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Abstract

Vision-language models (VLMs), such as CLIP, have shown strong generalization
under zero-shot settings, yet adapting them to downstream tasks with limited super-
vision remains a significant challenge. Existing multi-modal prompt learning meth-
ods typically rely on fixed, shared prompts and deterministic parameters, which
limits their ability to capture instance-level variation or model uncertainty across
diverse tasks and domains. To tackle this issue, we propose a novel Variational
Multi-Modal Prompt Learning (VaMP) framework that enables sample-specific,
uncertainty-aware prompt tuning in multi-modal representation learning. VaMP
generates instance-conditioned prompts by sampling from a learned posterior dis-
tribution, allowing the model to personalize its behavior based on input content.
To further enhance the integration of local and global semantics, we introduce
a class-aware prior derived from the instance representation and class prototype.
Building upon these, we formulate prompt tuning as variational inference over
latent prompt representations and train the entire framework end-to-end through
reparameterized sampling. Experiments on few-shot and domain generalization
benchmarks show that VaMP achieves state-of-the-art performance, highlighting
the benefits of modeling both uncertainty and task structure in our method. Project
page: https://visual-ai.github.io/vamp

1 Introduction

Vision-Language Models (VLMs), such as CLIP [1], have achieved impressive performance across a
wide range of visual recognition tasks through multi-modal representation learning. Their ability to
align images and texts in a shared embedding space enables strong zero-shot transfer. However, their
large-scale parameters and the scarcity of training data, particularly in few-shot settings, make full
model fine-tuning computationally expensive and prone to overfitting on downstream tasks.

To address this, prompt learning has emerged as a parameter-efficient alternative, where a small
number of learnable tokens are prepended to the input to steer the frozen model toward task-specific
behavior [2, 3, 4, 5, 6, 7, 8]. While effective, existing multi-modal prompt tuning methods typically
rely on fixed, shared prompts that are applied uniformly across all samples. Such methods are inher-
ently deterministic and lack the flexibility to adapt to instance-level variations or model uncertainty,
limiting their generalization to unseen tasks and domains [9, 10].

While recent work has explored uncertainty-aware prompt tuning, most existing approaches remain
limited in scope. Bayesian Prompt Learning introduces uncertainty modeling in text-only prompts,
and Any-Shift Prompting leverages variational inference to enhance robustness across distribution
shifts. However, these methods suffer from key limitations. First, by restricting variational modeling
to input-level prompts with global latent variables, they fail to capture hierarchical feature interactions
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or fine-grained, token-level semantic variations. Second, their text-only prompt tuning overlooks
valuable visual information that could enhance cross-modal alignment. Finally, the standard Gaussian
prior, shared across all classes, fails to capture inter-class variations, resulting in less discriminative
prompt distributions. Consequently, these models are inadequate for capturing fine-grained, input-
specific variations, particularly in vision-language tasks where precise alignment is critical.

To overcome these limitations, we introduce a novel Variational Multi-Modal Prompt Learning
(VaMP) framework that enables sample-specific, uncertainty-aware prompt tuning for vision-language
models. We make three key contributions: First, we introduce token-wise variational modeling across
multiple intermediate network layers. This approach treats individual prompt tokens as latent
variables, enabling the model to capture fine-grained semantic relationships at multiple abstraction
levels and improve generalization in low-data and out-of-distribution scenarios. Second, our multi-
modal design incorporates both visual and textual signals when inferring posterior distributions,
creating more aligned cross-modal representations. Third, by employing class-aware priors instead of
standard Gaussian distributions, VaMP generates more discriminative prompts that better capture
category-specific features and decision boundaries.

We evaluate VaMP on three challenging adaptation settings: base-to-new generalization, domain
generalization and cross-dataset generalization. Our method consistently outperforms strong multi-
modal prompt baselines while maintaining high parameter efficiency. Ablation studies further confirm
the effectiveness of each component, including the variational modeling and task-aware prior.

2 Related Work

Pre-trained Vision-Language Models. Pre-trained vision-language models (VLMs) [1, 11, 12, 13]
have gained significant attention for their strong performance across diverse vision-language tasks.
These models typically follow four training paradigms: 1) masked language modeling [14, 15]; 2)
masked region prediction [16, 17]; 3) image-text matching [16, 14]; and 4) contrastive learning [1, 11,
18, 19]. While VLMs provide robust, generalized representations, adapting them to downstream tasks
remains challenging. Recent studies show that tailored approaches significantly improve performance
in specific domains, such as few-shot image recognition [20, 21], object detection [22, 23, 24, 25, 26,
27], semantic segmentation [28, 29, 30, 31, 32] and visual grounding [33, 34]. In this work, we focus
on adapting vision-language models for few-shot and zero-shot visual recognition tasks.

Prompt Tuning. Instructions provided to language models as text prompts enable task-specific
understanding and performance in VLMs. These prompts, either manually designed or automatically
optimized through "Prompt Learning" (originally from NLP [35, 36, 37]), have been adapted for
computer vision in three primary forms: textual prompt leanring [2, 3, 38, 39, 40, 41, 42, 43, 44, 45,
46] that fine-tune CLIP’s [1] by optimizing continuous prompt vectors in its language branch; visual
prompt learning [4, 47, 48, 49, 50] that optimize task-specific learnable inputs in the visual input space
while keeping pre-trained backbones frozen; and multi-modal prompt learning [5, 51, 52, 53, 54, 55, 6]
that enhance alignment by applying prompts to both vision and language branches. Our work advances
this research by introducing a variational framework for multi-modal prompt tuning, enabling sample-
specific, uncertainty-aware prompt tuning with structured guidance from both visual inputs and
class-level semantics.

Variational Inference. Variational inference has been widely applied to computer vision tasks,
such as image generation [56, 57, 58, 59], action recognition [60], instance segmentation [61],
anomaly detection [62], depth estimation [63], few-shot learning [64, 65, 66, 67], and domain
generalization [68, 69]. Recently, variational inference has been applied to prompt learning to
mitigate overfitting in low-shot settings and improve generalization. For example, Bayesian Prompt
Learning [9] captures uncertainty by sampling prompts from learned distributions, while Any-Shift
Prompting [10] uses a hierarchical probabilistic framework to model distribution shifts and generate
adaptive prompts without test-time optimization. However, both methods are limited to the text
modality and rely on globally shared prompts, which restrict their ability to capture fine-grained,
input-specific variations. To overcome these limitations, we propose a probabilistic framework that
combines multi-modal prompt tuning with variational modeling and sample-specific adaptation.



3 Preliminary

3.1 Revisiting CLIP

Our work builds upon the pre-trained vision-language model, CLIP [1], which comprises both a text
encoder and a vision encoder. Following previous prompt-learning methods [2, 3, 5, 8], we adopt a
ViT-based CLIP model that encodes both images I € R >*W >3 and text descriptions.

Encoding Image. The image encoder V' consists of K transformer layers, denoted as {V;} figl. It

first divides the input image [ into B non-overlapping patches. These patches are then projected
into embeddings eq € RZ*% where d, represents the embedding dimension. Subsequently, patch
embeddings, along with a class token c¢;, are sequentially processed through the transformer blocks:

[cit1,eir1] = Vi([ei,es]) i=0,1,--- | K — 1. (1)

The final image representation x is obtained by applying a linear projection to the last layer’s class
token, mapping it into the shared vision-language embedding space:

fo = Fimglcx)  fo €R @
Encoding Text. The text encoder converts tokenized words into embeddings wy =
[wi, wd, - w)] € RNVXdt which are processed through K transformer layers:

Similarly, the text representation ¢ is obtained through a linear projection of the final embedding of
the last token:
t= F(wd) teRM, 4)

Zero-shot Classification. For classification, hand-crafted text prompts (e.g., “a photo of a
<category>") with class labels y € {1,2,...C} are used. The prediction § for image I is de-
termined by the highest cosine similarity:

5 g SR 1,)/7)

, (5)
Y Ziczl exp(sim(fy,;)/7)

where T is the temperature coefficient.

3.2 Multi-Modal Prompt Learning

Multi-modal prompt learning methods [5, 70, 8] extend text-only prompt learning approaches [2, 3] by
jointly tuning the text and image prompts to achieve improved alignment for downstream tasks. These
methods typically specify H consecutive transformer layers, beginning from the .J-th layer, for prompt
tuning, while leaving the remaining transformer layers fixed (where J > 0and H < K — J + 1).
For example, MaPLe [5] focuses on prompt tuning the shallow layers (J = 0, H = 9), whereas
MMRL [8] applies prompt tuning to deeper layers (J = 5, H = 7).

Deep Language Prompting. In the text branch, we introduce learnable prompts z; € RM*d,
consisting of M tokens, into the ¢-th transformer layer for prompt tuning. For each layer 7 from J to
J + H — 1, these tokens are concatenated with the original token embeddings and fed into the :-th
transformer layer to generate inputs for the next layer:

[ wit1] = Liga ([zi,wi]) (6)
while layers outside this range (from O to J — 1 and from J + H to K — 1) remain unchanged:
[wit1] = Lt ([wi]). (M
Finally, the text representation is derived via Eq. 4.
[ wit1] = Liga ([z5, wi]) ®)
Meanwhile, layers outside this range (from O to J — 1 and from J + H to K — 1) remain unchanged:
[wit1] = Lita ([wi]). ©

The final text representation is obtained through Eq. 4.



(a) Class-Aware Prior Construction (b) Variational Multi-Modal Prompt Adaptation (VMPA)
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Figure 1: Overview of the VaMP framework. (a) Class-Aware Prior Construction: Utilizing CLIP’s
frozen image encoder to process training samples, generating offline class prototypes for subsequent adaptation.
(b) Variational Multi-Modal Prompt Adaptation (VMPA): Variational modeling mechanism where image-
conditioned posterior g4 (z; | =) and class prototype-based prior py (2 | ¢y) are aligned through KL divergence
regularization of latent prompt distributions. (¢) Training Pipeline: Full architecture of our proposed VaMP
framework.

Deep Vision Prompting. 1In the visual branch, M learnable tokens %; € R *4v are inserted into
the i-th transformer layer for prompt tuning. The exact computation of these visual tokens depends
on the specific multi-modal prompt learning method being used. For instance, in MaPLe [5], these
visual tokens are generated from the language prompts via a linear transformation implemented with
an MLP. In contrast, MMRL [8] obtains visual tokens from a shared latent space—a set of learnable
tokens initialized by sampling from a Gaussian distribution—and then uses separate linear projection
functions (also implemented with MLPs) to generate modality-specific prompts.

For each layer ¢ from J to J + H — 1, these generated tokens are concatenated with the original
patch token embeddings and fed into the ¢-th transformer layer to produce inputs for the next layer.

[Cit1,€it1, ] = Viga([ci, e, Zi]). (10)
For the remaining layers, the original operation without prompts is preserved:
[civ1seiva] = Viga([eis ei])- (11

The final image representation follows the same projection process outlined in Eq. 2. During inference,
predictions follow standard classification procedures based on similarity.

4 Method

We propose VaMP—a variational multi-modal prompt learning framework that enables sample-
specific, uncertainty-aware, and structured tuning within vision-language models. Our method



consists of three key components: (i) sample-specific multi-modal prompt generation, where image-
conditioned prompts are injected across multiple transformer layers; (ii) variational prompt adaptation
for multi-modal representation learning, which models the text-side prompts as latent variables to
capture instance-level uncertainty; and (iii) class-aware prior construction, which regularizes the
latent space using semantic information from both the input instance and its class prototype. An
overview of the full framework is illustrated in Figure 1, which highlights the generation of text
prompts from image features, the variational posterior, and the class-conditioned prior used for
regularization.

4.1 Sample-specific Multi-Modal Prompt Generation

In multi-modal prompt learning, prior work typically learns a fixed set of prompt tokens shared
across all input samples [5, 8]. While effective, such fixed prompts cannot adapt to instance-specific
variations, which are crucial for robust downstream performance under distribution shifts.

To overcome this limitation, we propose sample-specific prompt generation, where prompts in the
text encoder are dynamically generated based on the input image. Unlike previous methods that insert
fixed prompts at a single layer, we generate and inject prompts across multiple transformer layers,
enabling hierarchical and fine-grained modulation of the language stream.

Specifically, given an input image x, we first extract its global visual representation f, using the
frozen CLIP image encoder. To generate text-side prompts, we define a set of H layer-specific prompt
generators {D; Z:JH ~!, where each ®; is a lightweight MLP that maps the image feature to a set of

M prompt tokens for the i-th transformer layer:
2 =®i(f,) eRM*d =7 . J4+H-1, (12)

where d is the token embedding dimension. Although all ®; share the same architecture, they have
independent parameters to allow for layer-specific adaptation.

The resulting prompts z; are concatenated with the frozen text token embeddings W; at each layer ¢
of the CLIP text encoder, as formalized in Eq. 8, following the multi-layer prompt insertion strategy
used in MaPLe [5] and MMRL [8].

In parallel, we also adopt deep vision prompting in the CLIP image encoder, where a set of learnable
vision-side prompt tokens Z;_; € RM*? js inserted at each selected transformer layer . These vision
prompts are shared across samples and optimized independently from the input . They are not
generated dynamically, nor modeled as latent variables.

In summary, our method introduces dynamic, sample-specific text prompts z; conditioned on image
features and static, shared vision prompts z;, aligning both modalities through a structured and
hierarchical prompting design. Only the text-side prompts z; are modeled probabilistically in our
variational framework.

4.2 Variational Multi-Modal Prompt Adaptation

While our sample-specific prompts z; increase flexibility, they remain deterministic and lack the
ability to capture uncertainty—a key factor in few-shot and distribution-shift settings. To address
this, we formulate prompt adaptation as a probabilistic latent variable model, replacing deterministic
prompt tokens with latent prompt tokens learned via variational inference.

For each input image = and fixed text template ¢, we define z = {z;}7 ', where each z; € RM*4
is a latent variable representing the prompt tokens inserted at layer ¢ of the text encoder. To model
the posterior distribution over these latent variables, we introduce a set of layer-specific MLPs

{ @};]:f ~1, where each ¢; predicts the parameters of a Gaussian distribution:

(i, i) = ¢i(f2), (13)

where f, is the frozen CLIP image embedding. Using these predicted parameters, the posterior
distribution is formulated as a product of layer-wise Gaussians, conditioned solely on the image x:

46(2i | ©) = N (s, diag(a7)) (14)



Given label y, we aim to maximize the marginal likelihood:
logp(y | x,t) = log/p(y | z,t,2) p(z | x) dz. (15)

As the integral is intractable, we maximize the variational evidence lower bound (ELBO):
Lerpo = By, (212) logp(y | z,t,2)] — KL (gg(2 | 2) | p(2)) - (16)

Here, p(z) represents the prior distribution over the latent prompts, which we initially set to a
standard Gaussian N (0, I). In implementation, we apply the reparameterization trick [71] to enable
gradient-based optimization:

zi = pi +0i O, € ~N(OT). (17)

Each sampled z; replaces the deterministic z;, and is concatenated with the frozen tokens w; to
form the layer input, as formalized in Eq. 8. This variational formulation introduces a structured,
uncertainty-aware distribution over prompts and allows the model to adaptively control prompt
behavior per input.

4.3 Class-Aware Prior Construction

In variational inference, the prior distribution p(z) serves as a crucial regularizer for the learned
posterior g, (z | ). While a standard choice p(z) = N(0,I) provides a generic reference, it lacks
semantic structure and offers no task-specific guidance. To incorporate class-level semantics into the
latent prompt space, we introduce a class-aware prior that conditions on a prototype representation
for each class.

During training, we assume access to the class label y for each sample. We compute a class prototype
oy by averaging the posterior means of training samples in class y:

1 _
%= 1p,] > Fan (18)

;c,iEDy

where D, is the set of training instances labeled y.
To model layer-wise latent prompts z = {zl};]:'f ~1, we introduce a set of layer-specific prior

networks {wz};ljf ~1. Each prior network maps the class prototype ¢y to the parameters of a
Gaussian prior at layer 4:

(i1, 65) = ¥ilcy)s py(zi | oy) = N(ju, diag((5:)%)). (19)
The resulting ELBO objective now sums across layers:
J+H-1
LgLpo = Z (]Eqd)(z”w) [Ing(y | :C,t,Zi)] — KL (q¢(zi | (ﬂ) Hp¢(2i | Oy))) : (20)
i=J

This class-aware prior construction provides global semantic anchoring for each layer’s prompt
distribution. It encourages prompts from the same class to lie in nearby regions of the latent space,
improving intra-class consistency and few-shot generalization. At test time, when y is unavailable,
we revert to the standard prior p(z;) = A(0,I) for all layers.

4.4 Inference Procedure

During inference, our method follows a single forward pass through the VaMP framework. Given
an input image z and a fixed text template ¢ (e.g., “A photo of a [CLASS]”), we first extract the
frozen CLIP image feature f .

For probabilistic inference, we leverage Monte Carlo sampling over the latent prompt distribution.
Specifically, given input image z, we draw S samples {z; ;}5_; from the learned posterior g, (z; | x)
for each layer i:

iy o] = 6i(fo)y  zis =i +0; O€is, €5~N(OT). 2n



Each sampled latent prompt z; ; is concatenated with the frozen text tokens w; at each transformer

layer. Simultaneously, a set of shared vision-side prompts { Z,};]:f ~1 is injected into the correspond-

ing layers of the CLIP image encoder. The model then computes the image and text features using the
frozen CLIP encoders with inserted prompts, and generates a prediction p,(y | 2,t, {z; s} 77 1)

based on the similarity between the projected image and text representations.

Finally, the predictions are averaged across samples to form the final output:
(y|z,t)= Zps |z, t, {2 sy H. (22)

In our experiments, we use .S = 10 samples for all evaluations. This inference-time ensembling
preserves the expressiveness of the variational model while improving robustness and stability.

5 Experiments

5.1 Experiments Setup

We evaluate the performance of VaMP under three different settings: base-to-novel generalization,
cross-dataset evaluation, domain generalization, and few-shot learning. All conducted under a 16-shot
setting, where each category has only 16 training examples.

Base-to-Novel Generalization. In this setting, dataset classes are split into base and novel classes.
The model is trained exclusively on base classes and tested on both base and novel classes, enabling an
assessment of its transfer learning performance on base classes and its ability to preserve the inherent
generalization and zero-shot capabilities of pre-trained VLMs for novel classes. This evaluation is
conducted across 11 diverse classification datasets: ImageNet [72], Caltech101 [73], OxfordPets [74],
StanfordCars [75], Flowers102 [76], Food101 [77], FGVCAircraft [78], SUN397 [79], UCF101 [80],
DTD [81], and EuroSAT [82].

Cross-Dataset Evaluation. This evaluation examines the model’s ability to generalize to unseen
datasets. Following CoCoOp [3], the model is trained on all 1000 ImageNet classes in a few-shot
setting and directly tested, without further fine-tuning, on the same datasets used for base-to-novel
generalization, allowing us to assess cross-dataset transferability.

Domain Generalization. To evaluate the model’s robustness to domain shifts and its generalization
to out-of-distribution data, we train it on ImageNet and test it on four domain-variant datasets:
ImageNetV2 [83], ImageNet-Sketch [84], ImageNet-A [85], and ImageNet-R [86], each introducing
distinct types of domain variation.

Implementation Details. We follow prior studies [5, 8] and adopt a 16-shot training setting for all
experiments unless otherwise noted. We build on the ViT-B/16 variant of CLIP [89] as the visual
backbone and apply multi-layer prompt tuning on the text and vision encoders starting from the .J-th
transformer layer. For MMRL-style settings, we set J = 5, H = 7 and insert M = 5 learnable
representation tokens per layer. For MaPLe-style configurations, we adopt J = 0, H = 9 with
prompt length M = 2 for both modalities. All experiments are conducted on a single NVIDIA V100
GPU.

5.2 Main Results

Base-to-Novel Generalization. We evaluate VaMP against recent prompt tuning methods across 11
diverse datasets under the base-to-new generalization protocol. As shown in Table 1, VaMP achieves
competitive performance on base classes while consistently outperforming all baselines on novel
classes. In particular, VaMP attains the highest average novel accuracy of 78.67%, outperforming
the best previous method (MMRL) by 1.51% and demonstrating strong generalization to unseen
categories. The advantage is especially pronounced on challenging datasets with large domain
shifts. For example, on DTD—a dataset characterized by fine-grained textures rather than semantic
categories—VaMP achieves a novel accuracy of 75.50%, surpassing MMRL by 2.67%. These results
highlight the strength of our structured, variational modeling in adapting to unfamiliar domains
without sacrificing base class performance.

Domain Generalization. We further evaluate VaMP in a domain generalization setting,



Table 1: Comparison of VaMP with previous state-of-the-art methods on base-to-novel generalization across

11 datasets. Bold values indicate the best result
compromising generalization.

s. VaMP consistently enhances base class performance without

Method Average ImageNet Caltech101 OxfordPets
Base Novel H Base Novel H Base Novel H Base Novel H
CLIP [1 69.34 7422 7170 | 7243  68.14 7022 | 96.84 94.00 9540 | 91.17 9726  94.12
CoOp [2 82.69 6322 71.66 | 7647  67.88 7192 | 98.00  89.81 9373 | 93.67 9529 9447
CoOpOp [3 80.47  71.69 7583 | 7598 7043  73.10 | 97.96  93.81 95.84 | 9520 97.69 9643
ProDA 38 81.56 7230  76.65 | 7540 7023 7272 | 9827 9323 9568 | 9543 9783  96.62
KgCoOp [41 80.73  73.60 77.00 | 7583  69.96 7278 | 97.72 9439  96.03 | 94.65 9776  96.18
MaPLe [5 8228 7514 7855 | 76.66 7054 7347 | 97.74 9436  96.02 | 9543 97776  96.58
PromptSRC [6 8426  76.10 7997 | 77.60 70.73 7401 | 98.10 94.03 96.02 | 9533 9730  96.30
TCP [42 84.13 7536 79.51 | 7727  69.87 7338 | 9823  94.67 9642 | 94.67 9720 9592
MMA [70 8320 76.80  79.87 | 7731  71.00 74.02 | 9840 94.00 96.15 | 9540 98.07 96.72
2SFS [87 8555 7548 8020 | 77.71 7099 7420 | 9871 9443  96.52 | 9532 97.82  96.55
SkipT [88 85.04 7753  81.11 | 7773 7040  73.89 | 9850 9533  96.89 | 9570 97.87  96.77
MMRL [8] | 85.68 77.16 8120 | 77.90 7130 7445 | 98.97 9450 96.68 | 9590 97.60  96.74
VaMP 8645 78.67  82.37 ‘ 7898 7345 76.11 9895 9596 9743 ‘ 9695 9524  96.08
Method StanfordCars Flowers102 Food101 FGVCAircraft
Base Novel H Base Novel H Base Novel H Base Novel H
CLIP [1 6337 7489 68.65 | 72.08 77.80 7483 | 90.10 91.22 90.66 | 27.19 3629  31.09
CoOp [2 78.12 6040  68.13 | 97.60 59.67 74.06 | 8833 8226 85.19 | 4044 2230 28.75
CoOpOp [3 7049 7359 7201 | 9487 7175  81.71 | 90.70  91.29  90.99 | 33.41 23.71 27.74
ProDA (38 7470 7120 7291 | 9770  68.68  80.66 | 90.30  88.57 8943 | 3690 34.13 3546
KgCoOp [41 71.76  75.04 7336 | 9500 7473  83.65 | 90.50 91.70  91.09 | 36.21 3355 3483
MaPLe [5 7294 7400 7347 | 9592 7246 8256 | 90.71 9205 91.38 | 3744 3561 36.50
PromptSRC [6 7827 7497 7658 | 98.07 7650 8595 | 90.67 91.53 91.10 | 42773  37.87  40.15
TCP [42 80.80  74.13  77.32 | 97.73 7557 8523 | 90.57 9137 9097 | 4197 3443 3783
MMA [70 78.50  73.10 7570 | 97.77 7593 8548 | 90.13 9130  90.71 | 40.57 36.33 3833
2SFS [87 82.50 74.80 7846 | 9829  76.17 85.83 | 89.11 91.34  90.21 | 4748 3551  40.63
SkipT [88 8293 7250  77.37 | 9857 7580 8570 | 90.67 92.03 91.34 | 4537 37.13 40.84
MMRL [8 81.30  75.07 78.06 | 98.97 7727 86.78 | 90.57 91.50  91.03 | 4630 37.03 41.15
VaMP  83.78 80.14 8191 ‘ 98.96 8397 9085 92.77 9316  92.96 ‘ 46.77 4113  43.76
Method SUN397 DTD EuroSAT UCF101
Base Novel H Base Novel H Base Novel H Base Novel H
CLIP [1 69.36 7535 7223 | 5324 5990 5637 | 5648 6405 60.03 | 70.53  77.50  73.85
CoOp [2 80.60  65.89 7251 | 79.44  41.18 5424 | 92.19 5474 68.69 | 84.69 56.05 67.46
CoOpOp [3 79.74  76.86 7827 | 77.01 56.00 64.85 | 8749  60.04 71.21 8233 7345  77.64
ProDA [38 78.67 7693 7779 | 80.67 5648 6644 | 8390 66.00 73.88 | 8523 7197 78.04
KgCoOp [41 80.29  76.53 7836 | 7755 5499 6435 | 85.64 6434 7348 | 8289  76.67  79.65
MaPLe [5 80.82 7870  79.75 | 80.36 59.18 68.16 | 9407 7323 8235 | 83.00 78.66  80.77
PromptSRC [6 82.67 7847  80.52 | 8337 6297 7175 | 9290 7390 8232 | 87.10 7880  82.74
TCP [42 8263 7820 80.35 | 8277 58.07 6825 | 91.63 7473 8232 | 87.13 80.77 83.83
MMA [70 8227 7857 8038 | 8320 6563 7338 | 8546 8234 83.87 | 86.23 80.03 82.20
2SFS [87 82.59 7891 80.70 | 84.60  65.01 73.52 | 9691 67.09 7929 | 87.85 78.19 8274
SkipT [88 8240  79.03 80.68 | 83.77 6723 7459 | 9247 83.00 8748 | 87.30 8247 8481
MMRL [8 8320 7930  81.20 | 85.67 65.00 73.82 | 95.60 80.17 87.21 | 88.10  80.07  83.89
VaMP 8337 7895  81.09 ‘ 86.14 67.20 7550 95.78 77.21 85.49 ‘ 88.52 7899 8348

where prompts are optimized on ImageNet
and directly applied to its variants (-V2, -S,
-A, -R) without any target supervision. As
shown in Table 2, VaMP achieves the high-
est accuracy across all four target domains,
with an average accuracy of 61.73%, out-
performing the best baseline (MMRL) by
1.20%. The gain is particularly significant
on Sketch, a challenging domain due to
its abstract and textureless nature. On this
subset, VaMP achieves 49.69%, improving
over MMRL by 0.52%. These results vali-

Table 2: Comparison of VaMP with previous state-of-the-art
methods on domain generalization across 4 datasets.

Source | Target

ImageNet | -V2 -S -A R
CLIP [1] 66.73 60.83 46.15 47.77 73.96
CoOp 2] 71.51 6420 4799 49.71 7521
CoOpOp [3] 71.02 64.07 4875 50.63 76.18
MaPLe [5] 70.72 64.07 49.15 5090 76.98
PromptSRC [6] 71.27 64.35 49.55 5090 77.80
MMA [70] 71.00 6433 49.13 51.12 77.32
MMRL [8] 72.03 6447 49.17 5120 77.53
VaMP 72.83 ‘ 64.96 49.69 5197 78.01

date the effectiveness of our variational prompt modeling and class-aware regularization in enhancing
out-of-distribution generalization, even in low-texture, cross-modality scenarios.

Cross-Dataset Generalization. To asses
cross-dataset transfer, where prompts are

s robustness under domain shift, we evaluate VaMP on
tuned on one source dataset (ImageNet) and evaluated

directly on unseen target datasets. As shown in Table 3, VaMP achieves the best average performance
across 10 diverse target datasets, with an average accuracy of 67.74%, outperforming the strongest

baseline (MMRL) by 0.49%. The improve

ment is particularly notable on challenging datasets with

large domain gaps. For example, on EuroSAT—a remote sensing dataset with significant visual
discrepancy from natural images—VaMP achieves a target accuracy of 53.82%, improving over



Table 3: Comparison of VaMP with previous state-of-the-art methods on cross-dataset evaluation across 10

datasets.
Source | Target
&
& &
~ & & N &
S $ S :
S s & & 5 F s F 08 & s
9 & & § & & > O 5 ) N
§ 18 5 s § & & & £ & & 8
N v J Q = & S < S I S
CoOp [2]  71.51 63.88 93.70 89.14 64.51 68.71 85.30 18.47 64.15 4192 4639 66.55
CoOpOp [3]  71.02 65.74 94.43 90.14 65.32 71.88 86.06 22.94 67.36 4573 4537 68.21
MaPLe [5]  70.72 66.30 93.53 90.49 65.57 72.23 86.20 24.74 67.01 4649 48.06 68.69
PromptSRC [6]  71.27 65.81 93.60 90.25 65.70 70.25 86.15 23.90 67.10 46.87 4550 68.75
TCP [42] 71.40 66.29 93.97 91.25 64.69 71.21 86.69 23.45 67.15 4435 5145 68.73
MMA [70] 71.00 66.61 93.80 90.30 66.13 72.07 86.12 25.33 68.17 46.57 49.24 68.32
MMRL 8] 72.03 67.25 94.67 91.43 66.10 72.77 86.40 26.30 67.57 4590 53.10 68.27

VaMP  72.83 | 67.74  94.96 91.79 66.10 73.18 86.97 26.76 68.04 4682 53.82 68.93

Table 4: Ablation studies: impact of sample-specific multi-modal prompt generation, variational prompt
adaptation and class-aware prior on base-to-new generalization performance, averaged across 11 datasets.

(a) Effects of sample-specific multi-modal prompt  (b) Effects of variational multi-modal prompt gen-

generation eration
Method Prompt Type Base New | H Method Prompt Type Base New | H
task-specific 82.28 75.14 | 78.55 -, Deterministic prompt  82.95 76.95 | 79.83
MaPLe [5]  cmple-specific  82.95 76.95 ‘ 79.83 MaPLe [5] v ational prompt 8477 77.32 | 80.87
task-specific 85.68 77.16

MMRL [8]

81.20 Deterministic prompt 8593  78.13 ‘ 81.84

sample-specific 85.93 78.13 | 81.84 MMRL 8] Variational prompt  86.11 78.45 | 82.10

(c) Effects of class-aware prior on base-to-new generalization

Method Prompt Type Base New\ H

Normal gaussian prior 84.77 77.32 | 80.87
Class-aware prior 85.13 78.07 | 81.45

Normal gaussian prior  86.11 78.45 | 82.10
Class-aware prior 86.45 78.67 | 82.37

MaPLe [5]

MMRL [8]

MMRL by 0.72%. These results demonstrate that our structured and uncertainty-aware adaptation
generalizes well across domains, even when the target distribution differs substantially from the
source.

5.3 Ablation Study

Effects of Sample-specific Multi-Modal Prompt Generation. We begin by assessing the effect
of sample-specific multi-modal prompt generation. As shown in Table 4a, previous methods such
as MaPLe and MMRL use task-specific prompts shared across all inputs. In contrast, our sample-
specific design generates prompts conditioned on each input instance and injected across multiple
layers. This structured, instance-aware formulation consistently improves generalization to novel
categories, demonstrating the advantage of personalized multi-modal adaptation over fixed prompt
configurations.

Effects of Variational Prompt Adaptation. Next, we evaluate the effect of variational modeling on
the prompt tokens. While prior work adopts deterministic prompt embeddings, our approach treats
the text-side prompts as latent variables inferred per instance. This formulation introduces uncertainty
modeling into the prompt space, enabling better adaptation to ambiguous or out-of-distribution inputs.
As shown in Table 4b, applying variational prompt learning improves generalization across both
MaPLe and MMRL backbones, validating the benefit of latent, sample-specific modeling.

Effects of Class-Aware Prior. We further assess the role of structured priors in regularizing the latent
prompt space. Unlike standard variational methods that use an isotropic Gaussian prior, our method
constructs a class-aware prior from prototype representations computed over training data. This
provides global semantic guidance for latent prompt inference. As shown in Table 4c, replacing the
normal prior with a class-aware one consistently improves performance, highlighting the importance
of semantic regularization for class-consistent prompt adaptation.
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Figure 2: Qualitative analysis. Layer-wise visualization of aggregated posterior mean distributions g (z;|z)
for sample images from (a) ImageNet and (b) Flowers102.

5.4 Qualitative Analysis

To gain intuitive insights into the learned latent prompt space, we visualize the posterior distributions
across text encoder layers. Figure 2 illustrates this process for representative samples from ImageNet
and Oxford Flowers datasets. For each input image =, we extract the image-conditioned posterior
q¢(zi|x) at layers 6, 9, and 12. Since VaMP generates M prompt tokens per layer, we aggregate

their means and covariances as flyge i (7) = 77 Zj]\/il 1} (x) and Yoge i (2) = 2 Z;‘il >7 (), then
project these high-dimensional vectors to 2D using PCA. Contours represent uncertainty regions at
1.50 and 2.5¢ standard deviations.

These visualizations provide insights into how VaMP achieves uncertainty-aware prompt learning
through its variational design. First, the varying distributional characteristics across layers and
samples—reflected in the spatial positions, orientations, and covariance structures of the posterior
distributions—demonstrate that VaMP successfully models input-dependent uncertainty through
its variational framework, moving beyond deterministic point estimates. Second, the layer-wise
evolution reveals hierarchical uncertainty refinement: early layers (Layer 6) exhibit broader posterior
distributions with larger variance to accommodate diverse prompt adaptations, while deeper layers
(Layer 12) manifest tighter, more concentrated distributions with reduced uncertainty reflecting
task-specific specialization. This progressive variance reduction enables adaptive representation
learning at different semantic abstraction levels. Third, the consistent inter-class separation of
posterior distributions across all depths demonstrates the effectiveness of the class-aware prior
po(z|c), which regularizes the variational posterior toward discriminative regions of the latent space.
This class-conditional guidance ensures that prompts encode category-specific information from
early feature extraction stages. Finally, VaMP’s stochastic sampling mechanism, manifested through
the distributional spread and overlap patterns, provides inherent robustness against overfitting to
singular prompt configurations. By parameterizing prompts as probability distributions rather than
fixed embeddings, VaMP balances representation flexibility with discriminative capacity throughout
the hierarchical architecture.

6 Conclusion

We presented VaMP, a variational framework for prompt adaptation in multi-modal representation
learning. Our approach addresses the limitations of fixed, shared prompts by introducing a structured
and uncertainty-aware mechanism that adapts to individual input instances. VaMP comprises three
key components: (7) sample-specific multi-modal prompt generation, where visual features condition
prompt tokens across multiple transformer layers; (ii) variational modeling of text-side prompts as
latent variables, enabling instance-specific and probabilistic adaptation; and (iii) a class-aware prior
constructed from semantic prototypes, which regularizes the latent space with global class-level
information. Through extensive experiments on few-shot and domain generalization benchmarks,
we demonstrate that VaMP achieves state-of-the-art performance while maintaining high parameter
efficiency. Our findings highlight the importance of modeling both instance-level variability and task
structure in prompt-based adaptation for vision-language models.
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1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We clearly state our contributions in Abstract and also Section 1. These
contributions are well validated by our experimental results in Section 5.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We provide a "limitation" subsection in the supplementary material.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: We have provided the theoretical proof in the appendix.

Guidelines:

The answer NA means that the paper does not include theoretical results.

All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

All assumptions should be clearly stated or referenced in the statement of any theorems.
The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We have specified all the training details in Section 5.1 and supplemental
materials.

Guidelines:

The answer NA means that the paper does not include experiments.
If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]

Justification: (1) Data: All the datasets we used in this paper are publicly available online,
and all the readers are free to download them. We list the statistics of all the used datasets in
the supplementary material. (2) Code: Code will be available after paper got accepted.

Guidelines:

» The answer NA means that paper does not include experiments requiring code.

¢ Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

¢ The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental Setting/Details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification:
Guidelines:

* The answer NA means that the paper does not include experiments.

» The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Following the standard experimental setup, we repeat each experiment over 3
random seeds and report the mean of the results.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)
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* The assumptions made should be given (e.g., Normally distributed errors).

e It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

e It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments Compute Resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: We provide the computing resources in experiments 5.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code Of Ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We reviewed and followed the NeurIPS Code of Ethics.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: We provide the potential broader impacts in supplemental materials.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: The data and models pose no such risks.
Guidelines:

» The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: We cite the original papers that produced the code package and datasets.
Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

 For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New Assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: Details of the datasets/model are provided in the supplemental materials. The
code will be released after the paper get accepted.

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and Research with Human Subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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Appendix

A Dataset Details

Details of 14 datasets are shown in Table Al.

Table A1: Summary of the 14 datasets.

Dataset ‘ Classes  Train Val Test Description

ImageNet [72] 1,000 1.28M  ~ 50,000 Recognition of generic objects

Caltech101 [73] 100 4,128 1,649 2,465 Recognition of generic objects

OxfordPets [74] 37 2,944 736 3,669 Fine-grained classification of pets

StanfordCars [75] 196 6,509 1,635 8,041 Fine-grained classification of cars

Flowers102 [76] 102 4,093 1,633 2463 Fine-grained classification of flowers

Food101 [77] 101 50,500 20,200 30,300 Fine-grained classification of foods

FGVCAircraft [78] 100 3,334 3,333 3,333 Fine-grained classification of aircrafts

SUN397 [79] 397 15,880 3,970 19,850  Scene classification

DTD [81] 47 2,820 1,128 1,692 Texture classification

EuroSAT [82] 10 13,500 5,400 8,100  Land use & cover classification with satellite images
UCF101 [80] 101 7,639 1,898 3,783  Action recognition

ImageNetV2 [83] 1,000 ~ ~ 10,000 New test data for ImageNet

ImageNet-Sketch [84] | 1,000 ~ ~ 50,889  Sketch-style images of ImageNet classes
ImageNet-A [85] 200 ~ ~ 7,500  Natural adversarial examples of 200 ImageNet classes
ImageNet-R [86] 200 ~ ~ 30,000 Renditions of 200 ImageNet classes

B More Implementation Details

All models are trained using the AdamW optimizer with a learning rate of 0.001 and a weight decay
of 0.01. The batch size is set to 32 for ImageNet and 4 for all other datasets. We apply automatic
mixed-precision training throughout to improve efficiency. For base-to-novel generalization on
ImageNet, we train for 5 epochs; for other datasets we train for 10 epochs. For cross-dataset and
domain generalization tasks, we train on ImageNet for a single epoch. Few-shot learning tasks use
5 training epochs on ImageNet and 50 epochs on target datasets. All reported results are averaged
over three independent runs. All prompts and representation tokens are initialized from a zero-mean
Gaussian distribution with a standard deviation of 0.02. For EuroSAT, we follow MMRL [8] and
set the representation token dimension d,, = 2048; for all other datasets, we use d,, = 512. The
fusion parameter o in MMRL-style classifiers is fixed to 0.7. The average accuracy is reported over
three independent runs. For variational modeling, we use a two-layer MLP with GELU activation to
parameterize both the posterior network ¢ and the prior network v, outputting mean and log-variance
vectors per layer. The latent variables z are sampled using the reparameterization trick, and we
perform S = 10 Monte Carlo samples at inference time. Class prototypes o,, are computed offline at
the start of training.

C Efficiency Analysis

We analyze the efficiency of our variational multi-modal prompt framework, focusing on the trade-
off between inference cost and generalization ability. As detailed in Table A2, VaMP introduces
only a modest overhead compared to the strong MMRL baseline. For instance, with S = 10, our
method improves the Harmonic Mean (HM) from 81.20 to 82.37 with a minimal latency increase
of just 0.8ms per image on an NVIDIA V100 GPU. The performance gains saturate quickly as .S
increases, demonstrating that VaMP achieves an effective balance between accuracy and efficiency
even with limited sampling. Furthermore, our approach is parameter-efficient, increasing the number
of learnable parameters by less than 6% when integrated into MMRL (from 4.992M to 5.132M). This
balance demonstrates that VaMP can be deployed with low overhead while still leveraging uncertainty
modeling for improved generalization.
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Table A2: Analysis of performance vs. efficiency trade-off.

Method S Inference Time (ms/img) Base Novel HM

MMRL - 5.3 85.68 77.16 81.20
MMRL+VaMP 1 5.5 86.10 77.35 81.44
MMRL+VaMP 5 5.8 86.37 7826 82.03
MMRL+VaMP 10 6.1 86.45 78.67 82.37
MMRL+VaMP 20 6.5 86.47 7837 8222
MMRL+VaMP 50 9.3 86.43 78.15 82.01

D More Ablation Studies

We conduct ablation studies by integrating our variational prompt adaptation into the MMRL [8]
framework, analyzing the impact of key hyperparameters such as the prompt depth, and prompt
length. All results are reported on the base-to-novel generalization benchmark (11 datasets), using
average accuracy across base and novel splits.

Effect of Prompt Insertion Depth J and H. We vary the transformer layer index J where prompt
tuning begins, and the number of consecutive layers H to which prompts are added. As shown in
Table A3, inserting prompts deeper into the encoder (e.g., starting from layer J = 5) and extending
them to more layers (e.g., H = 7) leads to better performance on both base and novel classes. This
confirms the benefit of hierarchical prompt injection for deeper vision-language alignment.

Table A3: Effect of prompt insertion depth (J, H).
J | H| Base Novel H

4| 3 |8.57 77.14 81.13
6 | 5| 8628 78.02 82.01
6 | 7 | 8645 78.67 82.37

Effect of Prompt Token Length M. We analyze the sensitivity to the number of prompt tokens M
injected per layer. Table A4 shows that increasing M from 1 to 5 improves accuracy, as the model
benefits from higher representational capacity. However, further increasing to M = 8 slightly reduces
generalization, likely due to redundancy and overfitting. Hence, we set M = 5 as the default in our
main experiments.

Table A4: Effect of prompt token length M per layer.
M | Base Novel H

8576 77.21 81.30
86.18 78.05 82.02
86.45 78.67 82.37
86.19 78.12 82.00

o0 W W =

E Detailed Derivation of the Variational Lower Bound (ELBO)

We derive the evidence lower bound (ELBO) used in our variational prompt learning framework. Our
goal is to estimate the conditional likelihood of the class label y given an image x and a text prompt
template ¢, where the latent variables z represent the sample-specific text prompt tokens injected
across multiple layers of the language encoder.

The marginal likelihood is obtained by integrating out the latent variables z:

logp(y | z,t) = log / p(y | 2,t,2)p(z | 7) d=. 23)
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Since this integral is generally intractable, we introduce a variational posterior g, (z | x) and apply
Jensen’s inequality:

p(y | @,t,2)p(2 | x)
logp(y | z,t) = log / qe(z | z) - dz (24)
(2 | )
Py |zt z)plz |z
2 Eqy 210 [10% ! Jpz ] x) (25)
(2 | x)
= Eqy(zla) log p(y [ 2,1, 2)] = KL(gy(z | 2) || p(= | 2)) - (26)
expected log-likelihood KL divergence
We model z as a collection of layer-wise latent prompt embeddings {z; ;’jf{ ~1, one for each of the

H transformer layers in the text encoder. We assume the posterior and prior factorize across layers:

J+H-1

ge(z | ) = H ge(zi | @), (27)
J+H—-1
p(z | x) H p(z; | ) (28)
This leads to the following form of the ELBO:
J+H-1
Luso= Y [Egyeimlogp(y | o,t,2) = KL(gs(2i | @) || p(z: | 2))] (29)
i=J

where z; is injected at layer ¢ of the frozen text encoder, modulating the token representations via
concatenation.

During training, we replace p(z; | «) with a class-aware prior:

py(zi | 0y) = N(ji, diag((6:)%)) [, 53] = vilcy)- (30)
where the class prototype o, is the mean of posterior means fi; over all training samples in class .
The final training objective maximizes the ELBO in Eq. 29.

This variational formulation enables our model to learn expressive, uncertainty-aware, sample-specific
prompts while regularizing the latent space with class-level semantic structure.

F Extension to Other Tasks

To assess the generalizability of VaMP beyond standard image classification, we extended our
evaluation to the more complex domains of open-vocabulary segmentation and action recognition.
Our approach was integrated into two state-of-the-art frameworks: CAT-Seg [90] for segmentation
and FROSTER [91] for action recognition, both of which utilize a CLIP ViT-B/16 backbone. This
compatibility allowed for a seamless and direct evaluation of VaMP’s effectiveness in these diverse
tasks.

For the open-vocabulary segmentation task, we adhered to the established CAT-Seg protocol. The
model was trained on the COCO-Stuff dataset (118K images, 171 categories) and subsequently
evaluated on several challenging benchmarks, including ADE20K, PASCAL-Context, and PASCAL
VOC, which feature a wide range of category scales (59-847 classes). The results are detailed in
Table AS.

For open-vocabulary action recognition, we adopted the base-to-novel evaluation protocol from
FROSTER. This setup involves training the model exclusively on the base classes from two widely
used video benchmarks, Kinetics-400 and UCF-101. The primary metric is the model’s ability to
generalize to novel, unseen action categories during testing. Table A6 summarizes these results.

The consistent performance gains observed across both segmentation and action recognition tasks
underscore the scalability and robust generalization capabilities of our proposed framework.
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Table AS: Performance for open-vocabulary segmentation.

Method Prompt Tuning ~ ADE-847 PC-459 ADE-150 PC-59 VOC-20
ZegFormer [92] - 5.6 104 18.0 45.5 89.5
OVSeg [93] - 7.1 11.0 24.8 533 92.6
SAN [94] - 10.1 12.6 27.5 53.8 94.0
CAT-Seg [90] - 12.0 19.0 31.8 57.5 94.6
CAT-Seg MMRL 12.8 18.7 324 57.9 94.3
CAT-Seg MMRL+VaMP 139 (+1.1) 203 (+1.6) 33.3(+0.9) 58.6 (+0.7) 95.2 (+0.9)

Table A6: Performance for open-vocabulary action recognition. B: Base classes, N: Novel classes, HM:
Harmonic mean.

Method Prompt Tuning ~ K400(B) K400(N)  K400(HM) UCF(B) UCF(N) UCF(HM)
ViFi-CLIP [95] - 76.4 61.1 67.9 92.9 67.7 78.3
Open-VCLIP [96] - 76.5 62.6 68.9 94.8 71.5 85.3
FROSTER [91] - 77.8 64.3 70.4 95.3 80.0 87.0
FROSTER MMRL 78.3 64.1 70.5 95.5 80.2 87.2
FROSTER MMRL+VaMP  78.8 (+0.5) 64.8 (+0.7) 71.1(+0.6) 96.1(+0.6) 81.0(+0.8) 87.9 (+0.7)

G Scalability to Other VLM Architectures

To demonstrate the architecture-agnostic nature of our method, we validated VaMP on several state-
of-the-art VLMs that represent the latest advances in CLIP-style architectures. Our method can be
readily integrated into more complex VLMs, as it only requires access to intermediate transformer
layers and the ability to inject prompt tokens. The variational adaptation module is lightweight (MLPs
per layer) and does not assume any specific backbone structure. We therefore integrated VaMP into
several prominent models, including EVA-CLIP [97], SigLIP [98], and SigLIP 2 [99]. These models
share similar structural designs with CLIP, which enabled their rapid adaptation for our experiments.
As shown in Table A7, VaMP obtains clear and consistent performance improvements across all
VLMs, demonstrating its strong generalization capability to unseen categories—a critical challenge
in prompt learning. The consistent improvements across different VLMs further substantiate the
effectiveness and generalizability of our approach to different architectures.

Table A7: Performance comparison of different VLMs on ViT-B/16 backbone under base-to-novel generalization
setting.

VLM Method Base Novel H
CLIP [1] MMRL 85.68 77.16 81.20
CLIP [1] MMRL+VaMP 86.45 (+0.77) 78.67 (+1.51) 82.37 (+1.17)
EVA-CLIP [97] MMRL 85.97 77.69 81.62
EVA-CLIP [97] MMRL+VaMP 86.59 (+0.62) 79.18 (+1.49) 82.71 (+1.09)
SigLIP [98] MMRL 86.12 78.21 81.97
SigLIP [98] MMRL+VaMP 86.88 (+0.76) 79.45 (+1.24) 83.00 (+1.03)
SigLIP 2 [99] MMRL 86.64 78.97 82.62

SigLIP2[99]  MMRL+VaMP 87.09 (+0.45) 80.02 (+1.05) 83.40 (+0.78)

H Broader Impact and Limitations

Our work presents a variational framework for sample-specific, uncertainty-aware prompt adaptation
in vision-language models, aiming to improve robustness under distribution shifts and limited super-
vision. The proposed method has the potential to benefit a wide range of downstream applications
where multi-modal understanding and generalization are essential, such as assistive Al systems,
open-world recognition, or low-resource domain transfer. The probabilistic modeling component can
further inspire future efforts in calibrated and interpretable multi-modal adaptation. At present, we
have not identified any ethical concerns associated with the real-world applications of this technology.
However, we strongly recommend continuous monitoring and evaluation to ensure its responsible
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and ethical deployment. Our approach also has certain limitations. First, our class-aware prior
construction relies on access to class prototypes computed from training data, which may not be
available in zero-label scenarios. Extending our method to work under fully unsupervised or few-label
conditions remains an open direction. Second, our experiments focus on classification tasks; the
extension to generative or structured prediction settings (e.g., image captioning, VQA) requires further
investigation and architectural adaptation. Despite these challenges, we believe our framework takes
an important step toward principled and efficient multi-modal prompt learning, and hope it provides
useful insights for future research in uncertainty-aware adaptation, vision-language alignment, and
lightweight tuning strategies.
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