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ABSTRACT

Multimodal in-context learning (ICL) has emerged as a key capability of Large
Vision-Language Models (LVLMs), driven by their increasing scale and applica-
bility. Despite its promise, effective ICL in the multimodal setting remains chal-
lenging due to the inherent complexity of image-text inputs and the high sensitiv-
ity of ICL performance to input configurations. In this work, we shed light on the
core mechanism underlying multimodal ICL, identifying task mapping as a crucial
factor in configuring robust in-context demonstration (ICD) sequences. Building
on these insights, we propose SabER, a lightweight yet powerful decoder-only
transformer equipped with task-aware attention, which intelligently selects and
arranges ICDs from a demonstration library in an autoregressive fashion. This de-
sign enables fine-grained feature extraction and cross-modal reasoning, iteratively
refining task mapping to generate high-quality ICD sequences. Through extensive
experiments covering five LVLMs and nine benchmark datasets, SabER not only
demonstrates strong empirical performance, but also provides deeper understand-
ing of how task semantics interact with multimodal ICDs. Our findings highlight
the importance of principled ICD sequence configuration and open new avenues
to enhance multimodal ICL in a wide range of real-world scenarios.

1 INTRODUCTION

As the demand for Large Language Models (LLMs) in real-world applications continues to surge,
researchers have increasingly turned to prompt engineering and related techniques to enable these
models to rapidly and accurately adapt to new tasks without the need for parameter updates (Brown
et al., 2020; Lester et al., 2021; Liu et al., 2021b). With the continual scaling of LLMs, a remarkable
emergent property has been observed: the ability to perform complex reasoning and tackle novel
tasks using only a handful of in-context demonstrations (ICDs) provided during a forward pass
(Olsson et al., 2022; Garg et al., 2023). This phenomenon, known as in-context learning (ICL), has
fundamentally reshaped our understanding of task adaptation in modern LLMs.

The success of ICL in text-based settings has spurred efforts to extend its benefits to the multi-
modal domain. By incorporating interleaved image-text data into training corpora, Large Vision-
Language Models (LVLMs) have naturally acquired robust multimodal ICL capabilities (Bai et al.,
2023; Sun et al., 2024). These models demonstrate promising potential in learning and reasoning
from limited labeled data across various vision-language tasks—a particularly valuable trait given
the challenges associated with assembling large-scale multimodal datasets (cheng et al., 2023; Tsim-
poukelli et al., 2021). However, as ICL moves beyond text to embrace more structured modalities,
its performance becomes increasingly sensitive to the selection, order, and structure of ICD se-
quences (Schwettmann et al., 2023; Zhou et al., 2024). The complex interdependencies inherent in
multimodal ICDs heighten the risks of modality misalignment and introduce task-irrelevant biases,
thereby complicating the effective deployment of ICL in such settings.

Therefore, the configuration of ICD sequences holds even greater practical significance in multi-
modal ICL applications. However, research on this issue remains underexplored. Most existing
studies on ICD sequence configuration focus solely on text matching and processing, making their
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direct adaptation to multimodal settings difficult (Iter et al., 2023; Fan et al., 2024). Moreover,
the underlying mechanisms of ICL in LVLMs are not yet well understood, despite being critical
for designing effective ICD sequences. Unlike LLMs, where ICL primarily relies on implicit to-
ken retrieval, LVLMs must navigate intricate cross-modal interactions, making it unclear how they
generalize patterns across different input formats. Without a principled understanding of how ICD
sequences influence LVLM reasoning, current heuristic-based approaches to sequence configuration
remain suboptimal, underscoring the need for a more systematic and mechanism-driven approach.

Our goal is to develop a more systematic understanding of LVLM’s ICL and, based on this, design
an end-to-end approach for achieving complete and high-quality ICD sequence configuration. First,
we transfer the concepts of TR and TL to the multimodal domain and refine them for LVLMs. Using
these insights, we introduce a new component, query, into traditional ICD configuration to improve
modality coordination. We then systematically analyzed the roles of TR and TL in LVLMs based
on this new configuration and found that task semantics is crucial for well-trained LVLMs. Build-
ing on this analysis, we propose SabER, a novel tiny language model that optimizes ICD sequence
configuration by integrating diverse multimodal task augmentation. By systematically enhancing
the structure and relevance of ICDs, SabER significantly improves ICL performance across multiple
LVLMs and VL tasks. Through extensive experiments, we demonstrate that SabER outperforms ex-
isting SOTA methods and provides new insights into how ICD sequences shape multimodal learning
dynamics. Our findings highlight the importance of task-aware sequence configuration and offer a
scalable solution to improve the robustness and generalization of multimodal ICL.

2 RELATED WORKS

In-context Learning. As ICL emerges as an efficient and powerful learning method, research in-
creasingly focuses on its mechanisms (Gao et al., 2021; Dong et al., 2024). Min et al. (2022)
attribute ICL’s success to explicit information in ICDs like label space and input distribution, while
Zhou et al. (2023) emphasize the importance of deep input-output mappings for complex tasks. To
find a more comprehensive solution, Wei et al. (2023) and Pan et al. (2023) decompose ICL into Task
Recognition and Task Learning. Zhao et al. (2024) further propose a two-dimensional coordinate
system to explain ICL behavior via two orthogonal variables: similarity in ICDs (perception) and
LLMs’ ability to recognize tasks (cognition), emphasizing that task-specific semantics in prompt are
as crucial as, if not more vital than, sample similarity for effective ICL.

Large Vision-Language Models. The most representative model with training methods specifically
designed for multimodal ICL is the closed-source Flamingo (Alayrac et al., 2022). Its open-source
derivative versions, OpenFlamingo (Awadalla et al., 2023) and IDEFICS (Laurençon et al., 2023),
inherit Flamingo’s strong ICL capabilities and are central to our study. Meanwhile, robust multi-
modal ICL has become an essential capability of advanced general-purpose LVLMs like InternVL2
(Chen et al., 2024b) and Qwen2VL (Wang et al., 2024b). To explore and enhance the multimodal
ICL of LVLM, recent studies have begun to focus on the interpretability of internal mechanisms,
such as research on in-context vectors (Huang et al., 2024; Peng et al., 2024). They inspire further
exploration of LVLM workflows and highlight the critical role of ICDs.

Configuring ICD sequences. Due to LLMs’ sensitivity to ICD sequences, configuration methods
that do not account for the model’s ICL mechanisms may degrade overall performance (Gao et al.,
2021; Lu et al., 2022). A notable example is similarity-based retrieval (Liu et al., 2021a; Li et al.,
2024). Although this approach has proven effective on certain benchmarks, it underperforms in
complex tasks as it fails to provide LLMs with the necessary task-identifying information. Instead,
the ICD bias introduced by coarse-grained retrieval amplifies the short-cut effect (Lyu et al., 2023;
Yuan et al., 2024). Building on these strategies, model-dependent methods have also emerged,
employing one or more models for more demanding selection (Wu et al., 2023b; Wang et al., 2024a).
However, these methods often split the retrieval process into multiple steps, lacking an end-to-end
approach, thereby increasing complexity. Furthermore, they overly emphasize ICD selection over
ordering, highlighting the value of a lightweight autoregressive model for sequence configuration.
One work that is closely connected to ours is Yang et al. (2024), which introduces a tiny language
model composed of two Transformer blocks to automatically select and order ICDs. It neglects the
inner mechanisms of reasoning when ICD sequences are input into LVLMs.
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3 HOW DO LVLMS LEARN IN-CONTEXT?

3.1 TOWARDS VISION-LANGUAGE ICL

Following (Pan et al., 2023) in LLMs, we first attempt to decompose the ICL process of LVLMs
into Task Recognition (TR) and Task Learning (TL). In the TR stage, the model uses parametric
knowledge to infer the task definition from the ICDs’ data distribution. In the TL stage, the model
learns the ICDs’ content and, with the task semantics from the previous stage, derives the correct
input-output mapping. To address the complexity of VL tasks, we aim for a universal ICD repre-
sentation. Inspired by (Si et al., 2023), which shows that semantically specific ICDs can mitigate
bias, we design a unified ICD template with a task-relevant intervention, query Q. Each ICD can be
represented as a triplet (I,Q,R), where I is the image, R is the ground-truth result, and Q is a short
task-specific text that instructs models to derive R from I . In other words, we explicitly simulate the
input-output mapping and add it to the original tuple (x, y). The form and content of Q both vary in
different tasks. In this configuration, the query sample is denoted as (Î , Q̂).

We develop three settings based on our configuration to examine LVLM’s performance on TR or TL
separately within open-ended VQA and image classification tasks by manipulating demonstrations:
Standard, Random, and Dislocation. (1). Standard: The correct demonstrations (Ii, Qi, Ri) are
used as input to reflect both TR and TL. (2). Random: For a given sequence S, all triplets’ Q
or R are replaced by the Q or R from one randomly selected demonstration within the sequence.
This setting only reflects TR. The two subcategories are represented as Random-Q and Random-
R. (3). Dislocation: In this setting, either Q or R in the sequence is modified with content that
introduces semantic elements of image captioning task, such as ’describe the whole image,’ resulting
in (Ii, Qi∗, Ri) or (Ii, Qi, Ri∗). This setting only reflects TL. The two subcategories are represented
as Dislocation-Q and Dislocation-R. In Random and Dislocation, we specifically avoid altering
both Q and R, allowing us to compare the individual importance of Q and R to the mechanisms of
ICL. We randomly sample n-shot demonstrations following a uniform distribution.

Figure 1: Results of five settings across two tasks and two LVLMs which represent different parts
of LVLM’s in-context learning.

As shown in Figure1, for both LVLMs, TR is more important than TL because their extensive fine-
tuning equips parametric memory to fill TL gaps. However, this may lead to conflicts between
internal and external knowledge, emphasizing the need to recognize solid task mapping. TR is more
critical for Qwen2VL-7B compared to OFv2-9B , further indicating that differences in the LVLM
backbone affect its ability to understand and utilize fine-grained multimodal mapping in TR.

TR is more important than TL because the differences between queries and results are greater, mak-
ing the mappings within each demonstration and between different demonstrations more difficult to
interpret. This implies that the more complex the VL task, the stronger the need for TR, while the
demand for TL is prone to be influenced by the LVLM itself. In both TR and TL, Q is more im-
portant than R, confirming that strong performance in LVLMs is closely related to well-constructed
task semantic guidance.
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I1:

Q1: What is the bottom 
part?
R1: A hill.

I2:

Q2: What is the color 
of the sky?
R2: Blue.

�:What is the color 
of the boat?

�:

LVLM
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(a) 2-shot ICD sequence input.
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(b) Layer-wise output of IDEFICS2.

Figure 2: The output of multimodal ICL evolves across layers in the LVLM given a 2-shot sequence
(a). As illustrated by the pie charts in (b), processing a complete ICD sequence involves several
distinct stages: capturing information from the query sample, identifying mappings within the ICD
and engaging in in-depth reasoning, and ultimately leveraging the multimodal information to predict
the output.

3.2 GO DEEP INTO TR

After identifying the crucial role of TR in multimodal ICL, we further investigate the internal work-
flow of LVLMs during this stage. Using the logit lens (nostalgebraist, 2020), we leverage the model’s
existing vocabulary space to decode and visualize the last token representation at each layer. Figure
2 illustrates the layer output evolution of IDEFICS2 during multimodal ICL with a given 2-shot
ICD sequence. Our findings reveal that TR in multimodal ICL unfolds in two distinct phases: (1).
Constraining the output space using the query sample’s Î and Q̂, where Inst also plays a role in
guiding this process. (2). Further refining the output space by integrating information from all
ICDs, including both image and text. Notably, the LVLM does not exhibit a strict order in process-
ing different ICDs within the same sequence. This suggests that all ICDs within a sequence may
function collectively. LVLMs do not emphasize cross-modal alignment during TR. However, in the
TL stage, alignment information becomes essential, making it essential to ensure proper image-text
alignment within each ICD.

4 METHOD

4.1 RETHINKING THE ROLE OF ICDS

Based on the analysis in Section 3, we conclude that a high-quality ICD sequence maintains a co-
hesive task mapping that aligns well with the target task mapping of the query sample. This task
mapping is collectively formed by all ICDs, meaning that the ICDs function as a unified set, com-
plementing each other rather than being independently stacked in a single direction to create the
mapping. The task mapping is further constrained by the instruction and query sample. Thus, a
purely similarity-based retrieval approach is insufficient, as it relies solely on embedding-level in-
formation, which often introduces inherent limitations. This can result in an ambiguous or even mis-
aligned task mapping, leading to shortcut effects and hallucinations. In conventional ICD sequence
configuration, effectively integrating information from existing ICDs, instructions, and query sam-
ples simultaneously remains highly challenging.

To address these challenges, we propose SabER, a decoder-only tiny language model that config-
ures ICD sequences with more precise task mapping while maintaining computational efficiency.
Using a transformer decoder, SabER facilitates the flow of multidimensional task semantics during
configuration, ensuring a more coherent and contextually relevant sequence.
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Figure 3: Overview pipeline of our proposed model SabER.

4.2 MODEL

Figure 3 illustrates the pipeline of SabER, which is specifically designed to select ICDs from a
demonstration library DL and organize them into sequences in an autoregressive way. SabER is
centered around four Transformer decoder blocks. Due to its specialized purpose, the vocabulary is
entirely composed of samples rather than single words. All tokens correspond one-to-one with each
complete sample in DL. Consequently, given a query sample as input, SabER can progressively
retrieve n samples from DL based on the generated token distribution to form the optimal n-shot
ICD sequence Sn.

Training Data Construction. We construct sequence data for model training using existing high-
quality datasets, each corresponding to a VL task (detailed in Section 5). The samples are uniformly
formatted as (I,Q,R) triplets based on their respective task types. Each dataset generates a se-
quence set DS for training, where each sequence consists of a query sample and N ICDs. The value
of N is configurable, determining the number of shots during training. To ensure optimal training
performance, we employ the same LVLM used in inference as a scorer to supervise the construction
of DS , making the method inherently model-specific. For each dataset, we construct DS exclusively
from its training set through the following three-step process, as detailed in Appendix A.6.

Input Embedding. During training, we aim to clarify the structure of the input sequences in DS ,
composed of ICDs as tokens. To align with the nature of autoregressive generation, we add two
special tokens to the vocabulary: [BOS] and [EOS], which represent the beginning and end of a
sequence, respectively. We also introduce a [TASK] token into the vocabulary and concatenate it
with the query sample in the input sequence. This token enhances the query sample’s representation
by embedding task-specific information, providing holistic guidance for task recognition. In each
SabER input sequence, the query sample is positioned ahead of all ICDs. Thus, for a given sequence
SN , we reconstruct it as {[BOS], [TASK] + x̂, x1, ..., xN , [EOS]}, which serves as the input se-
quence to SabER. To enable SabER to fully obtain essential features from both modality embeddings
while maintaining a good balance, we employ a binary gating module to generate the embedding ei
for the i-th ICD token xi = (Ii, Qi, Ri):

gi = σ(Wg · [EI(Ii)⊕ ET (Qi ⊕Ri)] + bg),

ei = gi · EI(Ii) + (1− gi) · ET (Qi ⊕Ri),

where EI(·) and ET (·) denote image encoder and text encoder of CLIP, respectively. Finally, the
input embedding sequence of SabER is presented as follows:

eSN = [eBOS, ê, e1, . . . , eN , eEOS],

where eBOS and eEOS are learnable embeddings defining sequence boundaries. ê is the joint represen-
tation formed by concatenating the learnable embedding of the [TASK] token with the embedding
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of the query sample x̂ generated using the same gating module. In this sequence, the index of ê is
always 1 and Iidx denotes the index set of ICD embeddings.

Task-aware Attention. The task-aware attention mechanism in SabER enables dynamic configu-
ration of ICD sequences by integrating task semantics into the attention computation. Central to
this mechanism is the Task Guider (TG), a dedicated embedding that encodes task intent through
multimodal fusion of the query sample and instruction:

e
(0)
TG = WTG · (EI(Î)⊕ ET (Q̂)⊕ ET (Inst

′)),

where WTG ∈ Rd×3d is a learnable weight matrix used to regulate the entire task guider. Inst′ is
the simplified form of Inst generated by prompting GPT-o1. For clarity, we provide the process
of simplification in Appendix A.4. This embedding captures the high-level task semantics for the
entire sequence.

In predefined task-aware layers LT , TG guides attention through task-semantic relevance weighting.
At each layer, TG interacts with token embeddings to compute relevance scores:

t
(l)
i = σ

(
MLP(l)

(
e
(l)
TG ⊕ ei

))
,

where MLP(l): R2d → Rd is a layer-specific network producing a scalar weight gli ∈ [0, 1] and σ
is the sigmoid function. This weight modulates attention logits through a task-aware mask M (l).
For intra-ICD tokens, the mask scales pairwise cosine similarities by log(g

(l)
i ) to amplify task-

critical interactions. Simultaneously, a learnable coefficient α allows the query embedding ê to steer
attention across the entire sequence. Specifically, for position (i, j):

M
(l)
ij =


sim(ei, ej)√

d
· log

(
t
(l)
i

)
, j ≤ i and i, j ∈ Iidx,

αsim(ê, ej)√
d

· log
(
t
(l)
1

)
, i = 1 and j ∈ Iidx,

−∞, otherwise.

The mask is integrated into standard attention:

Attention(Q,K, V ) = softmax
(
QKT

√
d

+M (l)

)
V.

TG is updated only between task-aware layers to preserve task semantic coherence, enable hier-
archical refinement from coarse task intent to fine-grained dependencies. After processing layer
l ∈ LT through residual connections, TG is updated via:

e
(l′)
TG = LN

(
e
(l)
TG +Attention(e

(l)
TG, H

(l))
)
,

where l′ denotes the next task-aware layer in LT , H(l) denotes the hidden states of layer l and LN
denotes layer normalization. To ensure focused attention patterns, we introduce a sparsity loss that
penalizes diffuse attention distributions:

Lsparse =
∑
l∈LT

1

N

N∑
i=1

KL
(

softmax(M (l)
i: ) ∥ U

)
,

where U is a uniform distribution. Minimizing this KL divergence forces the model to focus on fewer
but semantically salient tokens, enhancing both interpretability and task alignment. The total training
objective combines the standard cross-entropy loss for sequence generation, sparsity regularization,
and L2-norm constraint on TG to prevent overfitting:

L = LCE + λ1Lsparse + λ2 ∥WTG∥22 .

Inference and Prompt Construction. After training SabER with DS , it can autoregressively select
demonstrations from a library and build ICD sequences. Given a query sample x̂ = (Î , Q̂), the
input sequence to SabER during inference is {[BOS], [TASK] + x̂}, where x̂ is embedded using
the trained gating module. The number of ICD shots in the generated sequence, denoted as n, is
a user-defined value. It may differ from the shot count N in DS . SabER then selects n ICDs,
producing the optimal n-shot ICD sequence Sn. This sequence is then used to construct a prompt
for LVLMs, formatted as: (Inst; ICD1, ..., ICDn;QuerySample), which is then used to perform
multimodal ICL. Example prompts for different LVLMs are provided in Appendix A.5.
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Methods
VQA Captioning Classification Hybrid Fast CLEVR

VQAv2 VizWiz OK-VQA Flickr30K MSCOCO HatefulMemes ACC.↑ ACC.↑ ACC.↑ACC.↑ ACC.↑ ACC.↑ CIDEr↑ CIDEr↑ ROC-AUC↑

RS 57.86 41.94 49.89 92.02 109.26 75.72 16.85 62.66 41.51
I2I 58.36 40.58 48.57 92.94 109.65 70.66 13.00 64.49 38.63

IQ2IQ 59.88 43.81 51.87 93.00 109.75 74.37 32.40 64.47 37.37
IQPR 59.89 42.56 51.12 94.52 112.32 71.33 28.67 63.99 41.00

Lever-LM 62.31 46.83 55.10 97.48 116.90 77.94 39.29 65.02 43.66
Ours 64.74 50.77 57.77 99.42 119.27 79.78 42.93 69.50 46.57

% Improve 3.90% 8.41% 4.85% 2.00% 2.03% 2.36% 9.26% 6.89% 6.67%

Table 1: Results of different ICD sequence configuration methods across 9 datasets, with both
training and generated sequences being 4-shot. Each result is the average performance across five
LVLMs with the same prompt format. The highest scores are highlighted in bold. % improve rep-
resents the relative improvement achieved by our model over the previously best baseline. Detailed
results for each LVLM can be found in Table 9.

5 EXPERIMENT

5.1 DATASETS AND MODELS

We first select six high-quality datasets across three key VL tasks and use them as benchmarks to
evaluate multimodal ICL: three for open-ended VQA (VQAv2 (Goyal et al., 2017), VizWiz (Gurari
et al., 2018), and OK-VQA (Marino et al., 2019)), two for image captioning (Flickr30K (Young
et al., 2014) and MSCOCO (Lin et al., 2014)), and one for classification (HatefulMemes (Kiela
et al., 2020)). For datasets with multiple human-annotated labels per sample, one label is randomly
selected as the ground-truth result. To further evaluate SabER’s generalization ability of configuring
ICD sequences in a complex scenario involving diverse task types, which are more representative of
real-world ICL usage contexts (Luo et al., 2024), we manually create a mixed-task dataset, Hybrid,
using the above six datasets. We randomly sample 5,000 instances from each dataset’s training set to
create Hybrid’s training set, with the validation set proportionally drawn from their validation sets.
Towards a more comprehensive evaluation of sequence generation, we also select two challenging
image-to-text tasks from the latest multimodal ICL benchmark, VL-ICL (Zong et al., 2024): Fast
Open-Ended MiniImageNet (Fast) and CLEVR. See more details in Appendix B.1

We experiment with five SOTA LVLMs in total, including four open-source models—Open
Flamingo-v2 (9B), IDEFICS2 (8B), InternVL2 (8B), and Qwen2VL (7B)—and one representative
closed-source model, GPT-4V (OpenAI et al., 2024). These models all support multi-image input
and exhibit strong few-shot learning capabilities.

5.2 BASELINES AND IMPLEMENTATION DETAILS

Given a query sample x̂ = (Î , Q̂, R̂) and a demonstration library DL, we compare SabER with the
following ICD sequence configuration methods: (1). Random sampling (RS): This method follows
a uniform distribution to randomly sample n demonstrations from DL. (2). Similarity-based re-
trieval methods: These methods embed both the demonstrations and the query sample using CLIP,
compute cosine similarity under different strategies, and select the top n demonstrations with the
highest similarity to construct Sn. For each demonstration (Ii, Qi, Ri) in DL, I2I calculate the
similarity solely between Ii and Î; IQ2IQ computes the joint similarity between the pairs (Ii, Qi)

and (Î , Q̂); IQPR (Li et al., 2024) evaluates the joint similarity considering all three elements using
a pseudo-result R̂P generated through RS to complete the query sample into a triplet. (3). Lever-
LM: A simple tiny language model composed of multiple transformer blocks is trained to perform
automatic demonstration selection and construct Sn. In settings without queries in ICDs, this model
outperforms other strategies in VQA and captioning tasks, serving as a key baseline. To ensure a
fair comparison, we use a four-layer Lever-LM, which matches the number of layers in SabER.

Since we use the training set of each dataset to construct the sequence set DS , its validation set is
used to evaluate the quality of the ICD sequences generated by SabER on the LVLM. We set both
the training sequence shot N and the generated sequence shot n at 4. The size of query sample set
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Configuration VQA Captioning Classification Hybrid Fast CLEVR
VQAv2 VizWiz OK-VQA Flickr30K MSCOCO HatefulMemes

Full SabER 64.74 50.77 57.77 99.42 119.27 79.78 42.93 69.50 46.37
(a) w/o [TASK] token 62.67 48.35 55.83 97.84 117.13 77.47 39.26 67.41 44.29
(b) w/o TG updates 61.58 48.71 55.64 98.12 117.05 76.39 38.97 66.29 43.83
(c) w/o Task-aware Mask 60.18 47.54 54.47 97.51 116.92 75.63 36.80 65.38 42.81

(d) Random initialization 55.73 37.82 47.32 93.41 105.35 71.86 29.46 59.31 40.78
(e) w/o Î 61.39 47.21 54.68 96.52 114.73 76.26 37.62 66.38 43.51
(f) w/o Q̂ 59.46 46.07 54.05 95.78 112.61 74.32 35.87 65.49 42.35
(g) w/o Inst′ 59.33 45.73 54.12 97.04 114.89 75.28 36.14 66.27 42.61

(h) Layer 1 Only 61.78 45.26 53.97 98.35 115.82 78.10 34.45 63.49 43.17
(i) Layer 3 Only 62.67 47.52 56.38 98.84 116.68 78.72 39.63 65.57 45.04
(j) Layer 2 & 4 63.41 48.79 56.91 99.13 118.46 78.39 41.07 67.58 45.66
(k) All Layers 63.95 48.28 56.45 98.27 118.35 77.94 40.86 68.30 45.18

Table 2: Results of the ablation study on task augmentation. Each result is the average performance
across five LVLMs. Specifically, (a)-(c) correspond to diverse task-aware attention construction,
(d)-(g) to diverse TG initialization, and (h)-(k) to diverse placement of task-aware attention.

K varies across different datasets and details can be found in Table 8. We adopt the image and text
encoders from CLIP-ViT-L/14 to generate all image and text embeddings. For all tasks, we adopt
a unified encoder training strategy by training only the last three layers while freezing the weights
of all preceding layers. During SabER training, we apply a cosine annealed warm restart learning
scheduler with AdamW as the optimizer, a learning rate set to 1e-4 and a batch size of 128. SabER
is trained for 20 epochs.

5.3 RESULTS AND ANALYSES

Table 1 presents the average ICL performance across five LVLMs with different ICD sequence
configuration methods. Notably, SabER consistently outperforms all other methods across all nine
datasets, showcasing the robustness and efficacy of SabER in fully exploiting the potential of LVLMs
in multimodal ICL. The performance improvements observed with SabER further underline the
advantages of augmenting the configuration process with task representations. Specifically, SabER
yields performance gains ranging from 2.00% to 9.26% over the best-performing baselines in various
tasks. In VQA, SabER delivers an average improvement of 5.72%, with a notable 8.41% gain
in the challenging VizWiz dataset. The greatest improvement, 9.26%, is achieved in the mixed-
task Hybrid dataset. On Fast and CLEVR designed specifically to benchmark multimodal ICL,
SabER achieves improvements of 6.89% and 6.67%, respectively. These results underscore the
importance of leveraging implicit task semantics within ICD sequences, particularly for TR in tasks
characterized by diverse or complex mappings. In contrast, simpler tasks, such as image captioning,
still benefit from task augmentation, albeit with a more modest average improvement of 2.02%. We
further study the impact of ICD sequence configuration on LVLMs’ multimodal ICL performance
using the detailed data in Appendix B.4.

6 ABLATION STUDY

6.1 WHAT TASK-SPECIFIC AUGMENTATION BRINGS?

In this section, we will focus on the impact of task-aware attention on ICD sequence configuration
and its further effect on multimodal ICL in LVLMs.

First, we validate the necessity of task-aware components and hierarchical layer interactions in
SabER, as shown in Table 2. Removing the [TASK] token, which captures task intent, leads to
significant performance degradation across question-answering tasks (e.g., VQAv2 drops by 2.07%
and OK-VQA by 2.94%), as the model struggles to align ICDs with task mapping. Disabling TG
updates between layers further degrades performance (e.g., 3.16% drop on VQAv2), confirming that
hierarchical refinement of task semantics is critical for resolving fine-grained dependencies. The
task-aware mask, which enforces sparsity in attention patterns, proves indispensable for compo-
sitional tasks like HatefulMemes and CLEVR, where its removal causes attention dispersion and
reduces accuracy by 6.13% and 3.56%, respectively.
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SabER VQAv2 MSCOCO Hatefulmemes Hybrid Fast CLEVR
(CLIP Encoder)
N/A 20.41 98.26 47.82 14.80 48.67 20.52
Adapter only 25.37 108.54 67.85 18.93 54.29 25.71
Fully training 47.57 114.46 76.29 37.43 63.49 43.22
Last two 42.63 114.25 73.18 28.91 62.13 39.27
Last three 46.81 114.79 75.60 35.91 63.72 42.18
(Gating Module)
+ Ternary gating 47.21 113.92 80.02 37.64 65.48 44.89
+ Binary gating 50.77 119.27 79.78 42.93 69.50 46.57

Table 3: Results of SabER with different input embedding configurations. (CLIP Encoder) section
shows the results without adding gating modules under various training methods for CLIP encoders.
N/A indicates no training or modification. (Gating Module) section presents the results with two
gating modules added on top of the encoders trained with the method of training the last three
layers. The highest scores are highlighted in bold

Initializing TG with random weights or ablating its multimodal inputs severely undermines task
grounding. Random initialization degrades performance catastrophically (VizWiz accuracy drops
by 12.95%), as the model fails to capture task semantics. Query sample’s text features seem to be
more important than image features Î , though removing both of them results in consistent declines.
Instructions semantics is also essential in creating TG, and its impact will be further discussed in
Section 6.2. The placement of task-aware attention layers significantly impacts performance. Using
only shallow layers (Layer 1) or deep layers (Layer 3) achieves suboptimal results (VQAv2 accuracy:
61.78% and 62.67%), as shallow layers lack semantic refinement while deep layers overspecialize.
These results collectively emphasize that task-aware agumentation is non-redundant and that their
synergistic integration across layers enables robust ICD configuration for diverse vision-language
tasks.

To further analyze the impact of task-specific semantics on the entire process, we explore different
combinations of training and generation shots, as detailed in Appendix C.1.

6.2 DETAILED ANALYSES

Input Embedding. To investigate the impact of input embedding construction on ICD sequence
configuration, we vary both the training method of the CLIP encoders and the adoption of the gating
module to evaluate SabER’s performance under different settings, as detailed in Appendix C.2.

The training approach for CLIP affects the feature representation of embeddings, which in turn in-
fluences SabER’s ability to capture cross-modal details during sequence configuration. From Table 3
we observe that for tasks with intrinsic features like VQA and Hybrid, leaving the CLIP unchanged
or only adding an adapter leads to significant degradation in the quality of the ICD sequence gener-
ation. In fact, even methods that only train the last two layers show a more noticeable performance
gap compared to the current approach. This highlights that the output pattern of the third-to-last
layer of the encoder is crucial for capturing core task features in multimodal ICD. When we re-
placed our current training method with one that fully trains CLIP, we did not observe a significant
performance drop. This suggests that SabER’s treatment of ICDs as tokens does not cause feature
loss. In contrast, through task-aware attention, it enhances feature representation, helping mitigate
the limitations of the embedding itself. Considering the high cost of training the entire encoders,
current method is optimal. As we point out in Section 3, it is important for the model to focus on
fine-grained features within the two modalities for multimodal ICL. However, Table 3 shows that
the use of a ternary gating mechanism to obtain more refined embeddings actually results in a poorer
performance compared to binary gating.

Instruction. In the ICL workflow of LVLMs, the instruction acts as a general reasoning guide. The
results in Table 2 demonstrate that incorporating the semantics of instructions into TG helps con-
struct a more effective task mapping, resulting in more diverse ICD sequences. However, there is a
trade-off between providing detailed instructions and avoiding irrelevant information that may skew
task recognition, potentially hindering model convergence. To address this, shortening the instruc-
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Methods NLP text-to-image
Qwen-7B LLaMA3-8B Emu2-Gen

RS 0.26 0.30 43.67
Q2Q 0.46 0.54 47.83
QPR 0.45 0.56 49.06
Lever-LM 0.47 0.60 -
Ours 0.50 0.61 51.18

Table 4: Results of different ICD sequence configuration methods in NLP and text-to-image tasks.
Both training and generated shots are set to 4. The highest scores are highlighted in bold.

tion using an LLM during TG creation strikes a balance. We test different styles of instruction in
Appendix A.4 and find that the content and format of Inst significantly influence performance, un-
derscoring the importance of its integration into the ICD sequence. Among them, chain-of-thought
(CoT) style instructions are the most effective.

6.3 GENERALIZATION TEST

To showcase the generalization of SabER beyond image-to-text tasks, we evaluate its performance
on NLP and text-to-image tasks. For NLP tasks, we first use the latest LLM ICL benchmark, ICLE-
val (Chen et al., 2024a), to organize a mixed-task dataset. This dataset includes all Rule Learning
tasks from the benchmark, which are designed to evaluate the ability of LLMs to learn mapping
rules from ICDs. We then choose Qwen-7B and LLaMA3-8B as the base LLMs. For text-to-image
tasks, we use the Fast Counting dataset from the VL-ICL Bench. We test it on Emu2-Gen (Sun et al.,
2024). The ICDs in both tasks can be represented as (Q,R). In NLP, both Q and R are text; in text-
to-image, Q is text while R is an image. We simply need to adjust the embedding encoder and gating
module accordingly. The baselines are RS, Q2Q (Query-to-query), QPR (Query&pseudo-result),
and Lever-LM (not applicable to text-to-image). From Table 4 we observe that SabER achieves the
best performance across all tasks, proving its excellent generalization and wide application potential.

7 CONCLUSION

We extend LLM research to the multimodal domain, systematically exploring multimodal ICL in
LVLMs. We identify a distinct processing logic for interleaved image-text ICDs and emphasize the
role of task mapping in sequence configuration. To address this, we propose SabER, a tiny lan-
guage model that autoregressively selects ICDs and constructs sequences. Guided by theoretical
insights, we optimize modality balance and enhance task-semantic interactions with task-aware at-
tention. Extensive experiments validate our approach, demonstrating significant sequence quality
improvements and introducing a new perspective on task mapping in multimodal ICL.
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A METHOD

A.1 CLIP ENCODERS

CLIP employs two distinct encoders: one for images and another for text. The image encoder
transforms high-dimensional visual data into a compact, low-dimensional embedding space, using
architectures such as a ViT. Meanwhile, the text encoder, built upon a Transformer architecture,
generates rich textual representations from natural language inputs.
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CLIP is trained to align the embedding spaces of images and text through a contrastive learning
objective. Specifically, the model optimizes a contrastive loss that increases the cosine similarity
for matched image-text pairs, while reducing it for unmatched pairs within each training batch. To
ensure the learning of diverse and transferable visual concepts, the CLIP team curated an extensive
dataset comprising 400 million image-text pairs, allowing the model to generalize effectively across
various downstream tasks.

In our experiments, we employ the same model, CLIP-ViT-L/14, using its image and text encoders
to generate the image and text embeddings for each demonstration, ensuring consistency in cross-
modal representations. The model employs a ViT-L/14 Transformer architecture as the image en-
coder and a masked self-attention Transformer as the text encoder. We experimented with several
strategies for training the CLIP encoder and found that training only the last three layers of the
encoder offers the best cost-effectiveness.

A.2 DEMONSTRATION CONFIGURING DETAILS

(a) Open-ended VQA: The query Qi is the single question associated with the image Ii, while
the result Ri is the answer to the question, provided as a short response. For the query sample, Q̂
represents the question related to the image Î , and R̂ is the expected output of the model.

(b) Image Captioning: Both Qi and Q̂ are set as short prompts instructing the LVLM to generate a
caption for the given image, such as ”Please write a caption to describe the given image.” The result
Ri corresponds to the actual caption of the image.

(c) Image Classification: Both Qi and Q̂ provide the textual information paired with the image,
followed by a directive requiring the model to classify based on the provided image-text pairs. The
result Ri is the predefined class label.

For all three tasks mentioned above, since the ground truth answers are not visible to the LVLM
during reasoning, all R̂ are set to blank.

A.3 RETRIEVING STRATEGIES

Previous works have typically focused on calculating the similarity between either the image or parts
of the textual information in the query sample and the demonstrations from the library in isolation.
However, this approach can lead to insufficient use of demonstrations by the LVLM, as discussed in
Section 3. To address this issue, we propose a fusion-based retrieval strategy IQ2IQ(image-query to
image-query), which contains two implementation methods:

(1) Averaged Modality Similarity (AMS) calculate the similarity between Î and each Ii, and be-
tween Q̂ and each Qi, then take the average of these two similarities;

(2) Joint Embedding Similarity (JES) compute the joint image-text similarity, which concatenates
the image and query embeddings to form a comprehensive vector, and use this unified representation
to compute the similarity.

A.4 INSTRUCTION

The Inst generated by GPT-4o in the main experiment is ”You will be provided with a series of
image-text pairs as examples and a question. Your task involves two phases: first, analyze the
provided image-text pairs to grasp their context and try to deeply think about what the target task
is; second, use this understanding, along with a new image and your knowledge, to accurately
answer the given question.” This content demonstrates great orderliness and can act as a good general
semantic guide for ICDs and query sample. This style is named chain-of-thought (CoT).

To incorporate the semantic information of Inst and strengthen task representation during the ICL
sequence configuration process, we use GPT-01 to generate simplified versions of these Inst and
integrate their embeddings into the task guider, which are indicated by Inst′. The prompt we use
is as follows: ”This is an instruction to enable LVLMs to understand and perform a multimodal
in-context learning task. Please simplify it by shortening the sentence while preserving its function,
core meaning, and structure. The final version should be in its simplest form, where removing any

15



Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

VizWiz OK-VQA

Question:
What is this vehicle?
Short answer:
train

VQAv2

Question:
What is this?
Short answer:
laptop

Question:
What is this?
Short answer:
bus

Caption:
Many people 
cross a very tall 
footbridge with a 
tree-covered hill 
in the background

Flickr30k MSCOCO

Caption:
A giraffe mother 
with its baby in 
the forest.

HatefulMemes Question:
Given a meme 
with obama 
voters written on 
it. Is it hateful? 
Answer:
Yes

Fast Open-Ended MiniImageNet CLEVR

Dax

Perpo

？

Color: Green Size: Large

？3

Figure 4: Illustrative examples from various vision-and-language datasets categorized by task type.
Visual Question Answering (VQA) tasks are shown in red (VQAv2: train, VizWiz: laptop, OK-
VQA: bus). Captioning tasks are represented in blue (Flickr30k: footbridge, MSCOCO: giraffes),
while classification tasks are highlighted in green (HatefulMemes: meme identified as hateful). The
bottom section demonstrates reasoning tasks with synthetic datasets: Fast Open-Ended MiniIm-
ageNet and CLEVR, focusing on conceptual understanding (e.g., assigning labels like ”Dax” or
identifying object properties like color and size).

word would change its core meaning”. This simplification process allows us to investigate how the
semantic information density in the instruction impacts SabER’s sequence configuration ability and
the performance of LVLMs in ICL. The results show that simplifying the instruction in a prompt
before embedding it in the task guider significantly improves the quality of sequence generation. It
also helps to avoid issues caused by too long instructions.

As shown in Table 5, we use GPT-4o to rewrite Inst, placing it at the middle and the end of a
prompt, altering its semantic structure accordingly while keeping its CoT nature. The table also
presents two other tested styles of instructions placed at the beginning of the prompt: Parallel Pattern
Integration (PPI) and System-Directive (SD). PPI emphasizes simultaneous processing of pattern
recognition and knowledge integration, focusing on dynamic pattern repository construction rather
than sequential reasoning. SD structures input as a formal system protocol with defined parameters
and execution flows, prioritizing systematic processing over step-by-step analysis. These two forms
have also been proven to be effective in previous ICL work. We use them to study the robustness of
SabER and various LVLMs to different instruction formats.

A.5 PROMPT DETAILS

The prompts constructed based on Sn all follow the format:

(Inst; ICD1, ..., ICDn;QuerySample).

Each ICD’s query begins with ”Question:” and its result starts with ”Answer:”. The query sample
concludes with ”Answer:”, prompting the LVLM to generate a response. Depending on the input
format required by different LVLMs, we may also include special tags at the beginning and end of
the prompt.

Table 6 provides an overview of the prompt details used for the different models in our experi-
ments. Each model, including OpenFlamingov2, ICDEFICSv2, InternVL2, and Qwen2VL, em-
ploys a structured approach to engage with image-text pairs. The two-phase task requires LVLMs to
first absorb information from a series of prompts before utilizing that context to answer subsequent
questions related to new images. This method allows for enhanced understanding and reasoning
based on prior knowledge and context, which is essential for accurate question answering in vision-
and-language tasks.
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Inst Details

Beginning1 (CoT)

You will be provided with a series of image-text pairs as
examples and a question. Your task involves two phases:
first, analyze the provided image-text pairs to grasp their
context and try to deeply think about what the target task
is; second, use this understanding, along with a new im-
age and your knowledge, to accurately answer the given
question.

Beginning2 (PPI)

Construct a dynamic pattern repository from image-text
samples, then leverage this framework alongside your
knowledge base for concurrent visual analysis and ques-
tion resolution. The key is parallel processing - your pat-
tern matching and knowledge integration should happen
simultaneously rather than sequentially.

Beginning3 (SD)

SYSTEM DIRECTIVE Input Stream: Example Pairs →
New Image + Query Process: Pattern Extract → Knowl-
edge Merge → Visual Analysis → Response Critical:
All exemplar patterns must inform final analysis Prior-
ity: Context preservation essential

Middle

Now you have seen several examples of image-text pairs.
Next, you will be given a question. Your task involves
two phases: first, revisit the above image-text pairs and
try to deeply think about what the target task is; second,
use this understanding, along with a new image and your
knowledge, to accurately answer the given question.

End

Now you have seen several examples of image-text pairs
and a question accompanied by a new image. Your task
involves two phases: first, revisit the provided examples
and try to deeply think about what the target task is;
second, use this understanding, the new image and your
knowledge to accurately answer the given question.

Beginning1 (Abbreviated)
Analyze the following image-text pairs, understand the
task, and use this to answer the question with a new im-
age.

Middle (Abbreviated)
After reviewing the above image-text pairs, analyze the
task and use this understanding to answer the question
with a new image.

End (Abbreviated)
After reviewing the above image-text pairs and a question
with a new image, analyze the task and use this under-
standing it.

Table 5: Formats of different instruction types and their corresponding details used in the prompt
structure for all VL tasks. (Abbreviated) means that the instruction is a simplified version produced
by GPT-o1.
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Models Prompt details

OpenFlamingov2

Your task involves two phases: first, analyze the provided image-
text pairs to grasp their context and try to deeply think about
what the target task is; second, use this understanding, along
with a new image and your knowledge, to accurately answer an
upcoming question.

<

img¿<IMG CONTEXT¿<—endofchunk—¿ Question: In what
country can you see this? Answer: vietnam
<img¿<IMG CONTEXT¿<—endofchunk—¿ Question: Is
this a buggy or car? Answer: buggy
<img¿<IMG CONTEXT¿<—endofchunk—¿ Question: What
is this? Answer:

IDEFICS2

”User: Your task involves two phases: first, analyze the pro-
vided image-text pairs to grasp their context and try to deeply
think about what the target task is; second, use this understand-
ing, along with a new image and your knowledge, to accurately
answer an upcoming question.”
”\nUser:<—image pad—¿ Question: In what country can you
see this? <end of utterance¿”,
”\nAssistant: Answer: vietnam. <end of utterance¿”,
”\nUser: <—image pad—¿ Question: Is this a buggy or car?
<end of utterance¿”,
”\nAssistant: Answer: buggy. <end of utterance¿”,
<—image pad—¿ Question: What is this?
<end of utterance¿”,
”\nAssistant: Answer:”

InternVL2

Your task involves two phases: first, analyze the provided image-
text pairs to grasp their context; second, use this understanding,
along with a new image and your knowledge, to accurately an-
swer an upcoming question.
<img¿<IMG CONTEXT¿</img¿ Question: In what country
can you see this? Answer: vietnam
<img¿<IMG CONTEXT¿</img¿ Question: Is this a buggy or
car? Answer: buggy
<img¿<IMG CONTEXT¿</img¿ Question: What is this? An-
swer:

Qwen2VL

<—im start—¿system
You are a helpful assistant.<—im end—¿
<—im start—¿user
Your task involves two phases: first, analyze the provided image-
text pairs to grasp their context and try to deeply think about
what the target task is; second, use this understanding, along
with a new image and your knowledge, to accurately answer an
upcoming question.
<—vision start—¿<—image pad—¿<—vision end—¿Question:In
what country can you see this? Answer: vietnam
<—vision start—¿<—image pad—¿<—vision end—¿Question:
Is this a buggy or car? Answer: buggy
<—vision start—¿<—image pad—¿<—vision end—¿Question:
What is this? Answer: <—im end—¿
<—im start—¿assistant

Table 6: Prompt details for different models used in the experiments. The table outlines how Open-
Flamingov2, IDEFICS2, InternVL2, and Qwen2-VL format their image-text interactions, including
examples of image-based questions and short answers. Each model follows a multi-phase task struc-
ture, where context is absorbed from previous image-text pairs to answer subsequent questions.
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Datasets VQAv2 VizWiz OK-VQA Flickr30k MSCOCO HatefulMemes Hybrid Fast CLEVR
metrics Accuracy Accuracy Accuracy CIDEr CIDEr ROC-AUC Accuracy Accuracy Accuracy

Table 7: Evaluation metrics used for each dataset. Accuracy is used for VQA datasets (VQAv2,
VizWiz, OK-VQA), self-bulit Hybrid dataset and two VL-ICL Bench’s tasks. CIDEr (Vedantam
et al., 2015) is used for image captioning datasets (Flickr30k, MSCOCO). ROC-AUC is used for the
HatefulMemes classification task.

A.6 MODEL

Training Data Construction. (1). We apply k-means clustering based on image features to parti-
tion the dataset into k clusters. From each cluster, we select the m samples closest to the centroid,
yielding a total of K = m × k samples. These form the query sample set D̂ after removing their
ground-truth results, which are stored separately in DR̂. The remaining dataset serves as the demon-
stration library DL. (2). For each query sample x̂i ∈ D̂, we randomly sample a candidate set Di of
64n demonstrations from DL. The objective is to retrieve N demonstrations from Di that optimally
configure the sequence for x̂i = (Îi, Q̂i) with its ground-truth result R̂i = (R̂

(1)
i , ..., R̂i(t)). We use

the log-likelihood score computed by the LVLM M as the selection criterion CM, evaluating the
model’s predictive ability given a sequence with n ICDs:

CM(Sn
i ) =

∑
t

logPM(R̂
(t)
i | Sn

i , R̂
(1:t−1)
i ),

To determine the optimal n-th demonstration xn for a sequence Sn−1
i with n − 1 ICDs, we select

the candidate that maximizes the incremental gain in CM:

xn = argmax
x∈Di

[CM(Sn−1
i + x)− CM(Sn−1

i )].

(3). We employ beam search with a beam size of 2N , ensuring that for each x̂, the top 2N optimal
sequences are included in DS . As a result, the final sequence set DS consists of 2N × k N -shot
sequences, providing refined training data for the model.

B EXPERIMENT

B.1 DATASET

In our study, we explore various VL tasks that use diverse datasets to evaluate model performance.
As illustrated in Figure 4, we use VQA datasets such as VQAv2, VizWiz, and OK-VQA, which test
the models’ abilities in question-answer scenarios. Additionally, we incorporate image captioning
datasets such as Flickr30k and MSCOCO to assess descriptive accuracy, along with the Hateful-
Memes dataset for classification tasks focused on hate speech detection. This comprehensive ap-
proach allows us to thoroughly evaluate the models across different tasks. The size distribution of
the training, validation, test and query sets D̂ in these VL datasets is shown in Table 8.

For the Open-ended VQA task, we utilize the following datasets: VQAv2, which contains images
from the MSCOCO dataset and focuses on traditional question-answering pairs, testing the model’s
ability to understand both the image and the question. VizWiz presents a more challenging set-
ting with lower-quality images and questions along with a lot of unanswerable questions, pushing
models to handle uncertainty and ambiguity. OK-VQA is distinct in that it requires the model to
leverage external knowledge beyond the image content itself to generate correct answers, making it
a benchmark for evaluating models’ capacity to integrate outside information.

For the Image Captioning task, we use the Flickr30k and MSCOCO datasets. The Flickr30k dataset
consists of images depicting everyday activities, with accompanying captions that provide concise
descriptions of these scenes. The MSCOCO dataset is a widely-used benchmark featuring a diverse
range of images with detailed and richly descriptive captions, ideal for evaluating image captioning
models.
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Datasets Training Validation Test D̂ Size
VQAv2 443,757 214,354 447,793 8000
VizWiz 20,523 4,319 8,000 2000

OK-VQA 9,055 5,000 / 800
Flickr30k 29,783 1,000 1,000 2500
MSCOCO 82,783 40,504 40,775 3000

HatefulMemes 8,500 500 2,000 800
Hybrid 30000 9000 / 3000

Fast 5,000 / 200 500
CLEVR 800 / 200 80

Table 8: Overview of the size distribution across the datasets used.

For the Image Classification task, we use the HatefulMemes dataset, which is an innovative dataset
designed to reflect real-world challenges found in internet memes. It combines both visual and
textual elements, requiring the model to jointly interpret the image and the overlaid text to detect
instances of hate speech.

VL-ICL Bench covers a number of tasks, which includes diverse multimodal ICL capabilities span-
ning concept binding, reasoning or fine-grained perception. Few-shot ICL is performed by sampling
the ICDs from the training split and the query examples from the test split. We choose two image-
to-text generation tasks from it, which reflects different key points of ICL. Fast Open MiniImageNet
task assigns novel synthetic names (e.g., dax or perpo) to object categories, and LVLMs must learn
these associations to name test images based on a few examples instead of their parametric knowl-
edge, emphasizing the importance of rapid learning from ICDs. CLEVR Count Induction asks
LVLMs to solve tasks like ”How many red objects are there in the scene?” from examples rather
than explicit prompts. The ICDs’ images are accompanied by obscure queries formed as attribute-
value pairs that identify a specific object type based on four attributes: size, shape, color, or material.
Models must perform challenging reasoning to discern the task mapping and generate the correct
count of objects that match the query attribute.

The datasets in our experiments are evaluated using task-specific metrics, as summarized in Table
7. For the VQA tasks, Hybrid dataset and VL-ICL bench’s tasks, we use accuracy as the metric to
assess the models’ ability to provide correct answers:

Accai = max(1,
3×

∑
k∈[0,9]match(ai, gk)

10
),

where ai denotes the model’s generated answer, gk denotes the k-th ground true answer. match(·, ·)
decides whether two answers match, if they match, the result is 1, otherwise it is 0.

For the image captioning tasks, we use the CIDEr score, which measures the similarity between
generated captions and human annotations. Finally, for the HatefulMemes classification task, we
evaluate performance using the ROC-AUC metric, which reflects the model’s ability to distinguish
between hateful and non-hateful content.

B.2 LVLMS

In recent advances of large vision language models (LVLMs), efficient processing of multimodal
inputs, especially images, has become a critical focus. Models like OpenFlamingov2, IDEFICS2,
InternVL2, Qwen2-VL and GPT-4V implement unique strategies to manage and process visual data
alongside textual input.

OpenFlamingov2 handles visual input by dividing images into patches and encoding them with a Vi-
sion Transformer. Each image patch generates a number of visual tokens, which are then processed
alongside text inputs for multimodal tasks. To manage multi-image inputs, the model inserts special
tokens <image¿ and <—endofchunk—¿ at the beginning and end of the visual token sequences.
For example, an image divided into 4 patches produces 4 x 256 visual tokens, with the additional
special tokens marking the boundaries before the tokens are processed by the large language model.
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IDEFICS2 processes visual input by applying an adaptive patch division strategy adapted to image
resolution and content complexity. Depending on these factors, each image is segmented into 1 to 6
patches, striking a balance between preserving spatial information and maintaining efficiency. These
patches are encoded through a Vision Transformer, followed by a spatial attention mechanism and a
compact MLP, resulting in 128 visual tokens per patch. The positions of images in the input sequence
are marked with <—image pad—¿ for alignment, while <end of utterance¿ tokens separate query
and answer components in in-context demonstrations. An image split into five patches yields 5 x
128 + 2 tokens before being integrated with the LLM.

InternVL2 also dynamically divides images into 1 to 4 patches based on their aspect ratio. A Vision
Transformer then extracts visual features from each patch, followed by a pixel shuffle operation and
a mlp, producing 256 visual tokens for each patch. Additionally, special tokens <img¿ and </img¿
are inserted at the beginning and end of the sequence. So, an image divided into 3 patches will
produce 3 x 256 + 2 tokens before entering LLM.

Qwen2-VL reduces the number of visual tokens per image through a compression mechanism that
condenses adjacent tokens. A ViT first encodes an image (e.g., with a resolution of 224 x 224 and
a patch size of 14), producing a grid of tokens, which is then reduced by employing a simple MLP
to compress 2 x 2 tokens into a single token. Special <lvision start—¿ and <lvision end—¿ tokens
are inserted at the start and end of the compressed visual token sequence. For example, an image
that initially generates 256 visual tokens is compressed to just 66 tokens before entering the LLM.

GPT-4V (Vision) extends GPT-4’s capabilities to handle VL tasks by enabling the model to process
and reason about visual input alongside text. The model can perform various tasks including image
understanding, object recognition, text extraction, and visual question-answering through natural
language interaction. In terms of its few-shot learning ability, GPT-4V demonstrates the capacity to
adapt to new visual tasks given a small number of examples through natural language instructions,
showing potential in areas such as image classification and visual reasoning, though performance
may vary across different task domains and complexity levels.

B.3 BASELINE

Various baseline methods are used to evaluate the model’s performance, ranging from random sam-
ple to different SOTA retrieval strategies. The following is a description of the baselines used in our
experiments.

1. Random Sampling (RS): In this approach, a uniform distribution is followed to randomly sample
n demonstrations from the library. These demonstrations are then directly inserted into the prompt
to guide the model in answering the query.

2. Image2Image (I2I): During the retrieval process, only the image embeddings Ii from each
demonstration (Ii, Qi, Ri are used. These embeddings are compared to the query image embedding
Î and the retrieval is based on the similarity between the images.

3. ImageQuery2ImageQuery (IQ2IQ): During the retrieval process, both the image embeddings
Ii and the query embeddings Qi of each demonstration (Ii, Qi, Ri are used. These embeddings are
compared to the embedding of the concatenated query sample (Î , Q̂) and the retrieval is based on
the joint similarity between the images and the queries.

4. ImageQuery&Pseudo Result (IQPR): This baseline starts by using the RS to generate a pseudo
result R̂P of the query sample. The pseudo result is then concatenated with Î and Q̂ to form the
query sample’s embedding. This retrieval method is based on the similarity of the whole triplet,
using image, query and result embeddings.

5. Lever-LM: Lever-LM is designed to capture statistical patterns between ICDs for an effective
ICD sequence configuration. Observing that configuring an ICD sequence resembles composing a
sentence, Lever-LM leverages a temporal learning approach to identify these patterns. A special
dataset of effective ICD sequences is constructed to train Lever-LM. Once trained, its performance
is validated by comparing it with similarity-based retrieval methods, demonstrating its ability to
capture inter-ICD patterns and enhance ICD sequence configuration for LVLMs.
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VQA Captioning Classification Hybrid Fast CLEVR
VQAv2 VizWiz OK-VQA Flickr30K MSCOCO HatefulMemes

OpenFlamingov2

RS 49.52 27.71 37.90 76.74 92.98 70.53 13.48 57.69 21.60
I2I 50.84 26.82 37.79 79.84 94.31 64.75 12.79 59.07 19.39

IQ2IQ 52.29 31.78 42.93 79.91 94.40 68.72 24.93 58.96 20.03
SQPR 53.38 30.12 41.70 80.02 96.37 69.16 28.71 57.32 21.84

Lever-LM 55.89 33.34 43.65 83.17 98.74 72.70 32.04 59.41 22.67
Ours 60.12 39.76 46.28 84.23 99.10 75.09 35.17 62.25 26.80

IDEFICS2

RS 53.77 32.92 40.01 82.43 99.61 68.81 15.65 54.72 35.14
I2I 54.97 31.67 41.37 85.76 101.34 69.31 10.49 55.20 32.37

IQ2IQ 55.41 34.31 43.13 85.63 101.45 70.78 30.36 55.14 32.75
SQPR 55.32 33.74 42.76 87.65 103.57 62.18 24.03 55.18 36.29

Lever-LM 56.78 34.10 43.27 88.01 105.62 71.33 30.14 55.83 38.97
Ours 58.41 38.32 47.35 90.41 107.04 73.68 33.25 61.21 40.21

InternVL2

RS 61.83 54.70 57.13 99.05 116.37 76.84 17.74 75.87 57.03
I2I 63.35 55.07 58.73 103.29 118.46 70.72 14.82 75.89 54.79

IQ2IQ 64.57 56.94 62.91 103.41 118.53 78.20 36.46 76.03 50.07
SQPR 63.67 56.83 60.14 105.28 121.94 77.31 34.05 76.34 56.32

Lever-LM 65.36 57.27 61.11 104.65 126.12 79.58 43.16 78.84 57.45
Ours 68.42 61.69 62.87 108.26 128.34 82.97 45.79 81.76 59.27

Qwen2VL

RS 63.71 48.97 55.30 100.32 121.47 80.01 20.42 66.29 48.70
I2I 64.28 48.75 56.39 102.87 124.50 77.85 13.89 67.81 47.97

IQ2IQ 67.26 52.20 58.49 103.04 124.63 79.78 37.83 67.76 46.63
SQPR 67.49 49.54 59.86 105.13 127.38 76.67 27.96 67.12 49.56

Lever-LM 68.23 54.81 61.75 105.24 127.03 81.29 45.47 70.73 50.85
Ours 71.57 57.93 63.97 106.91 132.14 83.19 48.95 75.09 55.98

GPT-4V

RS 60.49 45.38 59.13 101.56 115.87 82.40 16.98 58.72 45.08
I2I - - - - - - - - -

IQ2IQ - - - - - - - - -
SQPR - - - - - - - - -

Lever-LM 65.31 54.62 65.73 106.34 126.98 84.81 45.62 60.31 48.34
Ours 65.16 56.17 68.39 107.29 129.71 83.96 51.48 67.17 50.59

Table 9: Detailed results of different methods across all tasks for the five LVLMs used in the
evaluation, with all generated sequences being 4-shot. The highest scores are highlighted in bold.
Our model achieves the best performance in all but three tasks, demonstrating its generalization and
effectiveness.

B.4 MAIN RESULTS

We can go deep into the results in Tabel 9. The findings are as follows: (1) SabER exhibits the
best performance in all but three tasks across nine datasets and five LVLMs, demonstrating its great
efficiency and generalization. Upon examining the outputs, we observe that GPT-4V tends to devi-
ate from the ICD format and produce redundant information more easily than open-source LVLMs,
aligning with (Wu et al., 2023a). This results in the quality improvement of the ICD sequence not al-
ways translating into stable ICL performance gains for GPT-4V, which may explain why SabER did
not achieve the best performance in two of its tasks. (2) For tasks like VizWiz and Hybrid, SabER
consistently improves the quality of sequence generation in all LVLMs compared to similarity-based
models, demonstrating the importance of increasing task semantics for complex task mappings. We
find that the performance gains from SabER are not directly related to the model’s intrinsic ability
on these tasks. Unlike simpler tasks like captioning, for tasks with complex mappings, task seman-
tics still has a significant impact, even when LVLMs exhibit strong few-shot learning abilities. This
shows that models with strong ICL capabilities on certain tasks retain, and even strengthen, their
ability to leverage task semantics, underscoring the value of improving ICD sequence quality.

C ABLATION STUDY

C.1 DEVIL IN SHOT COUNTS

Table 10 shows that in all N -n settings, including interpolation and extrapolation, task-aware atten-
tion in SabER has a positive effect. SabER achieves notably strong performance in the 4-8 setting,
indicating its potential in both low-data scenarios and in ICL with more shots, even in many-shot
ICL, as the context size of LVLMs increases. Overall, when training and generation shots are consis-
tent, performance is maximized, as the task semantics learned by the model can be applied equally
and evenly to guide sequence generation.
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VizWiz MSCOCO Hatefulmemes Hybrid FAST CLEVR

N
n 2 4 8 2 4 8 2 4 8 2 4 8 2 4 8 2 4 8

2 50.25 50.91 50.68 115.56 121.05 120.72 78.77 82.93 81.52 37.27 43.15 42.68 68.15 71.33 73.07 44.16 47.58 48.93
(13.16%) (10.74%) (11.66%) (6.76%) (5.44%) (5.46%) (5.07%) (4.12%) (3.88%) (11.73%) (9.24%) (9.77%) (7.91%) (7.69%) (6.66%) (8.38%) (7.73%) (7.19%)

4 49.69 54.17 55.83 117.79 122.67 114.21 77.64 83.18 84.89 34.10 46.33 47.05 69.88 72.90 73.63 42.94 49.97 49.79
(11.99%) (13.63%) (12.55%) (4.37%) (4.77%) (4.68%) (3.52%) (5.21%) (5.07%) (5.48%) (11.09%) (11.57%) (5.37%) (8.64%) (7.75%) (6.82%) (8.66%) (8.00%)

8 49.83 52.66 51.97 118.82 122.16 121.79 80.02 83.63 83.15 36.52 43.88 43.01 70.31 72.72 72.75 42.09 50.25 49.47
(11.41%) (12.72%) (9.66%) (4.25%) (4.41%) (3.76%) (4.27%) (4.94%) (3.56%) (10.25%) (10.17%) (6.88%) (5.25%) (8.81%) (6.44%) (6.27%) (8.71%) (7.51%)

Table 10: Results of SabER under different N -n settings across six datasets, where N is the training
sequence shot and n is the generation sequence shot. VizWiz and MSCOCO are selected as repre-
sentative datasets for the VQA and Captioning tasks. The data in the upper part of each cell shows
SabER’s performance, while the numbers in parentheses below indicate the improvement from task-
aware attention. The data underlined correspond to the setting in main experiments, i.e., 4-4.

Datasets Training Validation Test D̂ Size metrics

Rule Learning 1600 - 150 exact match scores
Fast Counting 800 - 40 Accuracy

Table 11: Overview of Rule Learning and Fast Counting tasks.

However, in the 8-8 setting, some performance metrics are unexpectedly lower than those in the 8-4
or even 4-4 settings. Given that LVLMs can perform better TL with more ICDs, this suggests that
TR driven by task semantics plays a more significant role. We deduce that the task semantics in
ICL exhibits marginal effects related to the number of ICD shots. This marginal effect accumulates
through the task representation learned by SabER via task-aware attention, and the task patterns
recognized by the LVLM during TR from ICDs.

Therefore, for tasks like VQA and CLEVR, balancing the varying TR dependence in well-trained
LVLMs with the impact of task semantics during the training of configuration models is demand-
ing. This highlights the importance of task-aware attention in flexible ICD sequence configuration.
SabER enables high-precision multimodal ICL tailored to specific needs.

C.2 INPUT EMBEDDING

For the CLIP encoders, we explore three alternative methods: one involves freezing its parameters
and adding an MLP adapter to its output, which is then trained; another involves fully training
the entire encoder; and the third involves training only the last two layers. For constructing the
embeddings multimodal ICD tokens, we first experimented with direct concatenation without gating
modules:

ei = EI(Ii) + ET (Q)i + ET (Ri) + ri,

where ri is a randomly initialized learnable component introduced into the embedding. Besides
binary gating, we examine a finer-grained ternary gating module that assigns separate weights to
control the contributions of all three components I , Q and R:

ei = gI · EI(Ii) + gQ · ET (Qi) + gR · ET (Ri),

where gI , gQ and gR denote the weights computed using a softmax function applied the linear
transformations, ensuring their sum equals 1. Additionally, we apply regularization to the weights:
g2I + g2Q + g2R ≤ θ to prevent excessive reliance on specific components.

C.3 GENERALIZATION TEST

For NLP evaluation, we utilize the Rule Learning part of the latest benchmark, ICLEval. ICLEval
is designed to assess the ICL abilities of LLMs, focusing on two main sub-abilities: exact copying
and rule learning. The Rule Learning part evaluates how well LLMs can derive and apply rules
from examples in the context. This includes tasks such as format learning, where models must
replicate and adapt formats from given examples, and order and statistics-based rule learning, where
the model must discern and implement patterns such as item sequencing or handling duplications.
These tasks challenge LLMs to go beyond language fluency, testing their ability to generalize from
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Task Q R

Format rules
—Index—name—age—city—
—————————
—1—Elijah Morgan—36—Pittsburgh—

<person¿
<name¿Elijah
Morgan</name¿
<age¿36</age¿
<city¿Pittsburgh</city¿
</person¿

Statistics
rules

588 and 823 are friends.
885 and 823 are friends.
795 and 588 are friends.
890 and 823 are friends.
885 and 588 are friends.
890 and 588 are friends.
795 and 823 are friends.
Query: Who are the friends of 885?

823, 588

Order rules

Input: activity, brief, wonder, anger
Output: anger, wonder, activity, brief
Input: market, forever, will, curve
Output: curve, will, market, forever
Input: pain, leading, drag, shoot
Output: shoot, drag, pain, leading
Input: shopping, drama, care, start
Output:

start, care, shopping, drama

List Mapping

Input: [1, 3, 6, 1, 83]
Output: [3]
Input: [5, 6, 35, 3, 67, 41, 27, 82]
Output: [6, 35, 3, 67, 41]
Input: [8, 45, 6, 18, 94, 0, 1, 2, 7, 34]
Output: [45, 6, 18, 94, 0, 1, 2, 7]
Input: [2, 7, 66, 6, 93, 4, 47]
Output:

[7, 66]

Table 12: The examples of four Rule Learning tasks in ICLEval.

Method VQAv2 VizWiz OK-VQA Hybrid
Gap ↑ Variance↓ Gap↑ Variance↓ Gap↑ Variance↓ Gap↑ Variance↓

I2I 2.86 22.61 1.83 25.34 3.07 21.94 1.54 26.79
IQ2IQ 3.27 21.96 2.79 26.57 3.43 19.51 2.31 25.34
Lever-LM 3.42 16.21 3.64 18.57 3.08 18.18 2.76 20.85
Ours 3.85 14.82 3.85 16.34 3.37 13.77 3.39 17.98

Table 13: Results of ICD sequence evaluation of four configuration methods. The best scores are
highlighted in bold.

context in diverse scenarios. Examples of (Q,R) pairs can be found in Table 12. For all tasks, we
use exact match scores to evaluate the predictions with the labels.

For text-to-image evaluation, we utilize the Fast Counting task in the VL-ICL bench. In this task,
artificial names are associated with the counts of objects in the image. The task is to generate an
image that shows a given object in quantity associated with the keyword (e.g. perpo dogs where
perpo means two). Thus, each Q is a two-word phrase such as ’perpo dogs’, and its corresponding
R is an image of two dogs.
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C.4 ICD SEQUENCE EVALUATION

Based on our understanding of the ICD sequences in Section 4.1, we conduct experiments on four
datasets where the short-cut effect is the most prevalent. To evaluate the average quality of ICD
sequences, we use two metrics: Gap, which measures the average performance difference after
randomly replacing one ICD in a sequence with another ICD from the same sequence (resulting in
one ICD being duplicated), and Variance, which quantifies the variance in sequence performance
for a given configuration method on a specific task. The results are presented in Table 13. SabER
achieves the highest Gap across all four datasets, indicating that the ICD sequences it constructs
exhibit a more comprehensive task mapping. Additionally, it consistently demonstrates the lowest
Variance, suggesting that the task mappings within its sequences are the most accurate and stable,
minimizing reliance on shortcut inference.
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