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Abstract

Despite the superior performance of Large language mod-
els on many NLP tasks, they still face significant limi-
tations in memorizing extensive world knowledge. Recent
studies have demonstrated that leveraging the Retrieval-
Augmented Generation (RAG) framework, combined with
Knowledge Graphs that encapsulate extensive factual data in
a structured format, robustly enhances the reasoning capa-
bilities of LLMs. However, deploying such systems in real-
world scenarios presents challenges: the continuous evolu-
tion of non-stationary environments may lead to performance
degradation and user satisfaction requires a careful balance
of performance and responsiveness. To address these chal-
lenges, we introduce a Multi-objective Multi-Armed Bandit
enhanced RAG framework, supported by multiple retrieval
methods with diverse capabilities under rich and evolving
retrieval contexts in practice. Within this framework, each
retrieval method is treated as a distinct “arm”. The sys-
tem utilizes real-time user feedback to adapt to dynamic
environments, by selecting the appropriate retrieval method
based on input queries and the historical multi-objective
performance of each arm. Extensive experiments conducted
on two benchmark KGQA datasets demonstrate that our
method significantly outperforms baseline methods in non-
stationary settings while achieving state-of-the-art perfor-
mance in stationary environments. Code and data are avail-
able at https://github.com/FUTUREEEEEE/Dynamic-RAG

1 Introduction
Large language models (LLMs) (Chowdhery et al. 2023;

OpenAI 2023; Touvron et al. 2023) excel in natural lan-
guage processing tasks (Bang et al. 2023; Brown et al. 2020)
but struggle with knowledge-intensive challenges, often
producing unfaithful or hallucinated information (Petroni
et al. 2020; Ji et al. 2023). Retrieval-Augmented Generation
(RAG) (Lewis et al. 2020) has been developed to enhance
LLM reasoning, effectively reducing hallucinations and pro-
viding reliable, up-to-date information. In this approach,
when presented with a user query, a retriever first extracts
relevant information from a knowledge base, which is then
provided to the LLM to generate the final response.Recent
advancements (He et al. 2024; Luo et al. 2023c; Sun et al.
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2023; Xu et al. 2024) in RAG systems have increasingly in-
corporated Knowledge graphs (KGs) (Baek, Aji, and Saf-
fari 2023; Luo et al. 2023b) as the underlying knowledge
base. KGs store vast amounts of factual data in a structured
format, which enables more dependable and systematic rea-
soning by LLMs.

Unlike unstructured text databases (e.g. Wikipedia), the
organized nature of KGs provides diverse retrieval meth-
ods, with significantly different capabilities and costs. For
example, dense retrieval methods (Zhang et al. 2023; Yu
et al. 2022) are typically fast but offer limited reasoning ca-
pabilities. In contrast, using LLMs to generate KG query
languages (e.g., SPARQL) as in ChatKBQA (Luo et al.
2023a) provides high coverage and is suitable for multi-
entity retrieval. Methods like RoG (Luo et al. 2023c), where
LLMs function as search agents excel in complex reasoning.
However, both methods require interactions with LLMs like
ChatGPT (OpenAI 2024), leading to longer execution times.
However, current KG-based RAG systems often rely solely
on a single retrieval method or use static neural network
routers (Reis et al. 2019; lla 2024), which require complete
labeled data for supervision and periodic fine-tuning. More-
over, while RAG systems are often deployed in scenarios
where users can provide feedback on generated responses
(Gamage et al. 2024; Alan, Aydın, and Karaarslan 2024),
current systems generally neglect this feedback. Relying on
a single retrieval method, or computationally intensive en-
semble all retrieval results can not ensure responses that are
both timely and informative. On the other hand, static neural
network routers cannot effectively leverage real-time feed-
back to continually adapt to changing user needs and system
variability.

Therefore, deploying RAG systems in real-world scenar-
ios faces the following challenges as described in Fig. 1:
(C1): Non-stationary environments require RAG systems to
adapt to two sides continuously: on the user side, the evolv-
ing nature of queries driven by trending topics, and on the
server side, the backend retrieval model upgrading. (C2): In
practical applications RAG systems, such as personal home
assistants and customer support chatbots, balancing multi-
objective, such as efficiency, coverage, and reasoning power,
is crucial to providing informative and satisfying user expe-
riences. Failing to address the diverse demands of queries
and deliver timely, comprehensive responses can result in
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Figure 1: An online KG-based RAG system facing challenges from non-stationary environments and the need to balance
multiple objectives for optimal user experience.

less informative interactions or unsatisfying user experience.
In response to (C1), we proposed a RAG framework en-

hanced by deep contextual Multi-arm Bandit(Collier and
Llorens 2018), utilizing a lightweight language model as
the backbone to interpret user queries and predict the suit-
ability of each retrieval method. The model is updated on
a per-query basis using feedback, ensuring robust perfor-
mance and adaptability in non-stationary environments. In
response to (C2), we incorporated the Generalized Gini In-
dex to aggregate multi-objective user demands effectively,
ensuring that no single objective dominates the other objec-
tive. By balancing retrieval coverage, accuracy, and response
time, our framework enhances user experience by providing
informative answers under time constraints.

Our main technical contributions are as follows:

• We enhanced KG-based RAG systems by employing an
MAB model for dynamic retrieval selection and continu-
ous adaptation to non-stationarity using user feedback.

• We utilized the Generalized Gini Index to aggregate
multi-objective rewards, ensuring both informative and
timely responses.

• We evaluated our framework on two well-established
KBQA datasets. Our results demonstrate that our meth-
ods significantly outperform baseline approaches in non-
stationary environments and surpass state-of-the-art KG-
based RAG systems in stationary settings.

2 Method
The diverse capabilities of different retrieval methods ne-

cessitate a strategic model for their selection. Simply run-
ning multiple retrievers and then aggregating their results
often proves sub-optimal due to two main factors: the need
for timely responses and the disparate performance charac-
teristics of various retrieval methods, as highlighted in Ta-
ble 1. For example, while dense retrievers provide rapid re-
sponses, KG agent-based retrievers slow down the system
due to LLM inference.

Consequently, we developed a model that dynamically as-
signs queries to the most suitable retrievers. Unlike static
neural network routers, which require collecting complete

labeled data for supervision (involving the execution of all
retrieval methods) and periodic fine-tuning, limiting their
adaptability to non-stationary environments. Our approach
leverages real-time user feedback as a reward signal to up-
date the model. This adaptability is crucial in the dynamic
nature of RAG applications, such as shifting user interests
and backend retriever upgrades requiring continuous opti-
mization.

2.1 Problem Setup
The optimization of KG-based RAG systems employing

multiple retriever backends and real-time feedback is struc-
tured as follows:

• Initially, the system receives a user input query context x.
• The PLM model fθ processes the query and selects an ac-

tion a from the action space A, which includes K poten-
tial retrieval methods, each representing an arm in a multi-
armed bandit.

• Upon selection, the system receives feedback on the per-
formance of the chosen retrieval method a (e.g. 1 indicat-
ing a good response, 0 indicating a bad response), pro-
viding ”partial-information” feedback. This limitation re-
stricts the system’s ability to assess unselected methods.

• Utilizing this feedback, the model iteratively refines its
strategy to improve base retrieval method selection for fu-
ture queries.

2.2 Deep Multi-objective Contextual Bandits
Query Encoding Model: In order to effectively select re-
trieval methods, it is crucial to discern patterns within user
queries and associate these with the capabilities of suitable
retrieval methods. Traditional linear models in contextual
bandits (Li et al. 2010; Mehrotra, Xue, and Lalmas 2020),
while effective in certain scenarios, often fall short due to the
complex natural language patterns present in user queries.

To address limitations and ensure real-time service, we
utilize the lightweight Pre-trained Language Model, Distil-
BERT (Sanh et al. 2019). As a streamlined version of BERT,
DistilBERT retains approximately 97% of BERT’s language
understanding capabilities and increases processing speed



Figure 2: Proposed MAB-enhanced RAG framework. The input query undergoes feature extraction (e.g., multi-entity query),
followed by the MAB algorithm, which selects the optimal retrieval method by predicting the most rewarding option (e.g.,
Query Language method). The selected method retrieves information from a Knowledge Graph (KG), and an LLM generates
the final response. Feedback is collected as a reward, updating the MAB model parameters online, and enabling continuous
adaptation to non-stationary environments.

by 60%. This model provides a robust and nuanced approach
to modeling natural language queries, which facilitates the
precise identification of appropriate retrieval methods for in-
dividual queries and supports continuous real-time refine-
ment through user feedback.

Specifically, our query encoding model, fθ, uses Dis-
tilBERT to efficiently interpret natural language, taking a
query as input context and producing an arm selection dis-
tribution z = fθ(x).

Arm Selection Strategy: Upon receiving an action dis-
tribution estimation z = fθ(x) from the encoding model,
we employ an epsilon-greedy strategy (Langford and Zhang
2007) to balance the trade-off between exploration and
exploitation (Auer 2002; Auer, Cesa-Bianchi, and Fischer
2002). This balance is crucial in ensuring that the system
not only leverages the information gathered so far (exploit
known retrieval methods that have proven effective) but also
explores new possibilities to enhance learning (explore other
retrieval methods that could potentially offer better results).
Specifically:
• With a probability of 1−ϵ, the system selects the arm with

the highest predicted reward, a = max(z), based on the
output from the encoding model.

• Conversely, with a probability of ϵ, the system explores
by randomly selecting an arm, facilitating the discovery
of potentially more effective retrieval methods.
This strategy enables the system to predominantly rely

on the best-known actions to maximize immediate rewards
while maintaining the flexibility to explore new possibilities.
This approach is essential to mitigate the risk of converging
to a locally optimal model due to partial information feed-
back, fostering the discovery of superior long-term solutions
through randomized exploration.

Learning Algorithm: After selecting a retrieval method,
our model updates based on the observation associated with

the chosen method, but it does not have access to the infor-
mation from methods not selected (i.e., partial information
feedback). Inspired by ”offline-to-online” learning(Lee et al.
2022; Guo et al. 2024), we first pre-train the model in an
offline environment to learn a robust initial strategy. Subse-
quently, we fine-tune the model in an online setting using
partial user feedback, allowing it to adapt continuously to
real-world conditions.

Traditional RAG systems often focus on optimizing
model accuracy. However, real-world applications of RAG
systems demand not only accuracy but also real-time respon-
siveness, introducing the need for multi-objective optimiza-
tion. We use the Generalized Gini Index (Weymark 1981)
to balance system performance with retrieval time, ensuring
both accuracy and efficiency are optimized simultaneously.

During training, we use detailed evaluation metrics, in-
cluding informativeness measures like hit and recall, to op-
timize for accuracy and coverage. Retrieval latency is also
used as feedback to enhance efficiency. In testing, we sim-
ulate an online environment with a hit value (0 or 1) to ap-
proximate binary user feedback. This offline-to-online learn-
ing approach ensures the model is well-prepared before de-
ployment and can adapt effectively to dynamic user interac-
tions.

The methodology underpinning our approach is detailed
in Algorithm 1. We have designed our system with a focus
on three critical objectives to evaluate the performance of
the retrieval methods comprehensively, enhancing the over-
all functionality of our RAG system. Each query’s final re-
sponse, generated by the LLM in natural language, is as-
sessed according to these objectives, which include accuracy
and efficiency metrics.

Accuracy Metrics: For accuracy, we consider two key
metrics: hit (h, whether the response contains the correct
answer) and recall (rc, which assesses the system’s ability
to retrieve all relevant items). These metrics are crucial for



Algorithm 1: Deep GGI-MO bandit enhanced RAG learning
algorithm

1: Input: The query context set X , pre-trained language
model parameters θ.

2: Initialize: Set equal initial weights for the w.
3: for x ∈ X do
4: Encode the query x and obtain the estimated action

distribution z = fθ(x).
5: Select an retriever (arm) a based on the selection

strategy described in Section 2.2.
6: Observe the retrieval context to compute the loss

components as per Eq. (2) and the execution time d
for the retrieval process.

7: Update the model weights θ by minimizing the loss
LossGGI(θ) using gradient descent.

8: end for
9: Output: Updated model weights θ.

assessing the precision and completeness of the system.
Efficiency Metrics: Efficiency is evaluated based on the

mean delay time (di) experienced by each retrieval method
within the system. We utilize a distribution σ(di) to quanti-
tatively represent each method’s efficiency. This distribution
helps the model understand the temporal performance across
different retrieval strategies, ensuring the system delivers not
only accurate but also timely responses.

σ(di) =
e1/di∑K
j=1 e

1/dj

, (1)

where methods with longer delays are assigned lower values,
thus incentivizing quicker retrieval methods.

Multi-Objective Optimization with GGI: To balance
these objectives, we compute the multi-objective GGI value,
which integrates accuracy and efficiency metrics, further de-
tail of GGI property can be found in Section 6.1. The GGI
values for each objective are calculated as follows:
l1 = MSE(max(fθ(x)), h), (Loss- Accuracy - Hit)

(2)
l2 = MSE(max(fθ(x)), rc), (Loss-Accuracy - Recall)

(3)
l3 = KLDiv(fθ(x), σ(di)), (Loss- Efficiency)

(4)
Each loss component li corresponds to a specific objective:
• l1 and l2 measures the deviation in accuracy, encouraging

the model to select a method with a high probability pro-
duce high recall and hit retrieval methods.

• l3 quantifies the efficiency using the Kullback-Leibler Di-
vergence (KLDiv) between the predicted arm selection
distribution from the model and the efficiency distribution
σ(di) encourage the model to select an efficient retrieval
method.
The aggregate loss function to be minimized, representing

the overall GGI, is then given by:

Loss = GGIw(l) =

D∑
i=1

wi(li)τ = wT (l)τ (5)

where w1 > w2 > · · · > wd > 0 and τ permutes the
elements of l such that (li)τ > (li+1)τ .

In Equation 5, the GGI function aggregates the individual
loss components, weighted by wi, to update the parameter θ,
optimizing towards a better response quality with satisfying
user experience.

3 Experiment
3.1 Dataset & Setup

Datasets: We evaluate our systems on two KGQA
datasets WebQSP (Yih et al. 2016) and ComplexWebQues-
tions (CWQ) (Talmor and Berant 2018) which contain up to
4-hop questions. The statistics of the datasets are given in
Table 5.

Baselines: To valid the effectiveness of our MAB-
enhanced KG-based RAG system under stationary environ-
ment, we compared it with state-of-the-art KG-based RAG
systems, including the query language-based RAG: Struct-
GPT (Jiang et al. 2023b), ChatKBQA(Luo et al. 2023a),
LLM agent-based RAG: Think-on-Graph (Sun et al. 2023)
and Reason-on-Graph (Luo et al. 2023c), and dense retrieval
based RAG (Zhang et al. 2023; Yu et al. 2022).

Evaluation Metrics: Following previous works, we eval-
uate the performance of our Retrieval-Augmented Genera-
tion system, all results are assessed based on the final gener-
ated response’s hit rate and recall. We ran at least ten inde-
pendent rounds with different seeds and reported the results
as mean ± standard deviation to ensure the stability of our
findings.

Implementations: We consistently use Llama-2-7b-chat-
hf (Touvron et al. 2023) as the LLM generator, applying a
standard RAG prompt (LlamaIndex 2024) across all meth-
ods to ensure a fair comparison. All experiments are con-
ducted on the Nvidia Tesla V100 graphical card with the
Intel Xeon Platinum 8255C CPU. See Section 6.3 for detail
set up.

3.2 Research Questions and Main Results
RQ1: Can our Multi-Armed Bandit enhanced

Retrieval-Augmented Generation system effectively im-
prove performance compared to RAG systems that rely
on a single retrieval method?

The comparative analysis, summarized in Table 1, re-
vealed that our MAB-enhanced RAG system demonstrated
superior performance across both datasets. Notably, on the
CWQ dataset, which poses more intricate multi-hop rea-
soning challenges, our method exceeds the next-best perfor-
mance by nearly 2% in hit rate and over 2.5% in recall.

We present examples of our MAB-enhanced RAG sys-
tems superior case. In the first case Fig. 7 derived from the
challenging CWQ dataset, the query pertains to the birth-
place of the lyricist for ”Stop Standing There.” Dense re-
trieval fails to relate the query to relevant information, and
while the SPARQL retriever approaches a correct formula-
tion, it ultimately generates a wrong query language. Thanks
to the reasoning ability of LLM, the LLM-based KG agent
successfully retrieves the related triplets from the knowledge



Table 1: Results under Stationary environment

Retriever Type Method WebQSP CWQ
Hit ↑ Recall ↑ Hit ↑ Recall ↑

Dense Retrieval BGE (Zhang et al. 2023) 63.03 44.43 52.46 46.68
DECAF (Yu et al. 2022) 71.37 50.93 47.46 41.47

KG Query Languge Retrieval StructGPT (Jiang et al. 2023b) 75.56 55.26 \ \
ChatKBQA (Luo et al. 2023a) 80.77 64.31 77.37 69.46

LLM agent Retreival Think-on-graph (Sun et al. 2023) 66.64 47.24 58.90 52.49
Reason-on-graph (Luo et al. 2023c) 85.70 75.07 56.63 52.38

Ensemble (DECAF+ChatKBQA+Reason-on-graph) 83.74 67.52 67.93 68.01

Static Router LLM Router (lla 2024) 82.48 68.9 65.75 59.33
NN-Router (Reis et al. 2019) 86.20 75.03 78.53 71.52

Ours GGI-MAB 86.64 75.60 79.35 72.02

Table 2: Results under Non-stationary environment (mean ± std)

Non-stationarity Method Test Hit ↑ Test Recall ↑ Test Retrieval Delay ↓
(second per query)

Retriever
update

Retrieval Ensemble 83.74 ± 0.58 67.52 ± 0.77 15.00 ± 0.00
Offline MO-MAB 82.25 ± 2.18 66.05 ± 2.56 13.32 ± 1.90

NN Router (Reis et al. 2019) 81.48 ± 0.28 64.90 ± 0.23 14.09 ± 0.42
LLM Router (lla 2024) 82.19 ± 0.47 67.11 ± 0.52 10.36 ± 3.98

Ours 84.80 ± 0.39 72.24 ± 0.71 5.88 ± 0.99

Domain
shift

Retrieval Ensemble 67.93 ± 0.61 68.01± 0.34 15.00 ± 0.00
Offline MO-MAB 64.76 ± 4.40 61.32 ± 2.90 7.78 ± 0.44

NN Router (Reis et al. 2019) 69.57 ± 4.52 63.99 ± 3.94 7.65 ± 1.81
LLM Router (lla 2024) 65.75 ± 0.16 59.33 ± 0.25 9.39 ± 0.06

Ours 76.35 ± 0.69 69.47 ± 0.76 11.63 ± 0.28

graph and enables our MAB Enhanced RAG system to give
an accurate response.

In the second case Fig. 3, from the WebQSP dataset where
the user queries, ”What are some books that Mark Twain
wrote?” This question is challenging in terms of achieving
high recall since all retrieval methods can provide related
context, but not all can accurately list the books. Our MAB-
enhanced RAG system effectively selects the appropriate
methods (SPARQL generator) to achieve the highest recall,
significantly outperforming individual retrieval approaches.

Our MAB-enhanced RAG system, effectively optimizes
the selection process of retrieval methods, thereby proving
to be highly effective in improving overall system perfor-
mance. Furthermore, as illustrated in MAB enhanced RAG
systems with LLM variants, we evaluate our method across
different Large Language Model generators to prove the ro-
bustness of our system.

RQ2: Can the MAB enhanced RAG system adapts dy-
namically to the non-stationary nature of real-world en-
vironments, ensuring that they continuously meet evolv-
ing query demands and operational conditions?

To evaluate our methods under non-stationary environ-
ments, we use two non-stationary settings: (1) we employed
the KG agent-based retrieval method (Sun et al. 2023) dur-
ing the training phase. For online testing, we switched to
(Luo et al. 2023c) a method with superior performance, to

simulate the effect of upgrading backend retrievers inde-
pendently to enhance system functionality. This approach
tests the system’s ability to adapt seamlessly to improve-
ments in retrieval methods, reflecting real-world conditions
where continuous updates are crucial for maintaining sys-
tem efficacy. (2) To simulate the shift in query domains re-
sulting from changes in trending topics, we initially train
our methods using the WebQSP dataset. Subsequently, we
evaluate the system’s adaptability by testing it on the Com-
plexWebQuestions dataset. This approach allows us to as-
sess how well the system can handle transitions between
different types of query complexities and content, mirroring
real-world scenarios where query characteristics can vary
significantly due to external influences.

The results, as detailed in Table 2, in the first scenario,
during the retriever upgrade tests, our method demonstrated
the highest Test Hit and Test Recall rates f 84.80% and
72.24% respectively, with a significantly reduced Test Re-
trieval Delay of 5.88 seconds per query. This improvement
stems from our system’s capability to leverage partial infor-
mation during testing to continuously refine the model. In
contrast, retrieval ensemble methods, which require running
all retrieval methods, struggle with denoising information
from different structures of retrieval results leading to the
longest Retrieval delay. Both the offline classifier and offline
multi-objective MAB (MO-MAB) were unable to adapt to



Table 3: Results of proposed multi-objective MAB algorithm under station environments (mean ± std)

Method Test Hit ↑ Test Recall ↑ Test Retrieval Delay ↓
(second per query)

Baselines

UCB (Auer 2002) 78.44 ± 6.07 62.18 ± 10.08 5.80 ± 6.08
Thompsom Sampling (Agrawal and Goyal 2013) 84.12 ± 2.20 71.82 ± 4.93 6.60 ± 5.50

LinUCB (Li et al. 2010) 81.99 ± 2.91 68.55 ± 5.30 5.31 ± 2.80
SO-Deep-MAB (Collier and Llorens 2018) 86.79 ± 0.33 75.18 ± 0.18 11.1 ± 0.39

MOU-UCB(Wanigasekara et al. 2019) 85.55 ± 0.89 75.05 ± 0.15 5.52 ± 1.35

Ours MO-MAB 85.31 ± 0.55 74.38 ± 0.48 5.20 ± 0.58
GGI-MO-MAB 86.64 ± 0.29 75.60 ± 0.38 4.84 ± 0.81

Figure 3: Comparison of retrieval methods for the query,
”What are some books that Mark Twain wrote?” Dense Re-
trieval is fast but has low recall, while KG-Agent-Retriever
provides broad coverage but is slow. Our system selects the
SPARQL-Retriever (Luo et al. 2023a), which generates an
accurate search language command for precise and efficient
results.

the upgrades, resulting in inferior performance.
In the second scenario, our approach effectively adapted

to domain shifts by utilizing the slower KG agent retriever
and SPARQL generator retrieval methods. Although it needs
more retrieval time at 11.63 seconds per query compared to
some offline methods, it significantly outperformed compar-
ative methods in accuracy metrics, achieving a Test Hit rate
of 76.35% and a Test Recall of 69.47%.

The results further highlight our system’s capacity to
dynamically adjust operational parameters in response to
evolving query complexities, ensuring high-quality user in-
teractions even under challenging conditions.

RQ3: How can the Generalized Gini Index be effec-
tively utilized to balance multiple performance metrics
in RAG systems

In Table 3 we evaluate our proposed method on the We-
bQSP dataset, results highlight the effectiveness of the Gen-
eralized Gini Index enhanced Multi-Objective Multi-Armed
Bandit (GGI-MO-MAB), achieving the highest Test Hit rate
and Test Recall, while maintaining the lowest retrieval de-
lay compared to the baselines. Non-contextual baselines like
UCB (Auer 2002) and Thompson Sampling (Agrawal and
Goyal 2013) approximate only a single optimal retrieval
method. LinUCB (Li et al. 2010) under-performs due to
its inability to handle the high-dimensional, complex nat-
ural language embeddings. Single-objective deep contextual
MAB models, while improving accuracy metrics such as Hit
rate, often neglect retrieval time, adversely affecting user ex-
perience. Our GGI-MO-MAB can also outperform multi-
objective baseline MOU-UCB (Wanigasekara et al. 2019).
To underscore the efficacy of our approach, we include an
ablation study comparing the GGI function to a learnable
weight aggregation baseline (MO-MAB), confirming the ro-
bust performance improvement of our method.

RQ4: What are the effects of implementing multiple
retrieval methods, such as dense retrieval and KG agent
retrieval methods, on the response times and accuracy
under different real-world scenarios?

The comparison of different types of retrieval methods is
shown in Fig. 4, we also employed the Jaccard Similarity
Coefficient to assess the Hit metric across results. Our find-
ings reveal an average coefficient of 0.738, with the lowest
observed at 0.496, indicating the distinctiveness of the re-
sults obtained by different retrieval strategies.

Moreover, while methods such as ChatKBQA and
Reason-on-graph showed strong results on WebQSP, they
were less effective on the more challenging CWQ dataset,
highlighting the importance of retrieval method selection
based on the complexity and nature of the dataset. Our
system’s consistent performance across different datasets
underscores its robustness and adaptability, making it par-
ticularly suitable for diverse real-world applications where
query demands and operational conditions can vary signifi-
cantly.

In terms of response time, we observed significant differ-
ences in processing time; for instance, dense-vector retrieval
methods average around 1 second, whereas more complex
methods like ChatKBQA (Luo et al. 2023a), due to multiple



Figure 4: Confusion matrices comparing retrieval methods
(Decaf, ChatKBQA, BGE, RoG) on WebQSP and CWQ
datasets, indicating distinctiveness among methods.

interactions with ChatGPT (OpenAI 2024) to get an exe-
cutable query code, can take 15-30 seconds. These findings
highlight the trade-off between complexity and efficiency in
retrieval operations.

Our findings confirm that the choice of retrieval method
significantly impacts the accuracy and efficiency of RAG
systems.

4 Related Work
KG-based RAG Systems: Retrieval-Augmented Gener-

ation (RAG)(Lewis et al. 2020) mitigates the hallucination
issue of LLMs by retrieving external knowledge to enhance
the accuracy and reliability of generation content. Recent
RAG advancements have increasingly incorporated Knowl-
edge Graphs (KGs) (Luo et al. 2023c; Sun et al. 2023; Xu
et al. 2024; He et al. 2024), which store structured factual
information, enabling more systematic reasoning by LLMs
(Pan et al. 2024). KGs support diverse retrieval methods,
each with different capabilities and costs, as detailed in Sec-
tion 6.6.

Our analysis of retrieval methods, discussed in Sec-
tion 3.2, shows that current KG-based RAG systems(Luo
et al. 2023c; Sun et al. 2023; Xu et al. 2024; He et al. 2024)
predominantly rely on a single retrieval method, which often
fails to meet the varied demands of real-world applications.
These systems typically assume a stationary environment
and remain static without subsequent fine-tuning, making
them unable to adapt to potential shifts in the query domain
and upgrades of the backend retriever. To address these is-
sues,our work aims to develop an MAB-enhanced RAG sys-
tem that strategically combines multiple retrievers. By lever-
aging real-time feedback, our system can dynamically adjust
retrieval strategies to meet the evolving demands of diverse

application scenarios of the RAG system effectively.

To our knowledge, the concurrent research by (Sawarkar,
Mangal, and Solanki 2024) is one of the few studies attempt-
ing to integrate multiple retrieval methods, but it focuses on
textual data sources and lacks the continuous optimization
crucial for RAG systems in non-stationary environments.

Multi-Armed Bandit Algorithms: The Multi-Armed
Bandit (MAB) (Katehakis and Veinott Jr 1987) framework
optimizes the balance between exploiting historical data
and exploring new information. It includes two main types:
context-free (Bubeck, Cesa-Bianchi et al. 2012), which op-
erates without external information, and contextual bandits
(Mahajan and Teneketzis 2008), which incorporate contex-
tual data such as user features. Traditional contextual ban-
dits assume a linear relationship between context and ex-
pected rewards (Slivkins 2011), but recent developments
have introduced non-linear models through deep learning
(Collier and Llorens 2018; Zhou, Li, and Gu 2020; Shi et al.
2023). The multi-objective contextual MAB (MOCMAB)
algorithm (Tekin and Turğay 2018) maximizes rewards
across multiple objectives, managing both dominant and
non-dominant goals. Some approaches (Busa-Fekete et al.
2017; Mehrotra, Xue, and Lalmas 2020) use the Generalized
Gini Index (GGI) to convert multi-objective challenges into
single-objective optimizations, simplifying decision-making
in dynamic environments.

However, existing contextual bandit algorithms often as-
sume reward is linear with respect to the context feature
(Tekin and Turğay 2018; Mehrotra, Xue, and Lalmas 2020;
Li et al. 2010), limiting their representational capacity to
match user query patterns with retrieval strategies effec-
tively, or they focus solely on single-objective optimiza-
tion (Collier and Llorens 2018; Zhou, Li, and Gu 2020; Shi
et al. 2023), which does not suffice for complex RAG sys-
tems with requirements of performance and real-time limi-
tation. Therefore, in this work, we adopt a non-linear multi-
objective contextual MAB model.

5 Conclusion

In this work, we introduced a novel KG-based RAG
framework enhanced by a Multi-Armed Bandit (MAB)
model. By leveraging real-time user feedback, our system
dynamically adapts to shifting query demands and backend
upgrades. We further incorporated the Generalized Gini In-
dex to balance multiple objectives, ensuring that the system
delivers both informative and timely responses.

Our comprehensive evaluations on two well-established
KBQA datasets, WebQuestionSP and ComplexWebQues-
tions, demonstrate that our approach not only significantly
outperforms baseline methods in non-stationary environ-
ments but also surpasses state-of-the-art KG-based RAG
systems in stationary settings. These results underscore the
robustness, adaptability, and practical applicability of our
framework in real-world scenarios where query demands
and operational conditions are constantly evolving.
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6 Appendix
6.1 Generalized Gini Index

To further leverage the unique strengths of each method
and enhance the overall efficacy of the RAG pipeline. This
necessitates the formulation of a multi-objective optimiza-
tion problem.

The Generalized Gini Index (GGI) emerges as a crucial
tool in this context, offering a sophisticated framework for
equitably balancing diverse criteria in multi-objective opti-
mization scenarios. The need for such an optimization arises
from the varied and often conflicting objectives associated
with different retrieval methods. For instance, while one
method may excel in accuracy, another might offer benefits
in terms of speed. The challenge, therefore, lies in achieving
an optimal balance that maximizes the overall performance
of the RAG system.

GGI has been characterized by (Weymark 1981). It en-
codes both efficiency as it is monotone with Pareto domi-
nance and fairness as it is non-increasing with Pigou-Dalton
transfers(Jenkins 2017). Informally, a Pigou-Dalton transfer
involves increasing a lower-valued objective while decreas-
ing a higher-valued objective by an equivalent amount, with-
out altering the order between the two objectives. This oper-
ation seeks to equilibrate the cost vector. Formally, the GGI
adheres to the following fairness principle: for any xi < xj ,

∀ϵ ∈ (0, xj − xi), Gw(x+ ϵei − ϵej) ≤ Gw(x) (6)

where ei and ej are two vectors of the canonical basis. Con-
sequently, among vectors with an equal sum, the optimal
cost vector (with respect to GGI) is the one that features
uniform values across all objectives, provided that such a
distribution is feasible.

6.2 MAB enhanced RAG systems with LLM
variants

We evaluated our MAB-enhanced RAG system using var-
ious LLM generators, including Chatglm3 (Du et al. 2021)
and Mistral (Jiang et al. 2023a). The results, depicted in
Fig. 5, demonstrate that our system significantly improves
RAG performance compared to traditional systems that uti-
lize only a single retriever. This enhancement underscores
the robustness and adaptability of our MAB-enhanced RAG
approach.

6.3 Implementation detail
To leverage the strengths of various retrieval methods, our

MAB-enhanced RAG system, along with other router-based
RAG approaches, utilizes DECAF(Yu et al. 2022), ChatK-
BQA(Luo et al. 2023a), and Reason-on-Graph(Luo et al.

Figure 5: MAB enhanced RAG systems with LLM variants
under stationary environments

Method Test Hit Test Recall Test Retrieval Delay
GGI-MO-MAB (offline) 61.70 ± 2.08 42.50 ± 2.62 4.84 ± 0.81

Static NN-Router 64.99 ± 1.24 46.23 ± 1.58 5.44 ± 0.54
GGI-MO-MAB (online) 77.55 ± 2.40 60.07 ± 3.29 11.23 ± 3.21

Table 4: Performance comparison under system degradation
scenario

2023c) as its action space. In Table 1, the term “Ensemble”
and in Table 2, “Retrieval Ensemble” refer to configurations
where multiple retrievers operate in a complementary man-
ner. Following the methodology outlined in (lla 2024) the
LLM Router is referring to a prompt-based GPT-4 (32k)
router accessed via the OpenAI API. Approaches such as
those proposed by (Sun et al. 2024b,a) can be utilized to ac-
celerate the training process.

6.4 Case study
We further present a case study Fig. 6 to illustrate the ef-

fectiveness of our system, the query inquires about influ-
ences on Frank Lloyd Wright. While dense retrieval pro-
vides a fast response, it introduces noisy and irrelevant
data. The LLM agent retriever, though accessing structured
knowledge graphs, fails to deliver accurate information, fo-
cusing instead on peripheral details like professions. How-
ever, the SPARQL-retriever can give a very accurate query
code for this question with clear conditions, and successfully
fetch all results that support our systems to offer a nuanced
and accurate response.

6.5 Experiment of additional non-stationarity
As shown in Table 4, we simulate the scenario where one

of the retrieval services fails, (unable to return any docu-
ments) and requires router to swiftly reorganize the queries
to other retrieval methods.
6.6 Retrieval methods on KG

Dense retrieval: Dense retrieval methods (Zhang et al.
2023; Karpukhin et al. 2020) standardize and segment di-



Figure 6: SPARQL-Based Retriever gives the most accurate
context

Figure 7: KG Agent gives the most accurate context

verse document formats like PDF, HTML, Word, and Mark-
down into plain text, which is then transformed into vec-
tor embeddings for efficient searching (Karpukhin et al.
2020). Utilizing a pre-trained language model (Devlin
et al. 2018), DPR creates dense embeddings from question-
passage pairs, significantly enhancing accuracy over BM25
and ORQA in open Natural Questions. Additionally, recent
developments by (Zhang et al. 2023) have tailored embed-
ding models to meet the varied retrieval demands of LLMs
with techniques like knowledge distillation and multi-task
fine-tuning.

There are two main approaches to applying dense retrieval
to Knowledge Graph data: directly searching the textual data
(e.g. Wikipedia) that constitutes the KG (Ennen et al. 2023;
Karpukhin et al. 2020), and linearizing KGs into text corpora
(Yu et al. 2022; Xie et al. 2022), which translates structured
knowledge into natural language form.

Dense retrieval methods are typically fast with pre-built
vector bases, but it rely on embedding models for query rea-
soning, often falling short in complex, multi-hop retrieval
tasks that demand greater analytical depth (BehnamGhader,
Miret, and Reddy 2023).

KG Query Language Retrieval: Due to the structured
representation and storage, it is efficient to access structured
data using query languages (e.g. SPARQL) or specific al-
gorithms (e.g., triple search for knowledge graphs). ChatK-
BQA (Luo et al. 2023a) proposes generating the logical
form with fine-tuned LLMs first, then retrieving and replac-
ing entities and relations through an unsupervised retrieval
method, which improves both generation and retrieval more
straightforwardly. StructGPT (Jiang et al. 2023b) constructs
the specialized interfaces to collect relevant evidence from
structured data, and let LLMs concentrate on the reasoning
task based on the collected information (Chen et al.).

KG agent-based retrieval: Differing from SPARQL gen-
erator retrieval, LLM agent-based retrieval adopts a tightly
coupled ”LLM-KG” paradigm. In this setup, agents such
as LLMs navigate through relations and entities on Knowl-
edge Graphs and construct a reasoning path for answering
queries. (Sun et al. 2023) introduces a new approach called
Think-on-Graph (ToG), in which the LLM agent iteratively
executes beam search on KG, discovers the most promis-
ing reasoning paths, and returns the most likely reasoning
results. (Luo et al. 2023c) presents a planning retrieval-
reasoning framework, where RoG first generates relation
paths grounded by KGs as faithful plans. These plans are
then used to retrieve valid reasoning paths from the KGs for
LLMs to conduct faithful reasoning(Du et al. 2024).

6.7 RAG Prompts Used in Experiments
Listing 1: RAG prompt

System prompt:
Based on the context information

provided, and not on prior knowledge,
please answer the given question.

Context: {context}
Question:
Please answer the query: {query}

6.8 Statistics of datasets

Table 5: Statistics of datasets.

Datasets Train Test Max hop
WebQSP 2,826 1,628 2

CWQ 27,639 3,531 4


