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Abstract

We present the first systematic evaluation ex-
amining format bias in performance of large
language models (LLMs). Our approach distin-
guishes between two categories of an evalua-
tion metric under format constraints to reliably
and accurately assess performance: one mea-
sures performance when format constraints are
adhered to, while the other evaluates perfor-
mance regardless of constraint adherence. We
then define a metric for measuring the format
bias of LLMs and establish effective strategies
to reduce it. Subsequently, we present our em-
pirical format bias evaluation spanning four
commonly used categories—multiple-choice
question-answer, wrapping, list, and mapping—
covering 15 widely-used formats. Our evalua-
tion on eight generation tasks uncovers signifi-
cant format bias across state-of-the-art LLMs.
We further discover that improving the format-
instruction following capabilities of LLMs
across formats potentially reduces format bias.
Based on our evaluation findings, we study
prompting and fine-tuning with synthesized for-
mat data techniques to mitigate format bias.
Our methods successfully reduce the variance
in ChatGPT’s performance among wrapping
formats from 235.33 to 0.71 (%>2).

1 Introduction

To unlock the full potential of automating real-
world applications, state-of-the-art large language
models (LLMs) (Brown et al., 2020; Chowdhery
et al., 2022; OpenAl, 2022; Touvron et al., 2023)
are increasingly leveraged to tailor outputs to spe-
cific task formats. This powerful approach has
driven advancements across domains including
medicine (Thirunavukarasu et al., 2023; Clusmann
et al., 2023), data analysis (Cheng et al., 2023; Liu
et al., 2023), and even evaluating models them-
selves (Chiang and Lee, 2023; Chang et al., 2024).
Employing LLMs in such applications heavily de-
pends on their format-following capability and de-
livering high-quality results within formats.

Prompt: Answer the following question step-by-step. Your final answer is a
character identifier (A or B or C or D).

Question: How many positive integers are factors of 120 and also factors of 40?
Answer choices:A.4|B.8|C.2|D.1
Correct: B. 8
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Format prompt: } Format prompt: ] { Format prompt: ‘

Bold the final Italicize the final Filling in the blank:
answer. answer. "The answer is [X]."
\ 2 \ 2 \ 2
A4
1: Find the prime...the | | To find the number... To solve this problem...
final answer is B. 8. The correct answer is C. | | "The answer is [B]."
Answer: Answer: B3 Answer:
Format: B Format: & Format: G

Figure 1: An example from MMLU (Hendrycks et al., 2021)
with ChatGPT across different formats. In Case (1), the model
can answer the question but fails to bold only the answer,
hindering automatic evaluation. In Case (2), the model follows
the format but produces an incorrect result. In Case (3), the
model yields the correct answer and format. These show bias
in ChatGPT’s performance across formats.

While many studies, including those listed above,
have utilized LLMs to output in specific formats,
understanding their format capabilities is critical
yet has received limited attention. Recently, Zhou
et al. (2023) and Xia et al. (2024) introduced bench-
marks assessing LLM format-following proficiency.
However, these studies neglect deeper insights
into how these formats impact model performance
which is the ultimate concern for practical use.
Given the numerous formats recently introduced
across tasks and models, assessing this aspect is
essential yet challenging. Evaluation can be am-
biguous and often overlook cases where models
provide correct answers but are formatted wrong
(e.g., Case (1) in Fig. 1).

Bridging these gaps, we conduct the first system-
atic evaluation of the format bias of LLMs. Our
study attempts to answer the research questions:

How can we systematically and accurately
assess format bias in performance of LLMs,
and to what extent are they biased?

To fairly assess bias in model performance
across formats, it is crucial to evaluate all scenarios



Section ‘ Categories ‘ Format Types

‘ Generation Tasks

§4.1 ‘ MCQ answer ‘ Character identifier; Choice value. ‘ MCQ (MMLU, BBH).
§4.2 ‘ Wrapping ‘ Special character; Bolding; Italicizing; MCQ (MMLU, BBH), Reasoning (GSMS8K),

Brackets; Parentheses; Placeholder; Quoting. Multi-hop QA (HotpotQA), Narrative QA (FairytaleQA).
§4.3 ‘ List ‘ Python list; Bullet list; Special-character list; Newline list. ‘ Order list (SciDocsRR), Unordered list (SemEval2017).
§4.4 ‘ Mapping ‘ Python (Json); YAML. ‘ Easy/Medium/Hard Inf. Extraction (SciREX).

Table 1: Format categories and types with corresponding tasks highlighted in blue that are evaluated in this study.

depicted in Fig. 1. Nonetheless, Case (1) is chal-
lenging to automatically measure, requiring costly
human investigation. Therefore, we propose a re-
liable estimator for evaluating LLLM performance
under format constraints without human interven-
tion by considering format-following scores. We
start by redefining LLLM evaluation metrics into
two distinct classes to construct the estimator, as
detailed in §2.1. Accordingly, we define a metric to
quantify format bias in LLMs and establish criteria
for evaluating methods that successfully mitigate
this bias (§2.2). Based on these formulations, we
present our format evaluation framework, compris-
ing of the widely-utilized categories of multiple-
choice question—answer (MCQ; §4.1), wrapping
(§4.2), list (§4.3) and mapping formats (§4.4).

Across 15 widely-used formats, our evalua-
tion with zero-shot and zero-shot chain-of-thought
prompting (Kojima et al., 2022) on eight question-
answering and reasoning tasks (Tab. 1) reveals
substantial performance and format-instruction fol-
lowing inequalities. To address this, we examine
prompting and fine-tuning using synthesized for-
mat data techniques which work for both open-
and closed-source LLMs. Our study validates that
enhancing LLMs’ capabilities to follow format
instructions potentially mitigates format bias: (i)
Prompting with demonstrations and (ii) Repeating
format instructions substantially alleviate this bias.
Moreover, we investigate (iii) Synthesizing lim-
ited format data based on our evaluation results for
fine-tuning. Our proposed approaches significantly
decrease ChatGPT (OpenAl, 2022) performance
variance across wrapping formats from 235.33 to
0.71 (%?) on MMLU benchmark (Hendrycks et al.,
2021). Overall, our evaluation identifies a novel
challenge to LLLM developments, paving the way
for fairer and more robust applications.

2 Output Format Evaluation Framework

2.1 Theoretical Analysis: Format Evaluation

Automatic evaluation of LLMs in question-
answering and reasoning tasks mainly relies on

rule-based extraction to identify final answers from
generated texts (Guo et al., 2023). Within for-
mat constraints, determining the model’s true per-
formance, which is our focus, can be ambiguous
and inaccurate, as correct responses might be over-
looked due to format discrepancies (e.g., Case (1)
in Fig. 1). To address this, we propose redefin-
ing these rule-based evaluation metrics to reliably,
transparently and accurately measuring the LLM
performance given formats restrictions.

Notations. Suppose that we are interested in eval-
uating an LLM M on a task 7" using an evaluation
metric / (such as “Accuracy”) under a format con-
straints C' (such as “Bold the final answer.”) on n
samples with the ground-truth answers {y1, ..., Yn }
and raw generated answers {71, ...,J,}, Where
Yi,¥; € Y Vi with ) being the answer token se-
quence space. We denote F> as the binary format-
following evaluation function of C:

1, if y; satisfies C.

Fo(9i) = { (1

0, otherwise.

From Eq. (1), we define the Format Instruction-
following (FI) Score, denoted as F'I¢, as the per-
centage of generated outputs satsisfying C"

Flo = Z?:l FC@z)
n

2

Prior studies extensively focus on evaluating
FIc (Zhou et al., 2023; Xia et al., 2024). Our
work further targets evaluating the performance of
LLMs given the format constraints C'. Under C, we
denote E'ztc() as the rule-based answer extractor
to extract the final answer from g; for comparing it
with ;. We define two evaluation scores based on
FE measuring the performance of M on T":

Definition 2.1 (Systematic Evaluation Score
(SysE)).

n

1
SysE = - ;(E(yi, Extc(gi).Fo(g:) 3)



Essentially, SysE quantifies the performance of
M on task T based on the generated answers that
meet the format constraints C'. For example, in
Fig. 1, Case (1) yields a SysE score of 0, while
Case (3) achieves 1. This also shows that SysFE
may not accurately reflect the actual performance
of M on T', because Extc() may fail to extract the
final answers from (correct) answers dissatisfying
C (e.g., Case (1) in Fig. 1).

We define the True Evaluation Score to address
this. Let us assume that we have an oracle extrac-
tor function OracExtc () that can extract the final
answer from ¢j;, regardless of whether g; fulfills C.

Definition 2.2 (True Evaluation Score (T'rueF)).

n
TrueE = 1 Z E(yi,OracExtc(y;)) (4)
"o

TrueF measures the performance of M on task
T across all generated answers given the format
constraints C, regardless of constraint satisfac-
tion. For instance, in Fig. 1, both Cases (1) and (3)
achieve a true accuracy of 1. This score is crucial
for investigating the actual performance of LLMs
given the format requirements.

Prior studies do not distinguish between SysFE
and Truel properly. This is because in prac-
tice, measuring TruekF is challenging, as it re-
quires manual compilation and verification of
OracExtc(). Consequently, this measurement of-
ten requires human investigation (Lin et al., 2022)
or the fine-tuning of evaluation models as scorers
(Yang et al., 2024), both of which can be costly and
unreliable due to limited data. Finally, while as-
signing a default value to Fxtc(y;) can temporar-
ily avoid cases where M does not follow C, this
can be an incorrect practice since the default value
may not be the actual output of M.

Nevertheless, TrueE is crucial for a fair in-
vestigation of LLM performance bias across for-
mats. Therefore, we propose a simple estimator of
TrueFE, denoted as EstTrueE. Let us consider
the unit of F'I¢ is %, we have:

SysE.%, if FIc # 0.

5
0, otherwise. ®)

EstTruel = {
When FIc = 0, it is impossible to estimate
EstTrueE. EstTrueFE is particularly useful for
large-scale experiments since it is fully automatic.

Let us denote the margin of error for EstTrueF
as € with a confidence interval 1 — v and S¢ = n -

FIc as the number of generated answers satisfying
C'. The reliability of EstTrueF is:

Theorem 2.1 (Reliability of FEstTruekE).
EstTrueFE is consistent. Moreover, EstTruelF
is reliable if and only if:

FICZ% (6)
1—|—n-(i)

Additionally, we have:

lim FEstTrueE = TrueFE (7
FIo—100

where s? is the sample variance of evaluation

scores of generated answers satisfying C' and
v = lq/2,5,—1 18 the critical value from the t-
distribution with S¢ — 1 degrees of freedom and
significance level a.

In summary, we have proposed a consistent es-
timator EstTrueE of the true performance of
LLMs measured by metric £/ under the format
constraints (Def. 2.2). This estimator is crucial be-
cause it: (1) enables transparent and reliable LLM
performance evaluation considering format require-
ments; (2) facilitates the reliable investigation of
performance biases across different formats, which
is our focus. Henceforth, unless otherwise speci-
fied, E'stTruek is our primary metric for assess-
ing model performance given format conditions.
The proof of Thm. 2.1 is in §B.1.

2.2 Theoretical Analysis: Format Bias

This section defines the metric to quantify format
bias and outlines the criteria to mitigate such bias.

Bias measurement. Suppose that we are in-
terested in measuring the format bias of the
LLM M in performing the task under k for-
mats F, = {C,..,Cr}. We define a sin-
gle value BiasF, measuring such bias as the
variance of EstTrueFE scores over k formats
{EstTrueF;, ..., EstTrueEy}. Let us denote
WEStTrueE = (Zle EstTrueFE;)/k, we have:

BiasF, =

T =

k
Z (EStT’I“UeEi - ,UEstTrueE)2
=1

®)

Realiability of BiasF,. By Eq. (8), the lower
BiasF, is, the less format-F,-biased M is, sug-
gesting a criterion for mitigating output format bias.



However, BiasF, is an estimator based on the es-
timators E'stTruek;. Therefore, to enhance the
reliability of BiasFy,, it is also necessary to im-
prove the reliability of E'stTrueE; by increasing
Flc, Vi (Thm. 2.1). Therefore, we propose two
necessary criteria for an effective method to mit-
igate format bias in LLMs: (i) Minimize bias
metric: reducing BiasF,, indicating less format-
F,-bias in M, (ii) Increase the format-following
scores for all formats: ensuring the reliability of
BiasF, by increasing the F'I scores across all the
formats: {FIc,, ..., Flc, } (Eq. (2)).

2.3 Formats for Evaluation

We establish 4 ubiquitously used format categories
for our bias evaluation, encompassing 17 formats
introduced by prior practice, also outlined in Tab. 1:

(i) Multiple-choice question (MCQ) answer
(§4.1). where LLMs answer questions by select-
ing from provided choices, presented as either a
(1) Character identifier (Robinson and Wingate,
2023); or (2) Choice value (Chen et al., 2023).

(ii) Wrapping (§4.2). where LLMs must enclose
the final answer within the two characters, which
is crucial for automatic evaluation to isolate the
final answer from reasoning thoughts. We focus on
evaluating 7 widely used wrapping strategies: (1)
Special character (Gur et al., 2022); (2) Bolding
(Zhou et al., 2023); (3) Italicizing (Zhou et al.,
2023); (4) Double brackets (Luo et al., 2024); (5)
Double parentheses; (6) Placeholder (Wang et al.,
2024); (7) Quoting (Zhou et al., 2023).

(iii) List (§4.3). where the output of LLMs is
a list of elements. We investigate 4 formats rep-
resenting lists: (1) Python list (Do et al., 2023);
(2) Bullet-point list (Liu et al., 2024); (3) List
of elements separated by a special character
”[SEP]” (Boucher, 2023); and (4) List of elements
arranged on separate lines (Mishra, 2023).

(iv) Mapping (§4.4). where LLMs are employed
to output dictionaries or maps. We focus on
two ubiquitously used mapping structures: (1)
Python dictionary/JSON (JavaScript Object No-
tation) (Baumann et al., 2024) and (2) YAML (Yet
Another Markup Language) (Goel et al., 2023).

Format-instruction following. We introduce
Appx.-Alg. 1, a rule-based heuristic to deter-
mine the format-instruction following function Fo
(Eq. (1)) for our benchmarked formats. It calculates

the binary FI score by verifying that the generated
output includes the specified formatting tokens and
that the extracted final answer matches the expected
type. It is highly extendable to other formats (§A).

3 General Experimental Setups

Benchmarks. For MCQ bias evaluation (§4.1),
we select two datasets: MMLU (Hendrycks et al.,
2021) and BBH (Suzgun et al., 2023). For MMLU,
we randomly choose 27 subcategories. For BBH,
we select the sports_understanding category
following Gupta et al. (2024). For wrapping bias
assessment (§4.2), in addition to MCQ benchmarks,
the following datasets are experimented: GSM8K
(Cobbe et al., 2021) for reasoning, FairytaleQA
(Xu et al., 2022a) for narrative comprehension, and
HotpotQA (Yang et al., 2018a) for multi-hop rea-
soning. For list bias investigation (§4.3), we use
SciDocsRR (Muennighoff et al., 2023), a scientific
document ranking task as the order list generation
task, and SemEval 2017 (Augenstein et al., 2017a),
the keyphrase extraction task as the unordered list
generation. For mapping bias examination (§4.4),
we utilize a document-level information extraction
task named SciREX (Jain et al., 2020a) by synthe-
sizing three extraction difficulty levels: easy (ex-
tracting from 1 sentence for 1 category), medium
(3 sentences, 2 categories), and hard (5 sentences,
4 categories). For all benchmarks except MCQ, we
sample 200 points for evaluation (Bai et al., 2023).

Metrics. Following our discussion in §2.1, we
disentangle Accuracy (Acc) for MMLU and BBH
(Guo et al., 2023); F1 for GSM8K, HotpotQA,
FairytaleQA; and Mean Average Precision (MAP)
for SciDocsRR (Muennighoff et al., 2023) and
we report the metrics EstTrueAcc, EstTrueF'1,
EstTrueM AP (Eq. (5)) in the main text. For the
reliability of E'stTruex, we set a = € = 5%.

Models. We select both open- and closed-source
LLMs for our evaluation: Gemma-7B-it (Team
et al., 2024) and Mistral-7B-it-v(.2 (Jiang et al.,
2023) for open-source as they are among state-
of-the-art open-source LLMs; ChatGPT (gpt-3.5-
turbo-0125) for closed-source as this premier chat-
bot possesses superior instruction-following ability.
Our purpose is not to reproduce the models’ perfor-
mance, but to show the bias.

Prompting baselines. Our focus is on two
widely used prompting baselines: (1) Zero-shot



(ZS) prompting and (2) Zero-shot Chain-of-
Thought (ZS-CoT) prompting (Kojima et al.,
2022). For the ZS baseline, we instruct LLMs
to answer the question with the prompt “Answer
the following question...” followed by the suffix
“without any explanation”. For ZS-CoT, we use
the suffix “step-by-step” instead. For the ZS-CoT
experiments in Sections 4.1, 4.3 and 4.4, LLMs
are instructed to wrap the final answer by “<AN-
SWER>" and “</ANSWER>" tokens to distinctly
isolate it from the reasoning chains (see Tab. 2 for
the wrapping instruction). We use this wrapping
method since our experiment in §4.2 shows that
it achieves the highest instruction-following score
on average across LLLMs. Detailed prompts are
provided in §E. We average the performance under
two prompting methods to report in the main text.

4 Format Evaluation Experiments

Overall, we find that: (1) Models show substantial
format-following bias across formats for all bench-
marks; (2) For all models and datasets, significant
performance bias exists across formats; (3) 77.67%
of the E'stTrue results are reliable, with 16/24
for MCQ, 169/210 for wrapping, 35/48 for list,
and 27/36 for mapping formats. We dive into (2)
for every format as it is our main focus, (1, 3) are
discussed in detail in Appendices C.1 to C.4.

4.1 Experiments on MCQ Format

Setup. We investigate the bias of LLMs towards
different MCQ output formats. We assess two for-
mats as introduced in §2.3: (1) Character identifier
and (2) Choice value. For example, if the choice is
“[A. Yes, B. No]”, then the character identifier can
be “A/B”, while the choice value can be “Yes/No”.
We exclude the format combining the character
identifier and choice value (such as “A. Yes”) from
our evaluation because instructing LLMs to out-
put this format can be non-trivial and require man-
ual effort to craft instructions tailored for differ-
ent models. To ensure that LLMs understand the
“Character identifier” and “Choice value” as we ex-
pect, we add a contrastive format requirement to
the prompts (e.g., “without any textual description’
for the “Character identifier” prompts).

’

Results. Fig. 2 provides a synopsis of our evalua-
tion results, with numerical values shown in Appx.-
Tab. 3. From Fig. 2-left, we observe that Mistral
possesses the highest disparity between the two
MCQ answer formats, with 58.69% accuracy on
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Figure 2: Avg estimated true accuracy (§2.1) results of MCQ
benchmarks on models (left) and datasets (right) showing
performance bias of LLMs across formats.

average for character and only 4.22% for textual
value. Additionally, despite ChatGPT often being
regarded as one of the most robust LLMs, it shows
a significant difference between the two formats
(19.03%). Overall, LLMs are heavily biased to-
wards outputting character identifiers. Requiring
them to generate the choice’s value causes notable
performance drops of 28.76% on average.

From Fig. 2-right, we notice that the models
exhibit higher bias on BBH, which appears to be
an easier benchmark than MMLU. We attribute
this to the small size of BBH, which makes the
performance more sensitive to variations in format.

Why such bias? We hypothesize the root cause
of the significant performance bias across different
formats is the format token bias of LLMs. The
non-uniform distribution of FI scores among for-
mats suggests that the models assign probabilities
to format instructions differently based on their
training data. This leads to varying prior assign-
ments of probabilities to specific tokens, causing
final predictions non-uniformly distributed across
formats. This hypothesis is supported by our sim-
ple fine-tuning with formatted data, which famil-
iarizes LLMs with format instructions relatively
equally leading to a drastic format bias reduction
(85). This emphasizes the necessity of more re-
search in fine-tuning LLMs to reduce format bias
and raises concerns about the reliability and repro-
ducibility of recent studies using varied formats.

4.2 Experiments on Wrapping Format

Setup. We study LLM bias towards 7 wrapping
methods: (1) Special character; (2) Bolding; (3)
Italicizing; (4) Brackets; (5) Parentheses; (6) Place-
holder; (7) Quoting, detailed in Tab. 2. We evaluate
LLM performance across formats on the MMLU,
BBH, GSMB8K, FairytaleQA, and HotpotQA.
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Figure 3: Average estimated true Accuracy (MCQ) and F1 (GSMS8K, HotpotQA, FairytaleQA) scores (§2.1) on models (left) and
benchmarks (right) showing performance bias of LLMs across 7 widely used wrapping methods.

Wrapping type | (start, end) | Prompt: Wrap your final answer...

Special char. | (KANSWER>, /ANSWER>) | by <ANSWER> and </ANSWER>.

Bolding ‘ (3, )

‘ in bold by enclosing it with double asterisks.

Italicizing

| (*, %) | in italics by enclosing it with single asterisks.
Brackets | (L1

\ using double square brackets.

Parentheses ()] ‘ using double parentheses.

Placeholder None by filling in the placeholder below:

“So the answer is: [placeholder]”

Quoting | )

| using triple double-quotation marks.

Table 2: Wrapping “start” and “end” tokens with instructions.

Results. Fig. 3 outlines an overview of our evalu-
ation outcomes with results in Appx.-Tab. 7. From
Fig. 3-left, we see that Gemma exhibits the high-
est bias towards different formats with a BiasF,
value (Eq. (8) (variance) of 56.33%?2, while Chat-
GPT performs the best with only 12.26%2. No-
tably, for “Quoting” and “Parenthesis”, the Gemma
follows instructions only about 0 — 4% yielding
nearly zero performance, highlighting its critical
weaknesses. Among the 7 formats, ‘“Placeholder’
(35.92%) proves to be the most effective wrapping
output format, while “Quoting” (23.74%), “Paren-
thesis” (28.64%) are among those that achieve the
lowest performance.

From Fig. 3-right, models exhibit bias across all
tasks, with the lowest on GSMSK (12.97%?) possi-
bly because the models were trained on (part of) it,
and the highest on BBH (70.16%?2), the challeng-
ing task without train data. This demonstrates the
pervasive presence of wrapping bias in LLMs.

’

Why such bias? The format token bias of
LLMs as explained in §4.1 is also our hypothe-
sis. Specifically, we found the low performance of
the “Quoting” and “Parenthesis” because, in gener-
ation tasks, models often wrap (via quoting/paren-

thesizing) not only the final answer, as instructed,
but also parts of the context (e.g., ““The answer is
3.”"), leading to poor F1 scores. Moreover, Gemma
completely ignores the above format instructions,
resulting in 0% FI scores, which also contribute
to the low average estimated F1 scores. These
strongly indicate the presence of format token bias
in LLMs.

4.3 Experiments on List Format

Setup. We explore the bias of LLMs in generat-
ing lists following four widely-used formats: (1)
Python list, (2) Bullet-point list, (3) Character-
separated list, and (4) Newline-separated list. We
evaluate the models on two list generation tasks:
(i) Unordered list, using the keyphrase extraction
task on the SemEval 2017 dataset, and (ii) Ordered
list, using the document ranking problem on the
SciDocsRR task.

Results. Fig. 4 displays the key findings of our
evaluation across models and datasets with numeri-
cal results in Appx.-Tab. 11. From Fig. 4-left, we
notice that Mistral exhibits the most bias, with the
BiasF, value (Eq. (8)) of 353.80%2. In contrast,
ChatGPT and Gemma show much lower bias, with
values of 7.08%?2 and 1.32%?2, respectively. Of the
four formats, the “Python” and “Newline-separated”
formats yield the highest performance, likely due
to models trained extensively on code data. Con-
versely, the “Bullet-point list” format results in the
lowest performance, particularly for Mistral, high-
lighting the inherent bias for such formats.

The performance bias is regardless of the task
as plotted in Fig. 4-right, with the highest BiasF,
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Figure 4: Avg EstTrueF'l (SemEval2017) and
EstTrueM AP (SciDocsRR) (§2.1) on models (left)
and benchmarks (right) showing performance difference of
LLMs across 4 widely used list formats.

value of 67.07%? on the order list generation task
SciDocsRR, and significantly lower (27.58%2) on
SemEval2017 task. The high bias in the SciDoc-
SRR task is because Mistral and Gemma mostly
failed to perform this task following the “Bullet”
and “Special character” list formats while excelling
in solving it following the other formats.

Why such bias? We attribute the bias to the for-
mat token bias (§4.1). Since the models were
extensively trained on code data, they excel in solv-
ing code-related instructions. In contrast, “Bullet-
point” and “Special character” lists are much less
common. One interesting case is Gemma where it
performed worse on generating “Python” lists com-
pared to “Bullet-point” lists. Our analysis suggests
that Gemma misinterprets the format instruction as
a coding request, generating Python code programs
instead of an answer in a Python list, suggesting
Gemma was predominantly trained on code data.

4.4 Experiments on Mapping Format

Setup. We examine the performance bias of
LLMs on two mapping formats as discussed in
§2: (1) Python dictionary/JSON; (2) YAML. We
preprocess the SciREX task (Jain et al., 2020a) as
described in §3 into three extraction levels: (i) Easy
(1 sentence, “Task” category); (2) Medium (3 sen-
tences, “Task, Method”); (3) Hard (5 sentences,
“Task, Method, Material, Metric” categories).

Results. Fig. 5 illustrates a summary of our eval-
uation with numerical details in Appdx.-Tab. 15.
From Fig. 5-left, Gemma is the most biased, with a
performance gap of 16.51% between the two for-
mats, followed by Mistral with a 16.07% gap. Chat-
GPT, however, is relatively robust against format
variations, exhibiting a gap of only 4.05%. On
average, JSON performs significantly better than
YAML for mapping, likely because more JSON

JSON JSON
25| m= yAML 25 mm YAML

20! 20
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51 51
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Figure 5: Avg estimated true F1 scores (§2.1) on models (left)
and benchmarks (right) showing performance bias of LLMs
across 2 widely used mapping formats.

data is used to train models due to its popularity.

From Fig. 5-right, extracting 4 categories in the
Hard task shows the largest performance gap be-
tween mapping formats. Surprisingly, the Medium
task displays the least bias, likely because models
perform best in this task.

Why such bias? The bias is attributed to the
format token bias (§4.1). While Mistral excels
in generating JSON, it and Gemma struggle with
YAML. Even successfully generating YAML out-
put, Mistral and Gemma frequently introduce noisy
information (88%-65% for Mistral with and with-
out CoT, 98%-79% for Gemma) in the response
(e.g., a key “Task" should have multiple values,
Mistral generates multiple key-value pairs instead
e.g., “Task_1:Training - - - Task_2: ---”), resulting
in poor overall performance.

5 Mitigating Format Bias

Three primary streams of techniques have been
widely studied to tackle biases in LMs: (1) Prompt-
ing (Xu et al., 2024; Macedo et al., 2024); (2) Cali-
bration (Roelofs et al., 2022; Li et al., 2024); and
(3) Fine-tuning (Schick et al., 2021; Ghaddar et al.,
2021). While calibration techniques can only be
used for white-box models, prompting and fine-
tuning can be applied for both black-box (via API)
and white-box ones. Therefore, we explore prompt-
ing and fine-tuning techniques to reduce format
bias. We target mitigating the format bias of Chat-
GPT, the strongest model that we benchmarked,
on MMLU. We aim to reduce the wrapping bias
(§4.2) due to resource limits, but our methods can
be generalized to any model and format.

Demonstration(s) reduce(s) format bias. As
discussed in §4.1, LLMs show bias across formats
possibly because of the token bias issue. This
causes LLMs to non-uniformly comprehend the
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Figure 6: More demonstrations and repeating format instruc-
tions mitigate format bias. Finetuning mostly eliminates the
format bias. The performance is reported using ChatGPT on
MMLU (Appx.-Tab. 19 for num. results).

format instructions. To address this, we examine
whether demonstrations with formats can reduce
such bias, as they are believed to enhance LLM un-
derstanding of the task patterns (Xie et al., 2022).
Particularly, for each wrapping format in §4.2, we
select 1 and 5 random samples from the auxiliary
train data of MMLU and manually format the an-
swers as demonstrations. The results are depicted
in Fig. 6. Firstly, incorporating demonstrations
typically enhances the FI scores (i) (from 72.99%
to 79.19% and 85.31%) of the model, with five
demonstrations yielding the most. Secondly, we
observe a notable decrease in the BiasF,, score (ii)
upon supplementing demonstrations. From (i), (ii)
and §2.2, we conclude integrating demonstrations
mitigates format bias.

Repeating format instructions reduces format
bias. We found that repeating instructions gener-
ally increases FI scores (i) across most formats ex-
cept “Placeholder”, which can consequently lessen
the mode’s token bias towards format instructions
(§4.1). Hence, we examined the potential of this
technique to mitigate format bias. By repeating
the wrapping instructions of ChatGPT thrice, we
observed a decrease in the BiasF, (ii) score pre-
sented in Fig. 6. Combining (i) and (ii) suggests
that this strategy reduces format bias. For "Place-
holder,” human investigation reveals that multi-
ple placeholder instructions cause ChatGPT con-
fused about where the placeholder is, making it
frequently ignore the format instruction.

Fine-tuning with additional format data can
eliminate format bias. We hypothesize that com-
pletely solving the format token bias problem of
LLMs necessitates finetuning them on format data
so that they are familiar with tokens in format in-
structions evenly. We propose a simple data syn-

thesis strategy for finetuning LLMs: we sample a
small set of training data for all evaluated formats,
with ratios inversely proportional to their system-
atic evaluation scores (§2.1). We chose SysE
scores over the EstTrueE because they reflect
the current model performance. Practically, based
on ChatGPT’s zero-shot systematic performance
on MMLU colored in blue in Appx.-Tab. 7, we
approximate the formats’ performance ratios as
“1,1, %, %, %, 1, %” from left-to-right, resulting in
training data ratios of formats of “1,1,2,2,3,1, 3.
We then preprocess the MMLU auxiliary training
data according to these ratios, scaled by 500 (6500
samples total), and train ChatGPT on this dataset.
The finetuned results are plotted in Fig. 6. Firstly,
after finetuning, the average FI score across all for-
mats is nearly perfect at 99.58% (ii). Secondly,
the BiasF, score is significantly reduced from
235.33%2 t0 0.71%? (ii). These (i) and (ii) indicate
finetuning largely eliminates format bias.

6 Related Works

LLMs have shown remarkable proficiency in for-
matting outputs to meet human expectations. Such
formats include markdown for lists and pointers
(Achiam et al., 2023), code blocks (Gur et al.,
2022), and integrate tags, or LaTeX for scientific
texts (Singh et al., 2023; Wang et al., 2024). Given
the rising importance of formatting capabilities
in LLMs, recently, format-following benchmarks
have been developed for assessing LLMs’ adher-
ence to specified formats (Zhou et al., 2023; Xia
et al., 2024; Chen et al., 2024; Macedo et al., 2024;
Liu et al., 2024). However, these studies only eval-
uate format-instruction following capabilities. Our
research further assesses LLM performance across
different formats, uncovering significant format
bias in various tasks and models.

7 Conclusions

We introduce the pioneering systematic investiga-
tion of format bias in LLM performance, revealing
significant biases across widely used formats for all
models and benchmarks. Our method involves de-
veloping metrics to assess this bias and establishing
criteria for effective mitigation. We then introduce
prompting and fine-tuning techniques to alleviate
format bias based on our evaluation findings. Our
work aims to sharpen the focus of future LLLM re-
search toward fairer and more robust development.



Limitations

Our study has several limitations. Firstly, the
metrics EstTrue and BiasF, proposed in §2.1
and §2.2 are estimators. As discussed, determin-
ing TrueFE (Eq. (4)) is infeasible, especially for
large-scale experiments across various models and
datasets. Achieving this would require extensive
fine-tuning and comprehensive human evaluations,
both prohibitively expensive and impractical in
many scenarios. Our proposed metrics FstTrue
and BiasF, are handy for large-scale experiments
with multiple models and datasets due to their fully
automatic nature. We further propose Thm. 2.1 to
validate the reliability of TrueF statistically. Sec-
ondly, our empirical evaluation of format bias is
restricted to specific datasets, formats, and models
due to computational and budget constraints. Ex-
panding our experiments for more formats, larger-
scale datasets, and additional task categories, po-
tentially hinders further insights. Our study under-
scores the importance of future research dedicated
to quantifying and mitigating format bias.

Ethical Considerations

Our work uncovers significant format bias in LLMs,
raising concerns regarding fairness and potential
discrimination in real-world applications.

Bias and fairness. Format bias in LLMs can re-
sult in unfair treatment, especially in tasks where
multiple possible formats can be used. Our re-
search suggests ways to identify and mitigate for-
mat bias, aiming for fairer and more equitable LLM
applications.

Societal impact. Format bias in LLMs has the
potential to disproportionately impact specific pop-
ulations, as different demographics may have pref-
erences for different communication formats. Fur-
ther research is essential to fully understand its
societal implications and ensure fairness across di-
verse demographics.
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A Format-Instruction Following Scorer

Algorithm 1 Format-Instruction Following Scorer

Input: Task 7', language model M, format constraints C', generated output Y.
Input: If C includes wrapping characters, we denote as { W1, Ws} and is_wrapping = True.
Input: output_type is the data type required by C' when T’ is not MCQ.

1: if is_wrapping then

2:  return False if (any of {7, W3} € Y) or (number of W; € Y + number of Wy € Y # 2).
3 ans = Extract string in between { W7, Wa}.

4: else

5 ans=Y

6: end if

7. if T'is MCQ then

8:  if MCQ output type is character identifier then

9: return True if ans € {A, B, C, D}. False otherwise.
10:  else
11: return True if ans € {options’ values}. False otherwise.
12:  endif
13: else

14:  return True if we can parse ans as an instance of the class output_type. False otherwise.
15: end if

Alg. 1 presents our heuristic algorithm for evaluating the format-instruction following capabilities of
LLMs, which is used to compute F- in Eq. (1). The algorithm is divided into two three main parts:

1. Lines 1-6. These lines focus on examining the wrapping requirements by verifying the presence and
correctness of the specified wrapping tokens.

2. Lines 7-12. These lines are dedicated to checking the formats of MCQ answers (§4.1).
3. Lines 13-15. These lines address the remaining formats, including list and mapping formats.

It is worth noting that Alg. 1 is highly adaptable; formats can be added or removed to tailor it for
specific downstream applications.

B Theoretical Analysis: Reliability of FstTrueF
B.1 Proof of Thm. 2.1

Proof of Thm. 2.1. We omit the case when F'Io = 0 since in that case, we cannot estimate Trueck.
By the definition in Thm. 2.1, we have S¢ generated answers that satisfy C'. Let’s denote k = S¢ for

k(g
simplicity. Let’s denote k performance scores of answers satisfying C as z1,--- , 2, and T = w
as the mean. Finally, TrueF is the population mean of the performance scores, denoted as .

Statement 1: E'stTruek is consistent. From Eq. (5), by rewriting E'stTrueFE, we have EstTrueFE =
%-Zle (w;)-% = , which is an unbiased estimator of the average performance T'rueF, i.e., Bias(z) = 0
or limy,_,o, Bias(EstTrueE) = 0 (1). Now, let’s denote the variance of the performance scores as o2,
then the variance of EstTrueE is Var(EstTrueE) = Var(z) = "—: and limy_, o Var(EstTrueFE) =
0 (2). From (1) and (2), by the Sufficient Condition for Consistency (Amemiya, 1985), we conclude that
FEstTruek is a consistent estimator.

Statement 2: F' I value. Let’s denote s = ﬁ Zle (z;—x)? as the sample variance of the performance

scores x;s. It is well-known that @ ~ t;_1. For estimating the population mean y with finite

population size n and the type I error o, we have the margin of error e:
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Statement 3: When F'I- approaches 1, EstTrucE approaches TrueE. Since EstTruekE by its
definition in Eq. (5) is continuous with respect to F'Ix (Eq. (5)), S¢ (Eq. (3)) and F¢ (Eq. (3)), therefore,
we have the equality:

lim (EstTrueE) = EstTrueE(FIc = 100%) = Truek.

FIo—100%
]
B.2 Python Codes for Computing Reliability
I import numpy as np
> from scipy.stats import t
3 import math
4
5 def compute_sample_variance(data):
6 n = len(data)
7 mean = np.mean(data)
8 squared_deviations = [(x - mean) *x 2 for x in datal]
9 sample_variance = sum(squared_deviations) / (n - 1)
10 return sample_variance
11
2 def is_estimator_reliable(num_FI, list_eval_scores, num_samples=200):
13 ####AH#E t-statistics #H###H###
14 alpha = 0.05 # 5% significance level
15 df = num_FI # degrees of freedom
16 alpha_two_tailed = alpha / 2
17 t_statistic = t.ppf(1 - alpha_two_tailed, df)
18
19 ####### Compute MOE_FI #######
20 epsilon = ©.05 # 5% margin of error
21 s = math.sqrt(compute_sample_variance(list_eval_scores))
2 return num_FI/num_samples > 1/(1 + num_samples * (epsilon/(t_statistic * s))**x2)

Code Listing 1: Python codes for computing the reliability of EstTrueE with margin of errors 5% performance with a
significance level 5%.
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C Detailed Discussions

We give the numerical results and discussions for all figures and points made in the main paper.

C.1 Multiple-choice Question (MCQ) Discussions

We evaluate Gemma, Mistral, and ChatGPT on the MMLU and BBH datasets using two prompting
techniques, Zero-shot (ZS) and Zero-shot Chain-of-Thought (ZS-CoT) (§4.1). The prompts are specified
in §E.1. We report the F'Ic, SysE, EstTruek scores. The results are presented in Tab. 3. Additionally,

Tab. 4, Tab. 5, and Tab. 6 are the distillation results of Tab. 3:

1. Tab. 4. For each model, we average its F'stTrueF performance overall benchmarks and prompt-
ing techniques. For each task, we average the E'stTrueE scores overall models and prompting
techniques. The results of this table are plotted in Fig. 2 and discussed in §4.1.

2. Tab. 5. The purpose of this table is to compare the FI scores across formats. We average all the FI

scores across models and tasks.

3. Tab. 6. The purpose of this table is to see whether CoT (Wei et al., 2022) mitigates format bias.
We average all the E'stTrueFE scores over all models and benchmarks for each ZS and ZS-CoT

prompting method.

MCQ type Char. Text.
MMLU
Gemma-7B-it (EstTrue-Acc) 0.53/27.25 8.10/18.63
Gemma-7B-it (Systematic-Acc)  0.12/10.32 0.17/4.86
Gemma-7B-it (FI) 22.47/37.87 2.10/26.09
Mistral-7B-it (EstTrue-Acc) 46.14/49.31 8.37/8.52
Mistral-7B-it (Systematic-Acc)  41.59/45.94 0.17/0.19
Mistral-7B-it (FI) 90.12/93.16 2.03/2.23
ChatGPT (EstTrue-Acc) 68.55/45.53 54.85/59.67
ChatGPT (Systematic-Acc) 66.20/42.22 12.71/26.31
ChatGPT (FI) 96.56/92.73  23.17/44.09
BBH

Gemma-7B-it (EstTrue-Acc) 42.11/23.05 0.00/15.11
Gemma-7B-it (Systematic-Acc)  0.40/13.00 0.00/6.80
Gemma-7B-it (FI) 0.95/56.40 0.00/45.00
Mistral-7B-it (EstTrue-Acc) 76.81/62.50 0.00/0.00
Mistral-7B-it (Systematic-Acc)  21.20/22.00 0.00/0.00
Mistral-7B-it (FI) 27.60/35.20 0.00/1.60
ChatGPT (EstTrue-Acc) 73.03/57.14  53.63/0.00
ChatGPT (Systematic-Acc) 26.00/16.0 53.20/0.00
ChatGPT (FI) 35.60/28.00 99.20/0.00

Table 3: MCQ output format results. Red results are unreliable results measured by Thm. 2.1 i.e., inequality Eq. (6) does not

hold.

Format instruction-following bias. The FI scores across formats are illustrated in Tab. 5. There is a
notable difference between the scores for character-based and textual value-based formats. The score for
character format (51.39%) is more than twice as high as that for textual value format (20.46%). Among
the models, ChatGPT follows the instructions best with FI score 52.42%. Below we present two examples

of Gemma and Mistral failing to follow the format instructions:
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Table 4: Avg. estimated true accuracy results of MCQ benchmarks across models (Gemma-7B-it, Mistral, ChatGPT) and datasets
(MMLU, BBH) with two MCQ formats (Character and Textual Value). This table is the distillation result of averaging all the

Char. Text. | BiasF, (Var)

Models
Gemma 23.24 10.46 40.83
Mistral 58.69 4.22 741.74
ChatGPT 61.07 42.04 90.53
Tasks
MMLU 39.56 26.36 43.56
BBH 55.77 11.46 490.84

estimated true performance scores across models (Models) and tasks (Tasks) in Tab. 4.

Table 5: MCQ format-instruction following scores across formats. This table is the distillation result of averaging all the FI

Models | Char. Text. | Avg. BiasF, (Var)

Gemma | 2942 18.29 | 23.86 30.96
Mistral | 61.52 1.46 | 31.49 901.80
ChatGPT | 63.22 41.61 | 52.41 116.74

Avg. 51.39 20.46 | 35.92 239.16

scores across tasks and prompting techniques in Tab. 4.

Answer the following question by outputting the textual value of the choice
without its character identifier. Wrap your final answer by <ANSWER> and
</ANSWER>.

Question: Is the following sentence plausible? “John Carlson scored in
the third period.”

Answer choices: A. yes | B. no

Gemma: <ANSWER>A</ANSWER>

\

Answer the following question by outputting the textual value of the choice
without its character identifier. Wrap your final answer by <ANSWER> and
</ANSWER>.

Question: Is the following sentence plausible? “Marcelo got on the end
of a through ball.”
Answer choices: A. yes | B. no

Mistral: Based on the given sentence and the provided answer choices,
the answer is: A. yes. The sentence describes Marcelo receiving a through ball
and getting on the end of it, which is a common football (soccer) term for
receiving a long, accurate pass and finishing a move with a shot or a goal.

ZS versus ZS-CoT. We investigate the impact of Chain-of-Thought (CoT) (Wei et al., 2022) on
mitigating format bias. The average of estimated True Accuracy scores across models and tasks for the
ZS prompting and ZS-CoT prompting are shown in Tab. 6. ZS prompting achieves a higher score in
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the character category (51.20%) compared to ZS-CoT prompting (44.13%). Similarly, for textual value
format, ZS prompting scores higher (20.83%) than ZS-CoT prompting (16.99%). However, the BiasF,
is lower for the ZS-CoT model (184.14%?2) compared to the ZS model (230.58%2), indicating that CoT
slightly decreases the format bias.

Char. Text. ‘ BiasF,

Zero-shot 51.20 20.83 | 230.58
Zero-shot Chain-of-Thought 44.13  16.99 | 184.14

Table 6: MCQ CoT versus non-CoT. This table is the distillation result of averaging all the Zero-shot and Zero-shot Chain-of-
Thought scores across models and tasks in Tab. 4.

Reliability of the results. From Tab. 3, we see that 16/24 of the estimated EstT'rue results are
reliable. The reliability of results in the MCQ output format varies across different models. Gemma-
7B-it and Mistral-7B-it show significant unreliability in textual value format, evidenced by numerous
red-marked scores due to models not following the format instructions to output correct formats. In
contrast, ChatGPT’s results are significantly more reliable in the MMLU and BBH benchmarks (7/8),
with only one unreliable result in the BBH textual format output.

C.2 Wrapping Discussions

We examine Gemma, Mistral, and ChatGPT on the MCQ datasets (MMLU,BBH) and generation
datasets (GSMS8K, HotpotQA, FairytaleQA) utilizing two prompting techniques, Zero-shot (ZS) and
Zero-shot Chain-of-Thought (ZS-CoT) (§4.2). The prompts are also provided in §E.2. We measure the
Flc,SysE, EstTruek. The results are shown in Tab. 7. Furthermore, Tab. 8, Tab. 9 and Tab. 10 are
the distillation outcome of Tab. 7:

1. Tab. 8. For each model, we average its E'stTrueE performance overall benchmarks and prompt-
ing techniques. For each task, we average the E'stTrueE scores overall models and prompting
techniques. This table is plotted in Fig. 3 and discussed in §4.2.

2. Tab. 9. The purpose of this table is to compare the FI scores across formats. We average all the FI
scores across models and tasks.

3. Tab. 10. The purpose of this table is to see whether CoT (Wei et al., 2022) mitigates format bias.
We average all the E'stTruel scores over all models and benchmarks for each ZS and ZS-CoT
prompting method.

Format instruction-following bias. The FI scores over formats are provided in Tab. 9. Overall, LLMs
exhibit significant format-following bias across formats with a variance of FI scores of 297.28%?2. Among
the models, ChatGPT follows the instructions best with average FI Score 85.01%. The “Special Character”
wrapping format has the highest FI score of 73.34%. Following it is the “Placeholder” wrapping format
also shows a high FI score of 68.37%, suggesting it is another effective format for ensuring instruction
adherence. In contrast, the “Quoting” wrapping format has the lowest FI score of 17.06%. This significant
drop compared to other formats suggests that quoting is the least effective method for wrapping instructions,
possibly causing confusion or misinterpretation by the models. Below we present two examples of Gemma
and Mistral failing to follow the format instructions:
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Wrapping type Special character Bolding Italicizing Brackets Parentheses Placeholder Quoting

MMLU
Gemma-7B-it (EstTrue-Acc) 35.59/20.28 41.28/44.27  49.85/74.18 36.36/32.95  36.68/20.12  46.45/25.77 60.41/74.06
Gemma-7B-it (Systematic-Acc) 27.82/20.28 21.66/17.73 26.64/27.89  28.55/27.28 10.53/12.96 29.80/21.96 2.64/2.37
Gemma-7B-it (FI) 78.16 / 100.00 52.47/39.60  53.44/37.60  78.52/82.80 28.71/64.40  64.15/85.20 4.37/3.20
Mistral-7B-it (EstTrue-Acc) 53.63/58.34 48.43/63.09 51.84/61.66  67.36/61.58 64.99/62.71 75.35/6.03 100.00/ 8.33
Mistral-7B-it (Systematic-Acc) 13.42/20.04 1.08 /9.40 4.80/10.15 20.08/17.28  11.10/13.42 1.07/0.14 0.03/0.01
Mistral-7B-it (FI) 23.81/34.35 2.23/14.90 9.26/16.46 29.81/28.06 17.08/21.40 1.42/2.32 0.03/0.12
ChatGPT (EstTrue-Acc) 54.64/71.28 67.40/75.86  44.76/64.79  59.80/71.42 57.82/71.11 66.24 /72.81 68.29 /70.68
ChatGPT (Systematic-Acc) 48.54/ 63.64 66.59 / 48.59 38.24/36.77 31.65/60.86  28.54/60.57 63.88/50.09 26.72/30.26
ChatGPT (FI) 88.84/89.28 98.80 / 64.05 85.43/56.75 52.93/85.21 49.36/85.18 96.44/68.80  39.13/42.81
BBH
Gemma-7B-it (EstTrue-Acc) 25.00/16.00 49.09 /38.38 52.94/24.47 63.04/47.34  36.73/26.09 7.07/3.76 60.00 /20.00
Gemma-7B-it (Systematic-Acc) 24.00/16.00 21.60/15.20 10.80/9.20 23.20/19.60  14.40/16.80 5.20/3.20 2.40/0.40
Gemma-7B-it (FI) 96.00 / 100.00 44.00/39.60  20.40/37.60  36.80/41.40 39.20/64.40  73.60/85.20 4.00/2.00
Mistral-7B-it (EstTrue-Acc) 52.40/ 64.00 1040/11.60  36.80/21.20 16.00/ 8.40 6.4/12.00 32.80/72.80 0.00/0.00
Mistral-7B-it (Systematic-Acc) 49.04/58.11 1.37/1.85 34.88/14.24 6.84/1.61 1.51/3.98 13.38/71.05 0.00/0.00
Mistral-7B-it (FI) 93.60 /90.80 13.20/16.00  94.80/67.20  42.80/19.20  23.60/33.20  40.80/97.60 0.00/0.00
ChatGPT (EstTrue-Acc) 64.00 / 47.20 74.80/36.80 9.20/14.40 53.60/51.60 63.60/13.60  54.00/14.80 14.00/ 18.00
ChatGPT (Systematic-Acc) 64.00/16.80 74.80/30.62 9.20/10.02 51.67/38.60  57.24/3.75 54.00/ 14.80 3.19/0.58
ChatGPT (FI) 100.00 / 35.60 100.00/83.20  100.00/69.60  96.40/74.80  90.00/27.60  100.00/100.00  22.80/3.20
GSMSK
Gemma-7B-it (EstTrue-F'1) 3.65/5.00 0.99/3.13 5.20/1.46 7.45/0.42 0.00/0.00 9.13/9.92 0.0/0.0
Gemma-7B-it (Systematic-F'1) 2.54/2.45 0.50/2.00 4.26/1.19 3.50/0.17 0.00/0.00 4527471 0.0/0.0
Gemma-7B-it (FI) 69.50/49.00 50.50/64.00  82.00/81.50  47.00/40.05 2.50/0.50 49.50/ 47.50 0.0/0.0
Mistral-7B-it (EstTrue-F1) 4.03/25.74 9.03/31.61 2.87/30.76 2.57/46.98 1.29/39.44 3.28/39.37 0.00/73.52
Mistral-7B-it (Systematic-F1) 3.43/23.43 1.40/4.11 1.42/20.76 1.67 /38.76 0.60/24.26 3.28/38.78 0.00/6.25
Mistral-7B-it (FI) 85.00/91.00 15.50/13.00  49.50/67.50  65.00/82.50 46.50/61.50  100.00/98.50 5.00/8.50
ChatGPT (EstTrue-F1) 19.54/43.98 22.95/24.36  21.22/30.57 21.27/69.00  22.02/63.83 23.03/60.25 16.43/24.01
ChatGPT (Systematic-F1) 19.44/43.98 22.84/23.39 21.12/24.15 20.74/67.62  21.25/62.24  23.03/59.05 9.78 / 14.65
ChatGPT (FI) 99.50/ 100.00 99.50/96.00  99.50/79.00  97.50/98.50 96.50/97.50  100.00/98.00  59.50/61.00
HotpotQA
Gemma-7B-it (EstTrue-F'1) 14.12/9.88 21.43/32.11 19.83/27.06  23.63/30.44 0.00/0.00 43.70/53.62 2.33/6.60
Gemma-7B-it (Systematic-F'1) 4.59/5.53 9.00/12.20 7.93/8.93 3.90/14.00 0.00/0.00 5.90/9.92 0.03/0.03
Gemma-7B-it (FI) 32.50/56.00 42.00/38.00  40.00/33.00 16.50 / 46.00 3.50/2.50 13.50/18.50 1.50/0.50
Mistral-7B-it (EstTrue-F1) 12.86/11.43 25.84/29.21 20.93/ 14.56 16.93/13.20 15.39/13.21 20.41/21.58 0.00/25.00
Mistral-7B-it (Systematic-F1) 7.27/3.83 8.27/3.36 6.91/4.95 16.51/10.76  14.55/10.24 19.70/14.75 0.00/0.05
Mistral-7B-it (FI) 56.50/33.50 32.00/11.50  33.00/34.00  97.50/81.50 94.50/77.50  96.50/91.50 0.00/0.20
ChatGPT (EstTrue-F1) 29.86/27.52 41.00/33.14  3539/28.96  23.94/3548  29.30/34.83 38.72/28.69  41.52/16.97
ChatGPT (Systematic-F1) 25.24/27.11 40.59 /30.82 33.45/26.64 17.00/33.36  23.46/33.44  38.72/27.69 11.73/7.13
ChatGPT (FI) 84.50/98.50 99.00/93.00  94.50/92.00  71.50/94.00  80.05/96.00  100.00/96.50  28.50/42.00
FairytaleQA

Gemma-7B-it (EstTrue-F'1) 17.42/29.72 8.91/0.97 8.12/14.50 22.13/18.62 0.00/0.00 20.64 /22.05 0.00/0.00
Gemma-7B-it (Systematic-F'1) 6.62/11.74 4.68/0.64 4.7519.79 1.77/1.21 0.00/0.00 2.58/4.08 0.0/0.0
Gemma-7B-it (FI) 38.00/39.50 52.50/66.00  58.50/67.50 8.00/6.50 0.00/0.00 12.50/18.50 0.0/0.0
Mistral-7B-it (EstTrue-F1) 27.19/22.20 23.78/50.00  47.36/29.49  32.42/2590 30.33/22.46 36.07/31.77 19.50/20.00
Mistral-7B-it (Systematic-F1) 22.16/18.54 3.21/0.50 18.47/15.19  32.42/25.00 29.73/21.00  35.89/31.62 0.39/1.30
Mistral-7B-it (FI) 81.50/83.50 13.50/ 1.00 39.00/51.50  100.00/96.50 98.00/93.50  99.50/99.50 2.00/6.50
ChatGPT (EstTrue-F1) 41.93/31.95 46.08/32.84  48.11/33.46  41.53/38.25 38.25/34.82  46.83/32.85  45.78/27.75
ChatGPT (Systematic-F1) 38.58/31.47 46.08/31.86  48.11/31.96  41.33/38.06 45.91/34.30  46.83/32.85 27.24/14.71
ChatGPT (FI) 92.00/98.50 100.00/97.00  100.00/95.50  99.50/99.50  99.50/98.50  100.00/100.00 59.50/53.00

Table 7: Wrapping output format results. Red results are unreliable results measured by Thm. 2.1 i.e., inequality Eq. (6) does not
hold.

Special Character Bolding Italicizing Brackets Parentheses Placeholder Quoting \ BiasF, (Var)

Models
Gemma 31.09 20.11 24.77 23.39 14.61 33.86 11.63 56.33
Mistral 34.06 4243 2791 37.44 32.83 35.49 30.90 18.83
ChatGPT 32.47 33.40 32.95 38.16 38.49 38.40 28.69 12.26
Average 32.54 31.98 28.54 33.00 28.64 35.92 2374 | 13.55
Tasks
MMLU 49.42 56.72 57.85 54.91 52.24 48.77 63.63 23.26
BBH 44.77 36.85 26.50 40.00 26.40 30.87 18.67 70.16
GSMB8K 17.00 15.35 15.35 24.56 21.10 24.16 19.00 12.97
HotpotQA 17.62 30.46 24.46 2391 15.46 32.21 15.19 41.40
FairytaleQA 28.40 27.10 30.18 26.12 22.29 31.70 18.84 17.28
Average 31.44 33.29 30.87 33.90 27.50 33.57 27.06 | 6.88

Table 8: Avg. estimated true accuracy results of benchmarks across models (Gemma-7B-it, Mistral, ChatGPT) and datasets
(MMLU, BBH) with seven Wrapping format (Special Character, Bolding, Italicizing, Brackets, Parentheses, Placeholder,
Quoting). This table is the distillation result of averaging all the estimated true performance scores across models and
benchmarks in Tab. 7.
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Model | Special Character Bolding Italicizing Brackets Parentheses Placeholder Quoting | Avg.  BiasF, (Var)

Gemma 62.27 46.07 49.51 37.06 15.33 45.58 1.36 36.74 384.31
Mistral 63.00 15.36 40.94 67.53 54.72 64.48 4.04 44.30 553.55

ChatGPT 94.77 93.49 88.35 88.93 88.69 95.06 45.79 85.01 263.71
Avg. | 73.34 51.64 59.60 64.51 5291 68.37 17.06 | 55.35 297.28

Table 9: Avg. Following Instruction Score over all the wrapping formats. This table is the distillation result of averaging all the
FI scores across models and benchmarks in Tab. 7.

Answer the following question without any explanation. Wrap your final answer
using triple quotation marks.

Question (HotpotQA): “What was the MGM Grand Garden Arena in which Britney
Spears recorded fourth video album originally known as?”

Context: ...

Gemma: MGM Grand Garden Special Events.

Answer the following question without any explanation. Wrap your final answer
using triple quotation marks.

Question (BBH): Is the following sentence plausible?  “David Silva took
a throw-in.”

Mistral: A. “yes”.

\.

ZS versus ZS-CoT. The average of estimated True Accuracy scores across models and tasks for the
ZS and ZS-CoT prompting are shown in Tab. 10. For the majority of the wrapping methods (“Special
Character”, “Bolding”, “Italicizing”, and “Brackets”), the ZS-CoT model generally shows higher or
comparable performance to the ZS model. The “Brackets” shows a significant improvement when using
ZS-CoT, with a jump from 31.05% (ZS) to 36.00% (ZS-CoT). However, the BiasF, metric shows a
considerable divergence between 4.89%?2 (ZS) and 11.65%? (ZS-CoT). This depicts that while applying

CoT may improve accuracy in certain methods, it does not generally reduce format bias.

Special Character Bolding Italicizing Brackets Parentheses Placeholder Quoting | BiasF,

Zero-shot 30.57 32.76 30.30 31.05 27.38 34.42 28.50 4.89
Zero-shot Chain-of-Thought 27.99 34.32 32.33 36.00 27.05 31.02 26.58 11.65

Table 10: Avg.Estimated Accuracy of non CoT versus CoT for wrapping methods. This table is the distillation result of averaging
all the Zero-shot and Zero-shot Chain-of-Thought scores across models and tasks in Tab. 7.

Reliability of the results. Overall, 80% of the EstTrue results (169/210) are reliable. Gemma-7B-it
shows mixed reliability, with some red-marked scores indicating unreliable results, particularly in the
“Quoting” format. This is because Gemma failed to follow the quoting instruction to quote the final answer.
Mistral-7B-it exhibits similar variability, with some unreliable scores in “Quoting” and “Placeholder”
formats. ChatGPT generally demonstrates mostly reliable results, with only 1 quoting result unreliable.

C.3 List Discussions

We assess Gemma, Mistral, and ChatGPT with two prompting techniques, Zero-shot (ZS) and Zero-shot
Chain-of-Thought (ZS-CoT) (§4.3) on two benchmarks SciDocsRR and SemEval2017. Our prompts are
provided in E.3. We utilize F'I¢, SysE, TrueF as our evaluation metrics. The results are illustrated in
Tab. 11. In addition, Tab. 12, Tab. 13 and Tab. 14 are the distillation results of Tab. 11:
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Listing type Python Bullet Spe. Char. Newline
SciDocsRR
Gemma-7B-it (EstTrue-mAP) 0.0/61.65 0.0/73.0 0.0/ 60.00 0.0/60.15
Gemma-7B-it (Systematic-m AP) 0.0/15.72 0.0/1.46 0.0/0.90 0.0/28.27
Gemma-7B-it (FI) 0.0/25.50 0.0/2.00 0.0/1.50 0.0/47.00
Mistral (EstTrue-mAP) 50.21/52.61 0.00/0.00 0.00/0.00 78.08 / 58.36
Mistral (Systematic-m A P) 37.41/9.47 0.00/0.00 0.00/0.00 18.35/27.14
Mistral (FI) 74.50/ 18.00 0.00/0.00 0.00/0.00 23.50/46.50
ChatGPT (EstTrue-mAP) 35.29/50.17 49.94 /59.64 55.69/57.78 38.54/57.56
ChatGPT (Systematic-m A P) 33.17/28.60 49.19/25.05 55.69 /37.85 35.46/35.41
ChatGPT (FI) 94.00/57.00 98.50/42.00 100.00 / 65.50 92.00/61.50
SemEval2017

Gemma-7B-it (EstTrue-F'1) 4.00/8.86 7.10/7.20 4.80/13.50 7.21/3.25
Gemma-7B-it (Systematic-F'1) 0.04/1.64 1.80/2.10 4.80/13.50 7.21/1.51
Gemma-7B-it (FI) 1.00/18.50 25.50/29.15 100.00 / 100.00  100.00 / 46.50
Mistral (EstTrue-F'1) 34.82/30.24 23.2/0.00 0.00/13.57 12.17/20.84
Mistral (Systematic-F'1) 33.95/24.19 23.20/0.00 0.00/10.72 12.17/20.84
Mistral (FI) 97.50/80.00  100.00/ 100.00 0.00/79.00 100.00 / 100.00
ChatGPT (EstTrue-F'1) 42.25/15.33 8.87/16.46 32.19/16.33 37.16/22.87
ChatGPT (Systematic-F'1) 39.51/6.04 8.87/16.13 31.07/15.51 37.16/22.75
ChatGPT (FI) 93.50/39.39  100.00/97.97 96.50/94.94 100.00 / 99.49

Table 11: List output format results. Red results are unreliable results measured by Thm. 2.1 i.e., inequality Eq. (6) does not
hold.

1. Tab. 12. For each model, we average its F'stTrueFE performance overall benchmarks and prompt-
ing techniques. For each task, we average the E'stTrueE scores overall models and prompting
techniques. This table is drawn in Fig. 4 and its discussions are conducted in §4.3.

2. Tab. 13. The purpose of this table is to compare the FI scores across formats. We average all the FI
scores across models and tasks.

3. Tab. 14. The purpose of this table is to see whether CoT (Wei et al., 2022) mitigates format bias.
We average all the E'stTruel scores over all models and benchmarks for each ZS and ZS-CoT
prompting method.

Python Bullet Special Character Newline \ BiasF, (Var)
Models
Gemma 17.12 18.25 15.12 16.21 1.32
Mistral 41.98 5.80 3.39 42.37 353.80
ChatGPT 35.76 33.73 40.50 39.03 7.08
Average 31.62 19.26 19.67 3253 | 39.87
Tasks
SemEval2017  21.58 8.09 10.43 16.29 27.58
SciDocsRR 41.66 30.43 2891 48.78 67.08
Average 31.62 19.26 19.67 3254 | 39.91

Table 12: Avg estimated true F1 (SemEval2017) and MAP (SciDocsRR) scores over benchmarks (SemEval2017, SciDocsRR)
and models (Gemma-7B-it, Mistral, ChatGPT) across 4 widely used list formats (Python, Bullet, Special Character, Newline)

Format instruction-following bias. From Tab. 13, the “Newline list” format has the highest FI score of
66.05%, while the FI scores of other formats are around 48.6%. Among the models, ChatGPT follows
the instructions best with FI score 83.27%. Specifically, ChatGPT excels at following instructions for all
formats. In comparison, Mistral performs poorly with “Special character list”, while Gemma struggles the
most with “Python” and “Bullet point list”. Explaining these phenomena, we observe that Gemma often
misinterprets the task of converting textual samples into lists of numbers as a coding task, resulting in
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answers that do not match the desired format or content. We take an example in dataset SciDocsRR §D.1
with detailed prompt as in §E.3

Given a query, and a list of documents.
Query: Declarative Terrain Modeling for Military Training Games
Documents: [...]

You are required to transform the 1list of documents into a binary 1list
of 1 or @ where 1 indicates the document brings useful information to the
topic, and @ indicates the document does not bring useful information to the
topic. Generate your binary list as a Python list

Gemma: You should not use any packages such as sklearn, gensim, and
NLTK. You are required to write a short explanation for your binary list.

Given a query, and a list of documents.
Query: Declarative Terrain Modeling for Military Training Games
Documents: [...]

You are required to transform the 1list of documents into a binary 1list
of 1 or @ where 1 indicates the document brings useful information to the
topic, and @ indicates the document does not bring useful information to the
topic. Generate your binary list using bullet points

Gemma: Your binary list must be in the following format: [1, @, 1, @,
e, o, 1, 1,0, 1,0, 1,1,1,1, 0,1, 1,1, 0l

Model | Python Bullet Special Character Newline | Avg.  BiasF, (Var)

Gemma 7.51 13.41 34.55 42.40 24.46 277.69
Mistral 67.50 50.00 19.75 67.50 51.19 507.31
ChatGPT | 70.97 84.61 89.24 88.25 83.27 71.13
Avg. | 48.66 49.34 47.84 66.05 | 52.97 76.36

Table 13: Avg Following Instruction scores over benchmarks (SemEval2017, SciDocsRR) and models (Gemma-7B-it, Mistral,
ChatGPT) across 4 widely used list formats (Python, Bullet, Special Character, Newline). This table is the distillation result of
averaging all the FI scores across models and benchmarks in Tab. 11.

ZS versus ZS-CoT. The results, detailed in Tab. 14 indicate that prompting with ZS-CoT substantially
enhances model performance across various formats. Moreover, ZS-CoT effectively reduces format bias,
as evidenced by the BiasF, metric decreasing from 46.88%?2 to 33.69%?. From this, we conclude that
CoT reduces format bias.

| Python Bullet Special Character Newline | BiasF, (Var)

Zero-shot 27.76 13.67 14.73 27.98 46.88
Zero-shot Chain-of-Thought 3547 24.85 24.62 37.09 33.69

Table 14: Avg estimated true F1 (SemEval2017) and MAP (SciDocsRR) scores of non-CoT versus CoT for list formats. This
table is the distillation result of averaging all the scores across models and benchmarks in Tab. 11.

Reliability of the results. From Tab. 11, 73%(35/48) of the EstTrue results are reliable. However,
some scores of Gemma-7B-it (8/16) and Mistral-7B-it (5/16) on these benchmarks are red-marked,
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indicating unreliable results of this model. In contrast, the ChatGPT’s results are perfectly reliable.

C.4 Mapping Discussions

Table 15: Mapping output format results. Red results are unreliable results measured by Thm. 2.1 i.e., inequality Eq. (6) does

not hold.

Mapping type JSON YAML
SciREX Easy
Gemma-7B-it (EstTrue-F1) 14.60/20.84 18.20/0.82
Gemma-7B-it (Systematic) 3.54/3.79 3.03/0.10
Gemma-7B-it (FI) 24.24/18.18 16.64/12.12
Mistral-7B-it (EstTrue-F1) 28.83/32.82 0.00/0.00
Mistral-7B-it (Systematic) 11.36/32.33 0.00/0.00
Mistral-7B-it (FI) 39.39/98.48 0.00/3.03
ChatGPT (EstTrue-F1) 35.99/22.40 23.63/26.60
ChatGPT (Systematic) 32.72/19.69 22.92/20.15
ChatGPT (FI) 90.90 / 87.87 96.96 /75.75
SciREX Medium
Gemma-7B-it (EstTrue-F1) 18.17/5.27 0.00/1.87
Gemma-7B-it (Systematic) 3.03/0.88 0.00/0.17
Gemma-7B-it (FI) 16.67/16.67 18.18/9.09
Mistral-7B-it (EstTrue-F1) 26.48 /23.81 18.97/20.83
Mistral-7B-it (Systematic) 21.27/23.81 1.15/0.25
Mistral-7B-it (FI) 80.30/ 100.00 6.06/1.20
ChatGPT (EstTrue-F1) 29.07/27.29 36.55/22.70
ChatGPT (Systematic) 28.19/26.47 21.60/22.70
ChatGPT (FI) 96.96 / 96.96 59.09 / 100.00
SciREX Hard
Gemma-7B-it (EstTrue-F1) 34.40/29.18 1.65/0.87
Gemma-7B-it (Systematic) 4.17/10.61 0.2570.04
Gemma-7B-it (FI) 12.12/36.36 15.15/4.55
Mistral-7B-it (EstTrue-F1) 22.44/30.34 12.54 /15.95
Mistral-7B-it (Systematic) 20.40/26.66 1.71/1.58
Mistral-7B-it (FI) 90.90/ 87.87 13.63/9.90
ChatGPT (EstTrue-F1) 20.25/22.57 11.76 /1 12.07
ChatGPT (Systematic) 19.64 /22.23 11.59/10.43
ChatGPT (FI) 96.96 / 98.48 98.48 / 86.36

JSON  YAML | Average

BiasF, (Var)

Models
Gemma 20.42 3.91 12.17 68.14
Mistral 27.46 11.39 19.43 64.56
ChatGPT  26.27 22.22 24.25 4.10
Tasks
Easy 25.92 11.55 18.74 51.62
Medium 21.69 16.82 19.26 5.92
Hard 26.53 9.15 17.84 75.51

Table 16: Avg estimated true F1 scores over benchmarks (SciREX Easy, SciREX Medium and SciREX Hard) and models
(Gemma-7B-it, Mistral, ChatGPT) across 2 widely used mapping formats (JSON and YAML). This table is the distillation result
of averaging all the estimated true performance scores across models and benchmarks in Tab. 15.

We select Gemma, Mistral, and ChatGPT for our evaluation, using two prompting techniques: Zero-shot
(ZS) and Zero-shot Chain-of-Thought (ZS-CoT) (§4.4). These models are tested on the SCIREX dataset
across three difficulty levels: Easy, Medium, and Hard. Detailed prompt specifications are provided in
§E.4. We calculate F'Io, SysE, EstTrueE with the results presented in Tab. 15. Furthermore, Tab. 16,
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Tab. 17 and Tab. 18 are distilled from Tab. 15:

1. Tab. 16. For each model, we average its E'stTruel’ performance overall benchmarks and prompt-
ing techniques. For each task, we average the EstT'rueE scores overall models and prompting
techniques. This table is numerical results of Fig. 5 and discussed in §4.4.

2. Tab. 17. The purpose of this table is to compare the FI scores across formats. We average all the FI
scores across models and tasks.

3. Tab. 18. The purpose of this table is to see whether CoT (Wei et al., 2022) mitigates format bias.
We average all the E'stTrueFE scores over all models and benchmarks for each ZS and ZS-CoT
prompting method.

Format instruction-following bias. From this Tab. 17, noticeably, there is a significant difference in
the FI scores of two mapping formats (“JSON” and “YAML”). The average FI scores of the “JSON”
mapping format is 66.07%, which is exceptionally higher (double time higher) than the one of the “YAML”
mapping format (34.62%), resulting in high format bias (BiasF, = 494.64%?2). Overall, among models,
ChatGPT yields the best result of 90.40%. Mistral fails to follow “YAML” format instruction, e.g. for the
question in dataset SCIREX Easy §D.1 with detailed promt as in §E.4

7

Extract the entities reflecting the tasks in the following document:

Document: Published as a conference paper at ICLR 2017 QUERY - REDUCTION
NETWORKS FOR QUESTION ANSWERING.

Your output must be in YAML format: “““ Task: [...]1 77", Wrap your
final answer by <ANSWER> and </ANSWER>.

Mistral: “‘yaml

- TASK_1: Prepare conference paper

- TASK_2: Submit conference paper to ICLR 2017

- TASK_3: Research and develop Query-Reduction Networks for Question Answering
<ANSWER>

““yaml

- TASK_1: Prepare conference paper

- TASK_2: Submit conference paper to ICLR 2017

- TASK_3: Research and develop Query-Reduction Networks for Question Answering
</ANSWER>.

”

Model | JSON YAML | Avg. BiasF,

Gemma 20.71 12.62 16.66 32.68
Mistral 82.82 5.13 43.98  3018.00
ChatGPT | 94.69 86.11 | 90.40 36.82

Avg. | 66.07 3462 | 5035  494.64

Table 17: Avg FI scores over benchmarks and models across 2 widely used mapping formats (JSON and YAML). This table is
the distillation result of averaging all the FI scores across models and benchmarks in Tab. 15.

ZS versus ZS-CoT. From Tab. 18, it is evident that the performance of ZS prompting surpasses that of
ZS-CoT for both formats. Upon comparing the BiasF, across prompting techniques, we conclude that
CoT (Wei et al., 2022) does not mitigate format bias.
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JSON YAML ‘ BiasF,

Zero-shot 25.59 13.70 35.30
Zero-shot Chain-of-Thought ~ 23.84 11.31 39.29

Table 18: Avg ZS and ZS-CoT scores over benchmarks and models across 2 widely used mapping formats (JSON and YAML).
This table is the distillation results across models and benchmarks in Tab. 15.

Reliability of the results. From Tab. 15, 75% of the E'stTrue results are reliable. The reliability of the
results in the mapping output format shows variability across different models and formats. Noticeably,
“YAML” mapping format results are less reliable than “JSON” ones. On the other hand, ChatGPT
illustrates its high reliability in all mapping formats while Mistral-7B-it and Gemma-7B-it are opposite,
and all the results in the “YAML” mapping format of these models are unreliable.

C.5 Mitigating Format Bias Results

Index \ ‘Wrapping type Special character Bolding Italicizing Brackets Parentheses Placeholder Quoting \ Avg.  BiasF, (Var)
No demo (Zero-shot)
1 ChatGPT (EstTrue-Acc) 54.63 67.39 44.76 59.79 57.82 66.23 68.28 23533
2 ChatGPT (Systematic) 48.54 66.59 38.24 31.65 28.54 63.88 26.72 532.75
3 ChatGPT (FI) 88.84 98.80 85.43 52.93 49.36 96.44 39.13 72.99 61.12
Repeat format prompt thrice
4 ChatGPT (EstTrue-Acc) 60.09 67.88 55.65 61.99 63.71 30.31 68.28 146.79
5 ChatGPT (Systematic) 56.65 66.98 49.93 3574 51.63 2.85 33.13 377.66
6 ChatGPT (FI) 94.26 98.67 89.71 57.65 81.03 9.40 48.52 68.46 884.34
1 demo
7 ChatGPT (EstTrue-Acc) 55.12 65.08 47.18 5223 56.13 65.92 63.60 172.69
8 ChatGPT (Systematic) 50.54 64.49 43.98 40.02 31.02 62.19 28.10 397.62
9 ChatGPT (FI) 91.68 99.09 93.22 76.61 55.26 94.34 44.18 79.20 43.75
5 demos
10 ChatGPT (EstTrue-Acc) 51.77 58.30 4521 46.79 52.52 62.84 55.24 111.78
11 ChatGPT (Systematic) 51.18 56.66 40.69 41.36 39.78 60.88 27.72 259.37
12 ChatGPT (FI) 98.85 97.19 90.01 88.39 75.74 96.88 50.18 85.32 32.93
Finetuned

13 ChatGPT (EstTrue-Acc) 74.02 74.73 71.53 73.88 74.09 74.27 74.19 0.71
14 ChatGPT (Systematic) 73.99 74.11 71.52 73.66 73.47 74.15 73.70 0.11
15 ChatGPT (FI) 99.96 99.17 99.98 99.69 99.16 99.83 99.33 99.59 0.93

Table 19: Supplementing demonstrations, repeating format instructions, and extra fine-tuning with formats’ data reduce format
bias. Performance of ChatGPT on MMLU. All results are reliably measured by Thm. 2.1 i.e., inequality Eq. (6) holds.

In this section, we present the numerical results of our proposed techniques for mitigating format biases
using ChatGPT on MMLU, as shown in Tab. 19.

L.

Demonstrations with formats reduce bias (Indexes 7-12). From Tab. 19 indexes 7-12, we observe
that using demonstrations with formats generally increases the average of FI scores, from 72.99%
without any demonstration (index 3), to 79.20% with using one demonstration and 85.32% with
using 5 demonstrations. Moreover, we find that the performance does not scale linearly with the
FI score, indicating that simply increasing the FI score does not necessarily improve the models’
performance or reduce format biases.

Repeating format instructions reduces format bias (Indexes 4-6). From Tab. 19 index 6, most of
the formats, repeating the format instruction can increase the FI score (compared to index 3), except
for the “Placeholder”. Manual investigation reveals that repeatedly using the “Placeholder” format
confuses the model about the actual location of the placeholder, leading to the model omitting the
format. Nevertheless, this strategy generally reduces the format bias by decreasing the variance of
results from formats other than “Placeholder”, leading to overall reduction.

. Fine-tuning with additional format data can eliminate format bias (Indexes 13-15). Finetuning

mostly eliminates the format bias problem of the LLM with the bias score only 0.71%? from
Tab. 19 indexes 13-15, while increasing the average FI score up to almost perfect with 99.59%.
This demonstrates that finetuning can help LLMs become more familiar with format tokens and
requirements, reducing bias towards different formats.
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D Experimental Details

D.1 Dataset Details

We provide descriptions of all datasets we use in this paper.

MMLU (Hendrycks et al., 2021). MMLU is a benchmark for evaluating the performance of language
models on Multiple Choices Question on a wide range of subjects across STEM, the humanities, social
sciences, and other areas, testing the model’s ability to understand and reason in diverse domains.

BBH (Suzgun et al., 2022). BBH is a MCQ dataset which includes a variety of challenging benchmarks
that require advanced reasoning, comprehension, and other complex cognitive skills.

GSMSK (Cobbe et al., 2021). GSMSK is a dataset of 8,000 math word problems designed for grade
school students. The problems require not just basic arithmetic but also multi-step reasoning to solve.

HotpotQA (Yang et al., 2018b). HotpotQA is a question-answering dataset with a focus on multi-hop
reasoning. It contains questions that require finding and combining information from multiple Wikipedia
articles to derive the answer.

FairytaleQA (Xu et al., 2022b). FairytaleQA is a dataset designed for evaluating narrative comprehen-
sion, particularly in the context of children’s fairytales. It includes questions that test understanding of
characters, plots, and settings in fairytales.

SciDocsRR (Cohan et al., 2020). SciDocsRR is a dataset for evaluating information retrieval systems,
particularly in the scientific domain. It includes tasks like citation prediction, document classification, and
other retrieval-based evaluations.

SemEval2017 (Augenstein et al., 2017b). SemEval2017 is part of an ongoing series of evaluations for
semantic analysis in natural language processing. It includes a wide range of tasks such as sentiment
analysis, semantic textual similarity, and information extraction.

SciREX (Jain et al., 2020b). SciREX is a dataset for evaluating models on the task of information
extraction from scientific literature. It focuses on extracting entities, relations, and other structured
information from research papers.

D.2 Experimental Results

We present the hyperparameters setting for our experiments below.

Gemma-7B-it (Team et al., 2024). For Gemma 7B-it, use the weights from Google and Huggingface'.
We use Nucleus Sampling (Holtzman et al., 2020) as our decoding strategy with a p value of 0.95, a
temperature value of 0.1, and a window size of 1024.

Mistral-7B-it-v0.2 (Jiang et al., 2023). For Mistral 7B-it, use the weights from Mistral Al and Hug-
gingface?. We use Nucleus Sampling (Holtzman et al., 2020) as our decoding strategy with a p value of
0.9, and a window size of 1024.

ChatGPT (gpt3.5-turbo-0125) (OpenAl, 2022). For ChatGPT, we use the system role: “You are
helpful assistant!”. We set the “max_tokens” to be 1024, “top_p=1", “frequency_penalty=0", “pres-
ence_penalty=0", and the model mode is “gpt3.5-turbo-0125".

Datasets for finetuning ChatGPT and finetuning setups. We preprocess the “auxiliary_train> dataset
of MMLU (Hendrycks et al., 2021), resulting in the training set of 6500 samples as discussed in §5.
We preprocess a small, distinct validation set with the same ratio as the training set among formats
720-20-40-40-50-20-50”, resulting in a total of 240 samples for validation.

We use the default finetuning setup of OpenAl for ChatGPT. Our finetuning costs 63.86 US$.
"https://huggingface.co/google/gemma-7b-it

Zhttps://huggingface.co/mistralai/Mistral-7B-Instruct-ve.2
3https://huggingface.co/datasets/cais/mmlu/viewer/auxiliary_train
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E Prompting
E.1 MCQ Prompt Details

The input for the models is the combination of the following components:
Input = {non-CoT/CoT x Char./Text.} Instruction + Question + (CoT Wrapping)

where non-CoT/CoT Instruction shows that model uses Zero-shot or Chain-of-Thought, given that

* non-CoT X Char. Instruction = “Answer the following multiple-choice question by outputting only
the designated character identifier.”

* non-CoT X Text. Instruction = “Answer the following multiple-choice question by outputting the
textual value of your choice without the character identifier without any textual description.”

* CoT x Char. Instruction = “Answer the following multiple-choice question step-by-step by
outputting only the designated character identifier.”

* CoT x Text. Instruction = “Answer the following multiple-choice question step-by-step by
outputting the textual value of your choice without the character identifier.”

Question is the main content of the task and CoT Wrapping is wrapping instruction if using CoT. i.e.
CoT Wrapping = “Wrap your final answer by <ANSWER> and </ANSWER>.”

E.2 Wrapping Prompt Details

The input for the models is the combination of the following components:
Input = non-CoT/CoT Instruction + Question + Wrapping Format Instruction

where non-CoT/CoT Instruction shows that model uses Zero-shot or Chain-of-Thought, given that

« If MCQ task (MMLU,BBH)

1. non-CoT Instruction = “Answer the following multiple-choice question by outputting only the
designated character identifier.”

2. CoT Instruction = “Answer the following multiple-choice question step-by-step by outputting
only the designated character identifier.”

* If generation task (GSM8K, HotpotQA, FairytaleQA)

1. non-CoT Instruction = “Answer the following question.”
2. CoT Instruction = “Answer the following question step by step.”

Question is the main content of the task, and Wrapping Format Instruction is the format we want the
model to output, detailed as

* Special Character wrapping = “Wrap your final answer by <ANSWER> and </ANSWER>.”
* Bolding wrapping = “Wrap your final answer in bold by enclosing it with double asterisks.”

* Italicizing wrapping = “Wrap your final answer in italics by enclosing it with single asterisks.”
* Brackets wrapping = “Wrap your final answer using double square brackets.”

» Parentheses wrapping = “Wrap your final answer using double parentheses.”

* Placeholder wrapping = “Wrap your final answer by filling in the placeholder below: ‘So the
answer is: {{placeholder}}”

* Quoting wrapping = “Wrap your final answer using triple quotation marks.”
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E.3 List Prompt Details

For dataset SciDocsRR, the input for the models is the combination of the following components:

Input = Information + Requirement + List Format Instruction
+ non-CoT / CoT Instruction + (CoT Wrapping)

where
* Information = “Given a query, and a list of documents: Topic: Topic. List of documents: Samples”

* Requirement = “You are required to transform the list of documents into a binary list of 1 or O where
1 indicates the document brings useful information to the topic, and 0 indicates the document does
not bring useful information to the topic.”

¢ List Format Instruction includes four categories:

1. Python = “Generate your binary list as a Python list”

2. Bullet = “Generate your binary list using bullet points”

3. Special Character = “Generate your binary list using <SEP> to separate elements”
4. New Line = “Generate your binary list such that each element is in a new line”

¢ non-CoT / CoT Instruction includes:

1. non-CoT Instruction = “without any explanation.”
2. CoT Instruction = “step by step”

* CoT Wrapping = “Wrap your final list by <ANSWER> and </ANSWER>.”
For dataset SemEval2017, the input for the models is the combination of the following components:

Input = Requirement + Document + List Format Instruction
+ non-CoT / CoT Instruction + (CoT Wrapping)

where
* Requirement = “Extract a list of keyphrases from the following document:”
* Document is the main content of the task.

* List Format Instruction includes four categories:

1. Python = “Generate your binary list as a Python list”

2. Bullet = “Generate your binary list using bullet points”

3. Special Character = “Generate your binary list using <SEP> to separate elements”
4. New Line = “Generate your binary list such that each element is in a new line”

¢ non-CoT / CoT Instruction includes:

1. non-CoT Instruction = “without any explanation.”

2. CoT Instruction = “step by step”

* CoT Wrapping = “Wrap your final list by <ANSWER> and </ANSWER>.”
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E.4 Mapping Prompt Details

For all three datasets, we use the following formula for the input of the models
Input = Requirement + Document + Mapping Format Instruction + (CoT Wrapping)
where

* Requirement = “Extract the entities reflecting the tasks in the following document:” if using non-
CoT model and “Extract the entities reflecting the tasks in the following document step-by-step:” if
using CoT model

¢ Document is the main content of the task.
* CoT Wrapping = “Wrap your final list by <ANSWER> and </ANSWER>.”

* Mapping Format Instruction starts with defining a specific format for the model and then instructs
the model to follow. In detail, we have

1. For Easy dataset, we define:

1 JSON_FORMAT = {
"'Task'': [...]
}

! YAML_FORMAT = '''''' Task: [...] '''''"

Then
— JSON Mapping = “Your output must be a Python dictionary with the key “Task’” and value
as a list of task name entities: {str(JSON_FORMAT)}”
— YAML Mapping = “Your output must be in YAML format: {str (YAML_FORMAT)}”
2. For Medium dataset, we define:

JSON_FORMAT = {
"'Task'': [...1,
''Method'': [...]
3

1 YAML_FORMAT = '"'*''"!
2 Task: [...]
Method: [...]

Then

— JSON Mapping = “Your output must be a Python dictionary with the keys ‘Task’
and ‘Method’, and value is a list of task name entities and method name entities:
{str(JSON_FORMAT)}”

— YAML Mapping = “Your output must be in YAML format: {str (YAML_FORMAT)}”
3. For Hard dataset, we define:

JSON_FORMAT = {

3

2 "'Task'': [...1,

3 '"'Method'': [...1],

4 ''Material'': [...],
5 '"'Metric'': [...]

6
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YAML_FORMAT = '"''""!
Task: [...]
Method: [...]
Material: [...]
Metric: [...]

Then

— JSON Mapping = “Your output must be a Python dictionary with the keys are ‘Task’,
‘Method’, ‘Material’, ‘Metric’, and value is a list of task name entities, method name entities,
material name entities, metric name entities: {str (JSON_FORMAT)}”

— YAML Mapping = “Your output must be in YAML format: {str (YAML_FORMAT)}”
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