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Abstract

According to multimodal and contextualized
nature of the human conversation, correctly
identifying an emotion for given utterance in
the conversation has always been a challeng-
ing task. Recent research benefits from Graph
Neural Networks by capturing implicit relation-
ship of temporally proximate utterances. In this
paper, we expand the structure of the graph ex-
ploited by these models reflecting the global
context of the conversation and explore how
leveraging conversational context and interac-
tions can lead to more accurate emotion recog-
nition. We empirically analyze the modules
on Emotion Recognition in Conversation mod-
els, showing this approach enhances the per-
formance of these models. Our experiments
show that incorporating global conversational
context has a positive effect on the performance
of emotion recognition.

1 Introduction

Emotion Recognition in Conversation (ERC) is a
task of recognizing correct labels of emotion for
sentences in a dialogue. Recently, ERC has be-
come a significant area of interest for researchers
due to its potential applications in fields requiring
multimodal interaction (Poria et al., 2019), and
natural interactions between humans and comput-
ers. It can be used in robotics, can be applied in
medical science (Zucco et al., 2018), and house-
hold devices capable of generating responses that
demonstrate emotional intelligence and empathy.
This necessitates the precise interpretation of the
embedded meanings within each sentence, speech,
video and more, thereby significantly elevating the
importance of the field of emotion recognition.
However, conversation represent complex inter-
play of multiple elements including hand gestures,
facial expressions, language, speech, sound, con-
text, and emotions, making the prediction of emo-
tions within dialogue sentences a challenging en-
deavor. Many researchers tried various attempts

to enhance the performance of emotion recogni-
tion by leveraging a variety of factors. Also, they
tried implementing techniques in machine learning
to increase the performance of emotion recogni-
tion models. Among these attempts, Graph Neu-
ral Network (GNN) is one of schemes turned out
to be successful in improving the performance of
the task (Joshi et al., 2022; Hu et al., 2022; Chen
et al., 2023). Learning embedding of both nodes
and their relationships, ERC models using graph
network architecture proved their capacity to cap-
ture the relationship between sentences and predict
underlying emotional feature.

Nevertheless, these models still struggle to ade-
quately capture the relationships between all utter-
ances or modalities, often limited by factors such
as graph size, shortage of data and etc. There have
been various attempts to approach this problem
from multiple perspectives and adopt different so-
lutions. As one of these approaches, from a psy-
chological perspective, it is anticipated that more
accurate emotion recognition could be achieved by
integrating into the model the notion that global
contexts, such as mood, influence emotional bias,
as posited by Schmid and Schmid Mast (2010). We
try to bring this perspective to be implemented in
graph formation. Our research investigates whether
more precise Emotion Recognition in Conversation
(ERC) can be achieved through simple modifica-
tions to the GNN, by more actively utilizing global
context during the graph formation stage. We cre-
ated global node in the graph formation stage to
better capture the overall context of the conversa-
tion and explore the impact of slight changes in
edge connections between nodes. Additionally, we
investigate the effects of incorporating global em-
beddings in the classifier stage of the model. We
apply these implementations to several existing
GNN-based ERC models and conduct additional
experiments to determine the actual differences
each implementation makes.



We make the following contributions in this pa-
per:

* Our model enhances the efficacy of ERC mod-
els by deploying a simplified yet effective
methodology, which involves the strategic ad-
dition of a limited set of nodes and edges to
the existing graph structure.

* We discover the mechanism by which global
embeddings and global nodal interactions af-
fect the entire graph structure.

2 Related Works
2.1 Emotion Labeled Datasets

Several publicly available datasets can be utilized
in the ERC task. The IEMOCAP dataset (Busso
et al., 2008) is widely recognized in the field of
emotion recognition, containing multimodal data
(acoustic, textual, and visual). EmotionLines (Hsu
et al., 2018) comprises dialogue of text data from
the popular TV show "Friends". MELD (Poria
et al., 2019) is an expanded version of the Emotion-
Lines dataset, that includes additional visual and
acoustic data. The SEMAINE dataset (McKeown
et al., 2011) is offered with multimodal data with
dimensional emotion labels (valence, arousal, ex-
pectancy, and power), annotated with values rang-
ing from -1 to 1 (Buechel and Hahn, 2017). Ad-
ditional datasets such as EmoryNLP (Zahiri and
Choi, 2018), DailyDialog (Li et al., 2017), and
CMU-MOSEI (Zadeh et al., 2018) emphasize di-
mensional emotion labels. More recent datasets
includes K-Emocon (Park et al., 2020) and AV-
CAffe (Sarkar et al., 2023). We employ the IEMO-
CAP and MELD datasets in our analysis due to
their applicability in the baseline models we use,
multimodal nature and the availability of discrete
emotional labels corresponding to individual utter-
ances.

2.2 GNN-based ERC Models

The challenge in Emotion Recognition in Conver-
sation (ERC) stems from the complexity of discern-
ing how specific utterances within a dialogue influ-
ence the emotional state of the speaker. Early re-
search attempted to extract context from conversa-
tions using Deep Belief Network (DBN) and Long
Short Term Memory (LSTM) as demonstrated by
Lee et al. (2009) and Wollmer et al. (2010), re-
spectively.

Later on, Graph Neural Network(GNN) were
found to be affective in conveying the global state.

DialogueGCN (Ghosal et al., 2019) employs GNN
structures to effectively combine contexts inherent
in sentences. Zhang et al. (2019) utilizes graphs to
model multi-speaker scenarios. Shen et al. (2021)
merged the capabilities of traditional GNN with re-
current neural models to enhance the performance.
Hu et al. (2021) leverages a graph-based fusion
technique to capture both intra- and inter-modality
contextual features. MM-DFN (Hu et al., 2022),
an evolution of MMGCN, incorporates a dynamic
fusion network for more sophisticated multimodal
integration. Fu et al. (2022) utilized a Graph Con-
volutional Network (GCN) with knowledge graphs,
and Joshi et al. (2022) aims to capture both lo-
cal and global information. More recently, Chen
et al. (2023) focus on capturing more comprehen-
sive multivariate relationships and utilizing multi-
frequency information within the graph. Neverthe-
less, these models still have difficulty leveraging
the full potential of the global contexts lying in
the dialogue. We review methods from studies
in other domains (Wang et al., 2020; LIU et al.;
Wu et al., 2021) that utilized GNN structures to
more effectively capture global and local informa-
tion, exploring how to better incorporate global
context. Additionally, we apply the use of random
edges(Zhao et al., 2021) similarly to see the effect
in the ERC model. While most existing studies
have relied on training to achieve graph formation,
we aimed to determine if simple structural changes
could also result in performance differences.

3 Method

We propose methods for extracting global context
from inputs that are typically common to the stages
of graph-based ERC models, specifically focusing
on the GNN and classifier stages.

We represent a conversation U = uy,...,ur,
consisting of feature vectors of utterances u;, where
T is the number of utterances. The vector can
contain acoustic, textual, and visual features, de-
noted as u¢ € U%u} € U', and u¥ € UY, re-
spectively. Each utterance’s feature vectors are
derived from their respective feature extractor mod-
els, which do not need to be specified. Addition-
ally, each utterance is delivered by the speaker
(i) = s, € S = {s1,...,5n}, where N denotes
the number of speakers in U, and ¢ denotes a map-
ping from an utterance to its corresponding speaker.
The features of individual modalities do not need to
be context-aware. Each modality feature extractor



Ground Truth

© NLLLoss -

[Global Embedding for Classifier]

Modification with graph node embeddings

Different Layers S— [Global Node]
for each Baseline -
;l:n:rl:r oo m

T Aggregate,

Edges] -
Graph Formation '-ZA._ o x\ .

DDD/ oooo

1
(_Graph Network_|
(__Graph Formation

T H
-

Aggregate,

Graph Network

D Sentence feature node

. Node with global context (Global Node)

Audio data
Video data

Text data

| Happy | Sad Neutal : Emotion Labels

Figure 1: Overview of our modules within the general
form of GNN-based ERC model. It illustrates briefly
how the global context is extracted and used in global
node or in global embedding classifier. It also illustri-
ates how the random edge is formed during the graph
formation phase.

independently computes u;.

3.1 Context Extractor

Prior layers precede the GNN layer and follow
baseline architectures (Joshi et al., 2022; Hu et al.,
2022, 2021). These layers serve as context extrac-
tors and can consist of any type of neural network
specialized for sequential data, including LSTMs
and transformers. Our model generates context
vectors ¢; = ContextExtractor(u;) from utterance
embeddings u;.

3.2 Graph Neural Network(GNN)
3.2.1 Local Nodes and Edges

Suppose a ContextExtractor implicitly learns the
relationships between different embeddings in the
case of a graph neural network. In that case, it
takes the different embeddings and their explicit
relationships through edges as input, learning em-

beddings for the relationships themselves. Most
ERC models (Joshi et al., 2022; Hu et al., 2022)
employ the Relational Graph Convolutional Net-
work (Schlichtkrull et al., 2018), which defines a
relation r € R as illustrated in the Equation (1).

T'past_inter = {c; — Cj|i < J,00) # o(4)}
Tfuture_inter = 1€ — €;|i > j, (i) # (j)} (1)

Tpast_intra = 1€ — €;|i < j, ¢(i) = &(j)}
Tfuture_intra = 1€ — €| > j, (i) = &(j)}

Neighborhood N,.(7) is a set of neighboring in-
dices for ¢; under r. The network convolves the
context vectors and relations to yield new embed-
ding reflecting the graph information (Schlichtkrull
et al., 2018), where Oy and ©,. are learnable pa-
rameters of the model. Equation (2) indicates the
output of the GNN z;.

Z; = Orpot - €; + Z Z W}(W@T +Cy (2)
r€R FEN,(4)

3.2.2 Global Nodes Aggregating Utterances

We aim to integrate a broader context by introduc-
ing a novel relationship, represented by Ogjopar.
This involves adding directed edges from a uni-
versal context node c,, to every other nodes in
the network. The global node c, is extracted us-
ing two primary methods: aggregating the input
nodes of the graph through calculations such as
the simple mean, the weighted mean, or through
an embedding obtained via a fully-connected layer.
We then integrate this global node into the graph’s
vertex set and connect it to other nodes through
directed edges in the edge list. We define @gjopar as
the learnable parameters associated with the global
embedding. Consequently, the resulting output em-
bedding follows the configuration specified in the
Equation (3).
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3.2.3 Random Edges

The second approach entails generating random
long-distance edges within the graph. Typically,
when conversation data is represented graphically,
connections are established between temporally
proximate conversations to facilitate the exchange
of local information. Let G(i) represent the set of
indices k from a random subset of U that satisfies



|k — | > &, where § is a minimum length edge
length in the graph. Consequently, the resulting
output embedding is structured as the Equation

G2

Zi =00 G+ >, D m(’)r ~cj+ Y Oglobal + Ck (4)
re€R jEN; (i) keg(i)

Some models (Joshi et al., 2022) have an addi-
tional Transformer layer (Shi et al., 2020) that ben-
efits from graph neural architecture. It is placed be-
tween the previous Graph Convolutional Network
layer and the classifier layer, which can be simply
denoted as z} = GraphTransformer(z; 7).

3.3 Global Embeddings for Classifier

The last module extracts the global context from
the embeddings produced by the GNN. To mini-
mize complexity, we put the classifier input z; to a
separate FC layer and averaged the output across
the time dimension. This averaged vector is con-
sidered as "Global Embedding". We append this to
z;. This is denoted as the Equation (5).

91 = argmax(o(Wlz : z,] + b)) (5)

Equation (6) represents z,, the global embed-
ding concatenated to the original classifier input.

T
zg= Y, NaZiths (6)

i=1
4 Experiment

4.1 Datasets

We use IEMOCAP (Busso et al., 2008) and MELD
(Poria et al., 2019) datasets. IEMOCAP dataset
is a multimodal dataset assembled by recording
scripted plays and improvisations, including text,
speech, and facial expressions captured using mo-
tion capture devices. We used six emotion labels
(happy, sad, neutral, angry, excited, and frustrated)
to train and evaluate each model. MELD is a mul-
timodal dataset derived from dialogues of the fa-
mous TV show "Friends." Its labels are annotated
with seven emotions (anger, disgust, fear, joy, neu-
tral, sadness, and surprise) and three sentiments
(positive, negative, and neutral). We used only the
emotion labels of the dataset.

We primarily adher to the methodologies out-
lined in the open-source repositories of the baseline
models'?3 for dataset processing. However, due to

"https://github.com/hujingwen6666/MMGCN.git

*https://github.com/zerohd4869/MM-DFN.git
3https://github.com/Exploration-Lab/COGMEN. git

the lack of detailed instructions in some of these
sources, the evaluation results reported in these
works may not be entirely accurate.

4.2 Baseline Models

We applied our modules to three contemporary
ERC models: MMGCN (Hu et al., 2021), MM-
DFN (Hu et al., 2022), and COGMEN(Joshi et al.,
2022). These models are selected based on their
recency and high-ranking evaluation scores relative
to other GNN-based ERC models. Each of these
models incorporates trainable weights to effectively
capture the relational dynamics between different
utterances.

4.3 Implementation Details

We implement each model in Section 3 and com-
pare their evaluation results with baseline vanilla
models. Performance is measured by both accuracy
and F1 score. We maintain consistent hyperparam-
eters across all implementations of each baseline
model.

In the Global Node module, we add an addi-
tional global node at the end of each conversation’s
context vector. Global node averages the context
embeddings from the context extractor for each
conversation.

In the Global Embedding module, the classi-
fier processes the output of the GNN through an
additional FC layer, averaging it across the time
dimension, and appends it to the initial classifier
input.

In the Random Edges module, we specify the
number of random edges and connect nodes that
lie outside a predefined window. For instance, let
us suppose we set the predefined window as three.
The newly formed edges could include nodes situ-
ated more than three positions away from the cen-
tral node, both preceding and following it. Utiliz-
ing random edges, two nodes are randomly selected
among the conversations, and if the corresponding
edge is not present in the graph already, it is added
to the graph. The total number of newly created
edges is 10% of the number of edges in the existing
graph. In cases where the conversation is shorter
than the window size, all edges are connected.

Subsequently, we examine the differences in
implementations according to changes in modality,
as well as the variations in scores for each emo-
tion label. To determine the practical impact of our
modules, we conduct an additional experiment us-
ing the random edge module and analyze the label



Module MMGCN MM-DFN COGMEN
F11 Acc T F11 Acct F11 Acc 1
(vanilla) 65.56 65.87 66.42 66.85 69.80 70.40
o + G.E. 66.25 66.42 67.34 67.9 69.12 72.14
6 + G.N. 65.6 65.99 66.14 66.54 66.68 70.18
% +R.E. 63.88 64.88 66.24 67.16 68.29 71.54
H | +GN. & GE. 66.62 67.22 67.55 68.15 70.35 71.53
+R.E. & G.E. 66.64 67.22 66.62 67.34 72.35 73.04
(vanilla) 57.38 59.92 57.59 61.3 51.88 55.44
A + G.E. 57.29 60.61 57.86 61.15 51.24 54.3
= + G.N. 57.11 60.04 58.01 61.3 52.00 55.37
= +R.E. 56.35 59.31 58.43 61.11 51.65 55.86
+GN. & G.E. 57.69 60.5 58.35 61.99 51.33 54.66
+R.E. & G.E. 57.40 60.57 57.95 61.03 51.97 55.65

Table 1: F1 score (F1) and accuracy (Acc) presented in percentages (%) for implementation of our modules. G.E. is
global embedding for the classifier in Section 3.2. G.N.is the module in 3.1 and R.E. means random edge module.

predictions from the actual evaluation results.

We use 4 Nvidia GeForce 1080Ti GPUs, and the
models MMGCN, MM-DFN, COGMEN) takes up
to a day to train for each module implementation.

5 Results
5.1 Global Node Global Embedding Module

This section presents the results from the modules
described in Section 3.2.2.

As shown in Table 1, for MMGCN (Hu et al.,
2021), the model fairly showed a slight increase in
performance when applied both Global Node mod-
ule and Global Embedding modules, regardless
of the choice of the dataset IEMOCAP (Busso
et al., 2008), and MELD (Poria et al., 2019)).
In MM-DEN (Hu et al., 2022) implementations,
the performance of the model with both Global
Node and Global Embedding was slightly higher,
and the model with only the Global Embedding
also showed higher scores. Similarly, in COG-
MEN (Joshi et al., 2022), trained with IEMOCAP,
Global Embedding implemented model showed
high accuracy, while the model with both Global
Node and Global Embedding model achieved a
relatively high F1 score.

All three models tend to perform better with
both Global Node and Global Embedding module.
For Global Node, when the module was used by
itself, the performance improvement was minimal.
However, when combined with the global embed-

ding, it appears to be effective.

Table 2 shows the F1 score results for each dis-
crete emotion label. Overall, as reflected in Table 1,
both the model incorporating the Global Node mod-
ule and Global Embedding module and the one
with only the Global Embedding module showed
enhanced performance. Notably, the model com-
bining the Global Node module and Global Em-
bedding module outperformed the vanilla model
by over 10% in F1 score for the "happy’ label. In
the original evaluation, the baseline model often
misclassified ’sad’ instances as "happy.” In contrast,
our model exhibited fewer such errors. This im-
provement indicates that incorporating the global
context can reduce false positives for utterances
labeled *happy.’

5.2 Random Edge Module

When both Random Edge module and Global Em-
bedding module were applied together to MMGCN
and COGMEN, they showed an improvement in
F1 score performance as shown in Table 1. COG-
MEN demonstrated a more significant improve-
ment. In implementing the modules to MM-DFN,
it showed just a slight increase than the baseline
model. This might be attributed to the possibility
that MM-DEFN passes through more layers in the
Graph Neural Network than MMGCN and COG-
MEN, which could lead to a lesser degree of global
context being reflected.



Happy  Sad  Neutral Angry Excited Frustrated Total

Module F11+ F17¢ F11 F11 F11 F11 F11+ Acct
(vanilla) 26.82 82.33 69.60 63.85  75.07 64.74 69.80 70.40

o + G.E. 25.09 82.19 7036 59.24  74.67 65.62 69.12 72.14
6 + G.N. 34.11 84.33 69.80 67.99 T71.70 63.90 66.68 70.18
% + R.E. 31.02 84.14 69.28 64.59 71.97 63.59 68.29 71.54
H| +GN.&GE. | 3738 85.17 6886 66.86 70.22 63.43 70.35 71.53
+RE. &GE. | 32.27 8358 69.06 64.85 71.79 64.86 72.35 73.04

Table 2: F1 score (F1) presented in percentages(%) for each emotions. This shows the results of the COGMEN
baseline model and the models with our modules implemented in COGMEN.

COGMEN
Window size /type | F1 1+ Acc?
6 69.80 70.40
10 65.12 67.44
15 65.60 68.10
. 20 66.79  70.59
< 25 68.02 69.72
S N 66.68  69.02
= 3N 67.59 69.82
4N 66.59 67.70
5N 67.70 70.72
Random Edge 7235 173.04

Table 3: F1 score (F1) and accuracy (Acc) of different
variations of window size or window type presented in
percentages(%). It was tested on COGMEN baseline
model, trained by IEMOCAP dataset.

5.3 Impact of Random Edge Module

In our exploration of the Random Edge module,
we sought to demonstrate that the primary per-
formance driver for our model is the element of
randomness rather than simply increasing the num-
ber of connections through larger window sizes.
To substantiate this claim, we performed two ex-
periments. First, we tested the impact of varying
window sizes by exceeding the original configura-
tion. As shown in Table 3, although the F1 score
increased with larger window sizes, there was no
significant correlation between the accuracy and
the larger window sizes. Second, we maintained
a constant window size while increasing the hop
size to observe how the random hops undertaken

by the Random Edge module affect the model per-
formance. While accuracy improved slightly, there
was no significant correlation between increasing
the hop size and the F1 score change. These find-
ings suggest that variations in window size or hop
size minimally impact model performance, which
does not match the enhancement seen with the
model employing the Random Edge module.

5.4 Comparison under different modality
settings

We hypothesize that the modality of speech could
significantly impact the assigned emotion label.
For example, one might be less responsive to
textual modalities yet more sensitive to auditory
modalities.

Table 4 shows impact of modalities on the per-
formance of the implemented modules.

We have found that models generally exhibit
improved performance with the addition of textual
modality. Additionally, although our model does
not always achieve the best outcomes across all
modalities, it is important to highlight that our com-
bination of audio and video modalities outperforms
both the vanilla model and the original model’s
textual and video combination. These findings sup-
port that the improvements likely stem from our
model’s effective use of context, which previous
models may not have fully exploited.

Since COGMEN is originally trained using
the IEMOCAP and CMU-MOSEI datasets (Zadeh
et al., 2018), we adapted its training for the MELD
dataset to ensure fair comparisons with other base-
line models. The potential mismatch between
COGMEN’s training and the MELD dataset may
partly account for the outcomes presented in Ta-
ble 1; although the model incorporating both the



\4 A+T A+V T+V A+T+V

Module F11t Acct F11T AcctT FIT Acct | FI1 Acct FI1T Acct FIT AcctT | FI1T  Acc?
(vanilla) 57.73 59.55 56.74 58.92 4532 49.73 | 65.44 65.00 62.66 64.88 62.40 64.73 | 69.80 70.40

N +G.E. 57.75 59.58 56.49 58.49 44.82 49.34 | 66.08 66.30 63.33 65.15 61.64 64.19 | 69.12 72.14
5 +G.N. 57.68 59.49 57.73 59.82 45.04 49.55 | 66.19 66.42 62.30 64.49 61.80 64.25 | 66.68 70.18
% +R.E. 57.77 59.61 56.69 59.01 44.80 49.34 | 65.92 66.08 62.87 64.88 61.93 64.25 | 68.29 71.54
B | +GN.&GE. | 57.72 59.55 56.73 59.04 45.00 49.49 | 65.47 65.09 62.79 64.88 61.54 64.01 | 70.35 71.53
+R.E.&GE. | 5779 59.61 56.64 58.95 45.12 49.61 | 65.46 65.03 63.74 65.54 62.07 64.49 | 7235 73.04
(vanilla) 27.21 39.45 51.43 5493 27.42 38.08 | 52.54 56.03 26.45 42.69 52.56 5697 | 51.88 55.44

+G.E. 26.37 43.5 51.33 55.18 27.96 43.24 | 48.94 54.03 27.19 43.03 50.89 55.14 | 51.24 54.3

é +G.N. 2746 39.87 50.04 53.48 27.49 38.72 | 51.57 54.84 26.93 4294 51.71 56.25 | 52.00 55.37
P +R.E. 2746 39.87 49.75 5296 28.1 40.3 | 51.46 54.97 27.69 41.83 52.54 56.5 | 51.65 55.86
+GN.&GE. | 269 3518 49.83 54.16 2847 42.73 | 48.00 52.03 26.93 42.17 49.61 54.58 | 51.33 54.66
+RE. &GE. | 26.37 43.5 5217 5586 27.3 42.77 | 49.69 54.54 27.11 43.58 50.98 55.57 | 51.97 55.65

Table 4: F1 score (F1) and accuracy (Acc) presented in percentages (%) for COGMEN and implementations of our

modules. A is audio, T is text, V is video modality.

Random Edge and Global Embedding modules
achieved relatively higher scores, its overall per-
formance was still lower than that of the other two
baseline models.

Prediction
(Ours)

Prediction

True Labels Beseling)

Look what we got here. l Happy Happy Happy

[ Augie, you bought refreshments. - Happy Happy Happy

< It's not champagne. ‘ Neutral Neutral Sad
‘ 1 guess we don't need glasses. L/\ Happy Happy Sad
4 Are you cold, huh? Do you want to go home? Neutral Neutral Neutral
R Happy Happy —
\J Augie, I'm sorry. Neutral Neutral Neutral
Sl Happy Happy Sad

| Ifwe are really quiet, the fish might come. >

Figure 2: Segments of dialogue examples from the
IEMOCAP test data. "Baseline" is COGMEN vanilla
model and "Ours" is a COGMEN model implemented
with both Random Edge and Global Embedding mod-
ule.

5.5 Does these modules really attend to global
context?

To ascertain whether our model reflects a proper
representation of the global context, we extracted
sample sentences that our model classified differ-
ently from the baseline model. We wanted to see
whether our modules really saw the global con-
texts, thereby predicting the true emotion label
of sentences that could be seen differently on the
local level. We specifically looked at the actual
evaluation results of test dataset on the COGMEN
vanilla model and model that implemented our Ran-

dom Edge module with global embedding clas-
sifier module to COGMEN. In cases where the
original model made incorrect predictions but the
model incorporating global context made correct
predictions, it was often found that the utterances
were temporally adjacent. For instance, the vanilla
model incorrectly predicted the emotions of certain
utterances in the conversations shown in Figure 2,
mislabeling some sentences as ’sad.” Although the
individual sentences carry negative nuances, the
relevant part of the conversation involves two peo-
ple making up. Therefore, an accurate prediction
of the emotional label would require understanding
the overall (global) context of the conversation.
Moreover, the consistent misclassification of
consecutive utterances by the baseline model may
be attributed to the influence of a single node’s er-
ror on its neighboring nodes when calculating emo-
tions based on local context. Our model’s ability to
correctly classify these instances may be due to its
robustness against local errors, thereby retrieving
accurate emotion labels from the given example.
This hypothesis is further supported by the differ-
ence in the overall recognition scores between the
baseline model and the Random Edge with Global
Embedding Classifier model, as shown in Figure 1.

6 Conclusion

In this study, we enhance the architecture of graph
neural networks within emotion recognition in con-
versation models by incorporating the global con-
text of conversations. We investigate effects of
integrating conversational context and interactions
on improving the accuracy of emotion recognition



in conversation models. We empirically show that
these modifications could have positive impact on
the performance. We also analyze the modifica-
tions in various perspective to see if these modules
truly convey the global contexts to enhance the
performance of the prediction task. Various exper-
iments and their results suggest our methods are
capable of leveraging global context to different
types of graph networks.

7 Limitation and Future Works

One significant limitation of this research arises
from the variability in the formats used by different
models for embedding generation, such as pickle
files and the handling of ambiguous labels. This di-
versity complicates the achievement of a perfectly
fair comparison among models.

Another key issue is the class imbalance present
in datasets, where certain emotional labels are
disproportionately represented. This imbalance
may impact model performance, as suggested by
the possibility of including a histogram figure of
dataset labels to illustrate this point. Additionally,
the size of datasets represents a constraint. Given
the inherently difficult nature of collecting such
data, the available datasets are not large. This lim-
itation is evidenced by the variance in results de-
pendent on minor model settings like hyperparam-
eters, further highlighting the challenge of dataset
size and consistency. In light of these limitations,
there is a desire to overcome the narrow repre-
sentation space confined to categorically labeled
data. One proposed solution involves mapping
dimensionally labeled data to categorical labels
through a form of interpolation, thereby expanding
the dataset size and potentially enhancing model
performance. Also, our approach faces limitations
in its applicability, particularly its restriction to
GNN-based models. Since many Emotion Recog-
nition models do not utilize GNNG, it is essential to
consider methods that can generally improve model
performance across a broader range of models. The
issue of reproducibility also presents a limitation,
with many studies not fully disclosing their datasets
and codes. This lack of openness has hindered the
application and accurate reproduction of existing
methods. Finally, it is important to acknowledge
that the proposed modules may not uniformly en-
hance performance across all baselines. This vari-
ability underscores the need for further research to
develop more universally applicable strategies that

can address the model and dataset-specific chal-
lenges inherent in Emotion Recognition.

8 [Ethics Statement

This study was conducted with careful emphasis
on ethical considerations. All data used in this re-
search were obtained from publicly open sources.
We obtained necessary permissions from owners
for data usage where required. We conducted thor-
ough evaluations to assess the fairness and robust-
ness of our models. During the writing, Al assistant
is used for checking grammar.
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Appendix
A Hyperparameter Setting

We mostly tried to follow the baseline models’ (Hu
et al., 2021, 2022; Joshi et al., 2022) original set-
tings to emphasize fair comparison with our imple-
mentations. Settings are described in Table 5 for
MMGCN, Table 6 for MM-DFN and Table 7 for
COGMEN.

Dataset ‘GCN Layers Dropout Gamma Learning Rate L2

IEMOCAP ‘ 4 0.4 0.7 3e—4

3e—5

MELD | 4 04 0.7 3e—4

3e—5

Table 5: Hyperparameter values for MMGCN.

Dataset ‘GCN Layers Dropout Gamma Learning Rate L2

IEMOCAP ‘ 16 0.4 1.0 le—4

le—4

MELD | 32 0.2 1.0 Se —4

le—4

Table 6: Hyperparameter values for MM-DFN.

Dataset | Dropout Learning Rate Weight Decay
IEMOCAP | 0.1 le—4 le—8
MELD | 0.1 le—4 le — 8

Table 7: Hyperparameter values for COGMEN.

B Additional Experiment Results

Experiment results of MMGCN (Hu et al., 2021)
and MM-DFEN (Hu et al., 2022) under different
modality settings.

C Evaluation Metrics

F1 score: F1 score is the harmonic mean of preci-
sion and recall, which can be used for imbalanced
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datasets like IEMOCAP or MELD. F1 score ranges
from O to 1, with 1 being the perfect precision and
recall value. Formula for the score is:

Precision x Recall
Precision + Recall

F1=2x

Accuracy: Accuracy is defined as the percentage
of correct prediction of labels in the evaluation
process of each model.



A T |4 A+T A+V T+V A+T+V

Module FI11t Acct FIT Acet FIT Acct | FIT Acct F11T Acct F11T AcctT| FIT Acct
(vanilla) 46.57 48.68 61.99 62.42 27.70 32.29 | 65.32 65.50 49.76 50.96 63.36 63.96 | 65.56 65.87

a +G.E. 45.98 48.80 61.53 62.05 34.40 37.03 | 65.70 66.24 50.51 52.06 63.54 63.83 | 66.25 66.42
5 +G.N. 46.78 48.68 62.73 63.09 28.89 30.75 | 65.59 65.99 51.3 52.56 63.17 64.08 | 65.60 65.99
% +R.E. 47.33  50.03 60.30 61.92 29.54 3851 | 59.09 61.37 49.16 51.14 60.73 61.55 | 63.88 64.88
B | +GN.&GE. | 44.61 47.20 62.35 63.09 30.88 33.09 | 65.48 65.93 50.21 51.51 63.18 63.71 | 66.62 67.22
+RE.&GE. | 4438 46.95 62.30 63.09 30.76 33.27 | 65.50 65.99 50.18 51.39 63.11 63.65 | 66.64 67.22
(vanilla) 40.47 49.08 56.81 59.81 31.64 4824 | 57.54 60.27 41.81 50.19 57.27 60.57 | 57.38 59.92

A +G.E. 41.01 49.73 56.05 59.85 37.39 48.43 | 57.32 60.11 44.15 50.77 57.50 60.08 | 57.29 60.61
= +G.N. 40.28 49.16 57.11 59.46 34.42 48.39 | 56.98 60.23 43.35 50.15 57.43 60.69 | 57.11 60.04
= +R.E. 36.92 4831 52.77 57.05 33.52 48.12 | 55.35 59.50 41.60 48.77 55.32 58.58 | 56.35 59.31
+G.N.&GE. | 40.54 49.08 57.32 60.08 32.27 4831 | 57.27 60.34 43.66 50.46 57.55 60.54 | 57.69 60.50
+RE.&GE. | 4147 49.35 56.52 59.62 36.54 4835 | 57.24 60.46 44.23 50.54 57.82 60.69 | 57.40 60.57

Table 8: F1 score(F1) and accuracy(Acc) presented in percentages(%) for MMGCN and implementations of our
modules. A is audio, 7 is text, V is video modality.

A T Vv A+T A+V T+V A+T+V

Module FI1t Acct FIT Acet FIT Acct| FIT Acct F11T Acct F11T Acct| FIT Acct
(vanilla) 51.84 54.65 60.80 61.00 26.64 31.61 | 64.46 64.76 52.62 54.47 62.05 62.42 | 66.42 66.85

o +G.E. 54.97 55.95 62.33 62.23 26.73 31.85 | 64.61 64.63 53.72 55.51 61.43 61.55 | 67.34 67.90
5 +G.N. 54.81 55.95 61.20 61.37 30.86 32.72 | 62.83 62.91 50.82 52.68 62.42 62.85 | 66.14 66.54
% +R.E. 50.47 52.50 60.63 60.51 32.70 35.37 | 61.20 61.55 49.59 52.56 62.77 62.60 | 66.24 67.16
B | +GN.&GE. | 57.16 57.79 62.25 62.11 26.94 32.90 | 63.70 63.89 51.62 53.97 61.45 61.68 | 67.55 68.15
+RE.&GE. | 52.10 54.84 61.87 62.17 26.98 29.57 | 66.09 66.79 53.73 55.76 62.31 63.03 | 66.62 67.34
(vanilla) 42.01 47.85 56.96 60.08 35.42 4559 | 57.68 60.54 43.18 48.85 5846 61.26 | 57.59 61.30

A +G.E. 42.02 48.16 57.30 60.46 34.08 48.54 | 57.31 60.08 44.77 50.19 57.77 61.46 | 57.86 61.15
= +G.N. 43.56 48.85 57.16 60.27 35.05 48.35 | 57.92 60.80 43.90 49.85 57.78 60.88 | 58.01 61.30
= +R.E. 41.03 47.74 57.24 59.81 34.70 42.34 | 57.63 60.11 44.28 50.11 57.76 61.26 | 58.43 61.11
+G.N.&GE. | 41.53 47.36 56.76 59.20 35.25 48.12 | 57.52 60.42 44.27 50.08 58.07 60.77 | 58.35 61.99
+RE.&GE. | 43.63 47.36 56.97 60.54 35.09 46.70 | 57.81 60.57 44.15 49.81 57.70 60.23 | 57.95 61.03

Table 9: F1 score(F1) and accuracy(Acc) presented in percentages(%) for MM-DFN and implementations of our
modules. A is audio, T is text, V is video modality.
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