
Self-Improving Mathematical Reasoning of Large Language Models
with a Code-Centric Paradigm

Anonymous ACL submission

Abstract

There is a growing trend of teaching large lan-001
guage models (LLMs) to solve mathematical002
problems through coding. Existing studies003
primarily focus on distilling powerful, closed-004
source models and in-domain data augmenta-005
tion, equipping LLMs with considerable ca-006
pabilities for mathematical reasoning via cod-007
ing. However, the self-improvement of such008
LLMs by leveraging large-scale, expert-written,009
diverse math question-answer pairs remains010
under-explored. To bridge this gap and tackle011
challenges such as code response assessment,012
we propose a novel paradigm that uses a code-013
based critic model to guide steps including014
question-code data construction, quality con-015
trol, and complementary evaluation. We also016
explore different alignment algorithms with017
self-generated instruction/preference data to018
foster continuous improvement. Experiments019
across both in-domain (up to +5.7%) and out-020
of-domain (+4.4%) benchmarks in English and021
Chinese demonstrate the effectiveness of self-022
improving LLMs with the proposed paradigm.023

1 Introduction024

There has been a growing trend of using code and025

code interpreters to enhance the performance of026

large language models (LLMs) in solving mathe-027

matical reasoning problems, which helps allevi-028

ate the computational burden on LLMs (Chen029

et al., 2022; Gao et al., 2023b; Zhou et al., 2023).030

Based on open-source LLMs, a simple yet effec-031

tive method involves distilling strong closed-source032

LLMs to generate code-based solutions for given033

questions, verifying the correctness of the solu-034

tions via answer matching, and then training open-035

source models on the verified data for further self-036

distillation through sampling, code execution, and037

answer validation (Wang et al., 2023; Gou et al.,038

2024; Lu et al., 2024).039

An important question remains unanswered: can040

such LLMs, which already demonstrate a rea-041

sonable ability to solve math problems by writ- 042

ing code, self-improve without continually dis- 043

tilling knowledge from larger closed-source or 044

open-source LLMs? Previous code-aided stud- 045

ies (Wang et al., 2023; Gou et al., 2024; Lu et al., 046

2024) primarily focus on in-domain data aug- 047

mentation using a few representative, small-scale 048

datasets such as GSM8K (Cobbe et al., 2021) and 049

MATH (Hendrycks et al., 2021). However, continu- 050

ally learning from these datasets or their augmented 051

versions is evidently less effective for improving 052

the generalization and performance of LLMs due 053

to the limited diversity. 054

On the other hand, large-scale, expert-written 055

mathematical question-answer pairs on public web 056

resources remain under-studied for post-training 057

code-aided LLMs. These resources span educa- 058

tional levels from primary school to college and 059

include a variety of question types such as multiple- 060

choice, application, proof, and cloze. To use these 061

resources for the self-improvement of LLMs, the 062

key challenge is to determine whether the self- 063

generated code responses align with reference 064

answers in diverse formats. Fortunately, with the 065

aid of an external code interpreter, we are less con- 066

cerned about computation errors in specific steps 067

(e.g., lines or blocks of code). We assume a code 068

solution is more likely to be correct if its execution 069

result matches the reference answers, thus shifting 070

the focus to comparing the reference answers with 071

the code execution results. Based on our analysis 072

(Section 4.1), we observe that most cases primar- 073

ily require format conversion between plain text 074

and code syntax (e.g., “(x-5)(xˆ2-4x+7)” vs. “(x- 075

5)*(x**2-4*x+7)” and “(1, -2, 2, -3)” vs. “{A:1, 076

B:-2, C:2, D:-3}”) and relatively simple numerical 077

calculations, which do not require advanced logical 078

reasoning abilities. 079

These observations motivate us to design a critic 080

model that evaluates the correctness of the code 081

execution result against the reference answer by 082

1

(question, solution) (question, solution)

seed question

validfailed

(question, code) (question, code)

sampling

question

code

answer

sampling

SFT/DPO

yes/no

critic
model

new
valid valid

Figure 1: Overview of our code-centric self-improving paradigm.

predicting YES or NO (see examples in Table 1).083

As illustrated in Figure 1, this critic model is used084

to guide multiple steps during self-improvement.085

We first train a model with seed question-code data086

following previous studies (e.g., (Gou et al., 2024))087

and consider it as the initial policy model. In each088

iteration, we use the current policy model to gen-089

erate code samples for new questions and keep090

the highest-scoring valid code responses rated by091

the critic model for supervised fine-tuning (SFT)092

in the subsequent iteration. To foster continuous093

improvement, we also explore different alignment094

algorithms such as DPO (Rafailov et al., 2024)095

and ORPO (Hong et al., 2024) with self-generated096

preference data, where the preference labels are097

provided by the critic model.098

We perform experiments on different model fam-099

ilies, such as Llama3-8B (AI@Meta, 2024) and100

DeepSeek-Coder-7B (Daya Guo, 2024). Experi-101

mental results across both in-domain (up to +5.7%)102

and out-of-domain (+4.4%) benchmarks in En-103

glish and Chinese demonstrate the effectiveness104

of self-improving LLMs using our proposed code-105

centric paradigm with large-scale question-answer106

pairs from web resources. Notably, we observe107

a very strong correlation between the traditional108

heuristic-based evaluation method and the critic109

model (Section 4.5), with the latter reducing the110

additional human effort needed to design rules for111

new math benchmarks. We also find that introduc-112

ing SFT loss into the DPO training is surprisingly113

effective in controlling the code response length114

after preference optimization.115

To summarize the contributions of this work:116

• We propose a novel paradigm for self-117

improving the mathematical reasoning abil-118

ities of code-aided LLMs by iteratively learn-119

ing from new web question-answer pairs.120

• To better leverage these large-scale resources, 121

we design a critic model that effectively 122

guides various steps such as data construc- 123

tion and filtering. This model can also serve 124

as a complementary evaluation scorer, reduc- 125

ing the reliance on heuristic design for new 126

evaluation tasks. 127

• Extensive experiments demonstrate the effec- 128

tiveness of our paradigm, and our comprehen- 129

sive analysis of the key factors in achieving 130

continuous improvement at different stages 131

may shed light on future studies. 132

2 Related Work 133

For automatic math evaluation on well-formatted 134

benchmarks, previous studies mostly use heuristics 135

and external tools (e.g., the Python EVAL() func- 136

tion) to compare answers and predictions (Four- 137

rier et al., 2023; Gao et al., 2023a), which works 138

quite well for single numerical value answers, as 139

seen in datasets such as GSM8K (Cobbe et al., 140

2021), ASDiv (Miao et al., 2020), and SVAMP (Pa- 141

tel et al., 2021). However, since answers from 142

web resources are diverse in formats and language- 143

code syntactic difference, using carefully designed 144

task-specific heuristics becomes infeasible for com- 145

paring answers and code execution results. For 146

datasets that are beyond value-style answers such 147

as MATH (Hendrycks et al., 2021), closed source 148

LLMs are also used for evaluation such as OpenAI- 149

Evals, which however is not cost-effective for rat- 150

ing large-scale code samples. 151

Several approaches (Li et al., 2023; Yu et al., 152

2023; Lu et al., 2023; Yuan et al., 2024; Hu et al., 153

2024) use the LLM itself or use separate critic 154

model (Ouyang et al., 2022; Xu et al., 2024) for 155

scoring or filtering natural-language responses. We 156

focus on tool-assisted assessment of code responses 157

2

to math questions. Compared to the previously158

mentioned self-improving studies that use a sin-159

gle LLM to provide feedback on its own gener-160

ations, we interpret “self” in contrast to distill-161

ing knowledge from larger closed-source or open-162

source LLMs for continuous improvements.163

3 Method164

3.1 Training an Initial Model165

One key factor for a self-improving paradigm is166

to have a reasonably strong initial model. To train167

such a model, we first use high-quality seed data to168

fine-tune a large language model, resulting model169

Mseed. We use Mseed to generate code samples and170

keep up to four predictions per question wherein171

the result of the code matches the ground truth172

answer and combines the seed data and the self-173

distilled data to train M0, which is further used174

as the initial model for later self-improving stages.175

We will introduce more details about the seed data176

construction in the experiment section.177

3.2 Building a Multi-Use Code-Based Critic178

Model179

To self-improve LLMs with large-scale math180

question-answering data without code annotations,181

several challenges arise in data utilization, filter-182

ing, and evaluation. First, previous studies primar-183

ily use pattern-based methods to compare predic-184

tions and ground truth answers during validation185

and evaluation. This works well for GSM-style186

datasets, where answers are single numbers and187

well-formatted (e.g., “72” in “...72 clips altogether188

in April and May.\n #### 72”). However, pattern-189

based methods inevitably struggle to handle dif-190

ferent types or formats of answers and the gap191

between natural language and programming lan-192

guage. For example, with the MATH dataset, com-193

paring predictions with the ground truth answers194

in LaTeX-like format requires numerous human-195

written patterns. This complexity is compounded196

when the predictions are in code syntax. Second,197

given a question, it is still under-explored how to198

select high-quality, valid code responses.199

To address the above challenges, we propose200

building a code-based critic model optimized by201

the following objective:202

L(rϕ) = − log rϕ(y | q, a, c, e), (1)203

where q denotes a question, a is the ground truth204

answer to q, c represents the code response to q, and205

e is the execution result of code c. To simplify the 206

task, we let y be either “YES” or “NO”. Examples 207

are shown in Table 1. We leave other formulations, 208

such as training a scalar critic model (Ouyang et al., 209

2022), to future work. 210

3.3 Code Data Generation 211

As mentioned previously, our goal is to leverage 212

non-code math data from web resources to contin- 213

uously improve the mathematical reasoning abil- 214

ity of LLMs, rather than further distilling power- 215

ful LLMs. For well-formatted, web-collected data 216

such as APE (Zhao et al., 2020) and CM (Qin et al., 217

2021), where most answers are one or two numeri- 218

cal values (see an example in Table 2), it is efficient 219

and effective to compare the ground truth answer 220

and the execution result of the code using scripts 221

released by previous studies (Section 4.2). For real- 222

world math data involving multiple types of ques- 223

tions, such as multiple-choice, multiple-question, 224

fill-in-the-blank, application, and proof, using a 225

critic model introduced in the previous section is 226

more flexible and saves the intensive effort of writ- 227

ing task-specific patterns, which is time-consuming 228

and may suffer from relatively low recall. Note that 229

for all math questions, we only use their reference 230

answers to verify the correctness of code execution 231

results instead of directly training on these answers, 232

and we only use benchmarks’ training sets. 233

In the k + 1-th iteration, for each new question, 234

we use the current policy model πθk to generate 235

five code samples and execute them to obtain the 236

results. For questions in the real-world math data, 237

the critic model is then used to predict YES or NO 238

for each response (ai, cij , eij) given qi. We use the 239

probability of YES or NO as the confidence value 240

for the critic model’s judgment. A higher probabil- 241

ity score indicates a greater confidence in the code 242

response, either agreeing with or disagreeing with 243

the reference answer. 244

3.4 Self-Improving with New Data 245

One natural choice is to perform supervised fine- 246

tuning (SFT) on πθk using DSFT: 247

LSFT(πθk+1) = − log πθk+1(c | q) (2) 248

DSFT = {(qi, cij) | rϕ(y = YES | qi, ai, cij , eij)} (3) 249

As critiques may contain errors, we explore us- 250

ing the probability of each judgement as a con- 251

3

System Prompt Your goal is to evaluate whether the candidate answer provided by the model for a math problem matches the
reference answer. Here are the steps to complete the task:
– First, carefully read the given math problem.
– Next, review the reference answer for the math problem.
– Then, examine the candidate answer provided by the model, which may include a program and the result of
running that program.
– Finally, summarize whether the candidate answer matches the reference answer or can be made to match through
simple calculations/conversions.
– The response format should be Yes or No.

Instruction ### Question\n\n Given f（1-2x）=3x+1，find f（-3）= __．
Reference Answer\n \n 7 \n \n
Candidate Answer\n \n <code>from sympy import symbols, Eq, solve\n# Define the variable\n x = sym-
bols(’x’)\n# Establish the equation based on the problem conditions\n equation = Eq(1 - 2*x, -3)\n# Solve the
equation\n solution = solve(equation, x, dict=True)\n solution_value = solution[0][x]\n # Calculate f(-3)\n f_neg_3
= 3*solution_value + 1\n f_neg_3</code><solution>7</solution>
Assessment

Output Yes

Instruction ### Question\n\n Given the sequence {a_n} with the sum of the first n terms S_n=2n-3,
what is a₃? A: 3B: 2C: 1D: 0
Reference Answer\n \n B \n \n
Candidate Answer\n \n <code># Define a function to calculate the nth term\n def calculate_nth_term(n):\n
Based on the derived formula\n an = 2 ** n - 2 ** (n - 1)\n return an\n # Calculate the value of the 3rd term \n a3
= calculate_nth_term(3) # a3 </code><solution>4</solution>
Assessment

Output No

Table 1: Example instance of the code-based critique task (we translate the Chinese texts into English).

Question: Given: Apples cost 6 yuan for 4 kilograms, and
oranges cost 11 yuan for 5 kilograms. Uncle Wang
buys 16 kilograms of apples and 20 kilograms of
oranges. How much should he pay in total?

Answer: 68
Rationale⋆: x=6/4*16+11/5*20

Table 2: An example instance of the APE dataset (Zhao
et al., 2020) (we translate the question into English; ⋆:
we do not use this rationale in our paradigm).

fidence score to filter out noise. Besides, we in-252

troduce extra constraints: for each question, we253

only retain the highest-scoring positive instance254

tij = {qi, ai, cij , eij}, similar to rejection sam-255

pling (Bai et al., 2022), where tij ∈ Ti of the same256

question qi. To encourage models to learn from257

more challenging problems, if all instances in Ti258

are labeled as YES, we discard this question and its259

corresponding generated code from consideration.260

DSFT, H = {(qi, cij) | rϕ(y = YES | tij),
prϕ(y = YES | tij) > λ1,

tij = arg max
tij∈Ti

prϕ(y = YES | tij),

|Ti|∑
j=1

1{rϕ(y = No | tij)} ≥ λ2}

(4)261

where λ1, λ2 represent thresholds for filtering262

and difficulty control.263

In addition to supervised fine-tuning a policy264

model on self-generated SFT data (DSFT, H or265

DSFT) iteratively, we can also leverage the negative266

instances by optimizing the policy on preference267

data using algorithms such as DPO (Rafailov et al.,268

2024) and KTO (Ethayarajh et al., 2024). Com- 269

pared to SFT, these alignment algorithms addition- 270

ally decrease the probability of losing responses. 271

We mainly focus on DPO in this paper and leave 272

other options for future studies, and we jointly train 273

the policy with the SFT objective to alleviate over- 274

fitting to the preference data and ensure a stable up- 275

date (Hong et al., 2024). See more discussions on 276

the impact of the SFT objective, especially its role 277

in controlling the response length, in Section 4.4. 278

LDPO(πθk+1) =− log σ

(
β log

πθk+1(yw | x)
πθk (yw | x)

−β log
πθk+1(yl | x)
πθk (yl | x)

)
− λ · log πθk+1(yw | x)

(5) 279

We can easily leverage our critic model to build 280

preference (cw, cl) pairs, where cw represents the 281

winning code and cl represents the losing code. 282

For each question, we use the highest-scoring YES 283

response and the highest-scoring NO response to 284

form a preference pair, aiming to maximize the 285

difference between them. See preference data ex- 286

amples in Section A.4. 287

DDPO = {(qi, cij , cik) | rϕ(y = YES | tij),
rϕ(y = NO | tik),
tij = arg max

tij∈Ti

prϕ(y = YES | tij),

tik = arg max
tik∈Ti

prϕ(y = NO | tik)}
(6) 288

4

4 Experiments289

4.1 Data290

We summarize the statistics of data use for self-291

improving in Table 3. Due to limited space, see292

statistics of evaluation benchmarks in Table 12.293

Seed Data D0: To generate the seed data for En-294

glish, following previous work, we use GPT-4-295

0613 in an iterative fashion: we repeatedly sample296

the remaining questions that do not have correct297

code (i.e., the code execution results match the298

ground truth answer of the questions) for several299

iterations. We use questions from the training sets300

of GSM8K (7.5K) and MATH (7.5K) as the seed301

questions for imitation learning. For datasets such302

as GSM8K in which the answers are mostly sin-303

gle numbers, it is easier to compare answer and304

code execution results. After two iterations, we305

can annotate 98.5% of questions in GSM8K. For306

datasets such as MATH wherein the answers are307

diverse in formats, we simply keep the code that308

can be successfully executed without errors. For309

seed questions for Chinese, we randomly sample310

20K from (1.13M in total) collected or purchased311

from educational web resources (Section 5) and312

follow the same procedure using GPT-4-0613 and313

self-distillation for code generation to construct the314

Chinese subset of D0.315

Value-Style D1: We utilize the initial policy M0316

to generate code samples to questions in train-317

ing sets of the word math problem datasets APE318

(200.5K) (Zhao et al., 2020) and CM (13.6K) (Qin319

et al., 2021), both collected from web resources.320

Since all the answers are one or two numerical val-321

ues, for efficiency, we use heuristics to compare322

the code execution results with ground truth an-323

swers for validation. Following the same process324

used to construct D0, we keep up to four valid code325

samples for each question.326

Diverse-Format Data D2: To increase the diver-327

sity of the training data, we further consider large-328

scale mathematical QA pairs (excluding those used329

for seed data) mentioned previously. For each ques-330

tion, we retain only one positive code and one neg-331

ative code (if any exists) judged by the critic.332

Critic Data: To build the training data for the critic333

model, we use M0 to generate code samples for334

randomly sampled questions from D2 and execute335

these code samples. We then prompt GPT-4-0613336

with the input (question, code, code result, refer-337

ence answer) following the template in Table 1.338

After filtering, we retain 16.8K training instances,339

of which 48.6% of are judged as YES. 340

To better understand this task, we analyze the 341

reference answers for 50 instances. Only 14% of 342

them are single numerical values, while 50% in- 343

volve format conversion (e.g., syntax or structure) 344

when the answers are expressions, equations, co- 345

ordinates, sets, etc. Another difference between 346

real-world data and well-formatted benchmarks 347

is its inconsistency in the format of reference an- 348

swers. Specifically, half of them are mixed with 349

CoT-style (Wei et al., 2022) explanations and/or 350

irrelevant contents such as tags and URLs. This 351

makes it difficult to parse short-form answers for 352

easier matching with a few patterns, as done for 353

clean benchmarks (e.g., answer indicators “###” 354

for GSM8K and “BOX” for MATH). For multiple- 355

choice or multi-part questions (8% in total), we ad- 356

ditionally require the question context for mapping 357

option labels and their contents, as well as ques- 358

tion decomposition. These observations reflect the 359

diversity of question types in the web resources. 360

Data/Subset QA Source Size

D0
zh web 76K
en GSM8K, MATH 44K

D1 APE, CM 211K

D2

SFT web 893K
SFT(H) web 273K
DPO web 465K

Table 3: Statistics of training data used in our three-
stage paradigm (D1 and D2 are Chinese resources).

4.2 Implementation 361

We use the unified framework LLLAMAFAC- 362

TORY (Zheng et al., 2024) for efficient fine-tuning 363

built upon DeepSpeed (ZeRO-3). Our experiments 364

are conducted using 8XA100 40GB GPUs. We 365

train LLMs with BF16 mixed-precision. The train- 366

ing for the self-improving paradigm explored in our 367

experiments takes approximately 96 hours. With 368

80 workers in multi-processing mode on a CPU 369

machine, we can execute about 9,003 codes per 370

minute. Each model at each stage is trained for 371

two epochs with a learning rate of 1e-6. We set the 372

SFT loss coefficient (λ in Equation 7) to 1.0. The 373

maximum sequence length is set to 1024, and the 374

batch size is set to 64 for both SFT and DPO. We 375

set λ1 to 0.8 and λ2 to 3. 376

As we focus on solving mathematical 377

problems with code, we experiment with 378

four LLMs to select backbone models — 379

CodeLlama-7B-Python (Roziere et al., 2023), 380

5

Llama3instruct
1 (AI@Meta, 2024), CodeQwen1.5-381

7B-Chat (Team, 2024), and Deepseek-Coder-382

7B-instruct-v1.5 (Daya Guo, 2024) — that383

demonstrate strong coding capabilities on code-384

related benchmarks. Due to limited computational385

resources, we use their 7B or 8B versions with386

their corresponding default templates and leave the387

model scaling up for future work. We primarily388

follow the evaluation scripts from previous stud-389

ies (Liang et al., 2024) for Chinese benchmarks390

and FastEval2 for English benchmarks GSM8K391

and MATH. We also make adjustments to these392

scripts, as our predicted answers are in code syntax.393

We use CodeLlama-7B-Python as the backbone394

LLM to train the code-based critic model for three395

epochs with the maximum sequence length 4096.396

4.3 The Performance of the Initial Policy and397

Self-Improved LLMs398

As shown in Table 4, DeepSeekcode and399

Llama3instruct show superior average performance400

across math datasets in both Chinese (APE, CM,401

and CMATH (Wei et al., 2023)) and English402

(GSM8K and MATH). Therefore, we consider403

them as initial policy models (i.e., M0) for later self-404

improving experiments. After two additional iter-405

ations on the unseen data D1, and D2 constructed406

with the help of our code-based critic model, the407

resulting models (i.e., M2) consistently outperform408

M0 by a large margin on Chinese benchmarks.409

We observe that self-improving the initial policy410

model with Chinese-only data, D1 and D2, does411

not hurt the accuracy of M2 on English tasks. In412

fact, it may be beneficial (e.g., +1.5% on both413

MATH and GSM8K datasets using DeepSeekcode).414

Conversely, adding English seed data (36.7% of415

D0) consistently improves M0’s average perfor-416

mance on Chinese benchmarks (D0 vs. D0,zh in417

Table 5). To some extent, we may interpret code418

as a universal language for solving mathematical419

problems across different languages. The language-420

specific parts are mainly in the code comments,421

which are relatively indirect for problem-solving422

via code execution. Thus, our paradigm may re-423

duce the burden of preparing large-scale, language-424

specific math data for each language.425

We list several general-purpose/math-specified426

multi-lingual/English LLMs of similar or much427

larger size for reference. Note that direct compar-428

1We observe little performance difference between
Llama3instruct and Llama3base when both are fine-tuned on D0.

2github.com/FastEval/FastEval/.

isons are challenging due to differences in archi- 429

tectures, pertaining corpora, alignment algorithms, 430

and labeled data, though the performance of al- 431

most all these LLMs on GSM8K and MATH can 432

be considered in-domain. Moreover, the evaluation 433

scripts, originally designed for plain-text answers 434

instead of code outputs, may cause an underestima- 435

tion of our methods’ performance on datasets such 436

as MATH, where answers involve more expressions 437

and structures beyond numerical values. 438

4.4 The Comparison of Different Choices of 439

Data and Alignment Methods 440

Diversity: Based on the experimental results, given 441

D0 and D1, we observe that two-stage SFT (first on 442

D0 for two epochs and then on D1 for two epochs) 443

under-performs one-stage SFT (over the concate- 444

nation of D0 and D1 for two epochs) (B vs. C 445

in Table 6). However, incorporating D2 using ei- 446

ther strategy achieves similar performance (E vs. 447

F in Table 6). One possible reason may be that 448

the questions in D1 are from two web-collected 449

value-style benchmarks, resulting in less diversity 450

compared with D2, which has a broader range of 451

question types (Section 4.1). Ensuring the diversity 452

of data in each stage may help the model generalize 453

better across various types of math questions, simi- 454

lar to the observations seen when training general- 455

purpose LLMs (e.g., (Shen et al., 2023)). 456

Denoised SFT Data: As mentioned previously, we 457

use the code-based critic model to construct SFT 458

data. Since the process will inevitably introduce 459

false positive data, we further consider several con- 460

straints for filtering (Equation 4 in Section 3.4). 461

Experimental results show that we can achieve sim- 462

ilar average accuracy using either D2,SFT,H or the 463

D2,SFT (D vs. E in Table 6). However, D2,SFT,H 464

is only 30.6% of the latter’s size, indicating the 465

usefulness of the filtering. 466

DPO or SFT: Based on a reasonably good model 467

M1 (trained with D0 and D1, such as C in Table 6), 468

we can either self-improve it via SFT or DPO as 469

described in Section 3.4. We compare using the 470

positive (question, code) pairs in the DPO data for 471

another round of SFT, which results in a 1.8% drop 472

in accuracy on downstream tasks (G vs. I in Ta- 473

ble 6). Since we do not impose strict constraints on 474

the positive data in DPO, D2,DPO, positive is 1.7 times 475

the size of D2,SFT,H. Still, using the filtered SFT 476

data D2,SFT,H achieves slightly better performance 477

(F vs. G), showing the effectiveness of filtering. 478

DPO with SFT: Our experiments indicate that 479

6

Model Size (B) CM APE CMATH GSM8K MATH

GPT-4-1106-Preview⊗ – – 84.2 89.3 93.6 53.6
Qwen-Chat (Bai et al., 2023)⊗ 72 – 77.1 88.1 76.4 31.8
ChatGLM-Math (Xu et al., 2024)⊗ 32 – 89.4 85.6 82.6 40.6
Skywork-Math (Yang et al., 2023)⊗ 13 – 74.4 77.3 72.3 17.0
Math-InternLM2 (Team, 2023)⊗ 20 – 75.2 78.5 82.6 37.7
MathCoder (Wang et al., 2023) 34 – – – 81.7 45.2

7 – – – 67.8 30.2
ToRA (Gou et al., 2024) 70 – – – 84.3 49.7

7 – – – 72.6 44.6
MinT (Liang et al., 2024) 7 77.6 76.0 – 40.8 –

Initial Model Baselines (M0)

CodeLlama 7 77.7 78.0 84.5 69.7 37.6
QWENcode 7 81.9 81.5 86.0 71.9 41.4
DeepSeekcode 7 82.7 81.2 87.0 77.4 44.4
Llama3instruct 8 83.3 83.2 87.2 76.8 41.8

Self-Improving (SI) (M2)

SI(DeepSeekcode) 7 87.3 (+4.6) 85.9 (+4.7) 91.2 (+4.2) 78.9 (+1.5) 45.9 (+1.5)
SI(Llama3instruct) 8 89.0 (+5.7) 86.8 (+3.6) 90.8 (+3.6) 80.5 (+3.7) 41.9 (+0.1)

Table 4: Accuracy across the development sets of math datasets for Chinese (⊗: without using tools).

Model Training Procedure Data CM APE CMATH GSM8K MATH

DeepSeekcode SFT D0,en – – – 74.6 43.8
SFT D0,zh 81.0 82.4 86.8 – –
SFT D0 82.7 81.2 87.0 77.4 44.4
SFT D0 + D1 87.0 84.3 88.0 77.6 44.6
SFT → DPO D0 + D1; D2 87.3 85.9 91.2 78.9 45.9

Llama3instruct SFT D0,en – – – 75.1 37.2
SFT D0,zh 82.5 83.3 85.5 – –
SFT D0 83.3 83.2 87.2 76.8 41.8
SFT D0 + D1 87.6 85.0 89.0 76.6 41.8
SFT → DPO D0 + D1; D2 89.0 86.8 90.8 80.5 41.9

Table 5: The self-improving accuracy in different stages on the development sets of different datasets. The best
open-sourced performance for each backbone model is highlighted in bold.

ID Alignment Data ACC

A SFT D0 74.4
B SFT → SFT D0 ; D1 75.4
C SFT D0 + D1 76.0

D SFT D0 + D1 + D2,SFT 76.1
E SFT D0 + D1 + D2,SFT,H 76.1
F SFT → SFT D0 + D1; D2,SFT,H 76.2
G SFT → SFT D0 + D1; D2,DPO, positive 76.0
H SFT → ORPO D0 + D1; D2,DPO 77.0
I SFT → DPO D0 + D1; D2,DPO 77.8

Table 6: The self-improving averaged accuracy (ACC)
of Llama3instruct on the development sets of different
datasets with various training strategies and data.

DPO training is relatively insensitive to the weight480

(λ in Equation 7) of the SFT loss. We tested with481

λ = 1.0 and λ = 2.0, both of which resulted in482

similarly good performance (77.8%). However,483

as shown in Table 7, removing the SFT loss (i.e.,484

λ = 0) from DPO training leads to a dramatic in-485

crease in response length, especially for Chinese486

tasks such as CMATH, and yields worse results487

than the reference policy model (C in Table 6).488

This observation aligns with discussions on length489

exploitation issue of the original DPO loss (Park490

et al., 2024). One possible reason for the length 491

control achieved by adding the SFT loss could be 492

that the positive responses used for the SFT loss 493

are generated by the reference policy model. By 494

setting a larger weight to SFT, we control the de- 495

viation from the reference policy, which alleviates 496

a substantial increase in response length. We also 497

experiment with using ORPO (Hong et al., 2024), 498

which removes the need for a reference model and 499

jointly trains with the SFT loss. However, this 500

method is not as effective as jointly training DPO 501

and SFT in our experiments (H vs. I in Table 6). 502

Detailed results can be found in Section A.3. 503

4.5 Using the Critic Model as An Evaluator 504

We have shown the effectiveness of using the critic 505

model to construct SFT and preference data. All 506

scores are computed by comparing predictions with 507

ground truth answers, using heuristics-based ex- 508

act match (EM) following previous studies for fair 509

comparisons. To explore the potential of using the 510

critic model as a complementary evaluator, we ex- 511

amine the correlation between the two evaluation 512

7

λ
GSM8K CMATH

ACC L L
L0

ACC L L
L0

reference model
- 76.6 323 1.0 89.0 136 1.0

0.0 73.4 1834 5.7 57.5 3160 23.2
0.5 78.8 532 1.6 90.7 201 1.5
1.0 80.5 352 1.1 90.8 136 1.0
1.5 79.0 328 1.0 90.7 135 1.0
2.0 79.8 326 1.0 90.7 134 1.0

Table 7: The impact of the weight of the SFT loss
in DPO training on the average accuracy and average
response length in words evaluated on GSM8K and
CMATH (L0: response length of the reference policy).

Dataset ACCEM ACCcritic CorrelationKendall

CM 89.0 84.6 0.66
APE 86.8 86.5 0.76
CMATH 90.8 91.8 0.77
GSM8K 80.5 80.6 0.97
MATH 41.9 48.2 0.79

average 77.8 78.3 0.79

Table 8: Correlation of two evaluation methods:
heuristics-based EM and the critic model.

methods on the previously used benchmarks. We513

use the original ground truth answers (final-step an-514

swers if answers are COT-style) (e.g., “3750”, “[12,515

18]”, and “\\frac{1}{2}”) in these benchmarks.516

Since all scores are either 0 (NO) or 1 (YES), we517

report the Kendall’s τ between the two methods.518

As shown in Table 8, there is a very strong corre-519

lation (0.79) (compared to the very-strong-cutoff520

value 0.71 and strong-cutoff value 0.49 (Schober521

et al., 2018)) between the scores computed by the522

two evaluators. The strong associations in English523

tasks are surprising, given that the critic model is524

trained on Chinese-only data. This may be due525

to (i) the backbone model being a well-instructed526

model focused on English, and (ii) comparing an-527

swers to mathematical questions relying less on528

language-specific knowledge.529

4.6 The Performance of Self-Improved LLMs530

on More Out-of-Domain Tasks531

Considering the above results in Section 4.5, we532

are now more confident in using the critic model533

to evaluate models’ performance on additional out-534

of-domain benchmarks, without the need to write535

extensive heuristics for different tasks. Besides536

CMATH, we evaluate the out-of-domain perfor-537

mance of our models using MathBench (Liu et al.,538

2024), a newly released benchmark supporting eval-539

uation in both Chinese and English. The questions540

in MathBench span various educational stages,541

from primary school to college levels. We report 542

scores on its two subsets: MathBench-A, which 543

evaluates practical problem-solving skills, and 544

MathBench-T, which assesses theoretical under- 545

standing. As shown in Table 9, the self-improved 546

models demonstrate substantial gains on both sub- 547

sets, with an accuracy improvement of at least 548

4.2%. On both subsets, the self-improved model 549

consistently outperforms the initial one across all 550

educational levels and subjects with notable im- 551

provements particularly in middle school tasks and 552

English theoretical tasks. See detailed performance 553

in Table 10 and Table 11 (Section A.1). Note that 554

we provide the scores of other models for reference, 555

as they are judged by a different scorer. 556

Compared to practical application questions, it 557

seems that using CoT, LLMs are much better at 558

handling theoretical knowledge questions. In con- 559

trast, solving all questions via coding shows bal- 560

anced and reasonable performance. This shows 561

the advantage of using tools to aid in computation, 562

but also indicates the limitations of relying solely 563

on code to address questions that may not require 564

actual computation. To date, it remains an open 565

question how to (or whether to) use code for assist 566

advanced theoretical reasoning (Liu et al., 2024). 567

model Subset-A Subset-T ACCaverage

GPT-4-0125-Preview⊗ 58.8† 78.4† 68.6†

GLM4⊗ 51.3† 73.1† 62.2†

Qwen-Chat-72B⊗ 49.7† 77.2† 63.5†

Math-InternLM2-20B⊗ 41.9† 64.3† 53.1†

Llama3instruct-8B⊗ 36.7† 52.1† 44.4†

SI(Llama3instruct)0-8B 62.5⋆ 57.9⋆ 60.2⋆

SI(Llama3instruct)2-8B 66.7⋆ 62.6⋆ 64.6⋆

Table 9: OOD accuracy on the MathBench dataset (⋆:
scored by the critic model; †: based on the numbers
reported by Liu et al. (2024); ⊗: without using tools).

5 Conclusions and Future Work 568

We introduce a novel paradigm for self-improving 569

LLMs, which employs a code-based critic model 570

to guide stages such as the creation and filtering 571

of question-code data as well as complementary 572

evaluation. We also investigate various alignment 573

algorithms using self-generated instruction/prefer- 574

ence data for further improvement. Results show 575

the effectiveness of self-improving LLMs with this 576

proposed paradigm. Future research includes study- 577

ing post-training on code-only data to enhance 578

the computational capabilities of LLMs and self- 579

improvement of the critic model. 580

8

Limitations581

Language Diversity of Resources: in this paper,582

we focus on large-scale question-answer pairs for583

Chinese, and accordingly, our critic model used584

for guiding self-improvement is trained on Chi-585

nese data. While considering resources in other586

languages such as English could enhance the the587

generalizability of LLMs, it would require exten-588

sive human efforts for data collection and cleaning,589

which is beyond the scope of this work. On the590

other hand, based on our experiments, since the591

backbone LLMs are pre-trained and aligned on592

multi-lingual data and our seed data includes En-593

glish instruction data, the initial policy already ex-594

hibits reasonable performance on in-domain (Sec-595

tion 4.3) and out-domain benchmarks (Section 4.6).596

Self-improving this initial policy model on Chinese597

data may even improve its performance on English598

tasks. Finally, experiments show that the critic599

model is as effective at rating English responses as600

rating Chinese ones (Section 4.5).601

Copyright of Resources: The large-scale question-602

answer pairs (excluding APE and CM) are either603

collected or purchased from educational websites.604

We will not release the full-scale resources. Instead,605

we will provide question-answer samples, along606

with all scripts, seed data in English, initial and607

self-improved policy models, and the critic model608

to facilitate future studies.609

The Usage of Code: Code can be used either di-610

rectly (Chen et al., 2022; Gao et al., 2023b) or611

interactively (Wang et al., 2023) during problem-612

solving. The latter approaches such as ToRA (Gou613

et al., 2024) and MathCoder (Wang et al., 2023)614

jointly solve problems using CoT explanation (Wei615

et al., 2022) and code. One advantage of these in-616

teractive methods over code-only methods is that617

the final step of their solution is usually written618

in CoT, allowing the easy use of existing scripts619

designed for CoT-style benchmarks for evaluation.620

However, the role of using tools multiple times to621

address a single math problem is unclear based on622

the performance difference of interactive methods623

(Table 4). For example, ToRA needs 1.02 tool in-624

teraction rounds per question while MathCoder re-625

quires 2.05. This work focuses on the direct usage626

of code as a case study to avoid multi-step infer-627

ence, and leave the interactive setting for future628

studies. In addition, as discussed in Section 4.6,629

LLM Scalings: Due to limited computational re-630

sources, our experiments focus on 7/8-B LLMs.631

Generally, improving the math reasoning abilities 632

of relatively small LLMs requires a large amount of 633

training data and knowledge distillation (Li et al., 634

2024; Shao et al., 2024), which may not be neces- 635

sary for larger LLMs. 636

References 637

AI@Meta. 2024. Introducing meta llama 3: The most 638
capable openly available llm to date. https://ai. 639
meta.com/blog/meta-llama-3/. 640

Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang, 641
Xiaodong Deng, Yang Fan, Wenbin Ge, Yu Han, Fei 642
Huang, et al. 2023. Qwen technical report. arXiv 643
preprint arXiv:2309.16609. 644

Yuntao Bai, Saurav Kadavath, Sandipan Kundu, 645
Amanda Askell, Jackson Kernion, Andy Jones, 646
Anna Chen, Anna Goldie, Azalia Mirhoseini, 647
Cameron McKinnon, et al. 2022. Constitutional 648
ai: Harmlessness from ai feedback. arXiv preprint 649
arXiv:2212.08073. 650

Wenhu Chen, Xueguang Ma, Xinyi Wang, and 651
William W Cohen. 2022. Program of thoughts 652
prompting: Disentangling computation from reason- 653
ing for numerical reasoning tasks. arXiv preprint 654
arXiv:2211.12588. 655

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, 656
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias 657
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro 658
Nakano, et al. 2021. Training verifiers to solve math 659
word problems. arXiv preprint arXiv:2110.14168. 660

Ganqu Cui, Lifan Yuan, Ning Ding, Guanming Yao, 661
Wei Zhu, Yuan Ni, Guotong Xie, Zhiyuan Liu, and 662
Maosong Sun. 2023. Ultrafeedback: Boosting lan- 663
guage models with high-quality feedback. arXiv 664
preprint arXiv:2310.01377. 665

Dejian Yang Zhenda Xie Kai Dong Wentao Zhang 666
Guanting Chen Xiao Bi Y. Wu Y.K. Li Fuli Luo 667
Yingfei Xiong Wenfeng Liang Daya Guo, Qihao Zhu. 668
2024. Deepseek-coder: When the large language 669
model meets programming – the rise of code intelli- 670
gence. 671

Kawin Ethayarajh, Winnie Xu, Niklas Muennighoff, 672
Dan Jurafsky, and Douwe Kiela. 2024. Kto: Model 673
alignment as prospect theoretic optimization. arXiv 674
preprint arXiv:2402.01306. 675

Clémentine Fourrier, Nathan Habib, Thomas Wolf, and 676
Lewis Tunstall. 2023. Lighteval: A lightweight 677
framework for llm evaluation. 678

Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman, 679
Sid Black, Anthony DiPofi, Charles Foster, Laurence 680
Golding, Jeffrey Hsu, Alain Le Noac’h, Haonan Li, 681
Kyle McDonell, Niklas Muennighoff, Chris Ociepa, 682
Jason Phang, Laria Reynolds, Hailey Schoelkopf, 683

9

https://ai.meta.com/blog/meta-llama-3/
https://ai.meta.com/blog/meta-llama-3/
https://ai.meta.com/blog/meta-llama-3/
https://arxiv.org/abs/2401.14196
https://arxiv.org/abs/2401.14196
https://arxiv.org/abs/2401.14196
https://arxiv.org/abs/2401.14196
https://arxiv.org/abs/2401.14196
https://github.com/huggingface/lighteval
https://github.com/huggingface/lighteval
https://github.com/huggingface/lighteval

Aviya Skowron, Lintang Sutawika, Eric Tang, An-684
ish Thite, Ben Wang, Kevin Wang, and Andy Zou.685
2023a. A framework for few-shot language model686
evaluation.687

Luyu Gao, Aman Madaan, Shuyan Zhou, Uri Alon,688
Pengfei Liu, Yiming Yang, Jamie Callan, and Gra-689
ham Neubig. 2023b. Pal: Program-aided language690
models. In International Conference on Machine691
Learning, pages 10764–10799. PMLR.692

Zhibin Gou, Zhihong Shao, Yeyun Gong, yelong shen,693
Yujiu Yang, Minlie Huang, Nan Duan, and Weizhu694
Chen. 2024. ToRA: A tool-integrated reasoning695
agent for mathematical problem solving. In The696
Twelfth International Conference on Learning Repre-697
sentations.698

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul699
Arora, Steven Basart, Eric Tang, Dawn Song, and700
Jacob Steinhardt. 2021. Measuring mathematical701
problem solving with the math dataset. Preprint,702
arXiv:2103.03874.703

Jiwoo Hong, Noah Lee, and James Thorne. 2024.704
Orpo: Monolithic preference optimization without705
reference model. arXiv preprint arXiv:2403.07691,706
2(4):5.707

Chi Hu, Yimin Hu, Hang Cao, Tong Xiao, and Jingbo708
Zhu. 2024. Teaching language models to self-709
improve by learning from language feedback. arXiv710
e-prints, pages arXiv–2406.711

Chen Li, Weiqi Wang, Jingcheng Hu, Yixuan Wei, Nan-712
ning Zheng, Han Hu, Zheng Zhang, and Houwen713
Peng. 2024. Common 7b language models already714
possess strong math capabilities. arXiv preprint715
arXiv:2403.04706.716

Xian Li, Ping Yu, Chunting Zhou, Timo Schick, Luke717
Zettlemoyer, Omer Levy, Jason Weston, and Mike718
Lewis. 2023. Self-alignment with instruction back-719
translation. arXiv preprint arXiv:2308.06259.720

Zhenwen Liang, Dian Yu, Xiaoman Pan, Wenlin Yao,721
Qingkai Zeng, Xiangliang Zhang, and Dong Yu.722
2024. MinT: Boosting generalization in mathemat-723
ical reasoning via multi-view fine-tuning. In Pro-724
ceedings of the 2024 Joint International Conference725
on Computational Linguistics, Language Resources726
and Evaluation (LREC-COLING 2024), pages 11307–727
11318, Torino, Italia. ELRA and ICCL.728

Hongwei Liu, Zilong Zheng, Yuxuan Qiao, Haodong729
Duan, Zhiwei Fei, Fengzhe Zhou, Wenwei Zhang,730
Songyang Zhang, Dahua Lin, and Kai Chen. 2024.731
Mathbench: Evaluating the theory and application732
proficiency of llms with a hierarchical mathematics733
benchmark. Preprint, arXiv:2405.12209.734

Jianqiao Lu, Wanjun Zhong, Wenyong Huang, Yufei735
Wang, Fei Mi, Baojun Wang, Weichao Wang, Lifeng736
Shang, and Qun Liu. 2023. Self: Language-driven737
self-evolution for large language model. arXiv738
preprint arXiv:2310.00533.739

Zimu Lu, Aojun Zhou, Houxing Ren, Ke Wang, 740
Weikang Shi, Junting Pan, Mingjie Zhan, and Hong- 741
sheng Li. 2024. Mathgenie: Generating synthetic 742
data with question back-translation for enhancing 743
mathematical reasoning of llms. arXiv preprint 744
arXiv:2402.16352. 745

Shen-yun Miao, Chao-Chun Liang, and Keh-Yih Su. 746
2020. A diverse corpus for evaluating and developing 747
English math word problem solvers. In Proceedings 748
of the 58th Annual Meeting of the Association for 749
Computational Linguistics, pages 975–984, Online. 750
Association for Computational Linguistics. 751

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, 752
Carroll Wainwright, Pamela Mishkin, Chong Zhang, 753
Sandhini Agarwal, Katarina Slama, Alex Ray, et al. 754
2022. Training language models to follow instruc- 755
tions with human feedback. Advances in Neural 756
Information Processing Systems, 35:27730–27744. 757

Ryan Park, Rafael Rafailov, Stefano Ermon, and 758
Chelsea Finn. 2024. Disentangling length from qual- 759
ity in direct preference optimization. arXiv preprint 760
arXiv:2403.19159. 761

Arkil Patel, Satwik Bhattamishra, and Navin Goyal. 762
2021. Are NLP models really able to solve simple 763
math word problems? In Proceedings of the 2021 764
Conference of the North American Chapter of the 765
Association for Computational Linguistics: Human 766
Language Technologies, pages 2080–2094, Online. 767
Association for Computational Linguistics. 768

Jinghui Qin, Xiaodan Liang, Yining Hong, Jianheng 769
Tang, and Liang Lin. 2021. Neural-symbolic solver 770
for math word problems with auxiliary tasks. In ACL, 771
pages 5870–5881. 772

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christo- 773
pher D Manning, Stefano Ermon, and Chelsea Finn. 774
2024. Direct preference optimization: Your language 775
model is secretly a reward model. Advances in Neu- 776
ral Information Processing Systems, 36. 777

Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten 778
Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi, 779
Jingyu Liu, Tal Remez, Jérémy Rapin, et al. 2023. 780
Code llama: Open foundation models for code. arXiv 781
preprint arXiv:2308.12950. 782

Patrick Schober, Christa Boer, and Lothar A Schwarte. 783
2018. Correlation coefficients: appropriate use and 784
interpretation. Anesthesia & analgesia, 126(5):1763– 785
1768. 786

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, 787
Junxiao Song, Mingchuan Zhang, YK Li, Y Wu, and 788
Daya Guo. 2024. Deepseekmath: Pushing the limits 789
of mathematical reasoning in open language models. 790
arXiv preprint arXiv:2402.03300. 791

Zhiqiang Shen, Tianhua Tao, Liqun Ma, Willie 792
Neiswanger, Joel Hestness, Natalia Vassilieva, Daria 793
Soboleva, and Eric Xing. 2023. Slimpajama-dc: Un- 794
derstanding data combinations for llm training. arXiv 795
preprint arXiv:2309.10818. 796

10

https://doi.org/10.5281/zenodo.10256836
https://doi.org/10.5281/zenodo.10256836
https://doi.org/10.5281/zenodo.10256836
https://openreview.net/forum?id=Ep0TtjVoap
https://openreview.net/forum?id=Ep0TtjVoap
https://openreview.net/forum?id=Ep0TtjVoap
https://arxiv.org/abs/2103.03874
https://arxiv.org/abs/2103.03874
https://arxiv.org/abs/2103.03874
https://aclanthology.org/2024.lrec-main.988
https://aclanthology.org/2024.lrec-main.988
https://aclanthology.org/2024.lrec-main.988
https://arxiv.org/abs/2405.12209
https://arxiv.org/abs/2405.12209
https://arxiv.org/abs/2405.12209
https://arxiv.org/abs/2405.12209
https://arxiv.org/abs/2405.12209
https://doi.org/10.18653/v1/2020.acl-main.92
https://doi.org/10.18653/v1/2020.acl-main.92
https://doi.org/10.18653/v1/2020.acl-main.92
https://doi.org/10.18653/v1/2021.naacl-main.168
https://doi.org/10.18653/v1/2021.naacl-main.168
https://doi.org/10.18653/v1/2021.naacl-main.168

InternLM Team. 2023. Internlm: A multilingual lan-797
guage model with progressively enhanced capabili-798
ties.799

Qwen Team. 2024. Code with codeqwen1.5.800

Ke Wang, Houxing Ren, Aojun Zhou, Zimu Lu, Sichun801
Luo, Weikang Shi, Renrui Zhang, Linqi Song,802
Mingjie Zhan, and Hongsheng Li. 2023. Math-803
coder: Seamless code integration in llms for en-804
hanced mathematical reasoning. arXiv preprint805
arXiv:2310.03731.806

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten807
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou,808
et al. 2022. Chain-of-thought prompting elicits rea-809
soning in large language models. Advances in neural810
information processing systems, 35:24824–24837.811

Tianwen Wei, Jian Luan, Wei Liu, Shuang Dong, and812
Bin Wang. 2023. Cmath: can your language model813
pass chinese elementary school math test? arXiv814
preprint arXiv:2306.16636.815

Martin Weyssow, Aton Kamanda, and Houari Sahraoui.816
2024. Codeultrafeedback: An llm-as-a-judge dataset817
for aligning large language models to coding prefer-818
ences. Preprint, arXiv:2403.09032.819

Yifan Xu, Xiao Liu, Xinghan Liu, Zhenyu Hou, Yueyan820
Li, Xiaohan Zhang, Zihan Wang, Aohan Zeng,821
Zhengxiao Du, Wenyi Zhao, et al. 2024. Chatglm-822
math: Improving math problem-solving in large lan-823
guage models with a self-critique pipeline. arXiv824
preprint arXiv:2404.02893.825

Liu Yang, Haihua Yang, Wenjun Cheng, Lei Lin,826
Chenxia Li, Yifu Chen, Lunan Liu, Jianfei Pan, Tian-827
wen Wei, Biye Li, et al. 2023. Skymath: Technical828
report. arXiv preprint arXiv:2310.16713.829

Xiao Yu, Baolin Peng, Michel Galley, Jianfeng Gao, and830
Zhou Yu. 2023. Teaching language models to self-831
improve through interactive demonstrations. arXiv832
preprint arXiv:2310.13522.833

Weizhe Yuan, Richard Yuanzhe Pang, Kyunghyun Cho,834
Sainbayar Sukhbaatar, Jing Xu, and Jason Weston.835
2024. Self-rewarding language models. arXiv836
preprint arXiv:2401.10020.837

Wei Zhao, Mingyue Shang, Yang Liu, Liang Wang, and838
Jingming Liu. 2020. Ape210k: A large-scale and839
template-rich dataset of math word problems. arXiv840
preprint arXiv:2009.11506.841

Yaowei Zheng, Richong Zhang, Junhao Zhang, Yanhan842
Ye, and Zheyan Luo. 2024. Llamafactory: Unified843
efficient fine-tuning of 100+ language models. arXiv844
preprint arXiv:2403.13372.845

Aojun Zhou, Ke Wang, Zimu Lu, Weikang Shi, Sichun846
Luo, Zipeng Qin, Shaoqing Lu, Anya Jia, Linqi847
Song, Mingjie Zhan, et al. 2023. Solving challenging848
math word problems using gpt-4 code interpreter849
with code-based self-verification. arXiv preprint850
arXiv:2308.07921.851

11

https://qwenlm.github.io/blog/codeqwen1.5/
https://arxiv.org/abs/2403.09032
https://arxiv.org/abs/2403.09032
https://arxiv.org/abs/2403.09032
https://arxiv.org/abs/2403.09032
https://arxiv.org/abs/2403.09032

A Appendices852

A.1 Sub-Type Performance on MathBench853

The data presented in the tables clearly shows854

the advantage of SI(Llama3instruct)2 over855

SI(Llama3instruct)0 across various educational856

levels and subjects. For both the MathBench-A857

and MathBench-T datasets, SI(Llama3instruct)2858

consistently outperforms SI(Llama3instruct)0. In859

the MathBench-A dataset, improvements are seen860

in all levels from Primary to College, with notable861

jumps in Middle and High school levels (6.7% and862

7.0% improvement, respectively). Similarly, the863

MathBench-T dataset shows improvement across864

all levels, particularly in the Middle school and865

English categories, which demonstrate 8.1% and866

10.5% increases, respectively. These results indi-867

cate that SI(Llama3instruct)2 provides enhanced868

accuracy in out-of-distribution scenarios, making869

it a more reliable choice for varied educational870

contexts.871

Level SI(Llama3instruct)0 SI(Llama3instruct)2

Arith 98.0 99.0
Primary 75.7 80.7
Middle 56.3 63.0
High 50.3 57.3
College 32.0 33.3

Chinese 56.8 63.6
English 66.2 68.8

Table 10: Fine-grained OOD accuracy on the
MathBench-A dataset scored by the critic model (Arith:
arithmetic).

Level SI(Llama3instruct)0 SI(Llama3instruct)2

Arith – –
Primary 66.6 67.5
Middle 60.1 68.2
High 59.1 60.6
College 50.2 57.9

Chinese 62.7 63.6
English 50.6 61.1

Table 11: Fine-grained OOD accuracy on the
MathBench-T dataset scored by the critic model (Arith:
arithmetic).

A.2 Data Statistics872

A.3 Other Alignment Algorithms873

As shown in Table 13, DPO demonstrates superior874

performance compared to ORPO, both with the875

SFT loss. We leave the exploration of more length- 876

regularized alignment algorithms and the role of the 877

reference policy model in preference optimization 878

to future studies. 879

LORPO(πθk+1) =− λ · log σ
(
log

πθk+1(yw | x)
1− πθk+1(yw | x)

− log
πθk+1(yl | x)

1− πθk+1(yl | x)

)
− log πθk+1(yw | x)

(7)

880

A.4 Self-Generated Preference Data 881

Existing preference datasets (Cui et al., 2023; 882

Weyssow et al., 2024) do not include many this 883

kind of inter-disciplinary annotations. We use the 884

current policy to generate preference data. Exam- 885

ples are provided in Table 14 and Table 15. 886

12

Dataset Language Answer Type Level Training Validation

APE (Zhao et al., 2020) zh numerical value elementary 200,488 5,000
CM (Qin et al., 2021) zh numerical value(s) grades 6—12 13,628 1,703
CMATH (Wei et al., 2023) zh numerical value elementary – 600
MathBench (Liu et al., 2024) en, zh mixed from primary to college – 3,709
MATH (Hendrycks et al., 2021) en mixed college 7,500 5,000
GSM8K (Cobbe et al., 2021) en numerical value elementary 7,473 1,319

Table 12: Statistics of evaluation benchmarks. Note that in our experiments, we do not use any rationale in these
dataset as we focus on solving problems via coding. We only use the questions and short-form answers from the
training set of MATH and GSM8K for constructing the seed data, and we use the questions and short-form answer
from the training set of APE and CM for constructing the data for self-improvement.

Model Alignment Data CM APE CMATH GSM8K MATH ACCaverage

DeepSeekcode SFT D0 + D1 87.0 84.3 88.0 77.6 44.6 76.3
SFT → ORPO D0 + D1; D2 87.7 85.5 91.2 76.5 44.5 77.1
SFT → DPO D0 + D1; D2 87.3 85.9 91.2 78.9 45.9 77.8

Llama3instruct SFT D0 + D1 87.6 85.0 89.0 76.6 41.8 76.0
SFT → ORPO D0 + D1; D2 88.0 86.4 91.8 76.4 42.1 77.0
SFT → DPO D0 + D1; D2 89.0 86.8 90.8 80.5 41.9 77.8

Table 13: The self-improving performance in different stages on the development sets of different datasets. The best
open-sourced performance for each backbone model is highlighted in bold.

question The perimeter of an isosceles triangle is 20, and the ratio of the lengths of the two equal sides is
1:2. What is the length of the base? A.10 B.4 C.4 or 10 D.5 or 8

reference answer B
winning code (w)

from sympy import symbols , Eq, solve

Define the unknown
a, b = symbols(’a␣b’)

Establish the equation
The hypotenuse is twice the base
equation1 = Eq(a, 2*b)

The perimeter is 20
equation2 = Eq(2*a + b, 20)

Solve the equation
solution = solve((equation1 , equation2), (a, b), dict=True)
solution

code result of w [a: 8, b: 4]
losing code (l)

from sympy import symbols , Eq, solve

Define the unknown variable
a = symbols(’a’)

Establish the equation
equation = Eq(2 * a + 2 * (2 * a), 20)

Solve the equation
solution = solve(equation , dict=True)
solution

code result of l [a: 10/3]

Table 14: Examples of self-generated data (I). Texts have been translated into English.

13

question Given that a and b are opposites, c and d are reciprocals, and the square of x equals 4, try to find
the value of x2 − (a+ b+ cd)x+ (a+ b)2009 + (−cd)2008.

reference answer 3 or 7
winning code (w)

Based on the analysis , first solve for the two possible
↪→ values of x

Since x squared equals 4, solve for x
x1 = 2
x2 = -2

Next , calculate the value of the expression based on the
↪→ value of x

After simplification , the expression is x^2 - x + 1
Calculate the value of the expression for x1 and x2
result1 = x1**2 - x1 + 1
result2 = x2**2 - x2 + 1

Return results
{’x1␣result ’: result1 , ’x2␣result ’: result2}

code result of w {‘x1’: 3, ‘x2’: 7}
losing code (l)

Based on analysis , we have obtained the simplified form of
↪→ the expression

Define variables
The value of a + b, since a and b are opposites , take a = 1,

↪→ then b = -1
a_b_sum = 1
The value of cd, since c and d are reciprocals , take c = 1,

↪→ then d = 1
cd_product = 1
The square of x
x_squared = 4

Calculate the value of the expression
x^2 - (a+b+cd)x + (a+b)^2009 + (-cd)^2008
result = x_squared - (a_b_sum + cd_product) * 2 + a_b_sum **2009

↪→ + (-cd_product)**2008

Return result
{"result": result}

code result of l {2}

Table 15: Examples of self-generated data (II). Texts have been translated into English.

14

	Introduction
	Related Work
	Method
	Training an Initial Model
	Building a Multi-Use Code-Based Critic Model
	Code Data Generation
	Self-Improving with New Data

	Experiments
	Data
	Implementation
	The Performance of the Initial Policy and Self-Improved LLMs
	The Comparison of Different Choices of Data and Alignment Methods
	Using the Critic Model as An Evaluator
	The Performance of Self-Improved LLMs on More Out-of-Domain Tasks

	Conclusions and Future Work
	Appendices
	Sub-Type Performance on MathBench
	Data Statistics
	Other Alignment Algorithms
	Self-Generated Preference Data

