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Abstract001

According to multimodal and contextualized002
nature of the human conversation, correctly003
identifying an emotion for given utterance in004
the conversation has always been a challeng-005
ing task. Recent research benefits from Graph006
Neural Networks by capturing implicit relation-007
ship of temporally proximate utterances. In this008
paper, we expand the structure of the graph ex-009
ploited by these models reflecting the global010
context of the conversation and explore how011
leveraging conversational context and interac-012
tions can lead to more accurate emotion recog-013
nition. We empirically analyze the modules014
on Emotion Recognition in Conversation mod-015
els, showing this approach enhances the per-016
formance of these models. Our experiments017
show that incorporating global conversational018
context has a positive effect on the performance019
of emotion recognition.020

1 Introduction021

Emotion Recognition in Conversation (ERC) is a022

task of recognizing correct labels of emotion for023

sentences in a dialogue. Recently, ERC has be-024

come a significant area of interest for researchers025

due to its potential applications in fields requiring026

multimodal interaction (Poria et al., 2019), and027

natural interactions between humans and comput-028

ers. It can be used in robotics, can be applied in029

medical science (Zucco et al., 2018), and house-030

hold devices capable of generating responses that031

demonstrate emotional intelligence and empathy.032

This necessitates the precise interpretation of the033

embedded meanings within each sentence, speech,034

video and more, thereby significantly elevating the035

importance of the field of emotion recognition.036

However, conversation represent complex inter-037

play of multiple elements including hand gestures,038

facial expressions, language, speech, sound, con-039

text, and emotions, making the prediction of emo-040

tions within dialogue sentences a challenging en-041

deavor. Many researchers tried various attempts042

to enhance the performance of emotion recogni- 043

tion by leveraging a variety of factors. Also, they 044

tried implementing techniques in machine learning 045

to increase the performance of emotion recogni- 046

tion models. Among these attempts, Graph Neu- 047

ral Network (GNN) is one of schemes turned out 048

to be successful in improving the performance of 049

the task (Joshi et al., 2022; Hu et al., 2022; Chen 050

et al., 2023). Learning embedding of both nodes 051

and their relationships, ERC models using graph 052

network architecture proved their capacity to cap- 053

ture the relationship between sentences and predict 054

underlying emotional feature. 055

Nevertheless, these models still struggle to ade- 056

quately capture the relationships between all utter- 057

ances or modalities, often limited by factors such 058

as graph size, shortage of data and etc. There have 059

been various attempts to approach this problem 060

from multiple perspectives and adopt different so- 061

lutions. As one of these approaches, from a psy- 062

chological perspective, it is anticipated that more 063

accurate emotion recognition could be achieved by 064

integrating into the model the notion that global 065

contexts, such as mood, influence emotional bias, 066

as posited by Schmid and Schmid Mast (2010). We 067

try to bring this perspective to be implemented in 068

graph formation. Our research investigates whether 069

more precise Emotion Recognition in Conversation 070

(ERC) can be achieved through simple modifica- 071

tions to the GNN, by more actively utilizing global 072

context during the graph formation stage. We cre- 073

ated global node in the graph formation stage to 074

better capture the overall context of the conversa- 075

tion and explore the impact of slight changes in 076

edge connections between nodes. Additionally, we 077

investigate the effects of incorporating global em- 078

beddings in the classifier stage of the model. We 079

apply these implementations to several existing 080

GNN-based ERC models and conduct additional 081

experiments to determine the actual differences 082

each implementation makes. 083
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We make the following contributions in this pa-084

per:085

• Our model enhances the efficacy of ERC mod-086

els by deploying a simplified yet effective087

methodology, which involves the strategic ad-088

dition of a limited set of nodes and edges to089

the existing graph structure.090

• We discover the mechanism by which global091

embeddings and global nodal interactions af-092

fect the entire graph structure.093

2 Related Works094

2.1 Emotion Labeled Datasets095

Several publicly available datasets can be utilized096

in the ERC task. The IEMOCAP dataset (Busso097

et al., 2008) is widely recognized in the field of098

emotion recognition, containing multimodal data099

(acoustic, textual, and visual). EmotionLines (Hsu100

et al., 2018) comprises dialogue of text data from101

the popular TV show "Friends". MELD (Poria102

et al., 2019) is an expanded version of the Emotion-103

Lines dataset, that includes additional visual and104

acoustic data. The SEMAINE dataset (McKeown105

et al., 2011) is offered with multimodal data with106

dimensional emotion labels (valence, arousal, ex-107

pectancy, and power), annotated with values rang-108

ing from -1 to 1 (Buechel and Hahn, 2017). Ad-109

ditional datasets such as EmoryNLP (Zahiri and110

Choi, 2018), DailyDialog (Li et al., 2017), and111

CMU-MOSEI (Zadeh et al., 2018) emphasize di-112

mensional emotion labels. More recent datasets113

includes K-Emocon (Park et al., 2020) and AV-114

CAffe (Sarkar et al., 2023). We employ the IEMO-115

CAP and MELD datasets in our analysis due to116

their applicability in the baseline models we use,117

multimodal nature and the availability of discrete118

emotional labels corresponding to individual utter-119

ances.120

2.2 GNN-based ERC Models121

The challenge in Emotion Recognition in Conver-122

sation (ERC) stems from the complexity of discern-123

ing how specific utterances within a dialogue influ-124

ence the emotional state of the speaker. Early re-125

search attempted to extract context from conversa-126

tions using Deep Belief Network (DBN) and Long127

Short Term Memory (LSTM) as demonstrated by128

Lee et al. (2009) and Wöllmer et al. (2010), re-129

spectively.130

Later on, Graph Neural Network(GNN) were131

found to be affective in conveying the global state.132

DialogueGCN (Ghosal et al., 2019) employs GNN 133

structures to effectively combine contexts inherent 134

in sentences. Zhang et al. (2019) utilizes graphs to 135

model multi-speaker scenarios. Shen et al. (2021) 136

merged the capabilities of traditional GNN with re- 137

current neural models to enhance the performance. 138

Hu et al. (2021) leverages a graph-based fusion 139

technique to capture both intra- and inter-modality 140

contextual features. MM-DFN (Hu et al., 2022), 141

an evolution of MMGCN, incorporates a dynamic 142

fusion network for more sophisticated multimodal 143

integration. Fu et al. (2022) utilized a Graph Con- 144

volutional Network (GCN) with knowledge graphs, 145

and Joshi et al. (2022) aims to capture both lo- 146

cal and global information. More recently, Chen 147

et al. (2023) focus on capturing more comprehen- 148

sive multivariate relationships and utilizing multi- 149

frequency information within the graph. Neverthe- 150

less, these models still have difficulty leveraging 151

the full potential of the global contexts lying in 152

the dialogue. We review methods from studies 153

in other domains (Wang et al., 2020; LIU et al.; 154

Wu et al., 2021) that utilized GNN structures to 155

more effectively capture global and local informa- 156

tion, exploring how to better incorporate global 157

context. Additionally, we apply the use of random 158

edges(Zhao et al., 2021) similarly to see the effect 159

in the ERC model. While most existing studies 160

have relied on training to achieve graph formation, 161

we aimed to determine if simple structural changes 162

could also result in performance differences. 163

3 Method 164

We propose methods for extracting global context 165

from inputs that are typically common to the stages 166

of graph-based ERC models, specifically focusing 167

on the GNN and classifier stages. 168

We represent a conversation U = u1, . . . ,uT, 169

consisting of feature vectors of utterances ui, where 170

T is the number of utterances. The vector can 171

contain acoustic, textual, and visual features, de- 172

noted as ua
i ∈ Ua,ut

i ∈ Ut, and uv
i ∈ Uv, re- 173

spectively. Each utterance’s feature vectors are 174

derived from their respective feature extractor mod- 175

els, which do not need to be specified. Addition- 176

ally, each utterance is delivered by the speaker 177

ϕ(i) = sn ∈ S = {s1, . . . , sN}, where N denotes 178

the number of speakers in U, and ϕ denotes a map- 179

ping from an utterance to its corresponding speaker. 180

The features of individual modalities do not need to 181

be context-aware. Each modality feature extractor 182
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Figure 1: Overview of our modules within the general
form of GNN-based ERC model. It illustrates briefly
how the global context is extracted and used in global
node or in global embedding classifier. It also illustri-
ates how the random edge is formed during the graph
formation phase.

independently computes ui.183

3.1 Context Extractor184

Prior layers precede the GNN layer and follow185

baseline architectures (Joshi et al., 2022; Hu et al.,186

2022, 2021). These layers serve as context extrac-187

tors and can consist of any type of neural network188

specialized for sequential data, including LSTMs189

and transformers. Our model generates context190

vectors ci = ContextExtractor(ui) from utterance191

embeddings ui.192

3.2 Graph Neural Network(GNN)193

3.2.1 Local Nodes and Edges194

Suppose a ContextExtractor implicitly learns the195

relationships between different embeddings in the196

case of a graph neural network. In that case, it197

takes the different embeddings and their explicit198

relationships through edges as input, learning em-199

beddings for the relationships themselves. Most 200

ERC models (Joshi et al., 2022; Hu et al., 2022) 201

employ the Relational Graph Convolutional Net- 202

work (Schlichtkrull et al., 2018), which defines a 203

relation r ∈ R as illustrated in the Equation (1). 204

rpast_inter = {ci → cj |i < j, ϕ(i) ̸= ϕ(j)}
rfuture_inter = {ci → cj |i > j, ϕ(i) ̸= ϕ(j)}
rpast_intra = {ci → cj |i < j, ϕ(i) = ϕ(j)}

rfuture_intra = {ci → cj |i > j, ϕ(i) = ϕ(j)}

(1) 205

Neighborhood Nr(i) is a set of neighboring in- 206

dices for ci under r. The network convolves the 207

context vectors and relations to yield new embed- 208

ding reflecting the graph information (Schlichtkrull 209

et al., 2018), where Θroot and Θr are learnable pa- 210

rameters of the model. Equation (2) indicates the 211

output of the GNN zi. 212

zi = Θroot · ci +
∑
r∈R

∑
j∈Nr(i)

1
|Nr(i)|Θr · cj (2) 213

3.2.2 Global Nodes Aggregating Utterances 214

We aim to integrate a broader context by introduc- 215

ing a novel relationship, represented by Θglobal. 216

This involves adding directed edges from a uni- 217

versal context node cg, to every other nodes in 218

the network. The global node cg is extracted us- 219

ing two primary methods: aggregating the input 220

nodes of the graph through calculations such as 221

the simple mean, the weighted mean, or through 222

an embedding obtained via a fully-connected layer. 223

We then integrate this global node into the graph’s 224

vertex set and connect it to other nodes through 225

directed edges in the edge list. We define Θglobal as 226

the learnable parameters associated with the global 227

embedding. Consequently, the resulting output em- 228

bedding follows the configuration specified in the 229

Equation (3). 230

zi = Θroot · ci +
∑
r∈R

∑
j∈Nr(i)

1
|Nr(i)|Θr · cj +Θglobal · cg (3) 231

3.2.3 Random Edges 232

The second approach entails generating random 233

long-distance edges within the graph. Typically, 234

when conversation data is represented graphically, 235

connections are established between temporally 236

proximate conversations to facilitate the exchange 237

of local information. Let G(i) represent the set of 238

indices k from a random subset of U that satisfies 239
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|k − i| ≥ δ, where δ is a minimum length edge240

length in the graph. Consequently, the resulting241

output embedding is structured as the Equation242

(4).243

zi = Θroot · ci +
∑
r∈R

∑
j∈Nr(i)

1
|Nr(i)|Θr · cj +

∑
k∈G(i)

Θglobal · ck (4)244

Some models (Joshi et al., 2022) have an addi-245

tional Transformer layer (Shi et al., 2020) that ben-246

efits from graph neural architecture. It is placed be-247

tween the previous Graph Convolutional Network248

layer and the classifier layer, which can be simply249

denoted as z′1..T = GraphTransformer(z1..T).250

3.3 Global Embeddings for Classifier251

The last module extracts the global context from252

the embeddings produced by the GNN. To mini-253

mize complexity, we put the classifier input zi to a254

separate FC layer and averaged the output across255

the time dimension. This averaged vector is con-256

sidered as "Global Embedding". We append this to257

zi. This is denoted as the Equation (5).258

ŷI = argmax(σ(W[zI : zg] + b)) (5)259

Equation (6) represents zg, the global embed-260

ding concatenated to the original classifier input.261

zg =
T∑

i=1

Wgzi+bg

T (6)262

4 Experiment263

4.1 Datasets264

We use IEMOCAP (Busso et al., 2008) and MELD265

(Poria et al., 2019) datasets. IEMOCAP dataset266

is a multimodal dataset assembled by recording267

scripted plays and improvisations, including text,268

speech, and facial expressions captured using mo-269

tion capture devices. We used six emotion labels270

(happy, sad, neutral, angry, excited, and frustrated)271

to train and evaluate each model. MELD is a mul-272

timodal dataset derived from dialogues of the fa-273

mous TV show "Friends." Its labels are annotated274

with seven emotions (anger, disgust, fear, joy, neu-275

tral, sadness, and surprise) and three sentiments276

(positive, negative, and neutral). We used only the277

emotion labels of the dataset.278

We primarily adher to the methodologies out-279

lined in the open-source repositories of the baseline280

models123 for dataset processing. However, due to281

1https://github.com/hujingwen6666/MMGCN.git
2https://github.com/zerohd4869/MM-DFN.git
3https://github.com/Exploration-Lab/COGMEN.git

the lack of detailed instructions in some of these 282

sources, the evaluation results reported in these 283

works may not be entirely accurate. 284

4.2 Baseline Models 285

We applied our modules to three contemporary 286

ERC models: MMGCN (Hu et al., 2021), MM- 287

DFN (Hu et al., 2022), and COGMEN(Joshi et al., 288

2022). These models are selected based on their 289

recency and high-ranking evaluation scores relative 290

to other GNN-based ERC models. Each of these 291

models incorporates trainable weights to effectively 292

capture the relational dynamics between different 293

utterances. 294

4.3 Implementation Details 295

We implement each model in Section 3 and com- 296

pare their evaluation results with baseline vanilla 297

models. Performance is measured by both accuracy 298

and F1 score. We maintain consistent hyperparam- 299

eters across all implementations of each baseline 300

model. 301

In the Global Node module, we add an addi- 302

tional global node at the end of each conversation’s 303

context vector. Global node averages the context 304

embeddings from the context extractor for each 305

conversation. 306

In the Global Embedding module, the classi- 307

fier processes the output of the GNN through an 308

additional FC layer, averaging it across the time 309

dimension, and appends it to the initial classifier 310

input. 311

In the Random Edges module, we specify the 312

number of random edges and connect nodes that 313

lie outside a predefined window. For instance, let 314

us suppose we set the predefined window as three. 315

The newly formed edges could include nodes situ- 316

ated more than three positions away from the cen- 317

tral node, both preceding and following it. Utiliz- 318

ing random edges, two nodes are randomly selected 319

among the conversations, and if the corresponding 320

edge is not present in the graph already, it is added 321

to the graph. The total number of newly created 322

edges is 10% of the number of edges in the existing 323

graph. In cases where the conversation is shorter 324

than the window size, all edges are connected. 325

Subsequently, we examine the differences in 326

implementations according to changes in modality, 327

as well as the variations in scores for each emo- 328

tion label. To determine the practical impact of our 329

modules, we conduct an additional experiment us- 330

ing the random edge module and analyze the label 331
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Module MMGCN MM-DFN COGMEN

F1 ↑ Acc ↑ F1 ↑ Acc ↑ F1 ↑ Acc ↑
(vanilla) 65.56 65.87 66.42 66.85 69.80 70.40

+ G.E. 66.25 66.42 67.34 67.9 69.12 72.14
+ G.N. 65.6 65.99 66.14 66.54 66.68 70.18

+ R.E. 63.88 64.88 66.24 67.16 68.29 71.54

IE
M

O
C

A
P

+ G.N. & G.E. 66.62 67.22 67.55 68.15 70.35 71.53

+ R.E. & G.E. 66.64 67.22 66.62 67.34 72.35 73.04

(vanilla) 57.38 59.92 57.59 61.3 51.88 55.44

+ G.E. 57.29 60.61 57.86 61.15 51.24 54.3

+ G.N. 57.11 60.04 58.01 61.3 52.00 55.37

M
EL

D

+ R.E. 56.35 59.31 58.43 61.11 51.65 55.86
+ G.N. & G.E. 57.69 60.5 58.35 61.99 51.33 54.66

+ R.E. & G.E. 57.40 60.57 57.95 61.03 51.97 55.65

Table 1: F1 score (F1) and accuracy (Acc) presented in percentages (%) for implementation of our modules. G.E. is
global embedding for the classifier in Section 3.2. G.N.is the module in 3.1 and R.E. means random edge module.

predictions from the actual evaluation results.332

We use 4 Nvidia GeForce 1080Ti GPUs, and the333

models (MMGCN, MM-DFN, COGMEN) takes up334

to a day to train for each module implementation.335

5 Results336

5.1 Global Node Global Embedding Module337

This section presents the results from the modules338

described in Section 3.2.2.339

As shown in Table 1, for MMGCN (Hu et al.,340

2021), the model fairly showed a slight increase in341

performance when applied both Global Node mod-342

ule and Global Embedding modules, regardless343

of the choice of the dataset (IEMOCAP (Busso344

et al., 2008), and MELD (Poria et al., 2019)).345

In MM-DFN (Hu et al., 2022) implementations,346

the performance of the model with both Global347

Node and Global Embedding was slightly higher,348

and the model with only the Global Embedding349

also showed higher scores. Similarly, in COG-350

MEN (Joshi et al., 2022), trained with IEMOCAP,351

Global Embedding implemented model showed352

high accuracy, while the model with both Global353

Node and Global Embedding model achieved a354

relatively high F1 score.355

All three models tend to perform better with356

both Global Node and Global Embedding module.357

For Global Node, when the module was used by358

itself, the performance improvement was minimal.359

However, when combined with the global embed-360

ding, it appears to be effective. 361

Table 2 shows the F1 score results for each dis- 362

crete emotion label. Overall, as reflected in Table 1, 363

both the model incorporating the Global Node mod- 364

ule and Global Embedding module and the one 365

with only the Global Embedding module showed 366

enhanced performance. Notably, the model com- 367

bining the Global Node module and Global Em- 368

bedding module outperformed the vanilla model 369

by over 10% in F1 score for the ’happy’ label. In 370

the original evaluation, the baseline model often 371

misclassified ’sad’ instances as ’happy.’ In contrast, 372

our model exhibited fewer such errors. This im- 373

provement indicates that incorporating the global 374

context can reduce false positives for utterances 375

labeled ’happy.’ 376

5.2 Random Edge Module 377

When both Random Edge module and Global Em- 378

bedding module were applied together to MMGCN 379

and COGMEN, they showed an improvement in 380

F1 score performance as shown in Table 1. COG- 381

MEN demonstrated a more significant improve- 382

ment. In implementing the modules to MM-DFN, 383

it showed just a slight increase than the baseline 384

model. This might be attributed to the possibility 385

that MM-DFN passes through more layers in the 386

Graph Neural Network than MMGCN and COG- 387

MEN, which could lead to a lesser degree of global 388

context being reflected. 389
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Happy Sad Neutral Angry Excited Frustrated Total

Module F1 ↑ F1 ↑ F1 ↑ F1 ↑ F1 ↑ F1 ↑ F1 ↑ Acc ↑
(vanilla) 26.82 82.33 69.60 63.85 75.07 64.74 69.80 70.40

+ G.E. 25.09 82.19 70.36 59.24 74.67 65.62 69.12 72.14
+ G.N. 34.11 84.33 69.80 67.99 71.70 63.90 66.68 70.18

+ R.E. 31.02 84.14 69.28 64.59 71.97 63.59 68.29 71.54

IE
M

O
C

A
P

+ G.N. & G.E. 37.38 85.17 68.86 66.86 70.22 63.43 70.35 71.53

+ R.E. & G.E. 32.27 83.58 69.06 64.85 71.79 64.86 72.35 73.04

Table 2: F1 score (F1) presented in percentages(%) for each emotions. This shows the results of the COGMEN
baseline model and the models with our modules implemented in COGMEN.

COGMEN
Window size / type F1 ↑ Acc ↑

6 69.80 70.40
10 65.12 67.44
15 65.60 68.10
20 66.79 70.59
25 68.02 69.72

2N 66.68 69.02

IE
M

O
C

A
P

3N 67.59 69.82
4N 66.59 67.70
5N 67.70 70.72

Random Edge 72.35 73.04

Table 3: F1 score (F1) and accuracy (Acc) of different
variations of window size or window type presented in
percentages(%). It was tested on COGMEN baseline
model, trained by IEMOCAP dataset.

5.3 Impact of Random Edge Module390

In our exploration of the Random Edge module,391

we sought to demonstrate that the primary per-392

formance driver for our model is the element of393

randomness rather than simply increasing the num-394

ber of connections through larger window sizes.395

To substantiate this claim, we performed two ex-396

periments. First, we tested the impact of varying397

window sizes by exceeding the original configura-398

tion. As shown in Table 3, although the F1 score399

increased with larger window sizes, there was no400

significant correlation between the accuracy and401

the larger window sizes. Second, we maintained402

a constant window size while increasing the hop403

size to observe how the random hops undertaken404

by the Random Edge module affect the model per- 405

formance. While accuracy improved slightly, there 406

was no significant correlation between increasing 407

the hop size and the F1 score change. These find- 408

ings suggest that variations in window size or hop 409

size minimally impact model performance, which 410

does not match the enhancement seen with the 411

model employing the Random Edge module. 412

5.4 Comparison under different modality 413

settings 414

We hypothesize that the modality of speech could 415

significantly impact the assigned emotion label. 416

For example, one might be less responsive to 417

textual modalities yet more sensitive to auditory 418

modalities. 419

Table 4 shows impact of modalities on the per- 420

formance of the implemented modules. 421

We have found that models generally exhibit 422

improved performance with the addition of textual 423

modality. Additionally, although our model does 424

not always achieve the best outcomes across all 425

modalities, it is important to highlight that our com- 426

bination of audio and video modalities outperforms 427

both the vanilla model and the original model’s 428

textual and video combination. These findings sup- 429

port that the improvements likely stem from our 430

model’s effective use of context, which previous 431

models may not have fully exploited. 432

Since COGMEN is originally trained using 433

the IEMOCAP and CMU-MOSEI datasets (Zadeh 434

et al., 2018), we adapted its training for the MELD 435

dataset to ensure fair comparisons with other base- 436

line models. The potential mismatch between 437

COGMEN’s training and the MELD dataset may 438

partly account for the outcomes presented in Ta- 439

ble 1; although the model incorporating both the 440
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A T V A+T A+V T+V A+T+V

Module F1 ↑ Acc ↑ F1 ↑ Acc ↑ F1 ↑ Acc ↑ F1 ↑ Acc ↑ F1 ↑ Acc ↑ F1 ↑ Acc ↑ F1 ↑ Acc ↑
(vanilla) 57.73 59.55 56.74 58.92 45.32 49.73 65.44 65.00 62.66 64.88 62.40 64.73 69.80 70.40

+ G.E. 57.75 59.58 56.49 58.49 44.82 49.34 66.08 66.30 63.33 65.15 61.64 64.19 69.12 72.14

+ G.N. 57.68 59.49 57.73 59.82 45.04 49.55 66.19 66.42 62.30 64.49 61.80 64.25 66.68 70.18

+ R.E. 57.77 59.61 56.69 59.01 44.80 49.34 65.92 66.08 62.87 64.88 61.93 64.25 68.29 71.54

IE
M

O
C

A
P

+ G.N. & G.E. 57.72 59.55 56.73 59.04 45.00 49.49 65.47 65.09 62.79 64.88 61.54 64.01 70.35 71.53

+ R.E. & G.E. 57.79 59.61 56.64 58.95 45.12 49.61 65.46 65.03 63.74 65.54 62.07 64.49 72.35 73.04

(vanilla) 27.21 39.45 51.43 54.93 27.42 38.08 52.54 56.03 26.45 42.69 52.56 56.97 51.88 55.44

+ G.E. 26.37 43.5 51.33 55.18 27.96 43.24 48.94 54.03 27.19 43.03 50.89 55.14 51.24 54.3

+ G.N. 27.46 39.87 50.04 53.48 27.49 38.72 51.57 54.84 26.93 42.94 51.71 56.25 52.00 55.37

M
EL

D

+ R.E. 27.46 39.87 49.75 52.96 28.1 40.3 51.46 54.97 27.69 41.83 52.54 56.5 51.65 55.86
+ G.N. & G.E. 26.9 35.18 49.83 54.16 28.47 42.73 48.00 52.03 26.93 42.17 49.61 54.58 51.33 54.66

+ R.E. & G.E. 26.37 43.5 52.17 55.86 27.3 42.77 49.69 54.54 27.11 43.58 50.98 55.57 51.97 55.65

Table 4: F1 score (F1) and accuracy (Acc) presented in percentages (%) for COGMEN and implementations of our
modules. A is audio, T is text, V is video modality.

Random Edge and Global Embedding modules441

achieved relatively higher scores, its overall per-442

formance was still lower than that of the other two443

baseline models.444

Figure 2: Segments of dialogue examples from the
IEMOCAP test data. "Baseline" is COGMEN vanilla
model and "Ours" is a COGMEN model implemented
with both Random Edge and Global Embedding mod-
ule.

5.5 Does these modules really attend to global445

context?446

To ascertain whether our model reflects a proper447

representation of the global context, we extracted448

sample sentences that our model classified differ-449

ently from the baseline model. We wanted to see450

whether our modules really saw the global con-451

texts, thereby predicting the true emotion label452

of sentences that could be seen differently on the453

local level. We specifically looked at the actual454

evaluation results of test dataset on the COGMEN455

vanilla model and model that implemented our Ran-456

dom Edge module with global embedding clas- 457

sifier module to COGMEN. In cases where the 458

original model made incorrect predictions but the 459

model incorporating global context made correct 460

predictions, it was often found that the utterances 461

were temporally adjacent. For instance, the vanilla 462

model incorrectly predicted the emotions of certain 463

utterances in the conversations shown in Figure 2, 464

mislabeling some sentences as ’sad.’ Although the 465

individual sentences carry negative nuances, the 466

relevant part of the conversation involves two peo- 467

ple making up. Therefore, an accurate prediction 468

of the emotional label would require understanding 469

the overall (global) context of the conversation. 470

Moreover, the consistent misclassification of 471

consecutive utterances by the baseline model may 472

be attributed to the influence of a single node’s er- 473

ror on its neighboring nodes when calculating emo- 474

tions based on local context. Our model’s ability to 475

correctly classify these instances may be due to its 476

robustness against local errors, thereby retrieving 477

accurate emotion labels from the given example. 478

This hypothesis is further supported by the differ- 479

ence in the overall recognition scores between the 480

baseline model and the Random Edge with Global 481

Embedding Classifier model, as shown in Figure 1. 482

6 Conclusion 483

In this study, we enhance the architecture of graph 484

neural networks within emotion recognition in con- 485

versation models by incorporating the global con- 486

text of conversations. We investigate effects of 487

integrating conversational context and interactions 488

on improving the accuracy of emotion recognition 489

7



in conversation models. We empirically show that490

these modifications could have positive impact on491

the performance. We also analyze the modifica-492

tions in various perspective to see if these modules493

truly convey the global contexts to enhance the494

performance of the prediction task. Various exper-495

iments and their results suggest our methods are496

capable of leveraging global context to different497

types of graph networks.498

7 Limitation and Future Works499

One significant limitation of this research arises500

from the variability in the formats used by different501

models for embedding generation, such as pickle502

files and the handling of ambiguous labels. This di-503

versity complicates the achievement of a perfectly504

fair comparison among models.505

Another key issue is the class imbalance present506

in datasets, where certain emotional labels are507

disproportionately represented. This imbalance508

may impact model performance, as suggested by509

the possibility of including a histogram figure of510

dataset labels to illustrate this point. Additionally,511

the size of datasets represents a constraint. Given512

the inherently difficult nature of collecting such513

data, the available datasets are not large. This lim-514

itation is evidenced by the variance in results de-515

pendent on minor model settings like hyperparam-516

eters, further highlighting the challenge of dataset517

size and consistency. In light of these limitations,518

there is a desire to overcome the narrow repre-519

sentation space confined to categorically labeled520

data. One proposed solution involves mapping521

dimensionally labeled data to categorical labels522

through a form of interpolation, thereby expanding523

the dataset size and potentially enhancing model524

performance. Also, our approach faces limitations525

in its applicability, particularly its restriction to526

GNN-based models. Since many Emotion Recog-527

nition models do not utilize GNNs, it is essential to528

consider methods that can generally improve model529

performance across a broader range of models. The530

issue of reproducibility also presents a limitation,531

with many studies not fully disclosing their datasets532

and codes. This lack of openness has hindered the533

application and accurate reproduction of existing534

methods. Finally, it is important to acknowledge535

that the proposed modules may not uniformly en-536

hance performance across all baselines. This vari-537

ability underscores the need for further research to538

develop more universally applicable strategies that539

can address the model and dataset-specific chal- 540

lenges inherent in Emotion Recognition. 541

8 Ethics Statement 542

This study was conducted with careful emphasis 543

on ethical considerations. All data used in this re- 544

search were obtained from publicly open sources. 545

We obtained necessary permissions from owners 546

for data usage where required. We conducted thor- 547

ough evaluations to assess the fairness and robust- 548

ness of our models. During the writing, AI assistant 549

is used for checking grammar. 550
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Appendix720

A Hyperparameter Setting721

We mostly tried to follow the baseline models’ (Hu722

et al., 2021, 2022; Joshi et al., 2022) original set-723

tings to emphasize fair comparison with our imple-724

mentations. Settings are described in Table 5 for725

MMGCN, Table 6 for MM-DFN and Table 7 for726

COGMEN.727

Dataset GCN Layers Dropout Gamma Learning Rate L2

IEMOCAP 4 0.4 0.7 3e− 4 3e− 5

MELD 4 0.4 0.7 3e− 4 3e− 5

Table 5: Hyperparameter values for MMGCN.

Dataset GCN Layers Dropout Gamma Learning Rate L2

IEMOCAP 16 0.4 1.0 1e− 4 1e− 4

MELD 32 0.2 1.0 5e− 4 1e− 4

Table 6: Hyperparameter values for MM-DFN.

Dataset Dropout Learning Rate Weight Decay

IEMOCAP 0.1 1e− 4 1e− 8

MELD 0.1 1e− 4 1e− 8

Table 7: Hyperparameter values for COGMEN.

B Additional Experiment Results728

Experiment results of MMGCN (Hu et al., 2021)729

and MM-DFN (Hu et al., 2022) under different730

modality settings.731

C Evaluation Metrics732

F1 score: F1 score is the harmonic mean of preci-733

sion and recall, which can be used for imbalanced734

datasets like IEMOCAP or MELD. F1 score ranges 735

from 0 to 1, with 1 being the perfect precision and 736

recall value. Formula for the score is: 737

F1 = 2× Precision × Recall
Precision + Recall

738

Accuracy: Accuracy is defined as the percentage 739

of correct prediction of labels in the evaluation 740

process of each model. 741
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A T V A+T A+V T+V A+T+V

Module F1 ↑ Acc ↑ F1 ↑ Acc ↑ F1 ↑ Acc ↑ F1 ↑ Acc ↑ F1 ↑ Acc ↑ F1 ↑ Acc ↑ F1 ↑ Acc ↑
(vanilla) 46.57 48.68 61.99 62.42 27.70 32.29 65.32 65.50 49.76 50.96 63.36 63.96 65.56 65.87

+ G.E. 45.98 48.80 61.53 62.05 34.40 37.03 65.70 66.24 50.51 52.06 63.54 63.83 66.25 66.42

+ G.N. 46.78 48.68 62.73 63.09 28.89 30.75 65.59 65.99 51.3 52.56 63.17 64.08 65.60 65.99

+ R.E. 47.33 50.03 60.30 61.92 29.54 38.51 59.09 61.37 49.16 51.14 60.73 61.55 63.88 64.88

IE
M

O
C

A
P

+ G.N. & G.E. 44.61 47.20 62.35 63.09 30.88 33.09 65.48 65.93 50.21 51.51 63.18 63.71 66.62 67.22

+ R.E. & G.E. 44.38 46.95 62.30 63.09 30.76 33.27 65.50 65.99 50.18 51.39 63.11 63.65 66.64 67.22

(vanilla) 40.47 49.08 56.81 59.81 31.64 48.24 57.54 60.27 41.81 50.19 57.27 60.57 57.38 59.92

+ G.E. 41.01 49.73 56.05 59.85 37.39 48.43 57.32 60.11 44.15 50.77 57.50 60.08 57.29 60.61

+ G.N. 40.28 49.16 57.11 59.46 34.42 48.39 56.98 60.23 43.35 50.15 57.43 60.69 57.11 60.04

M
EL

D

+ R. E. 36.92 48.31 52.77 57.05 33.52 48.12 55.35 59.50 41.60 48.77 55.32 58.58 56.35 59.31

+ G.N. & G.E. 40.54 49.08 57.32 60.08 32.27 48.31 57.27 60.34 43.66 50.46 57.55 60.54 57.69 60.50

+ R.E. & G.E. 41.47 49.35 56.52 59.62 36.54 48.35 57.24 60.46 44.23 50.54 57.82 60.69 57.40 60.57

Table 8: F1 score(F1) and accuracy(Acc) presented in percentages(%) for MMGCN and implementations of our
modules. A is audio, T is text, V is video modality.

A T V A+T A+V T+V A+T+V

Module F1 ↑ Acc ↑ F1 ↑ Acc ↑ F1 ↑ Acc ↑ F1 ↑ Acc ↑ F1 ↑ Acc ↑ F1 ↑ Acc ↑ F1 ↑ Acc ↑
(vanilla) 51.84 54.65 60.80 61.00 26.64 31.61 64.46 64.76 52.62 54.47 62.05 62.42 66.42 66.85

+ G.E. 54.97 55.95 62.33 62.23 26.73 31.85 64.61 64.63 53.72 55.51 61.43 61.55 67.34 67.90

+ G.N. 54.81 55.95 61.20 61.37 30.86 32.72 62.83 62.91 50.82 52.68 62.42 62.85 66.14 66.54

+ R. E. 50.47 52.50 60.63 60.51 32.70 35.37 61.20 61.55 49.59 52.56 62.77 62.60 66.24 67.16

IE
M

O
C

A
P

+ G.N. & G.E. 57.16 57.79 62.25 62.11 26.94 32.90 63.70 63.89 51.62 53.97 61.45 61.68 67.55 68.15

+ R.E. & G.E. 52.10 54.84 61.87 62.17 26.98 29.57 66.09 66.79 53.73 55.76 62.31 63.03 66.62 67.34

(vanilla) 42.01 47.85 56.96 60.08 35.42 45.59 57.68 60.54 43.18 48.85 58.46 61.26 57.59 61.30

+ G.E. 42.02 48.16 57.30 60.46 34.08 48.54 57.31 60.08 44.77 50.19 57.77 61.46 57.86 61.15

+ G.N. 43.56 48.85 57.16 60.27 35.05 48.35 57.92 60.80 43.90 49.85 57.78 60.88 58.01 61.30

M
EL

D

+ R. E. 41.03 47.74 57.24 59.81 34.70 42.34 57.63 60.11 44.28 50.11 57.76 61.26 58.43 61.11

+ G.N. & G.E. 41.53 47.36 56.76 59.20 35.25 48.12 57.52 60.42 44.27 50.08 58.07 60.77 58.35 61.99

+ R.E. & G.E. 43.63 47.36 56.97 60.54 35.09 46.70 57.81 60.57 44.15 49.81 57.70 60.23 57.95 61.03

Table 9: F1 score(F1) and accuracy(Acc) presented in percentages(%) for MM-DFN and implementations of our
modules. A is audio, T is text, V is video modality.
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