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ABSTRACT

Finding Nash equilibria in two-player differentiable games is a classical problem
in game theory with important relevance in machine learning. We propose double
Follow-the-Ridge (double-FTR), an algorithm that locally converges to and only
to local Nash equilibria in general-sum two-player differentiable games. To our
knowledge, double-FTR is the first algorithm with such guarantees for general-sum
games. Furthermore, we show that by varying its preconditioner, double-FTR leads
to a broader family of algorithms with the same convergence guarantee. In addition,
double-FTR avoids oscillation near equilibria due to the real-eigenvalues of its
Jacobian at fixed points. Empirically, we validate the double-FTR algorithm on a
range of simple zero-sum and general sum games, as well as simple Generative
Adversarial Network (GAN) tasks.

1 INTRODUCTION

Much of the recent success in deep learning can be attributed to the effectiveness of gradient-based
optimization. It is well-known that for a minimization problem, with appropriate choice of learning
rates, gradient descent has convergence guarantee to local minima (Lee et al., 2016; 2019). Based on
this foundational result, an array of accelerated and higher-order methods have since been proposed
and widely applied in training neural networks (Duchi et al., 2011; Kingma and Ba, 2014; Reddi
et al., 2018; Zhang et al., 2019b).

However, once we leave the realm of minimization problems and consider the multi-agent setting, the
optimization landscape becomes much more complicated. Multi-agent optimization problems arise in
diverse fields such as robotics, economics and machine learning (Foerster et al., 2016; Von Neumann
and Morgenstern, 2007; Goodfellow et al., 2014; Ben-Tal and Nemirovski, 2002; Gemp et al., 2020;
Anil et al., 2021).

A classical abstraction that is especially relevant for machine learning is two-player differentiable
games, where the objective is to find global or local Nash equilibria. The equivalent of gradient
descent in such a game would be each agent applying gradient descent to minimize their own objective
function. However, in stark contrast with gradient descent in solving minimization problems, this
gradient-descent-style algorithm may converge to spurious critical points that are not local Nash
equilibria, and in the general-sum game case, local Nash equilibria might not even be stable critical
points for this algorithm (Mazumdar et al., 2020b)!

These negative results have driven a surge of recent interest in developing other gradient-based
algorithms for finding Nash equilibria in differentiable games. Among them is Mazumdar et al.
(2019), who proposed an update algorithm whose attracting critical points are only local Nash
equilibria in the special case of zero-sum games. However, to the best of our knowledge, such
guarantees have not been extended to general-sum games.

We propose double Follow-the-Ridge (double-FTR), a gradient-based algorithm for general-sum
differentiable games that locally converges to and only to differential Nash equilibria. Double-FTR is
closely related to the Follow-the-Ridge (FTR) algorithm for Stackelberg games (Wang et al., 2019),
which converges to and only to local Stackelberg equilibria (Fiez et al., 2019). Double-FTR can be
viewed as its counterpart for simultaneous games, where each player adopts the “follower” strategy
in FTR.
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The rest of this paper is organized as follows. In Section 2, we give background on two-player
differentiable games and equilibrium concepts. We also explain the issues with using gradient-
descent-style algorithm on such games. In Section 3, we present the double-FTR algorithm and
prove its local convergence to and only to differential Nash equilibria. We also identify a more
general class of algorithms that share these properties. We discuss recent works directly relevant
to double-FTR in Section 4 and other related work in Section 5. In Section 6, we show empirical
evidence of double-FTR’s convergence to and only to local Nash equilibria.

2 BACKGROUND

2.1 TWO-PLAYER DIFFERENTIABLE GAMES AND EQUILIBRIUM CONCEPTS

In a general-sum two-player differentiable game, player 1 aims to minimize f : Rn+m ! R with
respect to x 2 Rn, whereas player 2 aims to maximize g : Rn+m ! R with respect to y 2 Rm.
Following the notation in Mazumdar et al. (2019), we denote such the game as {(f,�g),Rn+m}.
We also make the following assumption on the twice-differentiability of f and g.
Assumption 1. 8 x 2 Rn,y 2 Rm, f and g are twice-differentiable, and the second derivatives are
continuous. Also, r2

xxf and r2
yyg are invertible.

For two rational, non-cooperative players, their optimal outcome is to achieve a local Nash equilib-
rium (Ratliff et al., 2013). A point (x⇤,y⇤) is a local Nash equilibrium1 of {(f,�g),Rn+m} if there
exists open sets Sx ⇢ Rn, Sy ⇢ Rm such that x⇤ 2 Sx, y⇤ 2 Sy , and

f(x⇤,y⇤)  f(x,y⇤), g(x⇤,y⇤) � g(x⇤,y), 8x 2 Sx, 8y 2 Sy.

A closely related notion of equilibrium is the differential Nash equilibrium (DNE) (Ratliff et al.,
2013), which satisfies a second-order sufficient condition for local Nash equilibrium.
Definition 2.1 (Differential Nash equilibrium). (x⇤,y⇤) is a differential Nash equilibrium of
{(f,�g),Rn+m} if the following two conditions hold:

• rxf(x⇤,y⇤) = 0 and ryg(x⇤,y⇤) = 0.

• r2
xxf(x

⇤,y⇤) � 0 and r2
yyg(x

⇤,y⇤) � 0.

The conditions of DNE are slightly stronger than that of local Nash equilibria in that the second-order
conditions are definite instead of semi-definite. In this paper, we focus on DNE, as they make up
almost all local Nash equilibria in the mathematical sense, and are well-suited for the analysis of
second-order algorithms.

2.2 ISSUES WITH GRADIENT-BASED ALGORITHMS

A natural strategy for agents to search for local Nash equilibria in a differentiable game is to use
gradient-based algorithms. The simplest gradient-based algorithm is the gradient descent-ascent
(GDA) (Ryu and Boyd, 2016; Zhang et al., 2021b) (Algorithm 1) or its variants (Zhang et al., 2021a;
Korpelevich, 1976; Mokhtari et al., 2020).

Algorithm 1 Gradient descent-ascent (GDA)
Require: Number of iterations T , learning rate �

1: for t = 1, . . . , T do
2: xt+1 = xt � �rxf(xt,yt)
3: yt+1 = yt + �ryg(xt,yt)
4: end for

Let z =


x
y

�
and � > 0 be the learning rate, a gradient-based update algorithm can be written as:

zt+1 = zt � �!(zt). (1)
1Note that local Nash equilibrium is not guaranteed to exist in nonconvex-nonconcave games ((Jin et al.,

2020), Proposition 6), although the (non-)existence of local NE is out of the scope of this paper.
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(a) General-sum (b) Zero-sum

Figure 1: Venn diagrams showing the relationship between the set of locally asymptotically stable equilibria
(LASE) of the GDA flow and the set of differential Nash equilibria (DNE) in two-player differentiable games.
Note that for general-sum games, there exist DNE that are unstable for GDA flow.

The Jacobian of !(z) is defined as J(z) := @!(z)
@z . In the case of GDA, we have:

!GDA(z) =


rxf(x,y)
�ryg(x,y)

�
, JGDA =


r2

xxf r2
xyf

�r2
yxg �r2

yyg

�
.

Using the Jacobian matrix, we characterize the fixed points of equation 1.
Definition 2.2 ((Strictly) stable fixed point). z⇤ is a stable fixed point of the discrete-time dynamical
system in equation 1 if

!(z⇤) = 0 and ⇢(I � �J(z⇤))  1,

where ⇢(·) denotes the spectral radius of a matrix. If we additionally have ⇢(I � �J(z⇤)) < 1, then
z⇤ is a strictly stable fixed point.

Strictly stable fixed points are important for analysis, as they are locally asymptotically conver-
gent (Galor, 2007), i.e. there exists an open set Sz such that z⇤ 2 Sz and limt!1 zt = z⇤ 8z0 2 Sz .

A closely related concept is the locally asymptotically stable equilibrium (LASE) for the continuous-
time system ż = �!(z). (Ratliff et al., 2013).
Definition 2.3 (Locally asymptotically stable equilibrium (LASE)). z⇤ is a locally asymptotically
stable equilibrium of the continuous-time dynamics ż = �!(z) if

!(z⇤) = 0 and Re(�) > 0 for 8� 2 spec(J(z⇤)),

where Re(·) denotes the real part of a complex number, and spec(·) returns the spectrum (i.e. the set
of eigenvalues) of a matrix.

Note that when � ! 0, strictly stable fixed points of equation 1 are equivalent to LASE of ż = �!(z).
In this paper, we prove convergence results in discrete-time (using Definition 2.2), but we often
provide intuition using continuous-time concepts such as LASE.

Unfortunately, GDA is not guaranteed to converge to DNE, nor are DNE necessarily (strictly)
stable fixed points of the GDA dynamics. Even in the special case of zero-sum games (g = f ),
GDA dynamics can still have stable fixed points that are not DNE (Daskalakis and Panageas, 2018;
Mazumdar et al., 2020b). The relationship is shown in the Venn diagrams in Figure 1 (to eliminate
the effect of �, we show illustration in the continuous-time limit ż = �!GDA(z)).

In Figure 2, we demonstrate the failure modes of GDA in zero-sum games. In 2a, GDA converges to
a spurious strictly stable fixed point which is not DNE. In 2b, GDA fails to converge to the unique
DNE (Hsieh et al., 2020). Instead, it goes into a limit cycle, due to the strong rotation introduced by
large complex parts in its Jacobian eigenvalues. We stress that these pathologies are not limited to
GDA, but common for many other first-order algorithms (Wang et al., 2019).

3 DOUBLE FOLLOW-THE-RIDGE

We propose double Follow-the-Ridge (double-FTR), an update rule for general-sum differential
games that locally converges to and only to differential Nash equilibria. The double-FTR update is
shown in Algorithm 2 (the arguments xt, yt of f and g are dropped to avoid notational clutter).
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(a) f(x, y) = g(x, y) = 2x2 + 5xy + y2 (b) f(x, y) = g(x, y) = xy + ✏(x2 � y4)

Figure 2: Two examples of GDA failure modes in finding Nash equilibrium in zero-sum games. (a) GDA
converges to the spurious strictly stable fixed point (0, 0), which is not a Nash equilibrium. Other first-order
methods such as the optimistic GDA (OGDA) and extragradient (EG) converge to the spurious fixed point as
well. (b) Instead of the unique Nash equilibrium (0, 0), GDA converges to a limit cycle both when initialized
“inside” (green) and “outside” (blue). We use ✏ = 0.0001, � = 0.01.

Algorithm 2 Double Follow-the-Ridge
Require: Learning rate ⌘x and ⌘y; number of iterations T .

1: for t = 1, . . . , T do
2: xt+1  xt � ⌘xrxf � ⌘y(r2

xxf)
�1r2

xygryg
3: yt+1  yt + ⌘yryg + ⌘x(r2

yyg)
�1r2

yxfrxf
4: end for

Let z =


x
y

�
, � = ⌘x and c = ⌘y

⌘x
, we can express Algorithm 2 in vectorized form (equation 2). To

simplify the notation, we drop the subscript t for f and g.

zt+1 = zt � �!FTR(zt), !FTR(zt) =


I �(r2

xxf)
�1r2

xyg
�(r2

yyg)
�1r2

yxf I

� 
rxf
�cryg

�
.

(2)

3.1 LOCAL CONVERGENCE OF DOUBLE-FTR

In this section, we give our main theoretical result. First, we introduce an additional assumption.
Assumption 2. At fixed points of equation 2, JGDA(z) has full rank.

Assumption 2 ensures that in double-FTR, the additional terms in the update do not exactly cancel
out the GDA terms. In practice, `2 regularization might need to be added to the objective functions.
Note a similar assumption is introduced in Mazumdar et al. (2019) Theorem 4.

Our main theoretical result is stated below.
Theorem 1. Under Assumptions 1 and 2 and with an appropriate choice of learning rate �, z⇤

is

a strictly stable fixed point of the double-FTR update (equation 2) if and only if it is a differential

Nash equilibrium of the game {(f,�g),Rn+m}. Furthermore, at fixed points of equation 2, all

eigenvalues of the Jacobian JFTR := @!FTR
@z are real.

Intuitively, the first part of the theorem classifies the strictly stable fixed points of double-FTR, and
the second part ensures that there is no rotation caused by complex eigenvalues in the neighbourhood
of the DNEs. We defer the proof of Theorem 1 to Appendix A.
Corollary 1 (Local convergence). Let z⇤ be a DNE of the game {(f,�g),Rn+m}. Under Assump-
tions 1 and 2 and with an appropriate choice of learning rate �, there exists an open set Sz ⇢ Rn+m

where z⇤ 2 Sz , such that when following equation 2, 8 z0 2 Sz , limt!1 zt ! z⇤.
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Proof. The proof follows naturally by combining Theorem 1 with the local convergence of strictly
stable fixed points (Galor (2007), Proposition 1.9).

To the best of our knowledge, double FTR is the first algorithm with such local convergence result
for general-sum games.

3.2 GENERAL PRECONDITIONERS

In the following remark, we show that double-FTR can be generalized to include a whole family of
algorithms.
Remark 1. Theorem 1 applies to a more general version of the double FTR algorithm. In particular,
we can generalize equation 2 to allow a broader class of “preconditioners”:

zt+1 = zt � �!̃FTR(zt), !̃FTR(z) =


Px

�Py

�
J>
GDA(zt)


rxf
�cryg

�
, (3)

where Px, Py are functions of x,y respectively, which satisfy Px � 0 () r2
xxf � 0 and

Py � 0() r2
yyg � 0.

Equation 2 corresponds to the special case of Px = (r2
xxf)

�1, Py = (r2
yyg)

�1. The proof for
Theorem 1 directly applies to the case of general preconditioners in Remark 1.

Remark 1 provides intuition on the convergence properties of double-FTR. Without the preconditioner
Px and Py , double-FTR reduces to Hamiltonian gradient descent (Mescheder et al., 2017; Balduzzi
et al., 2018; Loizou et al., 2020; Abernethy et al., 2021), which is not guaranteed to only converge
to local Nash equilibria. It is the introduction of the preconditioner that enables strictly stable fixed
points to satisfy the second-order condition of DNE.

Remark 1 also sheds lights on how to derive a more practical algorithm. Naively implementing
Algorithm 2 might cause instability when r2

xxf and r2
yyg are near singular. In practice, we use

(r2
xxfr2

xxf + �I)�1r2
xxf instead of (r2

xxf)
�1 in Algorithm 2 (where a small � > 0 is the

damping parameter). Note that this also allows us to drop the assumption on the invertibility ofr2
xxf

and r2
yyg in Assumption 1.

4 CONNECTION WITH OTHER ALGORITHMS

Mazumdar et al. (2019) proposed local symplectic surgery (LSS) – a gradient-based algorithm whose
LASE are exactly local Nash equilibria in two-player zero-sum games. LSS avoids oscillatory
behaviour at local Nash equilibria (similar to double-FTR). Compared to LSS, double-FTR appears
to have a simpler form and enables a broader family of algorithms with such local convergence result
in general-sum games.

The Follow-the-Ridge (FTR) algorithm (Wang et al., 2019) is closely related to our proposed double-
FTR. FTR was proposed for two-player sequential games and is guaranteed to converge to and only
to local minimax. FTR applies a gradient correction term on the follower in a sequential game, so that
the agents approximately follow a ridge in the landscape of the objective function. The double-FTR
can be viewed as a counterpart of FTR for simultaneous games. The update rule of double-FTR
resembles that of FTR, with the gradient modification term applied on both players.

Another related algorithm is the Hamiltonian gradient descent (HGD) (Mescheder et al., 2017;
Balduzzi et al., 2018; Loizou et al., 2020; Abernethy et al., 2021). HGD performs gradient-descent
on the Hamiltonian, or the squared norm of the gradient. HGD is guaranteed to converge, as it is
essentially a minimization problem. However, in general it is not guaranteed to converge only to local
Nash equilibria. Interestingly, our double-FTR can be viewed as a preconditioned HGD.

5 RELATED WORK

Mazumdar et al. (2020b) introduced a general framework for competitive gradient-based learning.
They characterized local Nash equilibria in terms of the critical points of the gradient algorithms.
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Figure 3: Left: evolution of GDA and double-FTR in the 2-D toy example from multiple initial points. Middle:
zoom-in near a local Nash equilibrium point. Right: zoom-in near a non-Nash LASE for the GDA algorithm.

They showed the lack of convergence of the gradient algorithm in games, which motivated the
development of the double-FTR algorithm.

Much work has focused on improving the dynamics in finding stable fixed points, which is crucial
in applications such as GANs, where oscillation caused by eigenvalues with zero real parts of
large imaginary parts in the gradient Jacobian can lead to training instability. Mescheder et al.
(2017) proposes Consensus Optimization, which encourages agreement between the two players by
introducing a regularization term in the objectives of both players. The regularization term results in a
more negative real-part for the eigenvalues of the gradient Jacobian, therefore reduces oscillation and
allows larger learning rates. Balduzzi et al. (2018); Gemp and Mahadevan (2018) proposes Symplectic
Gradient Adjustment (SGA), which decomposes the gradient Jacobian into symmetric (potential)
and asymmetric (Hamiltonian) parts and adds a gradient adjustment term for rapid convergence to
stable fixed points. Schäfer and Anandkumar (2019) proposes Competitive Gradient Descent (CGD),
whose update is given by the Nash equilibrium of a regularized bilinear approximation of the original
game. Compared to other methods, CGD has the advantage of not needing to adapt step size when
the interaction strength changes between players. Many other methods have been proposed with
different strategies for predicting other agents’ moves, such as Learning with Opponent Learning
Awareness (LOLA) (Foerster et al., 2016) and optimistic gradient descent-ascent (OGDA) (Popov,
1980; Rakhlin and Sridharan, 2013; Daskalakis et al., 2018; Mertikopoulos et al., 2018). However,
none of these existing methods address the problem of spurious (i.e. non-Nash) stable fixed points.

6 EXPERIMENTS

We conduct simple experiments to demonstrate the implications of our theoretical results. In Sec-
tion 6.1, we show that the double-FTR algorithm empirically converges to and only to differential
Nash equilibria, as predicted by Theorem 1. In Section 6.2, we show that double-FTR is able to
converge to local Nash equilibria that naive gradient-play avoids in general-sum linear quadratic
games. In Section 6.3, we demonstrate the practical implications of another property of double-FTR
— eigenvalues of JFTR at fixed points are real.

6.1 2-D TOY EXAMPLE

We consider the zero-sum game {f,�f},R2 with the following 2-D function (same as in Mazumdar
et al. (2019)):

f(x, y) = e�0.01(x2+y2)
�
(0.3x2 + y)2 + (0.5y2 + x)2

�
.

This function has several strictly stable fixed points for the GDA dynamics, among which some are
DNE and some are not. As shown in Figure 3, while GDA may converge to fixed points that are not
local Nash equilibria, double-FTR avoids such spurious fixed points. Also, in the neighbourhood
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Figure 4: Evolution of the loss landscape of a general-sum linear quadratic game when optimized by double-
FTR. We visualize two 2D slices (Ku,1,Ku,2) and (Kv,1,Kv,2) and the loss functions fu and fv respectively.
As seen on the top levels of the illustration, the loss landscape is “bowl-shaped” at convergence, confirming that
double-FTR solution satisfies the second-order conditions for DNE.

of local Nash equilibria, GDA exhibits oscillatory behaviour due to complex eigenvalues of the
Jacobian matrix. In contrast, the double-FTR does not have oscillatory behaviour near local Nash
equilibria. For reference, we also show the trajectories of the Local Symplectic Surgery (LSS). In
this experiment, LSS has similar convergence properties – it avoids spurious fixed points and does
not have oscillatory behaviour near local Nash equilibria.

6.2 GENERAL-SUM LINEAR QUADRATIC GAME

The linear quadratic (LQ) game is a classic problem in multi-agent learning. It is an extension of the
famous linear quadratic regulator (LQR) problem of optimal control to the multi-agent setting. Just
as LQR being a simple yet important benchmark problem for studying properties of reinforcement
learning algorithms, the LQ game provides valuable insights to multi-agent RL algorithms (Fazel
et al., 2018; Zhang et al., 2019a).

Consider the discrete-time linear dynamical system, where z 2 Rdz is the state, and two players
provide control inputs u 2 Rdu and v 2 Rdv respectively.

zt+1 = Azt +Buut +Bvvt, z0 ⇠ p(z0)

Each player adopts a linear state-feedback policy: ut = �Kuzt, vt = �Kvzt, where the parameters
Ku 2 Rdu⇥dz , Kv 2 Rdv⇥dz are to be determined by optimization. In a general-sum LQ game,
each player aims to find their corresponding policy parameters K that minimizes their individual
quadratic loss function f (shown in equation 4, fv(Ku,Kv) defined analogously using Qv and Rv).

fu(Ku,Kv) = Ez0⇠p(z0)

 1X

t=0

z>
t Quzt + u>

t Ruut

�
(Qu � 0, Ru � 0) (4)

Despite their simplicity, LQ games are challenging to optimize, because even though the loss functions
are quadratic in the states and actions, they are not convex with respect to the player parameters Ku

and Kv. Importantly, Mazumdar et al. (2020a) show that in general sum LQ games, using naive
gradient-play almost surely avoids some Nash equilibria.

We demonstrate in general-sum LQ games, double-FTR is able to find the Nash equilibria that are
avoided by gradient-play. We use a setting mentioned in Mazumdar et al. (2020a), where dz = 2,
du = dv = 1, Ru = Rv = 0.01, and

A =


0.511 0.064
0.533 0.993

�
,Bu =


1
1

�
,Bv =


0
1

�
,Qu =


0.01 0
0 1

�
,Qv =


1 0
0 0.147

�
.

The initial state z0 is set to [1 1]
> or [1 1.1]

> with equal probability.

Figure 4 and 5 shows an instance where the double-FTR is able to converge to a local Nash equilibrium,
but the gradient-play fails to. For both algorithms, we use the same initial policy parameters Ku and
Kv. Figure 4 visualizes the loss landscape for fu(Ku,Kv) and fv(Ku,Kv) when optimized by
double-FTR. It confirms that the solution double-FTR converges to is indeed a Nash equilibrium (the
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(a) Double-FTR (b) Gradient-play

Figure 5: For the general-sum linear quadratic game, we visualize the evolution of the vector field Jacobian
through different 2D slices. At each step, the contour plot visualizes the quadratic function defined by the current
JGDA, centered at the current weight values. In both (a) and (b), the weights are initialized near a DNE that is
an unstable fixed point for GDA dynamics. (a): using double-FTR, the weights converge to the DNE, where
JGDA has negative eigenvalues (shown as saddle-points on the contour maps). (b): the gradient method avoids
this unstable DNE, and converges to a stable fixed point instead.

Figure 6: Weight evolution of the parameterized bilinear game under GDA and double-FTR. Solid line represent
the weights for ✓, and dashed lines represent the weights for �.

second-order condition in Definition 2.1). Figure 5a visualizes the local vector field Jacobian (i.e.
JGDA) and shows that the Jacobian contains negative eigenvalues, which makes it a saddle point for
gradient-play optimization. Indeed, gradient-play (shown in Figure 5b), avoids this Nash equilibrium.
Instead, it eventually finds another Nash equilibrium that is stable fixed point.

6.3 PARAMETERIZED BILINEAR GAME

We consider another zero-sum game, the stochastic parameterized bilinear game, as in Prajapat et al.
(2021). We use this experiment to demonstrate that double-FTR is also beneficial for stochastic
games, and does not exhibit oscillatory behaviour due to having real eigenvalues at fixed points.

min
µx,�x

r(x, y), min
µy,�y

�r(x, y) where x ⇠ N (µx,�
2
x), y ⇠ N (µy,�

2
y), r(x, y) = xy.

The unique Nash equilibrium with respect to (x, y) is (0, 0). However, the learnable parameters are
the mean and the standard deviation of the distributions where x and y are drawn from. We denote the
learnable parameters for x and y as ✓ and � respectively. At each time step, we obtain an unbiased
estimate of the gradient using REINFORCE over a mini-batch of size B:

r̃✓r(✓,�) =
1

B

BX

i=1

r✓ logN (xi;✓)r(xi, yi), ✓ =


µx

�x

�
, r̃�r(✓,�) computed analogously.
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As is often the case, GDA has oscillatory behaviour due to the complex eigenvalues of its Jacobian at
fixed points. In this stochastic setting, the oscillation prevents convergence for GDA (Figure 6). In
contrast, the double-FTR algorithm does not have rotational behaviour at fixed points, and converges
to the unique Nash equilibrium (x, y) = (0, 0).
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Figure 7: Mixture of Gaussians in 1D. Left: ground-truth. Middle: generator distribution learned by GDA.
Right: generator distribution learned by double-FTR.
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Figure 8: Mixure of Gaussians in 2D. Top: GDA suffers from mode collapse. Bottom: the generator distribution
learned by double-FTR recovers all the modes.

6.4 GENERATIVE ADVERSARIAL NETWORKS

The Generative Adversarial Network (GAN) (Goodfellow et al., 2014) is a popular deep learning
application for two-player games. The goal is to find the Nash equilibrium where the generator
perfectly matches the target distribution, and the discriminator is completely fooled by the generator.

In this experiment, we use the GAN framework to learn mixture of Gaussians (MoG). We use the
original saturating loss function. Both the generator and the discriminator are multi-layer perceptrons
with 2 hidden layers and 64 hidden units in each layer. With neural networks, directly implementing
the Hessian would be computationally inefficient or infeasible. Instead, we use conjugate gradient to
approximate the Hessian inverse. Details of the experiments can be found in Appendix C.

As shown in Figure 7 and 8, we apply GDA and double-FTR to learn MoG in 1D and 2D. In
both cases, GDA gets stuck at a spurious equilibrium and suffers from mode collapse. In contrast,
double-FTR recovers all the modes, and the generated distribution closely matches the target.

7 CONCLUSION

We propose double Follow-the-Ridge (double-FTR), a gradient-based algorithm for finding local
Nash equilibria in differentiable games. We prove that under mild assumptions, double-FTR locally
converges to and only to differential Nash equilibria in the general-sum games, and avoids oscillation
in the neighbourhood of fixed points. Furthermore, we remark that by varying the preconditioner,
double-FTR leads to a broader family of algorithms that share the same convergence guarantee.
Finally, we empirically verify the effectiveness of double-FTR in finding and only finding local Nash
equilibria across a broad range of problems.
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8 REPREDUCABILITY STATEMENT

For empirical results, we describe the experiment settings in detail in Appendix C. We also provide
code for all experiments in the supplementary material. For the theoretical results, proofs are included
in the appendix.
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