each transformer block with

2https://github.com/NVIDIA/TransformerEngine

7

https://github.com/NVIDIA/TransformerEngine


S-STE. We keep the rest of the networks, the optimization algorithms as well as all hyperparameters
the same as their dense counterparts.

For Transformer, we train Transformer-base models on WMT 14 En-De dataset [3] with fairseq
[34] codebase and evaluate it with BLEU [36] scores. For DeiT, we pre-train Deit-small model for
ImageNet-1K [10] classification task. For GPT-2, we pre-train GPT-2 124M, 350M and 774M models
on OpenWebText [16] and evaluate it on GLUE [47] and SQuAD [39] benchmarks. We also compare
our method with state-of-the-art 2:4 training methods (SR-STE [52], Bi-Mask [51] and STEP [28]).
The pre-training and evaluation scripts are publicly available at https://github.com/thu-ml/
2by4-pretrain-acc-examples.

Machine translation We first apply S-STE to train a 12-layer Transformer-base and compare it
with SR-STE and STEP. Note that we use fairseq codebase with SacreBleu metric, whose baseline
should be 26.5 (the result of our reproduction is 26.42). The results are shown in Table 4. Compared
with SR-STE, our method improves by 0.3 and 0.5 on test set and validation set respectively, which
is the closest to baseline. Besides, we improve by 0.6 compared to STEP on test set.

Table 4: Experimental Results for Transformer-base on En-De dataset.

Method Avg epoch loss Test BLEU Val BLEU Val loss

Dense 4.555 26.42 26.49 3.977
SR-STE 4.61 25.84 26.08 4.023
STEP 4.682 25.52 26.01 4.085
S-STE 4.617 26.11 26.53 4.011

Table 5: Experimental Results for DeiT-small on ImageNet-1k. The Bi-Mask and SR-STE results are
from [51].

Model Method Test acc1 Test acc5

DeiT-tiny
Dense 72.2 91.1
SR-STE [51] 67.8 88.6
S-STE 68.5 88.9

DeiT-small

Dense 79.9 95
SR-STE [51] 75.7 -
Bi-Mask [51] 77.6 -
S-STE 78.5 94.4

Image classification We further investigate the effectiveness of S-STE to train DeiT-tiny and
DeiT-small on ImageNet-1k; see Table 5. Results show S-STE also achieve the best performance
among different methods, with only has 1.4% degradation from the dense model. Notably, S-STE
surpasses SOTA 2:4 training method Bi-Mask on this task (0.9% top1 accuracy improvement) and
popular SR-STE method (2.8% top1 accuracy improvement).

Generative language models We compare S-STE with dense, normal SR-STE and SR-STE with
dense fine-tuning [20] (SR-STE+DF) models on GLUE and SQuAD tasks. The SR-STE+DF models
first use SR-STE to train a 2:4 sparse model, and switch to dense training for the last 1/6 iters of
pre-training (which stands for “dense fine-tune”). In downstream tasks it also use dense parameters
to make predictions, similar to dense models. Results in Table 6 and 9 show that S-STE completely
surpasses SR-STE on both tasks. Even for SR-STE+DF models, S-STE still have an advantage, with
an improvement of 1.5 on GLUE average and 1.2/0.9 on SQuAD for GPT-2 774M.

Fine-tuning We illustrate the viability of S-STE for fine-tuning a pre-trained model, presenting a
coherent workflow of accelerating both training and inference (dense fine-tuning cannot produce a
sparse model for inference acceleration); see Table 7, 6.

8

https://github.com/thu-ml/2by4-pretrain-acc-examples
https://github.com/thu-ml/2by4-pretrain-acc-examples


Table 6: SQuAD and GLUE scores of different sizes and pre-training methods on GPT-2. We use 2:4
sparse weights to evaluate S-STE model, while dense parameters to evaluate the rest. Of note, SR-STE
denotes the original SR-STE workflow (without backward MVUE), and “T-SR-STE+DF” denotes
the combination of transposable SR-STE & backward MVUE & sparse-dense training workflow,
proposed by Hu et al. [20]. S-STE settings here include backward MVUE & FP8 training.

Params Pre-train Fine-tune Pre-train
val loss

SQuAD GLUE@Avg
EM F1

124M

Dense Dense 2.907 67.6 78.8 73.9± 1.1
T-SR-STE+DF [20] Dense 2.952 67.5 78.5 74.3± 0.5
T-SR-STE Dense 3.076 66.3 77.2 72.6± 0.2
SR-STE Dense 2.982 66.2 77.5 73.8± 0.3
S-STE S-STE 2.984 68 78.8 74.1± 0.4

350M

Dense Dense 2.618 73.2 83.6 76.3± 0.1
T-SR-STE+DF [20] Dense 2.688 71.9 82.4 77.1± 0.2
T-SR-STE Dense 2.718 72.3 82.6 76.3± 0.4
SR-STE Dense 2.690 72.0 82.4 76.8± 0.4
S-STE S-STE 2.713 72.2 82.7 76.9± 0.6

774M
Dense Dense 2.493 74.3 84.9 76.2± 0.4
T-SR-STE+DF [20] Dense 2.564 74.3 84.6 77.1± 0.4
S-STE S-STE 2.547 75.5 85.5 78.6± 0.8

Table 7: Different fine-tuning results on GLUE and SQuAD.
Model Downstream task Pre-train Fine-tune Avg score

GPT-2 124M

GLUE S-STE Hard-thresholding 73.9± 0.6
GLUE S-STE S-STE 74.1± 0.4
SQuAD S-STE Hard-thresholding 67.6/78.6
SQuAD S-STE S-STE 68/78.8

Ablation study In this part, We explore the effectiveness of S-STE, MVUE, and FP8 separately.
We pre-train DeiT-small model on ImageNet-1K dataset for image classification. Combinations of
these partitions in Table 8 show that: 1) FP8 training has little affect on pre-training accuracy (0.2%
of acc1); 2) MVUE leads to minimal loss of performance (0.1% of acc1).

Table 8: Experimental result of S-STE (soft-thresholding and weight rescaling), MVUE and FP8
training with DeiT-small on ImageNet-1K.

Soft-
thresholding

Weight
rescaling MVUE(∇⊤

Z ) FP8 Comment Test acc1 Test acc5

- - % % Dense 79.9 95
- - % ! Dense; FP8 79.7 94.9
% % % % Hard-thresholding 77.7 93.9
! ! % % 78.8 94.6
! % % % 78.9 94.7
! ! % ! 78.6 94.4
! ! ! % 78.9 94.6
! % ! % 78.2 94.2
! ! ! ! 78.5 94.4

9



Acceleration For acceleration, we measure the acceleration ratio of a typical GPT-2 model using
implementation from Hu et al. [20]. Note that on H100 GPUs, FP8 2:4-spMM kernel turns out
to be unsatisfying; see Appendix A.4. Consequently, we fall back to use RTX3090 GPUs with
FP16 training. For inference, we achieve 1.53x speedup with FFN layer and 1.23x speedup with
the network; for pre-training, we achieve 1.32x speedup for FFN layer and 1.18x speedup for the
network (Appendix A.3).

7 Related work

Unstructured pruning and coarse-grained structured pruning Pruning is to remove redundant
weights from the dense model. Traditional one-shot pruning methods [17, 18, 12, 14, 31, 24] and
dynamic sparse training methods [11, 6, 7, 50] mostly target on unstructured sparsity. While most of
them have acceleration effect on CPUs, it is hard for these methods to work well on modern GPUs.
Coarse-grained structured sparsity [49, 23, 19, 22] takes effect to acceleration, but since they often
remove a whole chennel or a block, loss of information is non-negligible.

Fine-grained N:M sparsity for inference and pre-training Among all pruning techniques for
pre-training, N:M sparsity is a promising approach towards accelerating large models, which is
also known as fine-grained structured sparsity. Nvidia demonstrates 2x theoretical speedup on its
Ampere GPUs with 2:4 sparsity for post-training [31] and inference [40, 15, 35, 9]. To leverage this
property to accelerate pre-training, a number of approaches and their improvements are proposed
[52, 28, 51, 1, 8, 21, 20]. However, all these methods are based on a discontinuous pruning function
that is hard to optimize and results in unsatisfactory accuracy, which we will discuss in this study.

FP8 quantization While 16-bit float tensors are widely used in pre-training, FP8 – where float
numbers stored in 8 bits – is a popular quantization methods which theoretically accelerates GEMMs
up to 4x faster than its fp32 counterparts and 2x faster than its FP16/BF16 counterparts [30, 37, 44,
48, 32]. With e3m4 data format used in forward and e5m2 format [41] in backward, pre-trained
models can achieve minimum loss of accuracy while greatly boosting the efficiency of training.

8 Conclusions and future work

In this study we discuss the importance of pruning continuity in effective 2:4 sparse pre-training. We
analyse the drawback of traditional hard-thresholding pruning function and its variation (SR-STE)
and argue that the main limits being discontinuity. Based on our analysis and soft-thresholding for
channel pruning, we propose S-STE, which prunes weights in a continuous manner. Experiments
show that our method surpasses previous state-of-the-art methods on a wide range of tasks.

Our proposed S-STE approach primarily targets linear layers within FFN networks. Nevertheless,
QKV projection layers necessitate further exploration to devise an effective dynamic sparse training
strategy that harmonizes with attention mechanisms. Furthermore, our current choice of continuous
pruning function represents only one possible solution; alternative, smoother pruning functions may
be necessary to achieve improved continuity and mitigate potential discontinuities.

Acknowledgments and Disclosure of Funding

We would like to thank Ziteng Wang, Bingrui Li, Haocheng Xi, Kang Zhao and Jintao Zhang,
Brian Chmiel and Daniel Soudry for valuable discussions. This work was supported by the Na-
tional Key Research and Development Program of China (No. 2021ZD0110502) and NSFC Project
(Nos. 62376131). J.Z is also supported by the XPlorer Prize.

References
[1] Abhimanyu Rajeshkumar Bambhaniya, Amir Yazdanbakhsh, Suvinay Subramanian, Sheng-Chun Kao,

Shivani Agrawal, Utku Evci, and Tushar Krishna. Progressive gradient flow for robust n:m sparsity training
in transformers, 2024.

[2] Yoshua Bengio, Nicholas Léonard, and Aaron Courville. Estimating or propagating gradients through
stochastic neurons for conditional computation, 2013.

10



[3] Ondrej Bojar, Christian Buck, Christian Federmann, Barry Haddow, Philipp Koehn, Johannes Leveling,
Christof Monz, Pavel Pecina, Matt Post, Herve Saint-Amand, Radu Soricut, Lucia Specia, and Ales
Tamchyna. Findings of the 2014 workshop on statistical machine translation. In WMT@ACL, 2014. URL
https://api.semanticscholar.org/CorpusID:15535376.

[4] Léon Bottou, Frank E. Curtis, and Jorge Nocedal. Optimization methods for large-scale machine learning,
2018.

[5] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu, Clemens
Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, Jack
Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever, and Dario Amodei. Language
models are few-shot learners, 2020.

[6] Tianlong Chen, Jonathan Frankle, Shiyu Chang, Sijia Liu, Yang Zhang, Zhangyang Wang, and Michael
Carbin. The lottery ticket hypothesis for pre-trained bert networks. In H. Larochelle, M. Ranzato,
R. Hadsell, M.F. Balcan, and H. Lin, editors, Advances in Neural Information Processing Systems,
volume 33, pages 15834–15846. Curran Associates, Inc., 2020. URL https://proceedings.neurips.
cc/paper_files/paper/2020/file/b6af2c9703f203a2794be03d443af2e3-Paper.pdf.

[7] Xiaohan Chen, Yu Cheng, Shuohang Wang, Zhe Gan, Zhangyang Wang, and Jingjing Liu. Earlybert:
Efficient bert training via early-bird lottery tickets, 2021.

[8] Brian Chmiel, Itay Hubara, Ron Banner, and Daniel Soudry. Minimum variance unbiased n:m sparsity for
the neural gradients. In The Eleventh International Conference on Learning Representations, 2023. URL
https://openreview.net/forum?id=vuD2xEtxZcj.

[9] Sumanth Dathathri, Andrea Madotto, Janice Lan, Jane Hung, Eric Frank, Piero Molino, Jason Yosinski,
and Rosanne Liu. Plug and play language models: A simple approach to controlled text generation, 2020.

[10] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hierarchical
image database. In 2009 IEEE Conference on Computer Vision and Pattern Recognition, pages 248–255,
2009. doi: 10.1109/CVPR.2009.5206848.

[11] Utku Evci, Trevor Gale, Jacob Menick, Pablo Samuel Castro, and Erich Elsen. Rigging the lottery: Making
all tickets winners. In Hal Daumé III and Aarti Singh, editors, Proceedings of the 37th International
Conference on Machine Learning, volume 119 of Proceedings of Machine Learning Research, pages
2943–2952. PMLR, 13–18 Jul 2020. URL https://proceedings.mlr.press/v119/evci20a.html.

[12] Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Finding sparse, trainable neural
networks. In International Conference on Learning Representations, 2019. URL https://openreview.
net/forum?id=rJl-b3RcF7.

[13] Jonathan Frankle, Gintare Karolina Dziugaite, Daniel Roy, and Michael Carbin. Linear mode connec-
tivity and the lottery ticket hypothesis. In Hal Daumé III and Aarti Singh, editors, Proceedings of the
37th International Conference on Machine Learning, volume 119 of Proceedings of Machine Learning
Research, pages 3259–3269. PMLR, 13–18 Jul 2020. URL https://proceedings.mlr.press/v119/
frankle20a.html.

[14] Jonathan Frankle, Gintare Karolina Dziugaite, Daniel M. Roy, and Michael Carbin. Stabilizing the lottery
ticket hypothesis, 2020.

[15] Elias Frantar and Dan Alistarh. Sparsegpt: Massive language models can be accurately pruned in one-shot,
2023.

[16] Aaron Gokaslan and Vanya Cohen. Openwebtext corpus. http://Skylion007.github.io/
OpenWebTextCorpus, 2019.

[17] Song Han, Jeff Pool, John Tran, and William J. Dally. Learning both weights and connections for efficient
neural networks, 2015.

[18] Song Han, Huizi Mao, and William J. Dally. Deep compression: Compressing deep neural networks with
pruning, trained quantization and huffman coding, 2016.

[19] Yihui He, Xiangyu Zhang, and Jian Sun. Channel pruning for accelerating very deep neural networks. In
The IEEE International Conference on Computer Vision (ICCV), Oct 2017.

[20] Yuezhou Hu, Kang Zhao, Weiyu Huang, Jianfei Chen, and Jun Zhu. Accelerating transformer pre-training
with 2:4 sparsity. In Ruslan Salakhutdinov, Zico Kolter, Katherine Heller, Adrian Weller, Nuria Oliver,
Jonathan Scarlett, and Felix Berkenkamp, editors, Proceedings of the 41st International Conference on
Machine Learning, volume 235 of Proceedings of Machine Learning Research, pages 19531–19543.
PMLR, 21–27 Jul 2024. URL https://proceedings.mlr.press/v235/hu24r.html.

11

https://api.semanticscholar.org/CorpusID:15535376
https://proceedings.neurips.cc/paper_files/paper/2020/file/b6af2c9703f203a2794be03d443af2e3-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/b6af2c9703f203a2794be03d443af2e3-Paper.pdf
https://openreview.net/forum?id=vuD2xEtxZcj
https://proceedings.mlr.press/v119/evci20a.html
https://openreview.net/forum?id=rJl-b3RcF7
https://openreview.net/forum?id=rJl-b3RcF7
https://proceedings.mlr.press/v119/frankle20a.html
https://proceedings.mlr.press/v119/frankle20a.html
http://Skylion007.github.io/OpenWebTextCorpus
http://Skylion007.github.io/OpenWebTextCorpus
https://proceedings.mlr.press/v235/hu24r.html


[21] Itay Hubara, Brian Chmiel, Moshe Island, Ron Banner, Joseph Naor, and Daniel Soudry. Ac-
celerated sparse neural training: A provable and efficient method to find n:m transposable masks.
In M. Ranzato, A. Beygelzimer, Y. Dauphin, P.S. Liang, and J. Wortman Vaughan, editors, Ad-
vances in Neural Information Processing Systems, volume 34, pages 21099–21111. Curran Asso-
ciates, Inc., 2021. URL https://proceedings.neurips.cc/paper_files/paper/2021/file/
b0490b85e92b64dbb5db76bf8fca6a82-Paper.pdf.

[22] François Lagunas, Ella Charlaix, Victor Sanh, and Alexander Rush. Block pruning for faster transformers.
In Marie-Francine Moens, Xuanjing Huang, Lucia Specia, and Scott Wen-tau Yih, editors, Proceedings of
the 2021 Conference on Empirical Methods in Natural Language Processing, pages 10619–10629, Online
and Punta Cana, Dominican Republic, November 2021. Association for Computational Linguistics. doi:
10.18653/v1/2021.emnlp-main.829. URL https://aclanthology.org/2021.emnlp-main.829.

[23] Mike Lasby, Anna Golubeva, Utku Evci, Mihai Nica, and Yani Ioannou. Dynamic sparse training with
structured sparsity, 2023.

[24] Namhoon Lee, Thalaiyasingam Ajanthan, and Philip Torr. SNIP: SINGLE-SHOT NETWORK PRUNING
BASED ON CONNECTION SENSITIVITY. In International Conference on Learning Representations,
2019. URL https://openreview.net/forum?id=B1VZqjAcYX.

[25] Yuanzhi Li and Yang Yuan. Convergence analysis of two-layer neural networks with relu activa-
tion. In I. Guyon, U. Von Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and
R. Garnett, editors, Advances in Neural Information Processing Systems, volume 30. Curran Asso-
ciates, Inc., 2017. URL https://proceedings.neurips.cc/paper_files/paper/2017/file/
a96b65a721e561e1e3de768ac819ffbb-Paper.pdf.

[26] Yujun Lin, Song Han, Huizi Mao, Yu Wang, and William J. Dally. Deep gradient compression: Reducing
the communication bandwidth for distributed training, 2020.

[27] Yixin Liu, Kai Zhang, Yuan Li, Zhiling Yan, Chujie Gao, Ruoxi Chen, Zhengqing Yuan, Yue Huang,
Hanchi Sun, Jianfeng Gao, Lifang He, and Lichao Sun. Sora: A review on background, technology,
limitations, and opportunities of large vision models, 2024.

[28] Yucheng Lu, Shivani Agrawal, Suvinay Subramanian, Oleg Rybakov, Christopher De Sa, and Amir
Yazdanbakhsh. STEP: Learning N:M structured sparsity masks from scratch with precondition. In
Andreas Krause, Emma Brunskill, Kyunghyun Cho, Barbara Engelhardt, Sivan Sabato, and Jonathan
Scarlett, editors, Proceedings of the 40th International Conference on Machine Learning, volume 202
of Proceedings of Machine Learning Research, pages 22812–22824. PMLR, 23–29 Jul 2023. URL
https://proceedings.mlr.press/v202/lu23c.html.

[29] Jaron Maene, Mingxiao Li, and Marie-Francine Moens. Towards understanding iterative magnitude
pruning: Why lottery tickets win, 2021.

[30] Paulius Micikevicius, Dusan Stosic, Neil Burgess, Marius Cornea, Pradeep Dubey, Richard Grisenthwaite,
Sangwon Ha, Alexander Heinecke, Patrick Judd, John Kamalu, Naveen Mellempudi, Stuart Oberman,
Mohammad Shoeybi, Michael Siu, and Hao Wu. Fp8 formats for deep learning, 2022.

[31] Asit Mishra, Jorge Albericio Latorre, Jeff Pool, Darko Stosic, Dusan Stosic, Ganesh Venkatesh, Chong Yu,
and Paulius Micikevicius. Accelerating sparse deep neural networks, 2021.

[32] Badreddine Noune, Philip Jones, Daniel Justus, Dominic Masters, and Carlo Luschi. 8-bit numerical
formats for deep neural networks, 2022.

[33] OpenAI, Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni
Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, Red Avila, Igor Babuschkin,
Suchir Balaji, Valerie Balcom, Paul Baltescu, Haiming Bao, Mohammad Bavarian, Jeff Belgum, Irwan
Bello, Jake Berdine, Gabriel Bernadett-Shapiro, Christopher Berner, Lenny Bogdonoff, Oleg Boiko,
Madelaine Boyd, Anna-Luisa Brakman, Greg Brockman, Tim Brooks, Miles Brundage, Kevin Button,
Trevor Cai, Rosie Campbell, Andrew Cann, Brittany Carey, Chelsea Carlson, Rory Carmichael, Brooke
Chan, Che Chang, Fotis Chantzis, Derek Chen, Sully Chen, Ruby Chen, Jason Chen, Mark Chen, Ben
Chess, Chester Cho, Casey Chu, Hyung Won Chung, Dave Cummings, Jeremiah Currier, Yunxing Dai,
Cory Decareaux, Thomas Degry, Noah Deutsch, Damien Deville, Arka Dhar, David Dohan, Steve Dowling,
Sheila Dunning, Adrien Ecoffet, Atty Eleti, Tyna Eloundou, David Farhi, Liam Fedus, Niko Felix,
Simón Posada Fishman, Juston Forte, Isabella Fulford, Leo Gao, Elie Georges, Christian Gibson, Vik Goel,
Tarun Gogineni, Gabriel Goh, Rapha Gontijo-Lopes, Jonathan Gordon, Morgan Grafstein, Scott Gray,
Ryan Greene, Joshua Gross, Shixiang Shane Gu, Yufei Guo, Chris Hallacy, Jesse Han, Jeff Harris, Yuchen
He, Mike Heaton, Johannes Heidecke, Chris Hesse, Alan Hickey, Wade Hickey, Peter Hoeschele, Brandon
Houghton, Kenny Hsu, Shengli Hu, Xin Hu, Joost Huizinga, Shantanu Jain, Shawn Jain, Joanne Jang,
Angela Jiang, Roger Jiang, Haozhun Jin, Denny Jin, Shino Jomoto, Billie Jonn, Heewoo Jun, Tomer Kaftan,
Łukasz Kaiser, Ali Kamali, Ingmar Kanitscheider, Nitish Shirish Keskar, Tabarak Khan, Logan Kilpatrick,
Jong Wook Kim, Christina Kim, Yongjik Kim, Jan Hendrik Kirchner, Jamie Kiros, Matt Knight, Daniel
Kokotajlo, Łukasz Kondraciuk, Andrew Kondrich, Aris Konstantinidis, Kyle Kosic, Gretchen Krueger,

12

https://proceedings.neurips.cc/paper_files/paper/2021/file/b0490b85e92b64dbb5db76bf8fca6a82-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/b0490b85e92b64dbb5db76bf8fca6a82-Paper.pdf
https://aclanthology.org/2021.emnlp-main.829
https://openreview.net/forum?id=B1VZqjAcYX
https://proceedings.neurips.cc/paper_files/paper/2017/file/a96b65a721e561e1e3de768ac819ffbb-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/a96b65a721e561e1e3de768ac819ffbb-Paper.pdf
https://proceedings.mlr.press/v202/lu23c.html


Vishal Kuo, Michael Lampe, Ikai Lan, Teddy Lee, Jan Leike, Jade Leung, Daniel Levy, Chak Ming
Li, Rachel Lim, Molly Lin, Stephanie Lin, Mateusz Litwin, Theresa Lopez, Ryan Lowe, Patricia Lue,
Anna Makanju, Kim Malfacini, Sam Manning, Todor Markov, Yaniv Markovski, Bianca Martin, Katie
Mayer, Andrew Mayne, Bob McGrew, Scott Mayer McKinney, Christine McLeavey, Paul McMillan,
Jake McNeil, David Medina, Aalok Mehta, Jacob Menick, Luke Metz, Andrey Mishchenko, Pamela
Mishkin, Vinnie Monaco, Evan Morikawa, Daniel Mossing, Tong Mu, Mira Murati, Oleg Murk, David
Mély, Ashvin Nair, Reiichiro Nakano, Rajeev Nayak, Arvind Neelakantan, Richard Ngo, Hyeonwoo Noh,
Long Ouyang, Cullen O’Keefe, Jakub Pachocki, Alex Paino, Joe Palermo, Ashley Pantuliano, Giambattista
Parascandolo, Joel Parish, Emy Parparita, Alex Passos, Mikhail Pavlov, Andrew Peng, Adam Perelman,
Filipe de Avila Belbute Peres, Michael Petrov, Henrique Ponde de Oliveira Pinto, Michael, Pokorny,
Michelle Pokrass, Vitchyr H. Pong, Tolly Powell, Alethea Power, Boris Power, Elizabeth Proehl, Raul
Puri, Alec Radford, Jack Rae, Aditya Ramesh, Cameron Raymond, Francis Real, Kendra Rimbach, Carl
Ross, Bob Rotsted, Henri Roussez, Nick Ryder, Mario Saltarelli, Ted Sanders, Shibani Santurkar, Girish
Sastry, Heather Schmidt, David Schnurr, John Schulman, Daniel Selsam, Kyla Sheppard, Toki Sherbakov,
Jessica Shieh, Sarah Shoker, Pranav Shyam, Szymon Sidor, Eric Sigler, Maddie Simens, Jordan Sitkin,
Katarina Slama, Ian Sohl, Benjamin Sokolowsky, Yang Song, Natalie Staudacher, Felipe Petroski Such,
Natalie Summers, Ilya Sutskever, Jie Tang, Nikolas Tezak, Madeleine B. Thompson, Phil Tillet, Amin
Tootoonchian, Elizabeth Tseng, Preston Tuggle, Nick Turley, Jerry Tworek, Juan Felipe Cerón Uribe,
Andrea Vallone, Arun Vijayvergiya, Chelsea Voss, Carroll Wainwright, Justin Jay Wang, Alvin Wang, Ben
Wang, Jonathan Ward, Jason Wei, CJ Weinmann, Akila Welihinda, Peter Welinder, Jiayi Weng, Lilian
Weng, Matt Wiethoff, Dave Willner, Clemens Winter, Samuel Wolrich, Hannah Wong, Lauren Workman,
Sherwin Wu, Jeff Wu, Michael Wu, Kai Xiao, Tao Xu, Sarah Yoo, Kevin Yu, Qiming Yuan, Wojciech
Zaremba, Rowan Zellers, Chong Zhang, Marvin Zhang, Shengjia Zhao, Tianhao Zheng, Juntang Zhuang,
William Zhuk, and Barret Zoph. Gpt-4 technical report, 2024.

[34] Myle Ott, Sergey Edunov, Alexei Baevski, Angela Fan, Sam Gross, Nathan Ng, David Grangier, and
Michael Auli. fairseq: A fast, extensible toolkit for sequence modeling. In Proceedings of NAACL-HLT
2019: Demonstrations, 2019.

[35] Manoj Kumar Pandey, Daniel P. Delorey, Qiuyi Duan, Lei Wang, Charles D. Knutson, Daniel Zappala,
and Ryan Woodings. Ria: An rf interference avoidance algorithm for heterogeneous wireless networks.
2007 IEEE Wireless Communications and Networking Conference, pages 4051–4056, 2007. URL https:
//api.semanticscholar.org/CorpusID:10798336.

[36] Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. Bleu: a method for automatic evaluation
of machine translation. In Pierre Isabelle, Eugene Charniak, and Dekang Lin, editors, Proceedings of
the 40th Annual Meeting of the Association for Computational Linguistics, pages 311–318, Philadelphia,
Pennsylvania, USA, July 2002. Association for Computational Linguistics. doi: 10.3115/1073083.1073135.
URL https://aclanthology.org/P02-1040.

[37] Sergio P. Perez, Yan Zhang, James Briggs, Charlie Blake, Josh Levy-Kramer, Paul Balanca, Carlo Luschi,
Stephen Barlow, and Andrew William Fitzgibbon. Training and inference of large language models using
8-bit floating point, 2023.

[38] Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language models
are unsupervised multitask learners. 2019.

[39] Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. SQuAD: 100,000+ questions for
machine comprehension of text. In Jian Su, Kevin Duh, and Xavier Carreras, editors, Proceedings of
the 2016 Conference on Empirical Methods in Natural Language Processing, pages 2383–2392, Austin,
Texas, November 2016. Association for Computational Linguistics. doi: 10.18653/v1/D16-1264. URL
https://aclanthology.org/D16-1264.

[40] Mingjie Sun, Zhuang Liu, Anna Bair, and J. Zico Kolter. A simple and effective pruning approach for large
language models. arXiv preprint arXiv:2306.11695, 2023.

[41] Xiao Sun, Jungwook Choi, Chia-Yu Chen, Naigang Wang, Swagath Venkataramani, Vijayalakshmi
Srinivasan, Xiaodong Cui, Wei Zhang, and K. Gopalakrishnan. Hybrid 8-bit floating point (hfp8) training
and inference for deep neural networks. In Neural Information Processing Systems, 2019. URL https:
//api.semanticscholar.org/CorpusID:202779157.

[42] Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, and Hervé
Jégou. Training data-efficient image transformers & distillation through attention, 2021.

[43] Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and efficient foundation
language models. arXiv preprint arXiv:2302.13971, 2023.

[44] Mart van Baalen, Andrey Kuzmin, Suparna S Nair, Yuwei Ren, Eric Mahurin, Chirag Patel, Sundar
Subramanian, Sanghyuk Lee, Markus Nagel, Joseph Soriaga, and Tijmen Blankevoort. Fp8 versus int8 for
efficient deep learning inference, 2023.

13

https://api.semanticscholar.org/CorpusID:10798336
https://api.semanticscholar.org/CorpusID:10798336
https://aclanthology.org/P02-1040
https://aclanthology.org/D16-1264
https://api.semanticscholar.org/CorpusID:202779157
https://api.semanticscholar.org/CorpusID:202779157


[45] Antoine Vanderschueren and Christophe De Vleeschouwer. Are straight-through gradients and soft-
thresholding all you need for sparse training?, 2022.

[46] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz
Kaiser, and Illia Polosukhin. Attention is all you need. In I. Guyon, U. Von Luxburg, S. Bengio, H. Wallach,
R. Fergus, S. Vishwanathan, and R. Garnett, editors, Advances in Neural Information Processing Systems,
volume 30. Curran Associates, Inc., 2017. URL https://proceedings.neurips.cc/paper_files/
paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf.

[47] Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel Bowman. GLUE:
A multi-task benchmark and analysis platform for natural language understanding. In Tal Linzen,
Grzegorz Chrupała, and Afra Alishahi, editors, Proceedings of the 2018 EMNLP Workshop Black-
boxNLP: Analyzing and Interpreting Neural Networks for NLP, pages 353–355, Brussels, Belgium,
November 2018. Association for Computational Linguistics. doi: 10.18653/v1/W18-5446. URL
https://aclanthology.org/W18-5446.

[48] Naigang Wang, Jungwook Choi, Daniel Brand, Chia-Yu Chen, and Kailash Gopalakrishnan. Training deep
neural networks with 8-bit floating point numbers, 2018.

[49] Lu Yin, Gen Li, Meng Fang, Li Shen, Tianjin Huang, Zhangyang "Atlas" Wang, Vlado Menkovski,
Xiaolong Ma, Mykola Pechenizkiy, and Shiwei Liu. Dynamic sparsity is channel-level sparsity
learner. In A. Oh, T. Naumann, A. Globerson, K. Saenko, M. Hardt, and S. Levine, editors, Ad-
vances in Neural Information Processing Systems, volume 36, pages 67993–68012. Curran Asso-
ciates, Inc., 2023. URL https://proceedings.neurips.cc/paper_files/paper/2023/file/
d6d0e41e0b1ed38c76d13c9e417a8f1f-Paper-Conference.pdf.

[50] Haoran You, Chaojian Li, Pengfei Xu, Yonggan Fu, Yue Wang, Xiaohan Chen, Richard G. Baraniuk,
Zhangyang Wang, and Yingyan Lin. Drawing early-bird tickets: Towards more efficient training of deep
networks, 2022.

[51] Yuxin Zhang, Yiting Luo, Mingbao Lin, Yunshan Zhong, Jingjing Xie, Fei Chao, and Rongrong Ji. Bi-
directional masks for efficient N:M sparse training. In Andreas Krause, Emma Brunskill, Kyunghyun Cho,
Barbara Engelhardt, Sivan Sabato, and Jonathan Scarlett, editors, Proceedings of the 40th International
Conference on Machine Learning, volume 202 of Proceedings of Machine Learning Research, pages 41488–
41497. PMLR, 23–29 Jul 2023. URL https://proceedings.mlr.press/v202/zhang23ae.html.

[52] Aojun Zhou, Yukun Ma, Junnan Zhu, Jianbo Liu, Zhijie Zhang, Kun Yuan, Wenxiu Sun, and Hongsheng
Li. Learning n:m fine-grained structured sparse neural networks from scratch. In International Conference
on Learning Representations, 2021. URL https://openreview.net/forum?id=K9bw7vqp_s.

[53] Brianna Zitkovich, Tianhe Yu, Sichun Xu, Peng Xu, Ted Xiao, Fei Xia, Jialin Wu, Paul Wohlhart, Stefan
Welker, Ayzaan Wahid, Quan Vuong, Vincent Vanhoucke, Huong Tran, Radu Soricut, Anikait Singh,
Jaspiar Singh, Pierre Sermanet, Pannag R. Sanketi, Grecia Salazar, Michael S. Ryoo, Krista Reymann,
Kanishka Rao, Karl Pertsch, Igor Mordatch, Henryk Michalewski, Yao Lu, Sergey Levine, Lisa Lee, Tsang-
Wei Edward Lee, Isabel Leal, Yuheng Kuang, Dmitry Kalashnikov, Ryan Julian, Nikhil J. Joshi, Alex Irpan,
Brian Ichter, Jasmine Hsu, Alexander Herzog, Karol Hausman, Keerthana Gopalakrishnan, Chuyuan Fu,
Pete Florence, Chelsea Finn, Kumar Avinava Dubey, Danny Driess, Tianli Ding, Krzysztof Marcin Choro-
manski, Xi Chen, Yevgen Chebotar, Justice Carbajal, Noah Brown, Anthony Brohan, Montserrat Gonzalez
Arenas, and Kehang Han. Rt-2: Vision-language-action models transfer web knowledge to robotic control.
In Jie Tan, Marc Toussaint, and Kourosh Darvish, editors, Proceedings of The 7th Conference on Robot
Learning, volume 229 of Proceedings of Machine Learning Research, pages 2165–2183. PMLR, 06–09
Nov 2023. URL https://proceedings.mlr.press/v229/zitkovich23a.html.

14

https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://aclanthology.org/W18-5446
https://proceedings.neurips.cc/paper_files/paper/2023/file/d6d0e41e0b1ed38c76d13c9e417a8f1f-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/d6d0e41e0b1ed38c76d13c9e417a8f1f-Paper-Conference.pdf
https://proceedings.mlr.press/v202/zhang23ae.html
https://openreview.net/forum?id=K9bw7vqp_s
https://proceedings.mlr.press/v229/zitkovich23a.html


A Appendix / supplemental material

A.1 Proof of Theorem 4.1

Proof. We prove this by demonstrating Ssoft is continuous on every 4-element block. Of note,
suppose a = [a1, a2, a3, a4]

⊤. Assume, without loss of generality, that |a1| ≤ |a2| ≤ |a3| ≤ |a4|.
Our goal is to prove ∀ϵ > 0,∃δ > 0, s.t. when |a′1 − a1| < δ, |a′2 − a2| < δ, |a′3 − a3| < δ and |a′4 −
a4| < δ, |(Ssoft(a

′))i − ai| < ϵ, where a′ = [a′1, a
′
2, a

′
3, a

′
4]

⊤.

1) We start from the simplest case where |a1| < |a2| < |a3| < |a4|. Then we have

Ssoft = [0, 0, sign(a3)(|a3| − |a2|), sign(a4)(|a4| − |a2|)].
This order holds when

δ <
1

2
min{(|a2| − |a1|), |a3| − |a2|), |a4| − |a3|)}.

Thus,
Ssoft(a

′) = [0, 0, sign(a′3)(|a′3| − |a′2|), sign(a′4)(|a′4| − |a′2|)].
The signs of a is unchanged when

δ < min{|a1|, |a2|, |a3|, |a4|}.
We have

sign(a′4)(|a′4| − |a′2|)− sign(a4)(|a4| − |a2|)
≤ | |a′4| − |a′2| − |a4|+ |a2| |
≤ | |a′4| − |a4| |+ | |a′2| − |a2| |
≤ 2δ

Take δ ≤ 1
2ϵ and this is done. It is similar to prove that sign(a′3)(|a′3|−|a′2|)−sign(a3)(|a3|−|a2|) ≤

ϵ using the same method.

2) We then consider the cases where there are two equivalents in a. If |a1| = |a2| < |a3| < |a4| or
|a1| < |a2| < |a3| = |a4|, the proof should follow 1) as no flip happens. Thus we only consider
the situation where |a1| < |a2| = |a3| < |a4|. Under these circumstances, a flip will happen on the
second and third dimensions of a.

Ssoft(a) = [0, 0, 0, sign(a4)(|a4| − |a2|)]
Without loss of generality we assume |a′1| < |a′2| ≤ |a′3| < |a′4|. Thus,

Ssoft(a
′) = [0, 0, sign(a′3)(|a′3| − |a′2|), sign(a′4)(|a′4| − |a′2|)].

The proof of the fourth dimension is similar to 1), so we only focus on a3.

sign(a′3)(|a′3| − |a′2|)
≤ | |a′3| − |a′2| |
≤ | |a′3| − |a3| |+ | |a′2|+ |a2| |
≤ 2δ

Take δ ≤ 1
2ϵ and this is done.

3) If there exists three or four equivalent in a, a flip will happen at the second and third dimension.
Thus, these cases can be reduced to 1) or 2).

A.2 GLUE scores of GPT-2

See Table 9.

A.3 Acceleration

See Table 10.

15



Table 9: Comparison between GLUE scores of different pre-train methods on GPT-2 models. This
table is the elaboration of Table 6.

Params Method Avg score CoLA MNLI MRPC QNLI QQP RTE SST-2 STS-B WNLI

124M

Dense 73.9± 1.1 44.6± 0.9 82.0± 0.1 78.3± 1.3/84.8± 1.0 88.4± 0.2 90.0± 0.0 86.5± 0.0/61.3± 1.5 91.9± 0.2 77.3± 3.2/77.9± 2.9 24.3± 7.1
T-SR-STE+DF [20] 74.3± 0.5 44.8± 1.3 81.5± 0.2 77.5± 1.8/84.2± 1.3 87.8± 0.1 89.5± 0.1 85.9± 0.1/66.0± 1.0 90.6± 0.4 80.0± 0.8/80.3± 0.5 23.9± 6.4
T-SR-STE 72.6± 0.2 41.9± 0.3 81.0± 0.2 76.3± 0.9/83.4± 0.7 87.0± 0.3 89.3± 0.1 85.6± 0.1/60.6± 3.4 90.9± 0.4 76.2± 3.2/76.5± 3.0 21.8± 4.4
SR-STE 73.8± 0.3 38.3± 2.8 80.9± 0.2 79.7± 0.7/85.9± 0.6 87.1± 0.3 89.5± 0.1 85.8± 0.2/65.5± 1.0 90.5± 0.4 80.9± 1.2/80.9± 1.1 20.1± 1.8
S-STE 74.1± 0.4 42.3± 1.1 80.5± 2.8 79.3± 1.9/85.6± 1.4 88.1± 0.2 89.8± 0.1 86.2± 0.1/62.9± 1.1 91.9± 0.4 81.0± 1.1/81.2± 1.0 20.8± 3.6

350M

Dense 76.3± 0.1 54.3± 0.4 85.1± 0.1 80.7± 1.0/86.6± 0.7 90.7± 0.1 91.0± 0.1 87.8± 0.1/64.9± 1.7 93.5± 0.4 81.7± 1.2/82.2± 0.8 17.6± 3.2
T-SR-STE+DF [20] 77.1± 0.2 51.8± 1.8 84.3± 0.1 80.6± 1.3/86.5± 0.8 90.4± 0.2 90.7± 0.1 87.5± 0.1/66.7± 1.3 93.3± 0.4 83.4± 1.1/83.5± 1.1 26.4± 4.0
T-SR-STE 76.3± 0.4 50.0± 1.7 84.1± 0.2 81.4± 1.5/87.1± 1.1 90.0± 0.3 90.6± 0.1 87.3± 0.1/67.9± 1.5 93.3± 0.4 81.3± 1.5/81.4± 1.4 20.6± 3.8
SR-STE 76.8± 0.4 47.2± 3.0 84.3± 0.2 81.4± 0.9/87.2± 0.6 90.2± 0.1 90.8± 0.1 87.6± 0.1/68.3± 1.4 93.9± 0.1 82.0± 1.6/82.0± 1.7 27.1± 3.1
S-STE 76.9± 0.6 54.2± 1.7 84.6± 0.2 80.2± 1.3/86.1± 0.9 90.5± 0.3 90.8± 0.1 87.5± 0.2/65.1± 1.9 93.7± 0.4 83.6± 1.1/83.8± 1.1 22.5± 3.9

774M
Dense 76.2± 0.4 57.5± 2.0 86.1± 0.1 80.3± 1.3/86.4± 0.9 91.4± 0.2 91.1± 0.1 88.0± 0.1/67.7± 2.6 94.6± 0.4 77.3± 3.3/78.4± 2.9 15.1± 2.3
T-SR-STE+DF [20] 77.1± 0.4 55.9± 0.9 85.6± 0.2 81.2± 0.6/87.0± 0.4 91.4± 0.1 91.0± 0.1 87.8± 0.1/71.5± 0.7 94.2± 0.4 81.8± 1.3/82.3± 1.2 15.8± 1.2
S-STE 78.6± 0.8 57.3± 2.7 86.6± 0.2 80.6± 1.4/86.6± 0.9 92.0± 0.1 91.5± 0.1 88.5± 0.1/78.3± 1.5 94.9± 0.3 85.5± 1.2/85.7± 1.1 16.1± 5.9

Table 10: Pre-training acceleration ratio with different different batch size N , sequence length n,
embedding dimension d and heads number h on single FFN block and transformer block of GPT-2
with RTX 3090 GPUs.

N n d h FFN GPT-2

Pre-train

4 2048 5120 40 1.31 1.18
16 2048 7168 56 1.32 1.18
8 2048 7168 56 1.33 1.17
4 2048 7168 56 1.31 1.17
4 2048 9216 72 1.31 1.18

Inference 16 2048 7168 56 1.54 1.23
8 2048 7168 56 1.46 1.15

A.4 Limitations

As we propose accuracy results of S-STE on several tasks, no actual acceleration result is given.
While theoretically 2x faster results can be expected (FP8 quantization), the NVIDIA acceleration
library (cuSPARSElt [31]) is not satisfactory, which causes inconvenience on implementation. The
peak FLOPS of 2:4-spMM is lower than theoretical GEMM FLOPS; see Table 11.

Table 11: Peak FLOPS of general matrix multiplications (GEMMs) and 2:4 sparse matrix multiplica-
tions (2:4-spMMs) on H100. The size we take to test is 16384× 16384× 16384.

GPU FP8 Tensor Core

Specifications

H100 PCIe 2:4-spMM 3200 TFLOPS
H100 PCIe GEMM 1600 TFLOPS
H100 SXM 2:4-spMM 4000 TFLOPS
H100 SXM GEMM 2000 TFLOPS

Actual results
with cuSPARSElt

H100 SXM 2:4-spMM 1900 TFLOPS
H100 SXM GEMM 1500 TFLOPS

Table 12: GPU Hours of pre-training models on RTX 4090.

GPU Hours

GPT-2 124M 400
GPT-2 350M 900
GPT-2 774M 2500
Transformer-base 30
DeiT-base 120

16



A.5 Broader Impact

S-STE can be used mainly to accelerate the pre-training stage of large-scale networks, like LLaMA
[43] and GPT-4 [33]. Theoretically GEMMs of the FFN layer can be accelerated up to 4x faster
than FP16 dense models, which would greatly reduce the electric power consumption of pre-training
modern large-scale models. However, this method may also used for some models that is non-
compliance with regulations and ethics, such as models that generate discriminatory contents.

A.6 Experiments compute resources

To replicate our experiments, we provide the estimated GPU hours of each setting; see Table 12.

17



NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Both the abstract and beginning part of introduction indicate the scope of the
paper’s contributions.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Limitations are discussed in Appendix.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]

18



Justification: Please refer to Appendix.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Result can be reproduced according to “methodology” and “experiments”
chapters.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

19



Answer: [Yes]

Justification: Source code is provided in supplementary materials.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Please refer to “experiments” chapter.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: For those experiments with large errors, we provide mean and standard
deviation values of the results, like GLUE.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).

20

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy


• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Please refer to Appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The authors have reviewed the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: Please refer to Appendix.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

21

https://neurips.cc/public/EthicsGuidelines


• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper doesn’t release any new models, generators or datasets.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: Please refer to the “experiments” chapter.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

22

paperswithcode.com/datasets


• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: Please refer to README.md in our code submission.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

23


	Introduction
	Formulation of sparse pre-training
	The curse of discontinuity
	Phenomenon 1: incorrect descending direction
	Phenomenon 2: inability to predict the amount of descent
	Phenomenon 3: oscillation
	Overcoming the curse of discontinuity

	Methodology
	2:4 specific soft-thresholding ssoft
	Fixed weight rescaling beta

	Other implementation skills
	Minimum-variance unbiased estimation
	FP8 training

	Experiments
	Related work
	Conclusions and future work
	Appendix / supplemental material
	Proof of Theorem 4.1
	GLUE scores of GPT-2
	Acceleration
	Limitations
	Broader Impact
	Experiments compute resources


