
Push Past Green: Learning to Look Behind
Plant Foliage by Moving It

Xiaoyu Zhang
University of Illinois at Urbana-Champaign

zhang401@illinois.edu

Saurabh Gupta
University of Illinois at Urbana-Champaign

saurabhg@illinois.edu

Abstract: Autonomous agriculture applications (e.g., inspection, phenotyping,
plucking fruits) require manipulating the plant foliage to look behind the leaves
and the branches. Partial visibility, extreme clutter, thin structures, and unknown
geometry and dynamics for plants make such manipulation challenging. We tackle
these challenges through data-driven methods. We use self-supervision to train
SRPNet, a neural network that predicts what space is revealed on execution of a
candidate action on a given plant. We use SRPNet with the cross-entropy method
to predict actions that are effective at revealing space beneath plant foliage. Fur-
thermore, as SRPNet does not just predict how much space is revealed but also
where it is revealed, we can execute a sequence of actions that incrementally re-
veal more and more space beneath the plant foliage. We experiment with a syn-
thetic (vines) and a real plant (Dracaena) on a physical test-bed across 5 settings
including 2 settings that test generalization to novel plant configurations. Our ex-
periments reveal the effectiveness of our overall method, PPG, over a competitive
hand-crafted exploration method, and the effectiveness of SRPNet over a hand-
crafted dynamics model and relevant ablations. Project website with execution
videos, code, data, and models: https://sites.google.com/view/pushpastgreen/.

Keywords: Deformable Object Manipulation, Model-building, Self-supervision

1 Introduction

The ability to autonomously manipulate plants is crucial in the pursuit of sustainable agricultural
practices [1, 2, 3, 4]. Central to autonomous plant manipulation is the plant self-occlusion prob-
lem. Plants self-occlude themselves (Figure 1 (left)). Plant leaves and branches have to be care-
fully moved aside for the simplest of agriculture problems: plant inspection, phenotyping, precision
herbicide application, or finding and plucking fruits. This papers tackles this plant self-occlusion
problem. We develop methods that learn to manipulate plants so as to look beneath their external
foliage. Figure 1 (middle and right) shows steps from a sample execution from our method. We
believe our work will serve as a building block that enables many different applications that require
manipulation of plants in unstructured settings.

Manipulating external plant foliage to reveal occluded space is hard. Sensing is difficult because of
dense foliage, thin structures and partial observability. Control and planning is challenging because
of unknown dynamics of the plant leaves and branches, and the difficulty of building a full articulable
plant model. These sensing and control challenges motivate the need for learning. However, use of
typical learning paradigms is also not straight-forward. Model-free RL (e.g. PPO [5]) requires
interaction data at a scale that is difficult to collect in the real world. Model-based RL is more
sample-efficient, but is quite challenging here as precisely predicting the next observation (or state)
is hard. Imitation learning is more promising; but for the exploration task we tackle, the next best
action depends on what has already been explored. This increases the amount of demonstration data
required to train models. Lack of high-fidelity plant simulators preclude simulated training.

Our proposal is to tackle this problem through self-supervision [6, 7]. We collect a dataset of action
outcomes (amount of space revealed) by letting the robot randomly interact with plants. We use
this data to train a model to predict space revealed by an input action. However, in order to derive
a long-term strategy for exploring all of the space beneath the plant, the model has to predict not

7th Conference on Robot Learning (CoRL 2023), Atlanta, USA.

https://sites.google.com/view/pushpastgreen/


Figure 1: (left) Plants self-occlude themselves. Two examples of leaves and branches being pushed
aside for inspection and picking fruits. This paper develops learning algorithms that enable robots to
tackle this plant self-occlusion problem. We show actions executed by the robot to expose the space
behind vines (middle) and Dracaena plant (right).

only how much space would get revealed, but also where (Figure 2 (b), Section 4.1). In this way, the
model output lets us reason about what additional space each action would reveal. This allowing us
to execute multi-step action sequences that explore all of the area behind the plant using a simple
greedy control loop implemented via the cross-entropy method (CEM) (Figure 2 (a), Section 4.3).

This paper implements and tests these ideas on a physical platform that is tasked with revealing
space behind decorative vines and a real Dracaena plant. We collect 48 hours of plant interaction
data and use it to train a neural network that we call Space-Revealed Prediction Network (SRPNet).
SRPNet, when used with CEM, leads to effective control strategies to reveal all (or user-specified)
space beneath the plant foliage. We call our overall framework PushPastGreen (PPG).

Experiments show that SRPNet outperforms a hand-crafted dynamics model and ablated versions of
SRPNet. In physical experiments, PPG outperforms a hand-crafted exploration strategy and versions
of PPG that replace SRPNet with alternative choices for modeling space revealed. In all 5 settings
across vines and Dracaena, including 2 that explicitly test for generalization, we observe relative
improvements ranging from 4% to 34% over the next best method. This establishes the benefits of
PPG and the use of learning to manipulate plants.

2 Related Work

Autonomous Agriculture. Motivated by the need for adopting sustainable agricultural practices [2,
3, 1], researchers have sought to introduce and expand the use of autonomy for agricultural tasks [8,
9]. While a full review is beyond our scope, major trends include a) development of specialized
robotic hardware [10, 11, 12], b) development of algorithms for perception in cluttered agricultural
settings [13, 14, 15], c) design of control algorithms for navigation [16, 17] and manipulation [18],
and d) full autonomous farming systems [19, 18, 20, 21].

Plant Manipulation. For manipulation oriented tasks (e.g. fruit picking): [22] compute 3D grasp
pose for largely unoccluded fruits, [23] design a visual servoing approach to get partially occluded
fruits into full view, [24, 25, 26] output trajectories for reaching fruits while avoiding collisions
with plant leaves and branches, and [10, 27] develop soft arms / end-effectors that can maneuver
around plant structures. Much less research actually interacts with the plant structure to accomplish
tasks. [18] hand-design strategies for pushing fruits out of the way. [28] show simulated results using
probabilistic motion primitives for pushing fruits out of the way. We instead study the task of looking
behind plant foliage, and hand-crafted strategies proposed in [28, 18] are not directly applicable to
our setting. [29, 30] tackle reaching in plants while treating leaves as permeable obstacles, while [31]
develops efficient MPC to minimize contact forces when interacting with plants. [32] learn to model
object’s resistance to movement by estimating stiffness distribution from torque measurements. We
instead directly model the effect of actions executed on the plant.

Manipulation of Deformable Objects. Past works have considered manipulation of other de-
formable objects such as cloth [33, 34, 35, 36, 37], ropes [38, 39], elasto-plastics [40, 41], flu-
ids [37, 42, 43], and granular media [44]. [33, 34, 38] design dynamic primitive actions to tackle
cloth and rope manipulation. [45, 42, 40, 35] learn particle-based forward models for deformable
material and use model-based RL for control. [46, 41] compose skills for deformable object manip-
ulation to solve long-horizon tasks. Our study explores plant manipulation. Lack of high-fidelity
plant simulators limits the applicability of past methods that rely on large amount of data in simu-
lation [42, 36, 38]. At the same time, building dynamics models [40, 35] for plants is hard due to
dense foliage, thin branch structure, and unknown heterogeneous dynamics.

2



Cross 
Entropy 
Method

a) Cross Entropy Method (CEM) with SRPNet for Control

RGB Height Space revealed till 
current time step, Ct

Evaluate 
Sampled 
Actions

Rank and 
Execute 

Best Action

Update space 
revealed Ct+1

Probability of 
Revealing 
Space

Images cropped around 

action start pixel

b) Space Revealed Prediction Network (SRPNet)

One-hot action orientation End pixelOne-hot z height

Encoder

Action Encoder

Decoder

Space revealed by action

Skip connections

Figure 2: Overview of PushPastGreen. PushPastGreen learns to manipulate plants to reveal the
space behind them thus tackling the plant self-occlusion problem. PushPastGreen includes Space-
Revealed Prediction Network (SRPNet) that predicts where space is revealed upon execution of a
pushing action, as shown in (b) and described in Sec. 4.1. SRPNet can not only rank actions based
on how much space they will reveal, but because it can also predict where space gets revealed, it can
also be used for executing multi-step trajectories that explore all the space behind the vines as shown
in (a) and described in Sec. 4.3. SRPNet is trained using self-supervision as described in Sec. 4.2.

Self-supervised Learning in Robotics. We adopt a self-supervised approach for training our mod-
els. Self-supervision techniques typically predict scalar quantities (e.g. grasp outcomes [6, 7], delta
cloth coverage on workspace [33], pushing+grasping success [47], etc.). Past work has also used
self-supervision to build forward models for model-predictive control [48, 49, 50, 51] in pixel or
feature spaces. Our work finds a middle ground. We predict not just how much space is revealed
(insufficient for executing a sequence of actions), but also where it is revealed. This lets us execute
sequences of actions that incrementally expose more and more space.

3 Problem Setup

Figure 3 shows the 2 different plants that we tackle, a) decorative vines vertically hanging across
a board, and b) a real Dracaena plant. The vines involve a 2D exploration problem and present
challenges due to entanglement, thin structures, and extensive clutter. The real Dracaena plant
exhibits a large variation in scene depth leading to a 3D problem. The Dracaena plant has big leaves
that bend only in specific ways. Thus it requires careful action selection. Both test cases exhibit
unknown and heterogeneous dynamics which makes it hard to manipulate them.

As one can notice in Figures 1 and 3, vines occlude the surface behind the vines. Similarly, the Dra-
caena leaves occlude the plant. We refer to this occlusion as the plant self-occlusion problem. The
task is to have manipulation policies that can use the non-prehensile pushing actions (as described
below) to reveal the space beneath the plant surface.

We use the Franka Emika robot and change the end effector to a grabber (as also done in past
work [52, 53]). We use RGB-D cameras pointed at the plant for sensing. Our action space consists
of non-prehensile planar pushing actions (also used in past work e.g. [51]). We sample a 3D location
and push in a plane parallel to the board for the vines and to the ground for the Dracaena plant. As
vines have limited depth variation, we use a fixed z for the vines, but actions are sampled at varying
z for the Dracaena plant. Sections A.1 and B.1 provide more experimental details.

4 Proposed Approach: Push Past Green

PPG adopts a greedy approach. We keep track of space that has not yet been revealed, and execute
actions that would reveal the most new space. Doing this requires a model that predicts what space a

3



View from 

Azure Kinect

View from 

Kinect V2

Vines occluding 
space

Leaves occluding 
space

Figure 3: Hardware setup for vines (left) and real Dracaena plant (right). We use a grabber
as the end-effector [52, 53]. View from the RGB-D camera is in the inset. The task is to move the
vines and the Dracaena leaves aside to reveal the space occluded by them.

candidate action would reveal. As plants are complex to model, such a model is hard to hand-craft.
Furthermore, it is difficult to estimate the precise state and physical parameters for plants from a
single RGB-D image (e.g. placement of leaves and branches with respect to one another, location
and connectivity of all the leaves with the stems, stiffness parameters). This precludes the use
of physical simulation for such prediction. Thus, we design Space-Revealed Prediction Network
(SRPNet), that uses learning to directly predict space revealed on execution of a given action on
a given plant configuration (Section 4.1). Learning to directly make this prediction sidesteps the
complexity of precise state estimation and physical simulation necessary to build a full dynamics
model for the plant. To obtain the data to train SRPNet, we adopt a self-supervised approach and
execute random actions from the robot action space. We automatically compute the space revealed
after an action using the RGB-D image (Section 4.2). Together with SRPNet, we design PPG, a
greedy algorithm that uses the cross-entropy method (CEM) [54] to sample the action that promises
to reveal the most new space on top of space already revealed (Section 4.3).

4.1 Space-Revealed Prediction Network

Input Representation. As shown in Figure 2 (b), the input to our model is a 200 × 200 patch
cropped out at the action start location. We crop both the RGB image and an image denoting the
height relative to the surface beneath the vines (or relative to the ground beneath the Dracaena). The
height image is computed using the point cloud from the RGB-D cameras. As the model sees crops
around the site of interaction, each action starts at the center of the image. We only need to represent
the z coordinate of the push start location, the push direction (θ), and the push distance (d). We
represent these using a) a one-hot vector depicting the push direction, b) a one-hot z height, and c)
push distance via the location of the action end-point i.e. [d cos(θ), d sin(θ)].

Output. The model produces an output that is the same size as the input. Each value in this
spatial map represents the probability that space will get revealed at that location in the image upon
execution of input action on the input plant configuration.

Model Architecture and Loss. We adopt the UNet structure [55] used in image segmentation. The
encoder has 5 convolution layers. The action features are processed through 2 transposed convo-
lution layers before being concatenated with the visual features and passed to the decoder with 5
transposed convolution layers. We add a skip connection between each corresponding convolutional
and transposed convolution layer. SRPNet is trained using cross-entropy loss.

4.2 Data Collection and Preparation

Our self-supervised data collection procedure executes random actions from the robot action space.
We divide the robot’s reachable space into a grid of 2cm × 2cm cells. Action starting locations
(x, y, z) are sampled at the centers of these cells. We sample push directions and push by 15cm
clipping to the feasible space as necessary. Each interaction executes in about 30s. We record RGB-
D videos and robot end-effector pose over the entire duration of the interaction. We collected 3529
interactions for vines over 30 hours, and 2175 interactions for Dracaena over 18 hours. We split the
dataset into train, val, and test splits in a 8:1:1 ratio and train one model for each plant.

4



We automatically compute ground truth for training the model on the collected data. This involves
processing the RGB and depth image before and after the interaction. For vines, we found a simple
decision rule using the color value and change in depth to work well. For Dracaena, very often the
entire plant wobbles upon interaction, which leads to erroneous estimates. Thus, we first align the
point clouds before and after interaction and then look for depth increase to obtain ground truth.
More details are provided in Supplementary Sections A.3 and B.3.

4.3 Looking Behind Leaves Using SRPNet

Algorithm 1: PPG: Revealing space beneath plants.

Require: Model f that predicts space revealed after action
1: Current revealed space, C0 ← space visible at start
2: for t← 0 to T − 1 do
3: Receive images It
4: at ← CEM(Ct, f, It)
5: Execute action at

6: Calculate additional space revealed ct
7: Update current revealed space: Ct+1 ← Ct ∪ ct
8: end for

Algorithm 1 describes our control algo-
rithm that uses the trained SRPNet to pre-
dict actions to reveal space behind vines.
At each timestep t of the trajectory, we
use the cross-entropy method (CEM) [54]
to pick out the best action to execute (line
4). We maintain the revealed space so far
(Ct). C0 is initialized to be the space visi-
ble before any actions (line 1). Action pa-
rameters are sampled from Gaussian distri-
butions. For each candidate action, SRPNet
predicts where space would be revealed. We determine new space revealed by subtracting the area
that has already been revealed (Ct) from SRPNet’s output. Samples that are predicted to reveal the
most new space are selected as elite which are used to fit a Gaussian distribution to sample actions
for the next CEM iteration. After all iterations, CEM outputs at, the action found to reveal the most
new space (line 4). Upon executing at, we observe the space that is actually revealed and update Ct

(line 6 and 7). The process is repeated for the length of the trial.

5 Experiments and Results

We test our proposed framework through a combination of offline evaluations of SRPNet on our
collected dataset (Section 5.1), and online execution on our physical platform for the task of reveal-
ing space behind plants (Section 5.2). Our experiments evaluate a) the benefit of learning to predict
space revealed by actions, b) the effectiveness of SRPNet’s input representation, and c) the quality
of SRPNet’s spatial predictions and selected actions for long-horizon and targeted exploration.

5.1 Offline Evaluation of SRPNet

Methods Vines [All] Vines [5cm] Dracaena

Full SRPNet (Our) 46.3 54.4 44.2
Input Representation Ablations

No action 30.2 43.5 28.4
No height map 46.9 49.1 40.6
No RGB 33.4 46.4 28.7
No RGB and no height map 28.4 35.2 10.5

Data Augmentation Ablations
No left/right flips 44.1 52.7 34.6
No color jitter 41.0 51.4 30.7

Table 1: Average precision for different models at pre-
dicting space revealed. Higher is better. Our proposed in-
put representation outperforms simpler alternatives and data
augmentation boosts performance.

We train and evaluate SRPNet on data
gathered on our physical setup as de-
scribed in Section 4.2. We measure
the average precision (AP) for the pix-
els labeled as revealed-space. We train
on the train split, select model check-
points on the validation set, and report
performance on the test set in Table 1.
For vines, we report performance in
two settings: Vines [All] i.e. seeing
the board (behind the vines) counts as
revealed space, and Vines [5cm] i.e.
height decrease of 5cm counts as re-
vealed space. For Dracaena, only see-
ing past the leaf (as determined by our
automated processing from Section 4.2) counts as revealed space.

Results. Experiments presented in Table 1 reveal the effectiveness of our method and provide in-
sights about the underlying data. First, across all three settings, the full model is able to extract
information from visual observations to produce higher quality output than just basing the predic-
tions on the action information alone (Full model vs. No RGB and no height map). This suggests
that plant configuration (as depicted in the visual observations) is important in predicting the action

5



outcome. Second, use of action information leads to better predictions (Full model vs. No action).
This suggests that different actions at the same site produce different outcomes, and SRPNet is able
to make use of the action information to model these differences. Third, looking at the performance
across the three settings, both height map and RGB information are useful for accurate predictions.
There are no trivial solutions of the form ‘space gets revealed where height is high’. Fourth, as we
only have a limited number of training samples, data augmentation strategies are effective. Supple-
mentary Figure S3 visualizes the predictions from different versions of our model on samples from
the test set. Note the nuances that our model is able to capture in contrast to the ablated versions.

5.2 Online Evaluation for Looking Behind Plants Task

We next measure the effectiveness of our proposed framework (PPG w/ SRPNet) for the task of
looking behind plant surface (as introduced in Section 3). We measure the space revealed in units of
cm2 for vines and number of pixels for Dracaena.1

We start out by demonstrating that PPG w/ SRPNet is able to differentiate between good and bad
actions. We then demonstrate our method on the task of looking behind plants over a 10 time-step
horizon. Finally, we tackle the task of revealing space behind a user-specified spatial target. We
conduct experiments on both the vines and the Dracaena plant. As plants can’t be exactly reset, all
experiments test generalization to some extent. To further test generalization, we explicitly evaluate
performance on plant configurations that differ from those encountered during training.

Inexact resets also pose a challenge when comparing methods. We randomly reset the plant (such
as rotating the Dracaena) between trials and expect the variance due to inexact resets to average out
over multiple trials. To prevent experimenter or other unknown environmental bias, we a) randomly
interleave trials for different methods, and b) reset before revealing which method runs next.

5.2.1 Baselines

Tiling Baseline. For the long-horizon exploration tasks, this hand-crafted baseline randomly sam-
ples from action candidates that are spread out across the workspace as shown in Figure 4. We
aid this baseline by limiting the action candidates to be horizontal pushes for the vines and tan-
gential actions for the Dracaena. We found these actions to be more effective than actions in other
orientations, see Table S1 for vines and Table S3 for Dracaena.

PPG w/ Other Dynamics Models. To disentangle if the improvement is coming from our learned
SRPNet or simply from keeping track of space that has already been revealed (Ct) in PPG, we
swap SRPNet for other models in PPG. Specifically, we compare to a hand-crafted dynamics model
(described below) and the SRPNet No Image (i.e. no RGB and no height map) model from Table 1.

We construct hand-crafted forward models for vines and the Dracaena plant. These baseline mod-
els represent vines as vertically hanging spaghetti, and the Dracaena plant as 2D radially emanating
spaghetti. Figure 5 shows the the induced free space upon action execution for this baseline model.

5.2.2 Results

Method Area Revealed

Vines (cm2) Dracaena (pixels)

Random Horizontal / 211.7 [184.2, 255.8] 5125.6 [3423.8, 7147.0]
Tangential Action

PPG w/ SRPNet (Our) 344.1 [320.4, 372.3] 7644.4 [6335.6, 9057.5]

Table 2: PPG selected actions are more effective
at revealing space.

Single Action Selection Performance. Table 2
compares the effectiveness of PPG w/ SRPNet at
picking an action that reveals the most occluded
space, against random actions from the robot’s
action space. For the strongest comparison, we
limit the random sampling to the most effective
actions, horizontal pushes for the vines and tan-
gential pushes for the Dracaena, as shown in Fig-
ure 4. Table 2 reports the average space revealed
(along with 95% confidence interval) over at least 20 trials for each method. Our approach leads
to a relative improvement of 62% for vines and 49% for Dracaena over this strong baseline. This
suggests that our model is able to interpret visual observations to identify good interaction sites.

1The criterion to automatically determine revealed space occasionally fails. We manually inspected test
runs to confirm and fix the output of the automated method. Note, that this manual inspection is done during
evaluation only. No method has access to such manual inspection, neither during training nor during execution.

6



Figure 4: Tiling baseline. Cyan arrows show all
action candidates considered, and orange arrows
show 10 actions selected during an execution.
We aid the baseline by limiting the candidates to
the most effective actions (horizontal pushes for
vines, tangential pushes for Dracaena).

Figure 5: Hand-crafted dynamics model that
represents vines as vertically hanging spaghetti
(left), and the Dracaena plant as 2D radially em-
anating spaghetti (right). Cyan area represents
the space revealed by the action (red arrow) un-
der this hand-crafted model.

AugustJune
June August

Method Area Revealed (pixels)

June August

Random Tangential Action 5125.6 [3423.8, 7147.0] 6780.7 [4399.3, 8618.1]

PPG w/ SRPNet (Our) 7644.4 [6335.6, 9057.5] 11551.4 [9464.7, 14644.9]

Figure 6: We evaluate a model trained with data col-
lected from the June Dracaena on the August Dracaena.

Generalization across Plant Growth Per-
formance. To test generalization, we run
the single action selection experiment (Ta-
ble 2) on the Dracaena plant after two-
month of growth (in August) but with a
model trained on data from June. Note the
difference between plants in Figure 6 (top).
Despite changes in appearance and leaf
length, PPG generalizes to the grown Dra-
caena and outperforms random tangential
action as shown in Figure 6 (bottom).

Long-horizon Exploration Performance.
Next, we study if SRPNet can be used for
situations that require multiple sequential
interactions to reveal space behind plants.
The task is to maximize the cumulative
space revealed over a 10 time-step episode. This further tests the quality of SRPNet which now
also needs to accurately predict where it thinks space will be revealed.

We conduct 4 experiments, one on Dracaena and 3 on vines. For the vines, we considered 3 set-
tings: a) Base Setting: vine setting as used for collecting training data, and 2 novel settings to
test generalization: b) Sparse Vines, and c) Separated Vines. While the last two settings explicitly
test generalization, we note that the first setting also tests models on novel vine configurations not
exactly seen in training. For Dracaena, we only conducted experiments in the Base Setting.

(a)

Base Setting 
(revealable 

space: 

2735 )
cm2

(b)

Sparse Vines 

(revealable 
space: 


2235 )
cm2

(c)

Separated 

Vines 
(revealable 

space: 

2130 )cm2

(d)

Dracaena

(revealable 


space: 

174,380 pixels)


Figure 7: Comparison of different methods for multi-step exploration of space behind plant
foliage. We show results in four settings across vines (left) and Dracaena (right). The line plots
show average cumulative space revealed by actions up to time step t across 10 trials (along with
95% confidence intervals). SRPNet training data was collected in the base setting shown in (a) for
vines and (d) for Dracaena. (b) and (c) are novel settings that test generalization capabilities of our
model. Our method (PPG w/ SRPNet) outperforms all baselines (a strong hand-crafted policy, and
PPG with other dynamics models) across all settings.

7



Figure 7 plots the average space revealed (in cm2 for vines and in pixels for Dracaena) as a function
of the number of time-steps. We report the mean over 10 trials and also show the 95% confidence
interval. Across all three experiments our proposed method achieves the strongest performance.
Supplementary Figure S4 and videos on the website show some sample executions.

Results suggests that SRPNet is quite effective at predicting where space will get revealed (PPG
w/ SRPNet vs. Tiling). Learning and planning via CEM lets us model complex behavior which
is hard to hand-craft. Improvements over the tiling baseline increase as the action space becomes
larger (Dracaena vs. vines). Moreover, benefits don’t just come because of keeping track of revealed
space (Ct), but also from the use of SRPNet (PPG w/ SRPNet vs. PPG w/ Handcrafted Dynamics).
Furthermore, our model is able to interpret the nuances depicted in the visual information to predict
good actions (PPG w/ SRPNet vs. PPG w/ SRPNet No Image). SRPNet also leads to benefits in
novel vine configurations. Benefits are larger in the separated vines case than for the sparse vines.
This may be because the separated vines are still locally dense and SRPNet processes local patches.

Figure 8: PPG is also effective at revealing space
behind a specific spatial target.

Targeted Revealing Performance. Our final
experiment tackles the task of targeted explo-
ration. The task here is to reveal space at a
user-defined region, m. Figure 8 (left) shows a
sample user-selected region. We tackle this task
by setting C0 to be m̄, the complement of the
user-defined region. Figure 8 (right) presents the
results (same legend as for Figure 7, but with-
out Tiling Baseline). Again, as SRPNet reliably
models the effect of actions, PPG with SRPNet
outperforms PPG with other dynamics models.

6 Discussion

In this paper, we introduced PPG and SRPNet to tackle the problem of manipulating the external
plant foliage to look within the plant (the plant-self occlusion problem). SRPNet uses self-supervised
learning to model what space is revealed upon execution of different actions on plants. This sidesteps
the difficulty in perception arising from dense foliage, thin structures, and partial information. PPG
derives control strategies using SRPNet via CEM, to output sequence of actions that can incremen-
tally explore space occluded by plants. Experiments on a physical platform demonstrate the benefits
of our proposed learning framework for tackling the plant self-occlusion problem.

7 Limitations

We believe ours is a unique and first-of-its-kind study, but it has its limitations. We note two failure
modes. First, PPG sometimes resamples an overly optimistic action (that doesn’t actually reveal
much space, so nothing changes and CEM returns a very similar next action) many times over with-
out making progress. Second, as each individual push action doesn’t use visual feedback it can’t
recover from say when a leaf slips from below the gripper. These may be mitigated by incorporat-
ing spatial diversity while selecting actions and by learning closed loop leaf manipulation policies
through imitation. More generally, our overall approach relies on input from RGB-D cameras that
are known to perform poorly in the wild. This may be mitigated through use of specialized stereo
cameras built for farm settings [56]. Our techniques for automatic estimation of revealed space can
be improved further using recent point tracking models [57], and it may be useful to build models
that can predict and keep track of full 3D space. Experiments should be conducted with more diverse
real plants. Future work should also rank actions from the perspective of the damage they cause to
the plant, perhaps via some tactile sensing [30]. Lastly, while autonomous agriculture provides a
path towards sustainable agricultural practices, societal impact of such automation should be studied
before deployment.

Acknowledgments

Images in Figure 1 (top) have been taken from YouTube video 1 and YouTube video 2. This material
is based upon work supported by the USDA/NSF AIFARMS National AI Institute (USDA #2020-

8

https://www.youtube.com/watch?v=M9eT4DJLUB4&t=532s
https://www.youtube.com/watch?v=Oa2apuOj5R4&t=984s


67021-32799), an NSF CAREER Award (IIS-2143873), an Amazon Research Award, and an NVidia
Academic Hardware Grant. We thank Matthew Chang and Aditya Prakash for helpful feedback. We
thank Kevin Zhang for help setting up robot experiments.

References
[1] Adinor Jose Capellesso, Ademir Antonio Cazella, Abdon Luiz Schmitt Filho, Joshua Farley,

and Diego Albino Martins. Economic and environmental impacts of production intensification
in agriculture: comparing transgenic, conventional, and agroecological maize crops. Agroe-
cology and Sustainable Food Systems, 40(3):215–236, 2016.

[2] H Charles J Godfray and Tara Garnett. Food security and sustainable intensification. Philo-
sophical transactions of the Royal Society B: biological sciences, 369(1639):20120273, 2014.

[3] Jonathan A Foley, Navin Ramankutty, Kate A Brauman, Emily S Cassidy, James S Gerber,
Matt Johnston, Nathaniel D Mueller, Christine O’Connell, Deepak K Ray, Paul C West, et al.
Solutions for a cultivated planet. Nature, 478(7369):337–342, 2011.

[4] Aaron M Davis and Jordan Pradolin. Precision herbicide application technologies to decrease
herbicide losses in furrow irrigation outflows in a northeastern australian cropping system.
Journal of agricultural and food chemistry, 64(20):4021–4028, 2016.

[5] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal
policy optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

[6] Lerrel Pinto and Abhinav Gupta. Supersizing self-supervision: Learning to grasp from 50k
tries and 700 robot hours. In Proceedings of the IEEE International Conference on Robotics
and Automation (ICRA), pages 3406–3413. IEEE, 2016.

[7] Sergey Levine, Peter Pastor, Alex Krizhevsky, Julian Ibarz, and Deirdre Quillen. Learning
hand-eye coordination for robotic grasping with deep learning and large-scale data collection.
The International journal of robotics research, 37(4-5):421–436, 2018.

[8] Juan Jesús Roldán, Jaime del Cerro, David Garzón-Ramos, Pablo Garcia-Aunon, Mario
Garzón, Jorge De León, and Antonio Barrientos. Robots in agriculture: State of art and prac-
tical experiences. Service robots, pages 67–90, 2018.

[9] C Wouter Bac, Eldert J Van Henten, Jochen Hemming, and Yael Edan. Harvesting robots for
high-value crops: State-of-the-art review and challenges ahead. Journal of Field Robotics, 31
(6):888–911, 2014.

[10] Naveen Kumar Uppalapati, Benjamin Walt, Aaron J Havens, Armeen Mahdian, Girish Chowd-
hary, and Girish Krishnan. A berry picking robot with a hybrid soft-rigid arm: Design and task
space control. In Robotics: Science and Systems, page 95, 2020.

[11] Wyatt McAllister, Denis Osipychev, Adam Davis, and Girish Chowdhary. Agbots: Weeding
a field with a team of autonomous robots. Computers and Electronics in Agriculture, 163:
104827, 2019.

[12] Abhisesh Silwal, Francisco Yandun, Anjana Nellithimaru, Terry Bates, and George Kan-
tor. Bumblebee: A path towards fully autonomous robotic vine pruning. arXiv preprint
arXiv:2112.00291, 2021.

[13] Harry Freeman, Mohamad Qadri, Abhisesh Silwal, Paul O’Connor, Zachary Rubinstein,
Daniel Cooley, and George Kantor. Autonomous apple fruitlet sizing and growth rate tracking
using computer vision. arXiv preprint arXiv:2212.01506, 2022.

[14] Abhisesh Silwal, Tanvir Parhar, Francisco Yandun, Harjatin Baweja, and George Kantor. A ro-
bust illumination-invariant camera system for agricultural applications. In International Con-
ference on Intelligent Robots and Systems, pages 3292–3298. IEEE, 2021.

[15] Francisco Yandun, Abhisesh Silwal, and George Kantor. Visual 3d reconstruction and dynamic
simulation of fruit trees for robotic manipulation. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition Workshops, pages 54–55, 2020.

9



[16] Arun Narenthiran Sivakumar, Sahil Modi, Mateus Valverde Gasparino, Che Ellis, Andres Ba-
quero Velasquez, Girish Chowdhary, and Saurabh Gupta. Learned visual navigation for under-
canopy agricultural robots. In Robotics: Science and Systems, 2021.

[17] Andres Eduardo Baquero Velasquez, Vitor Akihiro Hisano Higuti, Mateus Valverde Gasparino,
Arun Narenthiran Sivakumar, Marcelo Becker, and Girish Chowdhary. Multi-sensor fusion
based robust row following for compact agricultural robots. arXiv preprint arXiv:2106.15029,
2021.

[18] Ya Xiong, Yuanyue Ge, Lars Grimstad, and Pål J From. An autonomous strawberry-harvesting
robot: Design, development, integration, and field evaluation. Journal of Field Robotics, 37
(2):202–224, 2020.

[19] Nicola Strisciuglio, Radim Tylecek, Michael Blaich, Nicolai Petkov, Peter Biber, Jochen Hem-
ming, Eldert van Henten, Torsten Sattler, Marc Pollefeys, Theo Gevers, et al. Trimbot2020:
an outdoor robot for automatic gardening. In ISR 2018; 50th International Symposium on
Robotics, pages 1–6. VDE, 2018.

[20] Mark Presten, Yahav Avigal, Mark Theis, Satvik Sharma, Rishi Parikh, Shrey Aeron, Sandeep
Mukherjee, Sebastian Oehme, Simeon Adebola, Walter Teitelbaum, et al. Alphagarden: Learn-
ing to autonomously tend a polyculture garden. arXiv preprint arXiv:2111.06014, 2021.

[21] Soran Parsa, Bappaditya Debnath, Muhammad Arshad Khan, et al. Autonomous strawberry
picking robotic system (robofruit). arXiv preprint arXiv:2301.03947, 2023.

[22] Hanwen Kang, Hongyu Zhou, and Chao Chen. Visual perception and modeling for au-
tonomous apple harvesting. IEEE Access, 8:62151–62163, 2020.

[23] Chris Lehnert, Dorian Tsai, Anders Eriksson, and Chris McCool. 3d move to see: Multi-
perspective visual servoing for improving object views with semantic segmentation. arXiv
preprint arXiv:1809.07896, 2018.

[24] Lufeng Luo, Hanjin Wen, Qinghua Lu, Haojie Huang, Weilin Chen, Xiangjun Zou, Chenglin
Wang, et al. Collision-free path-planning for six-dof serial harvesting robot based on energy
optimal and artificial potential field. Complexity, 2018, 2018.

[25] Christoph Schuetz, Joerg Baur, Julian Pfaff, Thomas Buschmann, and Heinz Ulbrich. Evalua-
tion of a direct optimization method for trajectory planning of a 9-dof redundant fruit-picking
manipulator. In Proceedings of the IEEE International Conference on Robotics and Automa-
tion (ICRA), pages 2660–2666. IEEE, 2015.

[26] Alessandra Tafuro, Bappaditya Debnath, Andrea M Zanchettin, and E Amir Ghalamzan.
dpmp-deep probabilistic motion planning: A use case in strawberry picking robot. In In-
ternational Conference on Intelligent Robots and Systems, pages 8675–8681. IEEE, 2022.

[27] Johannes F. Elfferich, Dimitra Dodou, and Cosimo Della Santina. Soft robotic grippers for
crop handling or harvesting: A review. IEEE Access, 10:75428–75443, 2022.

[28] Sariah Mghames, Marc Hanheide, and Amir Ghalamzan. Interactive movement primitives:
Planning to push occluding pieces for fruit picking. In International Conference on Intelligent
Robots and Systems, pages 2616–2623. IEEE, 2020.

[29] Heramb Nemlekar, Ziang Liu, Suraj Kothawade, Sherdil Niyaz, Barath Raghavan, and Ste-
fanos Nikolaidis. Robotic lime picking by considering leaves as permeable obstacles. In
International Conference on Intelligent Robots and Systems, pages 3278–3284. IEEE, 2021.

[30] Tapomayukh Bhattacharjee, Phillip M Grice, Ariel Kapusta, Marc D Killpack, Daehyung Park,
and Charles C Kemp. A robotic system for reaching in dense clutter that integrates model
predictive control, learning, haptic mapping, and planning. Georgia Institute of Technology,
2014.

[31] Marc D Killpack, Ariel Kapusta, and Charles C Kemp. Model predictive control for fast
reaching in clutter. Autonomous Robots, 40:537–560, 2016.

10



[32] Shaoxiong Yao and Kris Hauser. Estimating tactile models of heterogeneous deformable ob-
jects in real time. In Proceedings of the IEEE International Conference on Robotics and Au-
tomation (ICRA), 2023.

[33] Huy Ha and Shuran Song. Flingbot: The unreasonable effectiveness of dynamic manipulation
for cloth unfolding. In Proceedings of the Conference on Robot Learning (CoRL), pages 24–33.
PMLR, 2022.

[34] Zhenjia Xu, Cheng Chi, Benjamin Burchfiel, Eric Cousineau, Siyuan Feng, and Shuran Song.
Dextairity: Deformable manipulation can be a breeze. In Robotics: Science and Systems, 2022.

[35] Zixuan Huang, Xingyu Lin, and David Held. Mesh-based dynamics with occlusion reasoning
for cloth manipulation. In Robotics: Science and Systems, 2022.

[36] Thomas Weng, Sujay Man Bajracharya, Yufei Wang, Khush Agrawal, and David Held. Fab-
ricflownet: Bimanual cloth manipulation with a flow-based policy. In Proceedings of the Con-
ference on Robot Learning (CoRL), pages 192–202. PMLR, 2022.

[37] Xingyu Lin, Yufei Wang, Jake Olkin, and David Held. Softgym: Benchmarking deep rein-
forcement learning for deformable object manipulation. In Proceedings of the Conference on
Robot Learning (CoRL), pages 432–448. PMLR, 2021.

[38] Cheng Chi, Benjamin Burchfiel, Eric Cousineau, Siyuan Feng, and Shuran Song. Itera-
tive residual policy: for goal-conditioned dynamic manipulation of deformable objects. In
Robotics: Science and Systems, 2022.

[39] Ashvin Nair, Dian Chen, Pulkit Agrawal, Phillip Isola, Pieter Abbeel, Jitendra Malik, and
Sergey Levine. Combining self-supervised learning and imitation for vision-based rope ma-
nipulation. In Proceedings of the IEEE International Conference on Robotics and Automation
(ICRA), pages 2146–2153. IEEE, 2017.

[40] Haochen Shi, Huazhe Xu, Zhiao Huang, Yunzhu Li, and Jiajun Wu. Robocraft: Learning to
see, simulate, and shape elasto-plastic objects with graph networks. In Robotics: Science and
Systems, 2022.

[41] Xingyu Lin, Zhiao Huang, Yunzhu Li, Joshua B Tenenbaum, David Held, and Chuang Gan.
Diffskill: Skill abstraction from differentiable physics for deformable object manipulations
with tools. In Proceedings of the International Conference on Learning Representations
(ICLR), 2022.

[42] Yunzhu Li, Jiajun Wu, Russ Tedrake, Joshua B Tenenbaum, and Antonio Torralba. Learning
particle dynamics for manipulating rigid bodies, deformable objects, and fluids. In Proceedings
of the International Conference on Learning Representations (ICLR), 2019.

[43] Chau Do, Camilo Gordillo, and Wolfram Burgard. Learning to pour using deep deterministic
policy gradients. In International Conference on Intelligent Robots and Systems, pages 3074–
3079. IEEE, 2018.

[44] Connor Schenck, Jonathan Tompson, Sergey Levine, and Dieter Fox. Learning robotic manip-
ulation of granular media. In Proceedings of the Conference on Robot Learning (CoRL), pages
239–248. PMLR, 2017.

[45] Yunzhu Li, Jiajun Wu, Jun-Yan Zhu, Joshua B Tenenbaum, Antonio Torralba, and Russ
Tedrake. Propagation networks for model-based control under partial observation. In Pro-
ceedings of the IEEE International Conference on Robotics and Automation (ICRA), pages
1205–1211. IEEE, 2019.

[46] Xingyu Lin, Carl Qi, Yunchu Zhang, Zhiao Huang, Katerina Fragkiadaki, Yunzhu Li, Chuang
Gan, and David Held. Planning with spatial-temporal abstraction from point clouds for de-
formable object manipulation. In Proceedings of the Conference on Robot Learning (CoRL),
2022.

11



[47] Andy Zeng, Shuran Song, Stefan Welker, Johnny Lee, Alberto Rodriguez, and Thomas
Funkhouser. Learning synergies between pushing and grasping with self-supervised deep re-
inforcement learning. In International Conference on Intelligent Robots and Systems, pages
4238–4245. IEEE, 2018.

[48] Michael I Jordan and David E Rumelhart. Forward models: Supervised learning with a distal
teacher. Cognitive science, 16(3):307–354, 1992.

[49] Frederik Ebert, Chelsea Finn, Sudeep Dasari, Annie Xie, Alex Lee, and Sergey Levine. Visual
foresight: Model-based deep reinforcement learning for vision-based robotic control. arXiv
preprint arXiv:1812.00568, 2018.

[50] Chelsea Finn, Ian Goodfellow, and Sergey Levine. Unsupervised learning for physical interac-
tion through video prediction. Advances in Neural Information Processing Systems (NeurIPS),
29, 2016.

[51] Pulkit Agrawal, Ashvin V Nair, Pieter Abbeel, Jitendra Malik, and Sergey Levine. Learning
to poke by poking: Experiential learning of intuitive physics. Advances in Neural Information
Processing Systems (NeurIPS), 29, 2016.

[52] Shuran Song, Andy Zeng, Johnny Lee, and Thomas Funkhouser. Grasping in the wild: Learn-
ing 6DOF closed-loop grasping from low-cost demonstrations. IEEE Robotics and Automation
Letters (RA-L), 5(3):4978–4985, 2020.

[53] Sarah Young, Dhiraj Gandhi, Shubham Tulsiani, Abhinav Gupta, Pieter Abbeel, and Lerrel
Pinto. Visual imitation made easy. Proceedings of the Conference on Robot Learning (CoRL),
2020.

[54] Pieter-Tjerk De Boer, Dirk P Kroese, Shie Mannor, and Reuven Y Rubinstein. A tutorial on
the cross-entropy method. Annals of operations research, 134:19–67, 2005.

[55] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks
for biomedical image segmentation. In Medical Image Computing and Computer-Assisted
Intervention–MICCAI 2015: 18th International Conference, Munich, Germany, October 5-9,
2015, Proceedings, Part III 18, pages 234–241. Springer, 2015.

[56] Abhisesh Silwal, Tanvir Parhar, Francisco Yandun, Harjatin Baweja, and George Kantor. A ro-
bust illumination-invariant camera system for agricultural applications. In International Con-
ference on Intelligent Robots and Systems, pages 3292–3298, 2021.

[57] Adam W Harley, Zhaoyuan Fang, and Katerina Fragkiadaki. Particle video revisited: Tracking
through occlusions using point trajectories. In Proceedings of the European Conference on
Computer Vision (ECCV), pages 59–75. Springer, 2022.

[58] Kevin Zhang, Mohit Sharma, Jacky Liang, and Oliver Kroemer. A modular robotic arm control
stack for research: Franka-interface and frankapy. arXiv preprint arXiv:2011.02398, 2020.

12



Push Past Green: Learning to Look Behind Plant Foliage by Moving It
Supplementary Material

A Implementation Details for Vine Experiments

A.1 Robot Action Space

(c.1) Starting image

(c.4) Push 

(c.2) Approach plant (c.3) Insert grabber into plant

(c.5) Move grabber back (c.6) Retract grabber 

y

x(x, y)

(a) Push action in rectified view

d θ

(b) Seven possible pushing directions

Region to be revealed

Robot reachable space

Push start 
location

Push end 
location

z

Figure S1: Robot’s action space for vine setup. (a) shows the rectified image that we operate in,
the region to be revealed (red box), and the region that the robot can reach (black box). The robot
can execute push actions that start at a pixel (x, y) in the rectified image and push a distance of d
at an angle θ. We use 7 discrete push directions {0, π/6, π/3, π/2, . . . , π} as shown in (b). (c.1)
through (c.6) show a sample execution of the push action.

The robot’s action space consists of non-prehensile pushing actions. As shown in Figure S1 (a),
these actions are parameterized by (x, y, θ, d). Such parameterization for pushing actions has been
used in past works, e.g. [51]. Here, (x, y) denotes the start location for the push interaction on the
board, θ denotes the push angle, and d denotes the push length. As shown in Figure S1 (b), we
sample θ to be one of 7 angles from {0, π/6, π/3, π/2, 2π/3, 5π/6, π}. We do not sample angles
greater than π because pushing towards the bottom of the vines only drags down the vines and could
pull the board over. We assume that the grabber inserts deep enough into the vines to push the vines
but not too far to knock it over; therefore, the pushes are planar actions executed with the same z
value. We estimate the location and orientation of the board and establish a coordinate frame that is
aligned with the board. Push locations and orientations are expressed in this coordinate frame. We
implement these actions by moving the grabber through 4 waypoints, as shown in Figure S1 (c.2) to
Figure S1 (c.5). In Figure S1 (c.4), we can see the effect of a randomly sampled action on the state
of the vines. We drive the Franka Emika robot between these waypoints using the Franka-interface
and frankapy library [58].

A.2 SRPNet

For the vine setup, we are unable to position the camera such that it is perpendicular to the board.
Therefore, we design SRPNet to work on rectified images of the scene, such that the camera is
looking straight at the vines. This corresponds to using a homography to transform the image such
that the surface underneath the vines becomes fronto-parallel. We build the model to only reason
about a 40cm×40cm neighborhood around the action start location. Parts of the board get occluded
behind the robot arm as the robot executes the action. These occluded parts and area with no depth
readings are masked out for evaluation and training.

A.3 Data Collection

The robot’s actions are in the same fronto-parallel plane used for SRPNet as described earlier. We
estimate the space that can be safely reached by the robot ahead of time to make sure it is not close
to its joint limits during interactions. The resulting space is roughly 40cm × 40cm. We divide the
feasible space into a 20×20 grid. Action starting locations (x, y) are sampled at the centers of these

13



Push Angle 0 π/6 π/3 π/2 2π/3 5π/6 π Full Dataset

# Interactions 985 460 360 348 359 433 584 3529
Mean area revealed (cm2) 215.7 177.3 93.6 58.8 100.4 180.9 237.1 170.3

Table S1: Statistics for the different push directions in the collected vine dataset. Collected
dataset reveals many aspects of the problem. For example, for vines, horizontal push actions (0 and
π) are the most effective at this task.

grid squares (i.e., 400 possible starting locations). We sample push directions from the 7 possible
angles, {0, π/6, 2π/6, . . . , 6π/6}, and push by 15cm clipping to the feasible space as necessary.
Therefore, not all interactions have d = 15; for starting locations near the boundary, d < 15.

Our full dataset contains 3529 interactions (summed to roughly 30 hours) collected over 11 different
days (nonconsecutive). This data includes 2571 interactions done specifically for the purpose of
data collection. The remaining interactions come from when we were developing control algorithms.
These don’t follow uniform sampling from the robot’s action space and are biased towards horizontal
actions since the most effective actions for the baselines are often horizontal actions.

We automatically compute the ground truth for training the model on the collected data. Specifically,
we use color thresholding to determine when the surface beneath the vines has been fully exposed.
We found this simple strategy to be reasonably robust. Note that while we train and use SRPNet
to predict whether all vines were moved aside to reveal the board, we can process the data in other
ways to also train the model for other tasks. For example, we can re-purpose the data for a task that
involves only looking beneath the first layer of vines. We can re-compute ground truth to identify
locations where the height decreased by (say) more than 5cm for such a task.

A.4 Cross-entropy Method

Our CEM implementation uses 3 iterations that each evaluate 300 candidate actions. We sample
(x, y, θ) from Gaussian distributions. In the first CEM iteration, x, y, θ are sampled from Gaussians
with different mean and variances, chosen to cover the whole action space. The parameters are then
discretized to match the distribution from data collection. When sampling actions, we only retain
action samples that are feasible (i.e. within the robot’s reachable space as shown in Figure S1 (a)).
Elite samples are the top 20% candidates that have the most amount of new space revealed. Running
line 3 to 6 in Algorithm 1 (Section 4.3) for vines takes about 5 seconds.

14



B Implementation Details for Dracaena Experiments

B.1 Robot Action Space

The robot’s action space for Dracaena is similar to that of vines. However, since the Dracaena leaves
are at different heights, we define three possible z values that the grabber can insert to. The Dracaena
plant body is about 45cm tall so we defined the z values to be about 22.5, 17.5, and 12.5cm from the
top of the plant. For each z value, planar pushing actions (x, y, θ, d) are defined on a plane parallel
to the ground. We sample θ from 8 possible angles: {0, π/4, π/2, 3π/4, π, 5π/4, 3π/2, 7π/4}. The
angles are 45 degrees away from one another instead of 30 degrees as used in vines because we want
to keep the total number of possible actions reasonable.

(c.1) Starting image

(c.4) Push 

(c.2) Approach plant (c.3) Insert grabber into plant

(c.5) Retract grabber 

(x, y)

(a) Push action in topdown view

d θ

Region to be revealed

Robot reachable space

y

x
z

z

(b) Eight possible pushing directions

Figure S2: Dracaena robot action space. Similar to Figure S1, (a) shows the image from the
camera, (b) shows the pushing directions, and (c) shows the sample execution of a push action.

B.2 SRPNet

Since the Kinect camera is looking down at the Dracaena plant, SRPNet does not work on rectified
images as it does for vines and instead takes in images from the camera as they are. We project
action start locations into their image coordinates using the camera intrinsics and crop around the
locations to obtain local patches to input into the network. When training SRPNet, adding another
head to predict height decrease in addition to the binary classification head helps AP performance.
We use Huber loss with δ = 0.1 to provide an auxiliary loss to the network.

B.3 Data Collection

The reachable space of the robot in the Dracaena setup is roughly 57cm × 53cm and corresponds
to a 29 × 27 grid of 2cm cells. Similar to the vines’ setup, the action starting point (x, y) is sam-
pled from these 783 possible locations. Given that pushing from the center of the plant tends to
displace it entirely, we aim to discourage such actions to prevent damage to areas where new leaves
may sprout. We manually delineate a rectangular region around the plant center and do not sam-
ple or execute actions in this region. We also sample z from 3 possible values (22.5, 17.5, and
12.5cm from the top of the plant as mentioned before), push directions from 8 possible angles,
{0, π/4, π/2, 3π/4, π, 5π/4, 3π/2, 7π/4}, and push by 15cm clipping to the feasible space as nec-
essary. Therefore, not all interactions have d = 15; for starting locations near the boundary, d < 15.

Since the plant wobbles during pushing, we discount the area that is revealed due to whole-plant
movement. We construct plant point clouds before and after an action; then, iterative closest point
(ICP) is performed to align the two point clouds. During execution, the robot body occludes parts

15



Push Angle 0 π/4 π/2 3π/4 π 5π/4 3π/2 7π/4 Full Dataset

# Interactions 257 262 295 273 249 297 289 253 2175
Mean area revealed (pixels) 1391.4 1138.7 990.4 802.0 1154.0 1110.8 1154.9 1495.2 1147.7

Table S2: Statistics for the different push directions in the collected Dracaena dataset.

of the plant, so we mount a Intel RealSense camera at the wrist to fill in these occluded regions to
aid ICP. Area where the plant height has decreased in the aligned point cloud is considered to be
revealed space.

B.4 Cross-entropy Method

We follow the same algorithm as the one outlined in Algorithm 1 (Section 4.3). The Dracaena CEM
uses 3 iterations that each evaluate 300 candidate actions. We sample (x, y, θ, z) from uniform
distributions within the robot’s reachable space. The parameters are then discretized to match the
data collection’s distribution. Top 20% candidates that reveal the most amount of new space are
chosen as elite samples that are fitted with Gaussian distributions for the next iteration. Running one
iteration takes about 7 seconds.

B.5 Comparing Tangential to Random Actions

Method Area revealed (pixels)

Random Action 3956.1 [2826.1, 5045.9]

Tangential Action 5125.6 [3423.8, 7147.0]

Table S3: Effectiveness of tangential actions. We execute actions tangent to Dracaena leaves in
the Tiling baseline because they reveal more space on average compare to random actions.

We chose horizontal actions for the Tiling baseline of vines because they on average reveal the most
amount of space. In order to come up with a similar Tiling baseline for Dracaena, we observe that
leaves are pushed aside more easily when the grabber moves tangent to the leaves. We verify that
tangent actions are better than random actions by comparing average space revealed upon execution
of actions from the two methods. As shown in Table S3, tangential actions reveal more space than
random actions, so we use them in the Tiling baseline to test the effectiveness of PPG w/ SRPNet
against this strong baseline.

16



C Visualizations
(a) RGB Image (b) Height Image (c) Ground (d) SRPNet (e) SRPNet (f) SRPNet

Truth (No Image) (No Action) (Full)

Figure S3: Visualizations of output from our proposed SRPNet. We show examples from the
test set. The white regions in ground truth images represent space revealed by actions drawn as red
arrows. Column (d) shows prediction from SRPNet without image input (i.e. no RGB, no height),
column (e) shows prediction from SRPNet without action input, and column (f) shows predictions
from SRPNet. The brighter the region, the higher the predicted probability of revealing space.
Ground truth revealed space indicates the complexity of the task and suggests why the hand-crafted
dynamics model (shown in Figure 5) performs poorly at this task. SRPNet is able to effectively use
the visual information to make good predictions.

17



t = 0 t = 1 t = 2 t = 3 t = 4
V

ie
w

be
fo

re
In

te
ra

ct
io

n
E

xe
cu

te
d

A
ct

io
n

Sp
ac

e
R

ev
ea

le
d

(C
t+

1
)

V
ie

w
be

fo
re

In
te

ra
ct

io
n

E
xe

cu
te

d
A

ct
io

n
Sp

ac
e

R
ev

ea
le

d
(C

t+
1
)

Figure S4: First five time steps of a sample execution from our method. Top row shows the RGB
image before interaction, middle row shows the push action executed, and the bottom row shows the
cumulative space revealed so far. Our model picks actions that are effective at revealing space.

18


	Introduction
	Related Work
	Problem Setup
	Proposed Approach: Push Past Green
	Space-Revealed Prediction Network
	Data Collection and Preparation
	Looking Behind Leaves Using SRPNet

	Experiments and Results
	Offline Evaluation of SRPNet
	Online Evaluation for Looking Behind Plants Task
	Baselines
	Results


	Discussion
	Limitations
	Implementation Details for Vine Experiments
	Robot Action Space
	SRPNet
	Data Collection
	Cross-entropy Method

	Implementation Details for Dracaena Experiments
	Robot Action Space
	SRPNet
	Data Collection
	Cross-entropy Method
	Comparing Tangential to Random Actions

	Visualizations

