Self-Improving Mathematical Reasoning of Large Language Models
with a Code-Centric Paradigm

Anonymous ACL submission

Abstract

There is a growing trend of teaching large lan-
guage models (LLMs) to solve mathematical
problems through coding. Existing studies
primarily focus on distilling powerful, closed-
source models and in-domain data augmenta-
tion, equipping LLMs with considerable ca-
pabilities for mathematical reasoning via cod-
ing. However, the self-improvement of such
LLMs by leveraging large-scale, expert-written,
diverse math question-answer pairs remains
under-explored. To bridge this gap and tackle
challenges such as code response assessment,
we propose a novel paradigm that uses a code-
based critic model to guide steps including
question-code data construction, quality con-
trol, and complementary evaluation. We also
explore different alignment algorithms with
self-generated instruction/preference data to
foster continuous improvement. Experiments
across both in-domain (up to +5.7%) and out-
of-domain (44.4%) benchmarks in English and
Chinese demonstrate the effectiveness of self-
improving LLMs with the proposed paradigm.

1 Introduction

There has been a growing trend of using code and
code interpreters to enhance the performance of
large language models (LLMs) in solving mathe-
matical reasoning problems, which helps allevi-
ate the computational burden on LLMs (Chen
et al., 2022; Gao et al., 2023b; Zhou et al., 2023).
Based on open-source LLMSs, a simple yet effec-
tive method involves distilling strong closed-source
LLMs to generate code-based solutions for given
questions, verifying the correctness of the solu-
tions via answer matching, and then training open-
source models on the verified data for further self-
distillation through sampling, code execution, and
answer validation (Wang et al., 2023; Gou et al.,
2024; Lu et al., 2024).

An important question remains unanswered: can
such LLMs, which already demonstrate a rea-

sonable ability to solve math problems by writ-
ing code, self-improve without continually dis-
tilling knowledge from larger closed-source or
open-source LL.LMs? Previous code-aided stud-
ies (Wang et al., 2023; Gou et al., 2024; Lu et al.,
2024) primarily focus on in-domain data aug-
mentation using a few representative, small-scale
datasets such as GSM8K (Cobbe et al., 2021) and
MATH (Hendrycks et al., 2021). However, continu-
ally learning from these datasets or their augmented
versions is evidently less effective for improving
the generalization and performance of LLMs due
to the limited diversity.

On the other hand, large-scale, expert-written
mathematical question-answer pairs on public web
resources remain under-studied for post-training
code-aided LLLMs. These resources span educa-
tional levels from primary school to college and
include a variety of question types such as multiple-
choice, application, proof, and cloze. To use these
resources for the self-improvement of LLMs, the
key challenge is to determine whether the self-
generated code responses align with reference
answers in diverse formats. Fortunately, with the
aid of an external code interpreter, we are less con-
cerned about computation errors in specific steps
(e.g., lines or blocks of code). We assume a code
solution is more likely to be correct if its execution
result matches the reference answers, thus shifting
the focus to comparing the reference answers with
the code execution results. Based on our analysis
(Section 4.1), we observe that most cases primar-
ily require format conversion between plain text
and code syntax (e.g., “(x-5)(x"2-4x+7)” vs. “(x-
5)*(x**#2-4%x+7)” and “(1, -2, 2, -3)” vs. “{A:1,
B:-2, C:2, D:-3}”) and relatively simple numerical
calculations, which do not require advanced logical
reasoning abilities.

These observations motivate us to design a critic
model that evaluates the correctness of the code
execution result against the reference answer by

sampllng
rfalled valld

kvc? (question, code) (question, code) }J

valld?_(»valld

yes/no

!SFT/DP

Figure 1: Overview of our code-centric self-improving paradigm.

predicting YES or NO (see examples in Table 1).
As illustrated in Figure 1, this critic model is used
to guide multiple steps during self-improvement.
We first train a model with seed question-code data
following previous studies (e.g., (Gou et al., 2024))
and consider it as the initial policy model. In each
iteration, we use the current policy model to gen-
erate code samples for new questions and keep
the highest-scoring valid code responses rated by
the critic model for supervised fine-tuning (SFT)
in the subsequent iteration. To foster continuous
improvement, we also explore different alignment
algorithms such as DPO (Rafailov et al., 2024)
and ORPO (Hong et al., 2024) with self-generated
preference data, where the preference labels are
provided by the critic model.

We perform experiments on different model fam-
ilies, such as Llama3-8B (Al@Meta, 2024) and
DeepSeek-Coder-7B (Daya Guo, 2024). Experi-
mental results across both in-domain (up to +5.7%)
and out-of-domain (+4.4%) benchmarks in En-
glish and Chinese demonstrate the effectiveness
of self-improving LL.Ms using our proposed code-
centric paradigm with large-scale question-answer
pairs from web resources. Notably, we observe
a very strong correlation between the traditional
heuristic-based evaluation method and the critic
model (Section 4.5), with the latter reducing the
additional human effort needed to design rules for
new math benchmarks. We also find that introduc-
ing SFT loss into the DPO training is surprisingly
effective in controlling the code response length
after preference optimization.

To summarize the contributions of this work:

* We propose a novel paradigm for self-
improving the mathematical reasoning abil-
ities of code-aided LLMs by iteratively learn-
ing from new web question-answer pairs.

* To better leverage these large-scale resources,
we design a critic model that effectively
guides various steps such as data construc-
tion and filtering. This model can also serve
as a complementary evaluation scorer, reduc-
ing the reliance on heuristic design for new
evaluation tasks.

* Extensive experiments demonstrate the effec-
tiveness of our paradigm, and our comprehen-
sive analysis of the key factors in achieving
continuous improvement at different stages
may shed light on future studies.

2 Related Work

For automatic math evaluation on well-formatted
benchmarks, previous studies mostly use heuristics
and external tools (e.g., the Python EVAL() func-
tion) to compare answers and predictions (Four-
rier et al., 2023; Gao et al., 2023a), which works
quite well for single numerical value answers, as
seen in datasets such as GSM8K (Cobbe et al.,
2021), ASDiv (Miao et al., 2020), and SVAMP (Pa-
tel et al., 2021). However, since answers from
web resources are diverse in formats and language-
code syntactic difference, using carefully designed
task-specific heuristics becomes infeasible for com-
paring answers and code execution results. For
datasets that are beyond value-style answers such
as MATH (Hendrycks et al., 2021), closed source
LLM:s are also used for evaluation such as OpenAl-
Evals, which however is not cost-effective for rat-
ing large-scale code samples.

Several approaches (Li et al., 2023; Yu et al.,
2023; Lu et al., 2023; Yuan et al., 2024; Hu et al.,
2024) use the LLM itself or use separate critic
model (Ouyang et al., 2022; Xu et al., 2024) for
scoring or filtering natural-language responses. We
focus on tool-assisted assessment of code responses

to math questions. Compared to the previously
mentioned self-improving studies that use a sin-
gle LLM to provide feedback on its own gener-
ations, we interpret “self” in contrast to distill-
ing knowledge from larger closed-source or open-
source LLMs for continuous improvements.

3 Method
3.1 Training an Initial Model

One key factor for a self-improving paradigm is
to have a reasonably strong initial model. To train
such a model, we first use high-quality seed data to
fine-tune a large language model, resulting model
Mieeq- We use Mieeq to generate code samples and
keep up to four predictions per question wherein
the result of the code matches the ground truth
answer and combines the seed data and the self-
distilled data to train M, which is further used
as the initial model for later self-improving stages.
We will introduce more details about the seed data
construction in the experiment section.

3.2 Building a Multi-Use Code-Based Critic
Model

To self-improve LLMs with large-scale math
question-answering data without code annotations,
several challenges arise in data utilization, filter-
ing, and evaluation. First, previous studies primar-
ily use pattern-based methods to compare predic-
tions and ground truth answers during validation
and evaluation. This works well for GSM-style
datasets, where answers are single numbers and
well-formatted (e.g., “72” in “...72 clips altogether
in April and May\n #### 72”). However, pattern-
based methods inevitably struggle to handle dif-
ferent types or formats of answers and the gap
between natural language and programming lan-
guage. For example, with the MATH dataset, com-
paring predictions with the ground truth answers
in LaTeX-like format requires numerous human-
written patterns. This complexity is compounded
when the predictions are in code syntax. Second,
given a question, it is still under-explored how to
select high-quality, valid code responses.

To address the above challenges, we propose
building a code-based critic model optimized by
the following objective:

L(T‘¢) = *lOgT'qj(’y | q,a,c, 6)7 (1)

where ¢ denotes a question, a is the ground truth
answer to ¢, c represents the code response to g, and

e is the execution result of code c. To simplify the
task, we let y be either “YES” or “NO”. Examples
are shown in Table 1. We leave other formulations,
such as training a scalar critic model (Ouyang et al.,
2022), to future work.

3.3 Code Data Generation

As mentioned previously, our goal is to leverage
non-code math data from web resources to contin-
uously improve the mathematical reasoning abil-
ity of LLMs, rather than further distilling power-
ful LLMs. For well-formatted, web-collected data
such as APE (Zhao et al., 2020) and CM (Qin et al.,
2021), where most answers are one or two numeri-
cal values (see an example in Table 2), it is efficient
and effective to compare the ground truth answer
and the execution result of the code using scripts
released by previous studies (Section 4.2). For real-
world math data involving multiple types of ques-
tions, such as multiple-choice, multiple-question,
fill-in-the-blank, application, and proof, using a
critic model introduced in the previous section is
more flexible and saves the intensive effort of writ-
ing task-specific patterns, which is time-consuming
and may suffer from relatively low recall. Note that
for all math questions, we only use their reference
answers to verify the correctness of code execution
results instead of directly training on these answers,
and we only use benchmarks’ training sets.

In the k£ + 1-th iteration, for each new question,
we use the current policy model 7y, to generate
five code samples and execute them to obtain the
results. For questions in the real-world math data,
the critic model is then used to predict YES or NO
for each response (a;, ¢;j, €;;) given ¢;. We use the
probability of YES or NO as the confidence value
for the critic model’s judgment. A higher probabil-
ity score indicates a greater confidence in the code
response, either agreeing with or disagreeing with
the reference answer.

3.4 Self-Improving with New Data

One natural choice is to perform supervised fine-
tuning (SFT) on 7y, using Dsr:

LSFT(W9k+1) = lOgWek+l (C | Q) 2

Dgpr = {(qi, ciz) | 7o(y = YES | gi, a4, cizyeiz)} (3)

As critiques may contain errors, we explore us-
ing the probability of each judgement as a con-

System Prompt

Your goal is to evaluate whether the candidate answer provided by the model for a math problem matches the
reference answer. Here are the steps to complete the task:

— First, carefully read the given math problem.

— Next, review the reference answer for the math problem.

— Then, examine the candidate answer provided by the model, which may include a program and the result of
running that program.

— Finally, summarize whether the candidate answer matches the reference answer or can be made to match through
simple calculations/conversions.

— The response format should be Yes or No.

Instruction

##H# Question\n\n Given f (1-2x) =3x+1- findf (-3) =__ .

Reference Answer\n \n 7 \n \n

Candidate Answer\n \n <code>from sympy import symbols, Eq, solve\n# Define the variable\n x = sym-
bols(’x”)\n# Establish the equation based on the problem conditions\n equation = Eq(1 - 2*x, -3)\n# Solve the
equation\n solution = solve(equation, x, dict=True)\n solution_value = solution[0][x]\n # Calculate f(-3)\n f_neg_3

= 3*solution_value + 1\n f_neg_3</code><solution>7</solution>

Assessment
Output Yes

Instruction
what is a₃? A: 3B: 2C: 1D: 0
Reference Answer\n \n B \n \n

Question\n\n Given the sequence {a_n} with the sum of the first n terms S_n=2n-3,

Candidate Answer\n \n <code># Define a function to calculate the nth term\n def calculate_nth_term(n):\n
Based on the derived formula\n an =2 ** n - 2 ** (n - 1)\n return an\n # Calculate the value of the 3rd term \n a3
= calculate_nth_term(3) # a3 </code><solution>4</solution>

Assessment
Output No

Table 1: Example instance of the code-based critique task (we translate the Chinese texts into English).

Question: Given: Apples cost 6 yuan for 4 kilograms, and
oranges cost 11 yuan for 5 kilograms. Uncle Wang
buys 16 kilograms of apples and 20 kilograms of
oranges. How much should he pay in total?

Answer: 68

Rationale*: x=6/4*16+11/5%20

Table 2: An example instance of the APE dataset (Zhao
et al., 2020) (we translate the question into English; «:
we do not use this rationale in our paradigm).

fidence score to filter out noise. Besides, we in-
troduce extra constraints: for each question, we
only retain the highest-scoring positive instance
ti; = {qi,ai,cij, e;;}, similar to rejection sam-
pling (Bai et al., 2022), where t;; € T; of the same
question ¢;. To encourage models to learn from
more challenging problems, if all instances in 7;
are labeled as YES, we discard this question and its
corresponding generated code from consideration.

Dsrrn = {(gi> cij) | mo(y = YES | ti5),
Pry(y = YES | t55) > A1,
tij = arg 02X pr (y = YEs | tij),

|T; |
> 1{ry(y =No | ti;)} > Xo}
~)
where A1, Ao represent thresholds for filtering
and difficulty control.

In addition to supervised fine-tuning a policy
model on self-generated SFT data (Dspr,g or
Dsgpr) iteratively, we can also leverage the negative
instances by optimizing the policy on preference
data using algorithms such as DPO (Rafailov et al.,

2024) and KTO (Ethayarajh et al., 2024). Com-
pared to SFT, these alignment algorithms addition-
ally decrease the probability of losing responses.
We mainly focus on DPO in this paper and leave
other options for future studies, and we jointly train
the policy with the SFT objective to alleviate over-
fitting to the preference data and ensure a stable up-
date (Hong et al., 2024). See more discussions on
the impact of the SFT objective, especially its role
in controlling the response length, in Section 4.4.

m w | T
Loro(me,,,) = —logo (,6’ log %
041 (yl | x)) ©)]
mo, (v | @)
— A -log k11 (Yw | 7)

—plog

We can easily leverage our critic model to build
preference (cy,, ¢;) pairs, where ¢, represents the
winning code and c; represents the losing code.
For each question, we use the highest-scoring YES
response and the highest-scoring NO response to
form a preference pair, aiming to maximize the
difference between them. See preference data ex-
amples in Section A .4.

Doro = {(gi, cij, cir) | 7 (y = YES | tij),
r¢(y = NO | tir),

bij = arg max pry (y = YES | t5),

ik = arg max pr, (y = No | tix)}

(6)

4 [Experiments

4.1 Data

We summarize the statistics of data use for self-
improving in Table 3. Due to limited space, see
statistics of evaluation benchmarks in Table 12.
Seed Data D: To generate the seed data for En-
glish, following previous work, we use GPT-4-
0613 in an iterative fashion: we repeatedly sample
the remaining questions that do not have correct
code (i.e., the code execution results match the
ground truth answer of the questions) for several
iterations. We use questions from the training sets
of GSMB8K (7.5K) and MATH (7.5K) as the seed
questions for imitation learning. For datasets such
as GSMS8K in which the answers are mostly sin-
gle numbers, it is easier to compare answer and
code execution results. After two iterations, we
can annotate 98.5% of questions in GSM8K. For
datasets such as MATH wherein the answers are
diverse in formats, we simply keep the code that
can be successfully executed without errors. For
seed questions for Chinese, we randomly sample
20K from (1.13M in total) collected or purchased
from educational web resources (Section 5) and
follow the same procedure using GPT-4-0613 and
self-distillation for code generation to construct the
Chinese subset of Dy.

Value-Style D;: We utilize the initial policy M
to generate code samples to questions in train-
ing sets of the word math problem datasets APE
(200.5K) (Zhao et al., 2020) and CM (13.6K) (Qin
et al., 2021), both collected from web resources.
Since all the answers are one or two numerical val-
ues, for efficiency, we use heuristics to compare
the code execution results with ground truth an-
swers for validation. Following the same process
used to construct Dy, we keep up to four valid code
samples for each question.

Diverse-Format Data D-: To increase the diver-
sity of the training data, we further consider large-
scale mathematical QA pairs (excluding those used
for seed data) mentioned previously. For each ques-
tion, we retain only one positive code and one neg-
ative code (if any exists) judged by the critic.
Critic Data: To build the training data for the critic
model, we use My to generate code samples for
randomly sampled questions from D5 and execute
these code samples. We then prompt GPT-4-0613
with the input (question, code, code result, refer-
ence answer) following the template in Table 1.
After filtering, we retain 16.8K training instances,

of which 48.6% of are judged as YES.

To better understand this task, we analyze the
reference answers for 50 instances. Only 14% of
them are single numerical values, while 50% in-
volve format conversion (e.g., syntax or structure)
when the answers are expressions, equations, co-
ordinates, sets, etc. Another difference between
real-world data and well-formatted benchmarks
is its inconsistency in the format of reference an-
swers. Specifically, half of them are mixed with
CoT-style (Wei et al., 2022) explanations and/or
irrelevant contents such as tags and URLs. This
makes it difficult to parse short-form answers for
easier matching with a few patterns, as done for
clean benchmarks (e.g., answer indicators “###”
for GSMS8K and “B0X” for MATH). For multiple-
choice or multi-part questions (8% in total), we ad-
ditionally require the question context for mapping
option labels and their contents, as well as ques-
tion decomposition. These observations reflect the
diversity of question types in the web resources.

Data/Subset QA Source Size
D zh web 76K
 en GSMS8K, MATH 44K
D, APE, CM 211K
SFT web 893K
D, SFTH) web 273K
DPO web 465K

Table 3: Statistics of training data used in our three-
stage paradigm (D; and Dy are Chinese resources).

4.2 Implementation

We use the unified framework LLLAMAFAC-
TORY (Zheng et al., 2024) for efficient fine-tuning
built upon DeepSpeed (ZeRO-3). Our experiments
are conducted using 8XA100 40GB GPUs. We
train LLMs with BF16 mixed-precision. The train-
ing for the self-improving paradigm explored in our
experiments takes approximately 96 hours. With
80 workers in multi-processing mode on a CPU
machine, we can execute about 9,003 codes per
minute. Each model at each stage is trained for
two epochs with a learning rate of 1e-6. We set the
SFT loss coefficient (A in Equation 7) to 1.0. The
maximum sequence length is set to 1024, and the
batch size is set to 64 for both SFT and DPO. We
set A1 to 0.8 and \g to 3.

As we focus on solving mathematical
problems with code, we experiment with
four LLMs to select backbone models —
CodeLlama-7B-Python (Roziere et al., 2023),

Llama3ipsruct. (AI@Meta, 2024), CodeQwenl.5-
7B-Chat (Team, 2024), and Deepseek-Coder-
7B-instruct-v1.5 (Daya Guo, 2024) — that
demonstrate strong coding capabilities on code-
related benchmarks. Due to limited computational
resources, we use their 7B or 8B versions with
their corresponding default templates and leave the
model scaling up for future work. We primarily
follow the evaluation scripts from previous stud-
ies (Liang et al., 2024) for Chinese benchmarks
and FastEval® for English benchmarks GSM8K
and MATH. We also make adjustments to these
scripts, as our predicted answers are in code syntax.
We use CodeLlama-7B-Python as the backbone
LLM to train the code-based critic model for three
epochs with the maximum sequence length 4096.

4.3 The Performance of the Initial Policy and
Self-Improved LLMs

As shown in Table 4, DeepSeekcoge and
Llama3;ygruee Show superior average performance
across math datasets in both Chinese (APE, CM,
and CMATH (Wei et al., 2023)) and English
(GSMS8K and MATH). Therefore, we consider
them as initial policy models (i.e., My) for later self-
improving experiments. After two additional iter-
ations on the unseen data D1, and Dy constructed
with the help of our code-based critic model, the
resulting models (i.e., M2) consistently outperform
My by a large margin on Chinese benchmarks.

We observe that self-improving the initial policy
model with Chinese-only data, D; and Do, does
not hurt the accuracy of My on English tasks. In
fact, it may be beneficial (e.g., +1.5% on both
MATH and GSMSK datasets using DeepSeekcoge).
Conversely, adding English seed data (36.7% of
Dg) consistently improves My’s average perfor-
mance on Chinese benchmarks (Dg vs. Dg;, in
Table 5). To some extent, we may interpret code
as a universal language for solving mathematical
problems across different languages. The language-
specific parts are mainly in the code comments,
which are relatively indirect for problem-solving
via code execution. Thus, our paradigm may re-
duce the burden of preparing large-scale, language-
specific math data for each language.

We list several general-purpose/math-specified
multi-lingual/English LLMs of similar or much
larger size for reference. Note that direct compar-

'We observe little performance difference between
Llama3insruee and Llama3pase Wwhen both are fine-tuned on Dy.
2github.com/FastEval/FastEval/.

isons are challenging due to differences in archi-
tectures, pertaining corpora, alignment algorithms,
and labeled data, though the performance of al-
most all these LLMs on GSM8K and MATH can
be considered in-domain. Moreover, the evaluation
scripts, originally designed for plain-text answers
instead of code outputs, may cause an underestima-
tion of our methods’ performance on datasets such
as MATH, where answers involve more expressions
and structures beyond numerical values.

4.4 The Comparison of Different Choices of
Data and Alignment Methods

Diversity: Based on the experimental results, given
Dy and Dy, we observe that two-stage SFT (first on
Dy for two epochs and then on D; for two epochs)
under-performs one-stage SFT (over the concate-
nation of Dy and D; for two epochs) (B vs. C
in Table 6). However, incorporating D2 using ei-
ther strategy achieves similar performance (E vs.
F in Table 6). One possible reason may be that
the questions in D; are from two web-collected
value-style benchmarks, resulting in less diversity
compared with Do, which has a broader range of
question types (Section 4.1). Ensuring the diversity
of data in each stage may help the model generalize
better across various types of math questions, simi-
lar to the observations seen when training general-
purpose LLMs (e.g., (Shen et al., 2023)).
Denoised SFT Data: As mentioned previously, we
use the code-based critic model to construct SFT
data. Since the process will inevitably introduce
false positive data, we further consider several con-
straints for filtering (Equation 4 in Section 3.4).
Experimental results show that we can achieve sim-
ilar average accuracy using either D spry or the
D2 st (D vs. E in Table 6). However, D2 sprh
is only 30.6% of the latter’s size, indicating the
usefulness of the filtering.

DPO or SFT: Based on a reasonably good model
M; (trained with Dy and D1, such as C in Table 6),
we can either self-improve it via SFT or DPO as
described in Section 3.4. We compare using the
positive (question, code) pairs in the DPO data for
another round of SFT, which results in a 1.8% drop
in accuracy on downstream tasks (G vs. I in Ta-
ble 6). Since we do not impose strict constraints on
the positive data in DPO, D2 ppo, positive 18 1.7 times
the size of Do spry. Still, using the filtered SFT
data D9 sprn achieves slightly better performance
(F vs. G), showing the effectiveness of filtering.
DPO with SFT: Our experiments indicate that

Model Size (B) CM APE CMATH GSMSK MATH
GPT-4-1106-Preview® - - 84.2 89.3 93.6 53.6
Qwen-Chat (Bai et al., 2023)® 72 - 77.1 88.1 76.4 31.8
ChatGLM-Math (Xu et al., 2024)® 32 - 89.4 85.6 82.6 40.6
Skywork-Math (Yang et al., 2023)® 13 - 74.4 71.3 72.3 17.0
Math-InternLM2 (Team, 2023)® 20 - 75.2 78.5 82.6 37.7
MathCoder (Wang et al., 2023) 34 - - - 81.7 45.2

7 - - - 67.8 30.2
ToRA (Gou et al., 2024) 70 - - - 84.3 49.7

7 - - - 72.6 44.6
MinT (Liang et al., 2024) 7 77.6 76.0 — 40.8 -

Initial Model Baselines (M)
CodeLlama 7 71.7 78.0 84.5 69.7 37.6
QWEN ode 7 81.9 81.5 86.0 71.9 414
DeepSeekeode 7 82.7 81.2 87.0 774 444
Llama3instruct 8 83.3 83.2 87.2 76.8 41.8
Self-Improving (SI) (M2)

SI(DeepSeekcode) 7 87.3 (+4.6) 85.9 (+4.7) 91.2 (+4.2) 78.9 (+1.5) 459 (+1.5)
SI(Llama3insiruct) 8 89.0 (+5.7) 86.8(+3.6) 90.8(+3.6) 80.5(+3.7) 41.9 (+0.1)

Table 4: Accuracy across the development sets of math datasets for Chinese (®: without using tools).

Model Training Procedure ~ Data CM APE CMATH GSMS8K MATH

DeepSeekeode ~ SFT Do en - - - 74.6 43.8
SFT Do, 81.0 824 86.8 - -
SFT Do 82.7 81.2 87.0 774 444
SFT Do + D, 87.0 843 88.0 77.6 44.6
SFT — DPO Do+ Dy; Dy 873 859 91.2 78.9 45.9

Llama3inseruct SFT Do en - - - 75.1 37.2
SFT Do, 82.5 83.3 85.5 - -
SFT Do 83.3 83.2 87.2 76.8 41.8
SFT Do + D, 87.6 850 89.0 76.6 41.8
SFT — DPO Do+ Dy1; D> 89.0 868 90.8 80.5 41.9

Table 5: The self-improving accuracy in different stages on the development sets of different datasets. The best
open-sourced performance for each backbone model is highlighted in bold.

ID Alignment Data ACC
A SFT Do 74.4
B SFT — SFT Do ; Dy 75.4
C SFT Do+ D1 76.0
D SFT D(] + Dl + DQ’SF]' 76.1
E SFT Dg + D1 + DQ)SFEH 76.1
F SFT — SFT Do + D1; D2 sktu 76.2
G SFT — SFT Do + D1; D2 pro, positive 76.0
H SFT — ORPO D() + Dl; Dzy])po 71.0
1 SFT — DPO Do + D1; D2 pro 71.8

Table 6: The self-improving averaged accuracy (ACC)
of Llama3j,grmee On the development sets of different
datasets with various training strategies and data.

DPO training is relatively insensitive to the weight
(A in Equation 7) of the SFT loss. We tested with
A = 1.0 and A = 2.0, both of which resulted in
similarly good performance (77.8%). However,
as shown in Table 7, removing the SFT loss (i.e.,
A = 0) from DPO training leads to a dramatic in-
crease in response length, especially for Chinese
tasks such as CMATH, and yields worse results
than the reference policy model (C in Table 6).
This observation aligns with discussions on length
exploitation issue of the original DPO loss (Park

et al., 2024). One possible reason for the length
control achieved by adding the SFT loss could be
that the positive responses used for the SFT loss
are generated by the reference policy model. By
setting a larger weight to SFT, we control the de-
viation from the reference policy, which alleviates
a substantial increase in response length. We also
experiment with using ORPO (Hong et al., 2024),
which removes the need for a reference model and
jointly trains with the SFT loss. However, this
method is not as effective as jointly training DPO
and SFT in our experiments (H vs. I in Table 6).
Detailed results can be found in Section A.3.

4.5 Using the Critic Model as An Evaluator

We have shown the effectiveness of using the critic
model to construct SFT and preference data. All
scores are computed by comparing predictions with
ground truth answers, using heuristics-based ex-
act match (EM) following previous studies for fair
comparisons. To explore the potential of using the
critic model as a complementary evaluator, we ex-
amine the correlation between the two evaluation

A GSMSK CMATH
L L
ACC L Ly ACC L Ly
reference model
- 76.6 323 1.0 89.0 136 1.0

0.0 73.4 1834 5.7 57.5 3160 232
0.5 78.8 532 1.6 90.7 201 1.5
1.0 80.5 352 1.1 90.8 136 1.0
1.5 79.0 328 1.0 90.7 135 1.0
2.0 79.8 326 1.0 90.7 134 1.0

Table 7: The impact of the weight of the SFT loss
in DPO training on the average accuracy and average
response length in words evaluated on GSM8K and
CMATH (Ly: response length of the reference policy).

Dataset ACCgm ACCoritic Correlationgendan
CM 89.0 84.6 0.66
APE 86.8 86.5 0.76
CMATH 90.8 91.8 0.77
GSM8K 80.5 80.6 0.97
MATH 419 48.2 0.79
average 71.8 78.3 0.79

Table 8: Correlation of two evaluation methods:
heuristics-based EM and the critic model.

methods on the previously used benchmarks. We
use the original ground truth answers (final-step an-
swers if answers are COT-style) (e.g., “37507, “[12,
18], and “\\frac{13}{2}”) in these benchmarks.
Since all scores are either 0 (NO) or 1 (YES), we
report the Kendall’s 7 between the two methods.
As shown in Table 8, there is a very strong corre-
lation (0.79) (compared to the very-strong-cutoff
value 0.71 and strong-cutoff value 0.49 (Schober
et al., 2018)) between the scores computed by the
two evaluators. The strong associations in English
tasks are surprising, given that the critic model is
trained on Chinese-only data. This may be due
to (i) the backbone model being a well-instructed
model focused on English, and (ii) comparing an-
swers to mathematical questions relying less on
language-specific knowledge.

4.6 The Performance of Self-Improved LLMs
on More Out-of-Domain Tasks

Considering the above results in Section 4.5, we
are now more confident in using the critic model
to evaluate models’ performance on additional out-
of-domain benchmarks, without the need to write
extensive heuristics for different tasks. Besides
CMATH, we evaluate the out-of-domain perfor-
mance of our models using MathBench (Liu et al.,
2024), a newly released benchmark supporting eval-
uation in both Chinese and English. The questions
in MathBench span various educational stages,

from primary school to college levels. We report
scores on its two subsets: MathBench-A, which
evaluates practical problem-solving skills, and
MathBench-T, which assesses theoretical under-
standing. As shown in Table 9, the self-improved
models demonstrate substantial gains on both sub-
sets, with an accuracy improvement of at least
4.2%. On both subsets, the self-improved model
consistently outperforms the initial one across all
educational levels and subjects with notable im-
provements particularly in middle school tasks and
English theoretical tasks. See detailed performance
in Table 10 and Table 11 (Section A.1). Note that
we provide the scores of other models for reference,
as they are judged by a different scorer.
Compared to practical application questions, it
seems that using CoT, LLMs are much better at
handling theoretical knowledge questions. In con-
trast, solving all questions via coding shows bal-
anced and reasonable performance. This shows
the advantage of using tools to aid in computation,
but also indicates the limitations of relying solely
on code to address questions that may not require
actual computation. To date, it remains an open
question how to (or whether to) use code for assist
advanced theoretical reasoning (Liu et al., 2024).

model Subset-A Subset-T ACCayerage
GPT-4-0125-Preview® 58.87 78.4% 68.6"
GLM4® 513" 7311 6221
Qwen-Chat-72B® 49.7F 77.2% 63.5"
Math-InternLM2-20B® 4191 643" 5311
Llama3ingruc-8B% 3671 5211 44.4%
SI(Llama3ingiruct)0-8B 62.5* 57.9* 60.2*
SI(Llama3ingruct)2-8B 66.7* 62.6* 64.6*

Table 9: OOD accuracy on the MathBench dataset (x:
scored by the critic model; 1: based on the numbers
reported by Liu et al. (2024); ®: without using tools).

5 Conclusions and Future Work

We introduce a novel paradigm for self-improving
LLMs, which employs a code-based critic model
to guide stages such as the creation and filtering
of question-code data as well as complementary
evaluation. We also investigate various alignment
algorithms using self-generated instruction/prefer-
ence data for further improvement. Results show
the effectiveness of self-improving LLMs with this
proposed paradigm. Future research includes study-
ing post-training on code-only data to enhance
the computational capabilities of LLMs and self-
improvement of the critic model.

Limitations

Language Diversity of Resources: in this paper,
we focus on large-scale question-answer pairs for
Chinese, and accordingly, our critic model used
for guiding self-improvement is trained on Chi-
nese data. While considering resources in other
languages such as English could enhance the the
generalizability of LLMs, it would require exten-
sive human efforts for data collection and cleaning,
which is beyond the scope of this work. On the
other hand, based on our experiments, since the
backbone LLMs are pre-trained and aligned on
multi-lingual data and our seed data includes En-
glish instruction data, the initial policy already ex-
hibits reasonable performance on in-domain (Sec-
tion 4.3) and out-domain benchmarks (Section 4.6).
Self-improving this initial policy model on Chinese
data may even improve its performance on English
tasks. Finally, experiments show that the critic
model is as effective at rating English responses as
rating Chinese ones (Section 4.5).

Copyright of Resources: The large-scale question-
answer pairs (excluding APE and CM) are either
collected or purchased from educational websites.
‘We will not release the full-scale resources. Instead,
we will provide question-answer samples, along
with all scripts, seed data in English, initial and
self-improved policy models, and the critic model
to facilitate future studies.

The Usage of Code: Code can be used either di-
rectly (Chen et al., 2022; Gao et al., 2023b) or
interactively (Wang et al., 2023) during problem-
solving. The latter approaches such as ToRA (Gou
et al., 2024) and MathCoder (Wang et al., 2023)
jointly solve problems using CoT explanation (Wei
et al., 2022) and code. One advantage of these in-
teractive methods over code-only methods is that
the final step of their solution is usually written
in CoT, allowing the easy use of existing scripts
designed for CoT-style benchmarks for evaluation.
However, the role of using tools multiple times to
address a single math problem is unclear based on
the performance difference of interactive methods
(Table 4). For example, ToRA needs 1.02 tool in-
teraction rounds per question while MathCoder re-
quires 2.05. This work focuses on the direct usage
of code as a case study to avoid multi-step infer-
ence, and leave the interactive setting for future
studies. In addition, as discussed in Section 4.6,
LLM Scalings: Due to limited computational re-
sources, our experiments focus on 7/8-B LLMs.

Generally, improving the math reasoning abilities
of relatively small LLMs requires a large amount of
training data and knowledge distillation (Li et al.,
2024; Shao et al., 2024), which may not be neces-
sary for larger LLMs.

References

Al@Meta. 2024. Introducing meta llama 3: The most
capable openly available llm to date. https://ai.
meta.com/blog/meta-1lama-3/.

Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang,
Xiaodong Deng, Yang Fan, Wenbin Ge, Yu Han, Fei
Huang, et al. 2023. Qwen technical report. arXiv
preprint arXiv:2309.16609.

Yuntao Bai, Saurav Kadavath, Sandipan Kundu,
Amanda Askell, Jackson Kernion, Andy Jones,
Anna Chen, Anna Goldie, Azalia Mirhoseini,
Cameron McKinnon, et al. 2022. Constitutional
ai: Harmlessness from ai feedback. arXiv preprint
arXiv:2212.08073.

Wenhu Chen, Xueguang Ma, Xinyi Wang, and
William W Cohen. 2022. Program of thoughts
prompting: Disentangling computation from reason-
ing for numerical reasoning tasks. arXiv preprint
arXiv:2211.12588.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, et al. 2021. Training verifiers to solve math
word problems. arXiv preprint arXiv:2110.14168.

Ganqu Cui, Lifan Yuan, Ning Ding, Guanming Yao,
Wei Zhu, Yuan Ni, Guotong Xie, Zhiyuan Liu, and
Maosong Sun. 2023. Ultrafeedback: Boosting lan-
guage models with high-quality feedback. arXiv
preprint arXiv:2310.01377.

Dejian Yang Zhenda Xie Kai Dong Wentao Zhang
Guanting Chen Xiao Bi Y. Wu Y.K. Li Fuli Luo
Yingfei Xiong Wenfeng Liang Daya Guo, Qihao Zhu.
2024. Deepseek-coder: When the large language
model meets programming — the rise of code intelli-
gence.

Kawin Ethayarajh, Winnie Xu, Niklas Muennighoff,
Dan Jurafsky, and Douwe Kiela. 2024. Kto: Model
alignment as prospect theoretic optimization. arXiv
preprint arXiv:2402.01306.

Clémentine Fourrier, Nathan Habib, Thomas Wolf, and
Lewis Tunstall. 2023. Lighteval: A lightweight
framework for 1lm evaluation.

Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman,
Sid Black, Anthony DiPofi, Charles Foster, Laurence
Golding, Jeffrey Hsu, Alain Le Noac’h, Haonan Li,
Kyle McDonell, Niklas Muennighoff, Chris Ociepa,
Jason Phang, Laria Reynolds, Hailey Schoelkopf,

https://ai.meta.com/blog/meta-llama-3/
https://ai.meta.com/blog/meta-llama-3/
https://ai.meta.com/blog/meta-llama-3/
https://arxiv.org/abs/2401.14196
https://arxiv.org/abs/2401.14196
https://arxiv.org/abs/2401.14196
https://arxiv.org/abs/2401.14196
https://arxiv.org/abs/2401.14196
https://github.com/huggingface/lighteval
https://github.com/huggingface/lighteval
https://github.com/huggingface/lighteval

Aviya Skowron, Lintang Sutawika, Eric Tang, An-
ish Thite, Ben Wang, Kevin Wang, and Andy Zou.
2023a. A framework for few-shot language model
evaluation.

Luyu Gao, Aman Madaan, Shuyan Zhou, Uri Alon,
Pengfei Liu, Yiming Yang, Jamie Callan, and Gra-
ham Neubig. 2023b. Pal: Program-aided language
models. In International Conference on Machine
Learning, pages 10764-10799. PMLR.

Zhibin Gou, Zhihong Shao, Yeyun Gong, yelong shen,
Yujiu Yang, Minlie Huang, Nan Duan, and Weizhu
Chen. 2024. ToRA: A tool-integrated reasoning
agent for mathematical problem solving. In The
Twelfth International Conference on Learning Repre-
sentations.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul
Arora, Steven Basart, Eric Tang, Dawn Song, and
Jacob Steinhardt. 2021. Measuring mathematical
problem solving with the math dataset. Preprint,
arXiv:2103.03874.

Jiwoo Hong, Noah Lee, and James Thorne. 2024.
Orpo: Monolithic preference optimization without
reference model. arXiv preprint arXiv:2403.07691,
2(4):5.

Chi Hu, Yimin Hu, Hang Cao, Tong Xiao, and Jingbo
Zhu. 2024. Teaching language models to self-
improve by learning from language feedback. arXiv
e-prints, pages arXiv—2406.

Chen Li, Weiqi Wang, Jingcheng Hu, Yixuan Wei, Nan-
ning Zheng, Han Hu, Zheng Zhang, and Houwen
Peng. 2024. Common 7b language models already
possess strong math capabilities. arXiv preprint
arXiv:2403.04706.

Xian Li, Ping Yu, Chunting Zhou, Timo Schick, Luke
Zettlemoyer, Omer Levy, Jason Weston, and Mike
Lewis. 2023. Self-alignment with instruction back-
translation. arXiv preprint arXiv:2308.06259.

Zhenwen Liang, Dian Yu, Xiaoman Pan, Wenlin Yao,
Qingkai Zeng, Xiangliang Zhang, and Dong Yu.
2024. MinT: Boosting generalization in mathemat-
ical reasoning via multi-view fine-tuning. In Pro-
ceedings of the 2024 Joint International Conference
on Computational Linguistics, Language Resources
and Evaluation (LREC-COLING 2024), pages 11307—
11318, Torino, Italia. ELRA and ICCL.

Hongwei Liu, Zilong Zheng, Yuxuan Qiao, Haodong
Duan, Zhiwei Fei, Fengzhe Zhou, Wenwei Zhang,
Songyang Zhang, Dahua Lin, and Kai Chen. 2024.
Mathbench: Evaluating the theory and application
proficiency of llms with a hierarchical mathematics
benchmark. Preprint, arXiv:2405.12209.

Jiangiao Lu, Wanjun Zhong, Wenyong Huang, Yufei
Wang, Fei Mi, Baojun Wang, Weichao Wang, Lifeng
Shang, and Qun Liu. 2023. Self: Language-driven
self-evolution for large language model. arXiv
preprint arXiv:2310.00533.

10

Zimu Lu, Aojun Zhou, Houxing Ren, Ke Wang,
Weikang Shi, Junting Pan, Mingjie Zhan, and Hong-
sheng Li. 2024. Mathgenie: Generating synthetic
data with question back-translation for enhancing
mathematical reasoning of llms. arXiv preprint
arXiv:2402.16352.

Shen-yun Miao, Chao-Chun Liang, and Keh-Yih Su.
2020. A diverse corpus for evaluating and developing
English math word problem solvers. In Proceedings
of the 58th Annual Meeting of the Association for
Computational Linguistics, pages 975-984, Online.
Association for Computational Linguistics.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida,
Carroll Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Ray, et al.
2022. Training language models to follow instruc-
tions with human feedback. Advances in Neural
Information Processing Systems, 35:27730-27744.

Ryan Park, Rafael Rafailov, Stefano Ermon, and
Chelsea Finn. 2024. Disentangling length from qual-
ity in direct preference optimization. arXiv preprint
arXiv:2403.19159.

Arkil Patel, Satwik Bhattamishra, and Navin Goyal.
2021. Are NLP models really able to solve simple
math word problems? In Proceedings of the 2021
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, pages 2080-2094, Online.
Association for Computational Linguistics.

Jinghui Qin, Xiaodan Liang, Yining Hong, Jianheng
Tang, and Liang Lin. 2021. Neural-symbolic solver
for math word problems with auxiliary tasks. In ACL,
pages 5870-5881.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christo-
pher D Manning, Stefano Ermon, and Chelsea Finn.
2024. Direct preference optimization: Your language
model is secretly a reward model. Advances in Neu-
ral Information Processing Systems, 36.

Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten
Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi,
Jingyu Liu, Tal Remez, Jérémy Rapin, et al. 2023.
Code llama: Open foundation models for code. arXiv
preprint arXiv:2308.12950.

Patrick Schober, Christa Boer, and Lothar A Schwarte.
2018. Correlation coefficients: appropriate use and
interpretation. Anesthesia & analgesia, 126(5):1763—
1768.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu,
Junxiao Song, Mingchuan Zhang, YK Li, Y Wu, and
Daya Guo. 2024. Deepseekmath: Pushing the limits
of mathematical reasoning in open language models.
arXiv preprint arXiv:2402.03300.

Zhiqiang Shen, Tianhua Tao, Liqun Ma, Willie
Neiswanger, Joel Hestness, Natalia Vassilieva, Daria
Soboleva, and Eric Xing. 2023. Slimpajama-dc: Un-
derstanding data combinations for llm training. arXiv
preprint arXiv:2309.10818.

https://doi.org/10.5281/zenodo.10256836
https://doi.org/10.5281/zenodo.10256836
https://doi.org/10.5281/zenodo.10256836
https://openreview.net/forum?id=Ep0TtjVoap
https://openreview.net/forum?id=Ep0TtjVoap
https://openreview.net/forum?id=Ep0TtjVoap
https://arxiv.org/abs/2103.03874
https://arxiv.org/abs/2103.03874
https://arxiv.org/abs/2103.03874
https://aclanthology.org/2024.lrec-main.988
https://aclanthology.org/2024.lrec-main.988
https://aclanthology.org/2024.lrec-main.988
https://arxiv.org/abs/2405.12209
https://arxiv.org/abs/2405.12209
https://arxiv.org/abs/2405.12209
https://arxiv.org/abs/2405.12209
https://arxiv.org/abs/2405.12209
https://doi.org/10.18653/v1/2020.acl-main.92
https://doi.org/10.18653/v1/2020.acl-main.92
https://doi.org/10.18653/v1/2020.acl-main.92
https://doi.org/10.18653/v1/2021.naacl-main.168
https://doi.org/10.18653/v1/2021.naacl-main.168
https://doi.org/10.18653/v1/2021.naacl-main.168

InternL.M Team. 2023. Internlm: A multilingual lan-
guage model with progressively enhanced capabili-
ties.

Qwen Team. 2024. Code with codeqwenl.5.

Ke Wang, Houxing Ren, Aojun Zhou, Zimu Lu, Sichun
Luo, Weikang Shi, Renrui Zhang, Lingi Song,
Mingjie Zhan, and Hongsheng Li. 2023. Math-
coder: Seamless code integration in llms for en-
hanced mathematical reasoning. arXiv preprint
arXiv:2310.03731.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou,
et al. 2022. Chain-of-thought prompting elicits rea-
soning in large language models. Advances in neural
information processing systems, 35:24824-24837.

Tianwen Wei, Jian Luan, Wei Liu, Shuang Dong, and
Bin Wang. 2023. Cmath: can your language model
pass chinese elementary school math test? arXiv
preprint arXiv:2306.16636.

Martin Weyssow, Aton Kamanda, and Houari Sahraoui.
2024. Codeultrafeedback: An llm-as-a-judge dataset
for aligning large language models to coding prefer-
ences. Preprint, arXiv:2403.09032.

Yifan Xu, Xiao Liu, Xinghan Liu, Zhenyu Hou, Yueyan
Li, Xiaohan Zhang, Zihan Wang, Aohan Zeng,
Zhengxiao Du, Wenyi Zhao, et al. 2024. Chatglm-
math: Improving math problem-solving in large lan-
guage models with a self-critique pipeline. arXiv
preprint arXiv:2404.02893.

Liu Yang, Haihua Yang, Wenjun Cheng, Lei Lin,
Chenxia Li, Yifu Chen, Lunan Liu, Jianfei Pan, Tian-
wen Wei, Biye Li, et al. 2023. Skymath: Technical
report. arXiv preprint arXiv:2310.16713.

Xiao Yu, Baolin Peng, Michel Galley, Jianfeng Gao, and
Zhou Yu. 2023. Teaching language models to self-
improve through interactive demonstrations. arXiv
preprint arXiv:2310.13522.

Weizhe Yuan, Richard Yuanzhe Pang, Kyunghyun Cho,
Sainbayar Sukhbaatar, Jing Xu, and Jason Weston.
2024. Self-rewarding language models. arXiv
preprint arXiv:2401.10020.

Wei Zhao, Mingyue Shang, Yang Liu, Liang Wang, and
Jingming Liu. 2020. Ape210k: A large-scale and
template-rich dataset of math word problems. arXiv
preprint arXiv:2009.11506.

Yaowei Zheng, Richong Zhang, Junhao Zhang, Yanhan
Ye, and Zheyan Luo. 2024. Llamafactory: Unified
efficient fine-tuning of 100+ language models. arXiv
preprint arXiv:2403.13372.

Aojun Zhou, Ke Wang, Zimu Lu, Weikang Shi, Sichun
Luo, Zipeng Qin, Shaoqing Lu, Anya Jia, Linqi
Song, Mingjie Zhan, et al. 2023. Solving challenging
math word problems using gpt-4 code interpreter
with code-based self-verification. arXiv preprint
arXiv:2308.07921.

11

https://qwenlm.github.io/blog/codeqwen1.5/
https://arxiv.org/abs/2403.09032
https://arxiv.org/abs/2403.09032
https://arxiv.org/abs/2403.09032
https://arxiv.org/abs/2403.09032
https://arxiv.org/abs/2403.09032

A Appendices

A.1 Sub-Type Performance on MathBench

The data presented in the tables clearly shows
the advantage of SI(Llama3jysquct)2 over
SI(Llama3instruct)0 across various educational
levels and subjects. For both the MathBench-A
and MathBench-T datasets, SI(Llama3instruct)2
consistently outperforms SI(Llama3instruct)0. In
the MathBench-A dataset, improvements are seen
in all levels from Primary to College, with notable
jumps in Middle and High school levels (6.7% and
7.0% improvement, respectively). Similarly, the
MathBench-T dataset shows improvement across
all levels, particularly in the Middle school and
English categories, which demonstrate 8.1% and
10.5% increases, respectively. These results indi-
cate that SI(Llama3instruct)s provides enhanced
accuracy in out-of-distribution scenarios, making
it a more reliable choice for varied educational
contexts.

Level SI(LlamaSingtrua)o SI(Llama3instruct)2
Arith 98.0 99.0
Primary 75.7 80.7
Middle 56.3 63.0
High 50.3 57.3
College 32.0 333
Chinese 56.8 63.6
English 66.2 68.8
Table 10: Fine-grained OOD accuracy on the

MathBench-A dataset scored by the critic model (Arith:
arithmetic).

Level SI(Llama3inslrucl)0 SI(Llama3inslrucl)2
Arith - -

Primary 66.6 67.5

Middle 60.1 68.2

High 59.1 60.6

College 50.2 57.9

Chinese 62.7 63.6

English 50.6 61.1

Table 11: Fine-grained OOD accuracy on the

MathBench-T dataset scored by the critic model (Arith:
arithmetic).

A.2 Data Statistics
A.3 Other Alignment Algorithms

As shown in Table 13, DPO demonstrates superior
performance compared to ORPO, both with the

12

SFT loss. We leave the exploration of more length-
regularized alignment algorithms and the role of the
reference policy model in preference optimization
to future studies.

T 11 (yw | :L‘)

1- Ty 11 (yw | .1‘)

)

Loreo(m, ;) = — A -logo (log

Tk 41 (yl | :E)
1- TOk 41 (yl | m)

— log TOx11 (Yw | 7)

—log

Q)

A.4 Self-Generated Preference Data

Existing preference datasets (Cui et al., 2023;
Weyssow et al., 2024) do not include many this
kind of inter-disciplinary annotations. We use the
current policy to generate preference data. Exam-
ples are provided in Table 14 and Table 15.

Dataset Language Answer Type Level Training Validation

APE (Zhao et al., 2020) zh numerical value elementary 200,488 5,000
CM (Qin et al., 2021) zh numerical value(s) grades 6—12 13,628 1,703
CMATH (Wei et al., 2023) zh numerical value elementary - 600

MathBench (Liu et al., 2024) en, zh mixed from primary to college — 3,709
MATH (Hendrycks et al., 2021) en mixed college 7,500 5,000
GSMS8K (Cobbe et al., 2021) en numerical value elementary 7,473 1,319

Table 12: Statistics of evaluation benchmarks. Note that in our experiments, we do not use any rationale in these
dataset as we focus on solving problems via coding. We only use the questions and short-form answers from the
training set of MATH and GSMS8K for constructing the seed data, and we use the questions and short-form answer
from the training set of APE and CM for constructing the data for self-improvement.

Model Alignment Data CM APE CMATH GSM8K MATH ACC.yerage

DeepSeekeoge SFT Do + D; 87.0 843 88.0 77.6 44.6 76.3
SFT — ORPO Do+ D1; D> 877 855 91.2 76.5 44.5 77.1
SFT — DPO Do+ Dyi;D, 873 859 91.2 78.9 45.9 77.8

Llama3ipsquee SFT Do + D1 87.6 85.0 89.0 76.6 41.8 76.0
SFT —+ ORPO Do+ Dy; D> 88.0 86.4 91.8 76.4 42.1 71.0
SFT — DPO Do+ D1;D2 89.0 86.8 90.8 80.5 41.9 71.8

Table 13: The self-improving performance in different stages on the development sets of different datasets. The best
open-sourced performance for each backbone model is highlighted in bold.

question The perimeter of an isosceles triangle is 20, and the ratio of the lengths of the two equal sides is
1:2. What is the length of the base? A.10 B.4 C.4 or 10 D.5 or 8

reference answer B

winning code (w)

from sympy import symbols, Eq, solve

Define the unknown
a, b = symbols(’a.b’)

Establish the equation
The hypotenuse is twice the base
equationl = Eq(a, 2xb)

The perimeter is 20
equation2 = Eq(2*xa + b, 20)

Solve the equation
solution = solve((equationl, equation2), (a, b), dict=True)
solution

code result of w [a: 8, b: 4]
losing code (1)

from sympy import symbols, Eq, solve

Define the unknown variable
a = symbols(’a’)

Establish the equation
equation = Eq(2 * a + 2 * (2 * a), 20)

Solve the equation
solution = solve(equation, dict=True)
solution

code result of 1 [a: 10/3]

Table 14: Examples of self-generated data (I). Texts have been translated into English.

13

question

reference answer
winning code (w)

code result of w
losing code (1)

code result of 1

Given that a and b are opposites, ¢ and d are reciprocals, and the square of x equals 4, try to find
the value of x2 — (a 4+ b + cd)x + (a + b)2009 + (—cd)2008.
3or7

Based on the analysis, first solve for the two possible
— values of x

Since x squared equals 4, solve for x

x1 = 2

x2 = -2

Next, calculate the value of the expression based on the
— value of x

After simplification, the expression is x”*2 - x + 1

Calculate the value of the expression for x1 and x2

resultl = xT1#x2 - x1 + 1

result2 = x2#%*x2 - x2 + 1

Return results
{’x1_result’: resultl, ’x2_result’: result2}

{x1’: 3, x2*: 7}

Based on analysis, we have obtained the simplified form of
— the expression

Define variables

The value of a + b, since a and b are opposites, take a = 1,
— then b = -1
a_b_sum = 1

The value of cd, since c¢ and d are reciprocals, take c =1
<~ then d = 1

cd_product = 1

The square of x

Xx_squared = 4

Calculate the value of the expression

x*2 - (atb+cd)x + (a+b)*2009 + (-cd)*2008

result = x_squared - (a_b_sum + cd_product) * 2 + a_b_sum*x2009
< + (-cd_product)**x2008

Return result
{"result”: result}

{2}

Table 15: Examples of self-generated data (IT). Texts have been translated into English.

14

	Introduction
	Related Work
	Method
	Training an Initial Model
	Building a Multi-Use Code-Based Critic Model
	Code Data Generation
	Self-Improving with New Data

	Experiments
	Data
	Implementation
	The Performance of the Initial Policy and Self-Improved LLMs
	The Comparison of Different Choices of Data and Alignment Methods
	Using the Critic Model as An Evaluator
	The Performance of Self-Improved LLMs on More Out-of-Domain Tasks

	Conclusions and Future Work
	Appendices
	Sub-Type Performance on MathBench
	Data Statistics
	Other Alignment Algorithms
	Self-Generated Preference Data

