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Abstract

The J-orthogonal matrix, also referred to as the hyperbolic orthogonal matrix, is
a class of special orthogonal matrix in hyperbolic space, notable for its advanta-
geous properties. These matrices are integral to optimization under J-orthogonal
constraints, which have widespread applications in statistical learning and data
science. However, addressing these problems is generally challenging due to
their non-convex nature and the computational intensity of the constraints. Cur-
rently, algorithms for tackling these challenges are limited. This paper introduces
JOBCD, a novel Block Coordinate Descent method designed to address opti-
mizations with J-orthogonality constraints. We explore two specific variants of
JOBCD: one based on a Gauss-Seidel strategy (GS-JOBCD), the other on a
variance-reduced and Jacobi strategy (VR-J-JOBCD). Notably, leveraging the
parallel framework of a Jacobi strategy, VR-J-JOBCD integrates variance reduc-
tion techniques to decrease oracle complexity in the minimization of finite-sum
functions. For both GS-JOBCD and VR-J-JOBCD, we establish the oracle com-
plexity under mild conditions and strong limit-point convergence results under the
Kurdyka-Lojasiewicz inequality. To demonstrate the effectiveness of our method,
we conduct experiments on hyperbolic eigenvalue problems, hyperbolic structural
probe problems, and the ultrahyperbolic knowledge graph embedding problem.
Extensive experiments using both real-world and synthetic data demonstrate that
JOBCD consistently outperforms state-of-the-art solutions, by large margins.

1 Introduction
A matrix X € R™*" is a J-orthogonal matrix if X"JX = J, where J = [Ig —Ig,p J,andI,isap xp

identity matrix. Here, J € R™*™ is the signature matrix with signature (p, n — p). In this paper, we
mainly focus on the following optimization problem under J-orthogonality constraints:

mingegncn f(X) 2 55N £i(X), s.t. XTIX = J. (1)

Here, f(X) could have a finite-sum structure, each component function f;(X) is assumed to be
differentiable, and N is the number of data points. For brevity, the J-orthogonality constraint
XTJX = J in Problem is rewritten as X € 7.

We impose the following assumptions on Problem (I)) throughout this paper. (A-i) For any matrices
X and X, we assume f; : R®*" — R is continuously differentiable for some symmetric positive
semidefinite matrix H € R""*"" that:

fiXH) < filX) + (X = X, V(X)) + 511X = X, @

A

for all i € [N], where |H|| < L for some constant L; > 0 and ||X|[|Z £ vec(X) " Hvec(X).
This further implies that: ||V f;(X) — Vfi(XT)|lr < Lf||X — XT||¢ for all ¢ € [N]. Impor-
tantly, the function f(X) = % tr(XTCXD) = 1(|X||}; with H = D ® C satisfies the equality
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VX, X, f(XT) = Q(X*;X) in (2), where C € R™"™ and D € R"*™ are arbitrary symmetric
matrices. (A-ii) The function f;(X) is coercive for all i € N, that is, lim x|, -0 fi(X) = 00, Vi.

Problem (I)) defines an optimization framework that is fundamental to a wide range of models in
statistical learning and data science, including hyperbolic eigenvalue problem [6} 43} 40], hyperbolic
structural probe problem [20,[7]], and ultrahyperbolic knowledge graph embedding [48]]. Additionally,
it is closely related to machine learning in hyperbolic spaces, including Lorentz model learning
[35 150, 18] and ultrahyperbolic neural networks [27, 154} 42]. It also intersects with hyperbolic linear
algebra [3} [21]], addressing problems such as the indefinite least squares problem, hyperbolic QR
factorization, and indefinite polar decomposition.

1.1 Related Work

» Block Coordinate Descent Methods. Block Coordinate Descent (BCD) is a well-established
iterative algorithm that sequentially minimizes along block coordinate directions. Its simplicity
and efficiency have led to its widespread adoption in structured convex applications [37]. Recently,
BCD has gained traction in non-convex problems due to its robust optimality guarantees and/or
excellent empirical performance in areas including optimal transport [22]], matrix optimization [12],
fractional minimization [52], deep neural networks [} 153} 132], federated learning[47]], black-box
optimization [4]], and optimization with orthogonality constraints [51} [14]]. To our knowledge, this is
the first application of BCD methods to optimization under J-orthoginality constraints, with a focus
on analyzing their theoretical guarantees and empirical efficacy.

» Minimizing Smooth Functions under J-Orthogonality Constraints. The J-orthogonal matrix
belongs to a subset of generalized orthogonal matrices [16} 36, 23]. However, projecting onto the
J-orthogonality constraint poses challenges, complicating the extension of conventional optimization
algorithms to address optimization problems under these constraints [[1, [L6]]. This contrasts with
computing orthogonal projections using methods such as polar or SVD decomposition, or approxi-
mating them via QR factorization. Existing methods for addressing Problem (1)) can be categorized
into three classes. (i) CS-Decomposition Based Methods. These approaches involve parameterizing
four orthogonal matrices (as described in Proposition [2.2) and subsequently minimizing a smooth
function over these matrices in an alternating fashion. The involvement of 3 x 3 block matrices makes
the implementation of these methods very challenging. Consequently, the work of [48] focuses on
optimizing a reduced subspace of the CS decomposition parameters, albeit at the expense of losing
some degrees of freedom. (i) Unconstrained Multiplier Correction Methods [31} 13} [14]. These
methods leverage the symmetry and explicit closed-form expression of the Lagrangian multiplier at
the first-order optimality condition. Consequently, they address an unconstrained problem, resulting
in efficient first-order infeasible approaches. (iii) Alternating Direction Method of Multipliers [19].
This method reformulates the original problem into a bilinear constrained optimization problem by
introducing auxiliary variables. It employs dual variables to handle bilinear constraints, iteratively
optimizing primal variables while keeping other primal and dual variables fixed, and using a gradient
ascent strategy to update the dual variables. This approach has become widely adopted for solving
general nonconvex and nonsmooth composite optimization problems. Notably, all the aforementioned
methods solely identify critical points of Problem ().

» Finite-Sum Problems via Stochastic Gradient Descent. The finite-sum structure is prevalent in
machine learning and statistical modeling, facilitating decomposition into smaller, more manageable
components. This property is advantageous for developing efficient algorithms for large-scale prob-
lems, such as Stochastic Gradient Descent (SGD). Reducing variance is crucial in SGD because it can
lead to more stable and faster convergence. Various techniques, such as mini-batch SGD, momentum
methods, and variance reduction methods like SAGA [10], SVRG [25]], SARAH [34], SPIDER
[111144]], SNVRG [53]], and PAGE [30], have been developed to address this issue. Additionally, SGD
for minimizing composite functions has also been investigated by the authors [[15} 24, 29].

1.2 Contributions

This paper makes the following contributions. (i) Algorithmically: We introduce the JOBCD
algorithm, a novel Block Coordinate Descent method specifically designed to tackle optimizations
constrained by J-orthogonality. We explore two specific variants of JOBCD, one based on a
Gauss-Seidel strategy (GS-JOBCD), the other on a variance-reduced and Jacobi strategy (VR-
J-JOBCD). Notably, VR-J-JOBCD incorporates a variance-reduction technique into a parallel
framework to reduce oracle complexity in the minimization of finite-sum functions (See Section
[2). @) Theoretically: We provide comprehensive optimality and convergence analyses for both
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algorithms (see Sections [3| and ). (iii) Empirically: Extensive experiments across hyperbolic
eigenvalue problems, structural probe problems, and ultrahyperbolic knowledge graph embedding,
using both real-world and synthetic data, consistently show the significant superiority of JOBCD
over state-of-the-art solutions (see Section[3).

2 The Proposed JOBCD Algorithm

This section proposes JOBCD for solving optimization problems under J-orthogonality constraints
in Problem , which is based on randomized block coordinate descent. Two variants of JOBCD are
explored, one based on a Gauss-Seidel strategy (GS-JOBCD), the other on a variance-reduced and
Jocobi strategy (VR-J-JOBCD).

Notations. We define [n] £ {1,2,...,n}. We denote Q@ £ {By, B,, ..., Bcz } as all the possible
combinations of the index vectors choosing 2 items from n without repetition. For any B € (2, we
define Uy € R™"*? as (Ug);; = 1ifB; = j, else 0 for all j and i, leading to U X = X(B,:) €
R2%" We denote J5 = {V | VT IV = Jgp}, where Jgz € R2*2 is the sub-matrix of J indexed by
B. Further notations are provided in Appendix

2.1 Gauss-Seidel Block Coordinate Descent Algorithm
This subsection describes the proposed GS-JOBCD algorithm. We consider Problem () with N = 1
only, without utilizing its finite-sum structure.

GS-JOBCD is an iterative algorithm that, in each iteration ¢, randomly and uniformly (with replace-
ment) selects a coordinate B from the set {2 and then solves a small-sized subproblem. The row index
[n] of the decision variable X are separated to two sets B and B¢, where B € §) with |B| = 2 is the work-
ing set and B¢ = [n]\ B. For simplicity, we use B instead of BY. Following [31]], we consider the follow-
ing block coordinate update rule: [X‘T1(B,:) = VX!(B,:)] & [X!*! = X! + Ug(V - 1)U} XY,
where V € R?*2 is some suitable matrix.

The following lemma illustrates matrix selection for enforcing J-orthogonality constraints via the
update rule X+ <= A3(V) £ X + Up(V — I)UJ X, and presents associated properties.

Lemma 2.1. (Proofin Section Forany B € ), we define Xt £ A3(V) £ X +Up(V-1)UF X.
We have: (a) If V € Jg and X € J, then XT € J. (b) | XT — X|2 < |IX|Z- |V = I||Z (c)
[XT = X3 < IV -I||j forall Q = Q=2 (Z7 @ Ug) "H(ZT ® Ug), Z £ Uy X € RF*™.

» The Main Algorithm. Using the above update rule, we consider the following iterative procedure:
X = X (V?), where V! € arg miny f(Xf(V)). However, the resulting subproblem could be
still difficult to solve. This inspires us to use sequential majorization minimization [38} [33]] to address
it. This technique iteratively constructs a surrogate function that upper-bounds the objective function,
allowing for effective optimization and gradual reduction of the objective function. We derive:

F(X5(V)) FXO) + 3125 (V) = X I + (X5 (V) = X, V(X))

IN® |IN©

FX) + 51V =T + (V- LIVAX)X) ]e) £ G(V; X, B, 3)
where step @ uses Inequality (2); step @ uses Claim (¢) of Lemma f > 0 and the fact that
(Ug(V-DUIX,Vf(X)) = (V — L [Vf(X)X]|zs), and the choice of Q € R*** that:

Q=Q, orQ=c<I, with || Q|| < ¢ < Ly. 4
Therefore, the function G(V; X*, B) becomes a majorization function of f(X) at X* € J forall B €
2. We can consider the following optimization problem to find ViVe arg miny G(V; X B).
We summarize the proposed GS-JOBCD in Algorithm ]
Although the J-orthogonality constraint typically has a sorted diagonal with diag(J) € {—1,+1}",

GS-JOBCD is also applicable to problems with more general constraints X"JX = J where
diag(J) € {£1}" is unsorted.

» Solving the Small-Sized Subproblem. We now elaborate on how to find the global op-
timal solution of Problem @) We notice that V. € Jz = {V| VIV = Jg}, where

Jes € {(§2),(39),(%" %)} We now concentrate on the first case where Jgz = (§ % ). The
following proposition provides a strategy to decompose any J-orthogonal matrix.
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Algorithm 1: GS-JOBCD: Block Coordinate Descent Methods using a Gauss-Seidel Strategy
for Solving Problem

Init.: Set X to satisfy J-orthogonality constraints (e.g., via Hyperbolic CS Decomposition).

for ¢ from O to 7" do

(S1) Choose a coordinate B! with |Bf| = 2 from the set {2 randomly and uniformly (with
replacement) for the ¢-th iteration. Denote B = BY.

(S2) Choose a matrix Q € R*** using Formula .

(S3) Solve the following small-size subproblem globally.

V. € argmin 5 IV = TG + (V = L[VFAX)X) ) + f(X) (5

= arg min_5[[V]g+(V,P)+c (6)

where P £ [V f(X*)(X?)T]gs — mat(Q vec(I5)), Q = Q + 61 and
cE f(XY) — (I, [Vf(X)(X) Tgs) + %||I||2Q is a constant.

(S4) Xt+1(B,:) = V'X!(B, 1)

end

Proposition 2.2. (Hyperbolic CS Decomposition [41]) Let V be J-orthogonal with signature
(p,n — p). Assume that n — p < p. Then there exist vectors ¢,§ € R"P with ¢ ® ¢ —

$ ® § = 1, and orthogonal matrices U1, V; € RP*P and Uy, Vy € R(=p)x(n=p) guch that:
Diag(¢) 0 Diag(s)

U 0 vi o
V= [ 01 U, 0 Tp—(n—p) 0 Ol vT ]
Diag(s) 0 Diag(¢) 2

Applying Propos1t10nw1th n =2, f = 1 andU; = Uy =V, =V, =41, -5 = 1 with
1

¢,§ € R, we parametrize V as: V = (51 2 ). (25). (£ 0 ) where we denote § as sinh(y), ¢ as

cosh(u), and t as tanh(u)for some u € R, for simplicity of notation. It is not difficult to show that
Problem (@) reduces to the following one-dimensional search problem:

i € min g vee(V)TQuec(V) + (V,P), s 6. V€ {(58), (5 T, (5° 20 (61 @

We apply a breakpoint search method to solve Problem (7). For simplicity, we provide an analysis
only for the first case. A detailed discussion of all four cases can be found in Appendix Section
For the case where V = (£ £ ), Problem (7) reduces to the following problem:

minaé+bs+ce +dEs+ed’, ®)
where a = P11 +Pas, b = P1o +Poy,c = %(Qu 4+ Qui + Qus + Qua), d %(Qm + Qa1 +

Qi2 + Qa2 + Qi3 + Quz + Q24 + Qaa), and e = (Qa2 + Qa2 + Qa3 + Qs3). Then we perform
a substitution to convert Problem (B]) into an equlvalent problem that depends on the trigonometric

functions: (i) ¢ &2 = 1_52 s (i) 8 §? = 1_{2 @@t = 5 The following lemma provides a characterization
of the global optimal solution for Problem (g).

Lemma 2.3. (Proof in Section We let F(c 5) = acé + b3 + cc? + dés + €32 The optimal so-

lution [i to Problem (@) can be computed as: [cosh(fi),sinh(f1)] € arg minj, 4 F(c, s), s.t.[c, 8] €
i T . A atbt wHdt .
{[ﬁ - )2’\/1 el [\/1 T i where . € argming p(t) = FES 4+ 55,

—a—bt + w+dt

t_ Gargmmtp()*m .Herewchre

We now describe how to find the optimal solution ., where #, € argmin; p(t) £ % +
w-dt .

1= this strategy can naturally be extended to find t_. Initially, we have the following
first-order optimality conditions for the problem: 0 = Vp(t) =[b(1 — t?) + (a + bt)t]v/1 — t2 +
[d(1 —t2) + (w + dt)(2t)] & dt? + 2wt +d = —[b+ at]\/1 — t2. Squaring both sides yields the
following quartic equation: c4t* + c3t3 + cot® 4 1t + co = 0, where ¢y = d? + a2, c3 = 4wd + 2ab,




160
161

162
163
164

165

166
167
168
169
170

171
172
173

174

175
176
177

178
179

180

181
182

183

184
185

186
187

188

189
190

191

192

193

194

195

197

198

199
200

co = 4w? 4+ 2d* — a® + b?, ¢; = dwd — 2ab, ¢g = d? — b*. This equation can be solved analytically
by Lodovico Ferrari’s method [46], resulting in all its real roots {¢1, ¢, . . . ,tj} with1 < j < 4.

For the second and third cases, Problem (6) essentially boils down to optimization under orthogonality
constraints. The work of [51]] derives a breakpoint search method for finding the optimal solution for
Problem @ with Jgs € {(39), (' )} using the Givens rotation and Jacobi reflection matrices.

2.2 Variance-Reduced Jacobi Block Coordinate Descent Algorithm

This subsection proposes the VR-J-JOBCD algorithm, a randomized block coordinate descent
method derived from GS-JOBCD. Importantly, by leveraging the parallel framework of a Jacobi
strategy [17, 9], VR-J-JOBCD integrates variance reduction techniques (39} 30, [18]] to decrease
oracle complexity in the minimization of finite-sum functions. This makes the algorithm effective for
minimizing large-scale problems under J-orthogonality constraints.

Notations. We assume 7 is an even number in this paper. We create (n/2) pairs by non-overlapping
grouping of the numbers in any arbitrary combination, with each pair containing two distinct numbers
from the set [n]. It is not hard to verify that such grouping yields C; = (n!)/(2"/22!) possible

combinations. The set of these combinations is denoted as T 2 {B;}%7, 2 {By,B,,...,Bc,}
» Variance Reduction Strategy. We incorporate state-of-the-art variance reduction strategies from

the literature [30, [5]] into our algorithm to solve Problem (T)). These methods iteratively generate a
stochastic gradient estimator as follows:

Gt - %Zlest Vi (XY, with probability p; )
G 4 5 Y s (VF(X!) = VA(X!TY)),  with probability 1—p
Here {s*,st} are uniform random minibatch samples with [S%| = b, |S| = ¥/, and G® =

3 Ezesi V fi(X?). We drop the superscript ¢ for {S,, S} as ¢ can be inferred from context. We
only focus on the default setting that [30,[5]: b= N, ¥ = vband p = ﬁ'b,.

» Jacobi Block Coordinate Descent Method. The proposed algorithm is built upon the parallel
framework of a Jacobi strategy In each iteration ¢, we randomly and uniformly (with replacement)
select a coordinate set B! = {B(l), (2 2(5 .} from the set T with B! € N2 *2 and Béi) € N2,

For all ¢, we have: B(l) N Bt
inferred from context.

G = = () and U"/Q( (z)) = [n]. We drop the superscript ¢ if ¢ can be

The following lemma shows how to choose a suitable matrix Q so that the Jacobi strategy can be
applied.

Lemma 2.4. (Proof in Sectton We let Bt & {B(l), 2), e ,BE%)} € Y forallt. Welet Q = ¢1,
where ¢ is some suitable constant with ¢ < L. For any B(l) and Bf 0 with i # j, their corresponding
objective functions as in Equation (3) are independent.

We consider the following block coordinate update rule in VR-J-JOBCD: X!*! « 22; (V.) =
+ [ Us (Vi — L) U
Lemma 2.5. (Proof in Section We let B € T, V, € ‘7B<)’ X € J, and i €

(2] We define XT 2 %(V) 2 X + [N1M2Us, (V, - L)Uy |X.  We have: (a)

S 1 Us (Vi —T)UJ X[ = |2, Us,, (Vi — 1)U X[2 (B) X — X2 < [|X][2 -

S IV = L2 e) X = X3 < ST Vi~ L[| with Q = <L (d) For all G € R™", it

follows that: 2 Y23 (V; =L, [(Vf(X) = G)X s 5,,)) < IXIE 023 IV = Lol|2+ [V /(X) -
Gl|#.

» The Main Algorithm. Using the update rule above, we consider the following iterative procedure:

X <= X (V.), where V! € argminy, f(X{(V.)). We establish the majorization function for

|X*. The following lemma provides properties of this rule.

'Taking n = 4 for example, we have: T = {{(1,2), (3,4)}, {(1,3),(2,4)}, {(1,4), (2,3)}}.
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F(XL(V.)), as follows:
FX) + (V) = X0 VFX) + 51 5(V) — Xy

FOXY) + SV = o, [VFX)(X) o 8 ) + 51V = T2l 0} (10)

Where step @ uses the results of telescoping Inequality (2)) over i from 1 to IV; step @ uses X' 1 —

[Zn/Q Ug,, (Vi Ig)Ul;r( ,1X?, Claim (c) of Lemma 6 >0,and Q = <L

Instead of computing the exact Euclidean gradient V f (X?*) as GS-JOBCD, VR-]J-JOBCD maintains

and updates a recursive gradient estimator G* using a variance-reduced strategy as in Formula (@)
We consider minimizing the following function instead of the one on the right-hand side of Inequality

(TO):

FE (V)

IN® IN©

T(V,; X!, B 2 f(X) + Zn/2< — I, [Gt(Xt)T]B(i)B(1)> + v, - 12”%' (11)

Here, 7(V.; X", B") can be termed as a stochastic majorization function of f(XF(V.)) at the current
solution X*. Therefore, we can consider the following optimization problem to find {V.} using:
V! € argminy, T(V.; X", B'), which can be decomposed into (n/2) independent subproblems and
solved in parallel. It is important to note that each V; in Problem is identical to Problem (6),
which can be efficiently solved in O(1) using the breakpoint search method, as in GS-JOBCD.

We summarize the proposed VR-J-JOBCD in Algorithm [2| Notably, when N = 1, VR-J-JOBCD
simplifies to a direct Jacobi strategy for solving Problem (1)), which we refer to as J-JOBCD.

Algorithm 2: VR-J-JOBCD: Block Coordinate Descent Methods using a variance-reduced and
Jacobi strategy for Solving Problem ]

Init.: Set X to satisfy J-orthogonality constraints (e.g., via Hyperbolic CS Decomposition).

for ¢t from O to T do

(S1) Choose a coordinate B! from the set Y randomly and uniformly (with replacement) for
the ¢-th iteration. Denote B = B. In our implementation, we simply randomly permute the
set {1,2,...,n} and then output the grouping {[1, 2], [3, 4], [5,6],--- ,,[n — 1,n]}.

(S2) Use a variance-reduced strategy (@) to obtain G*.

(S3) Solve small-sized subproblems in parallel with Q = ¢I € R**4,
for : = 1 to n/2 in parallel do

V € argvlggl 2 ”Vl - IH?Q + <Vi -1 [vf(Xt)(Xt)T]B(i)B(i)> + f(Xt)
B(a)

_ 12 p.
= argvrg%l() 3IIVillg + (Vi, Pi) (12)

where P; £ [V f(X*)(X!)T]g, 5., — mat(Qvec(Iy)) — 015, Q = (¢ + 0)L.
(S4) Update the solution X'+ in parallel as follows:

for i = 1 to n/2 in parallel do
L )(H—l(B(i)7 :) = Vlt,Xt(B(i% I)

end

3 Optimality Analysis
This section provides an optimality analysis for the proposed algorithms.

Inltlally, we define the first-order optimality condition for Problem (1] . Since the matrix XTJX
is symmetric, the Lagrangian multiplier A correspondmg to the constraints X" J X =Jisalsoa
symmetric matrix. The Lagrangian function of problem (1) is £(X, A) = f(X) — $(A, XTIX — J).

We obtain the following lemma for the first-order optimality condition for Problem (T).

Lemma 3.1. (Proof in Section First-Order Optimality Condition) We let 7 = {X | XTJX =
J}. We have (@) A solution X € J is a critical point of problem if and only if: 0 =
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V7f(X) 2 Vf(X)—IX[Vf(X)]"XJ. The associated Lagrangian multiplier can be computed as
A = IXTVf(X). (b) The critical point condition is equivalent to the requirement that the matrix
XV f(X)TJ is symmetric, which is expressed as XG'J = [XGTJ]T.

Remarks. While our results in Lemma 3.1 show similarities to existing works focusing on problems
under orthogonality constraints [45], this study marks the first investigation into the first-order
optimality condition for optimization problems under J-orthogonality constraints.

The following definition is useful in our subsequent analysis of the proposed algorithms.

Definition 3.2. (Block Stationary Point, abbreviated as BS-point) Let § > 0. A solution X e J is
termed as a block stationary point if, forall B € Q £ {B;, B, ... , Bez }, the following condition is

satisfied: I € arg minye 7, G(V; X,B).

The following theorem shows the relation between critical points and BS-points.

Theorem 3.3. (Proof in Section [D.2])) Any BS-point is a critical point, while the reverse is not
necessarily true.

4 Convergence Analysis
This section provides a convergence analysis for GS-JOBCD and VR-J-JOBCD.

For GS-JOBCD, the randomness of output (Vt, X!*1) for all ¢ are influenced by the random variable
¢ = (BY;B2;- .- ;B!). For VR-J-JOBCD, the randomness of output (V*, X**1) are influenced by
the random variables ./ = (B!, s, s!;B? 8% 8%;... ;B! S!  S).

We denote X as the global optimal solution of Problem . To simplify notations, we define:
u' =[G = V(X)|E and A; = f(X7) = f(X).

We impose the following additional assumptions on the proposed algorithms.

Assumption 4.1. There exists constants {X, V} that: || X?||¢ <X, and ||[V?||g <V for all ¢.
Assumption 4.2. There exists a constant G that: |V f(X*)||r < G, and ||G!||r < G for all .
Assumption 4.3. Forany X € R™*" [, [||V f;(X?) — V f(X?)||3] < 02, where i is drawn uniformly
at random from [N].

Remarks. (i) Assumptionis satisfied as the function f;(X) is coercive for all ¢. (if) Assumption
M.2)imposes a bound on the (stochastic) gradient, a fairly moderate condition frequently employed in
nonconvex optimization [26]). (iif) Assumption.3|ensures that the variance of the stochastic gradient
is bounded, which is a common requirement in stochastic optimization [30, 5].

4.1 Global Convergence

We define the e-BS-point as follows.

Definition 4.4. (e-BS-point) Given any constant e > 0, a point X is called an e-BS-point if: £ (X) <e
Here, £(X) is defined as £(X) £ C%% chj‘l dist(Iz, arg miny G(V; X, B;))? for For GS-JOBCD,
while it is defined as £(X) £ &~ S e [dist(Ty, arg miny, T(V.; X, B;))?] for VR-J-JOBCD,
where the expectation is with respect to the randomness inherent in the algorithm [30].

We have the following useful lemma for VR-J-JOBCD.

Lemma 4.5. (Proof in Section Suppose Assumptionholds, then the variance B+ [uy] of the
gradient estimators { G} ofAlgorithmis bounded by: E,:[u'] < p(N_bg 02+ (1 —p)E,—1[ut~1]+

b(N—1
L2X*(1-p) n/2 _
SR [ [V — 2]

The following two theorems establish the iteration complexity (or oracle complexity) for GS-JOBCD
and VR-J-JOBCD.

Theorem 4.6. (Proof in Section|E.2) GS-JOBCD finds an e-BS-point of Problem (1) within O( 22
arithmetic operations.
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Theorem 4.7. (Proof in Section|[E.3) Letb = N, b/ = /N, and p = ;%;;. VR-J-JOBCD finds an
€-BS-point of Problem (1)) within O(nN + M) arithmetic operations.

Remark. Theorems [.6|and [4.7] demonstrate that the arithmetic operation complexity of GS-JOBCD

is linearly dependent on N, while VR-J-JOBCD is linearly dependent on v/N. Therefore, VR-J-
JOBCD reduces the iteration complexity significantly.

4.2 Strong Convergence under KL Assumption

We prove algorithms achieve strong convergence based on a non-convex analysis tool called Kurdyka-
Lojasiewicz inequality[2]].

We impose the following assumption on Problem (TJ).

Assumption 4.8. (Kurdyka-Eojasiewicz Property). Assume that f°(X) = f(X) + Z7(X) is a KL
function. For all X € dom f°, there exists o € [0,1),n € (0, +00] a neighborhood T of X and a
concave and continuous function (t) = ct! =7, ¢ > 0,¢ € [0,n) such that forall X’ € T and satisfies
XN e (f°(X), fo(X) +n), the following holds: dist(0, V f°(X"))¢'(f°(X’) — f°(X)) > 1.

We establish strong limit-point convergence for VR-J-JOBCD and GS-JOBCD.

Theorem 4.9. (Proof in Section ILZS] a Finite Length Property). The sequence {X'}{2, of GS-
JOBCD has finite length property that: ¥t, i _ | Ee[|[ X1 — X||e] < O(p(A1)) < +00, where
() is the desingularization function defined in Proposition

Theorem 4.10. (Proof in Section a Finite Length Property). Choosing b = N, b’ =N

and p = ﬁ/b,, then the sequence {X'}°, of VR-J-JOBCD has finite length property that:

Vi, S B[ X — tHF] < (’)(’;\(,?/‘4)) < +oo, where o(+) is the desingularization function
defined in Assumption

S Applications and Numerical Experiments

This section demonstrates the effectiveness and efficiency of JOBCD on three optimization tasks:
(@) the hyperbolic eigenvalue problem, (if) structural probe problem, and (iii) Ultra-hyperbolic
Knowledge Graph Embedding problem. We provide experiments for the last problem in Section [F.2]

» Application to the Hyperbolic Eigenvalue Problem (HEVP). The hyperbolic eigenvalue problem
refers to the generalized eigenvalue problem in hyperbolic spaces [40]]. This problem is a fundamental
component in machine learning models, such as Hyperbolic PCA [43] 6]. Given a data matrix
D € R™*™ and a signature matrix J with signature (p,n — p), HEVP can be formulated as the
following optimization problem: minx — tr(X'DTDX), s.t. XTJX = J.

» Application to the Hyperbolic Structural Probe Problem (HSPP). The Structure Probe (SP) is
a metric learning model aimed at understanding the intrinsic semantic information of large language
models [20] [[7]. Given a data matrix D € R™*™ and its associated Euclidean distance metric
matrix T € R™*™ HSPP employs a smooth homeomorphic mapping function ¢(-) to project
the data D into ultra-hyperbolic space. Subsequently, it seeks an appropriate linear transformation
X € R™™ ™ constrained within a specific structure X € 7, such that the resulting transformed
data Q £ (D)X € R™*" exhibits similarity to the original distance metric matrix T under the
ultra-hyperbolic geodesic distance d, (Qi:, Q;.), expressed as T, ; = do(Q;:, Q,:) forall i, j € [m],
where Q);. is i-th row of the matrix Q € R"*". This can be formulated as the following optimization
problem: minx -5 37, o (Ti; — do(Qi:, Q;.))?, s.t. Q £ (D)X, X € J. For more details
on the functions ¢(-) and dq (-, -), please refer to Appendix Section|F.1]

» Datasets. To generate the matrix D € R"*", we use 8 real-world or synthetic data sets for both
HEVP and HSPP tasks: ‘Cifar’, ‘CnnCaltech’, ‘Gisette’, ‘Mnist’, ‘randn’, ‘Sector’, “TDT2’, ‘wla’.
We randomly extract a subset from the original data sets for the experiments.

» Compared Methods. We compare GS-JOBCD and VR-J-JOBCD with 3 state-of-the-art
optimization algorithms under J-orthogonality constraints. () The CS Decomposition Method
(CSDM) [48]. (ii) Stardard ADMM (ADMM) [19]. UMCM: Unconstrained Multiplier Correction
Method 311 [13].
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Table 1: Comparisons of the objectives for HEVP across all the compared methods. The time limit
is set to 90s. The notation ‘(+)” indicates that GS-JOBCD significantly improves upon the initial
solution provided by CSDM. The 15!, 2", and 3™ best results are colored with red, green and blue,
respectively. The value in (-) stands for ZZ IXTIX — J|;.

dataname(m-n-p) UMCM ADMM CSDM GS-JOBCD J-JOBCD CSDM+GS-JOBCD
cifar(1000-100-50) -1.05e+04(3.0e-09) | -1.05e+04(3.0e-09) | -5.28e+04(5.4¢-09) | -1.03c+05(2.6e-08) | -1.11e+05(1.4c-07) | -1.24e+05(2.6e-08)(+)
CnnCal(2000-1000-500) | -5.89e+02(2.9¢-08) | -5.89e+02(3.1e-10) | -1.11e+03(5.2¢-10) | -1.07e+03(1.3e-09) | -9.16e+03(6.9e-08) | -1.15¢+03(6.9e-10)(+)
gisette(3000-1000-500) | -3.22e+06(3.1e-10) | -3.22e+06(3.1e-10) | -8.53e+06(4.9e-10) | -9.49e+06(1.2¢-09) | -1.36e+07(2.6e-08) | -9.65¢+06(7.9e-10)(+)
mnist(1000-780-390) -8.65e+04(4.1e-10) | -8.65e+04(4.1e-10) | -2.56e+05(5.6e-10) | -3.14e+05(1.2e-09) | -1.20e+06(4.1e-08) | -3.06e+05(7.6e-10)(+)
randn(10-10-5) 1.29e+02(9.7e-02) | 1.29e+02(9.7e-02) | 2.45e+02(2.3e-01) | -3.96e+01(9.7¢-02) | -3.97e+02(9.7e-02) | 1.55¢+01(2.3¢-01)(+)
randn(100-100-50) -1.03e+04(3.0e-09) | -1.03e+04(2.5e-07) | -1.98e+04(4.4e-09) | -2.28c+04(5.6e-08) | -4.37e+04(2.6e-07) | -2.41e+04(4.2e-08)(+)
randn(1000-1000-500) | -1.16e+06(3.1e-10) | -1.16e+06(3.1e-10) | -1.93¢+06(5.0e-10) | -1.22e4+06(6.9¢-10) | -1.04e+07(2.3e-07) | -1.95¢+06(6.7e-10)(+)
sector(500-1000-500) -3.61e+03(3.1e-10) | -3.61e+03(3.1e-10) | -7.90e+03(4.9¢-10) | -9.24c+03(1.3¢-09) | -1.06e+04(2.0e-08) | -8.51e+03(6.4e-10)(+)
TDT2(1000-1000-500) | -4.25e+06(3.1e-10) | -4.25e+06(3.1e-10) | -9.39e+06(4.8e-10) | -1.05¢+07(1.1¢-09) | -1.42e+07(2.1e-08) | -1.04c+07(6.5e-10)(+)
w1a(2470-290-145) -3.02e+04(1.1e-04) | -3.02e+04(1.1e-04) | -5.72e+04(2.7e-05) | -9.21e+04(1.1e-04) | -9.32e+06(1.1e-04) | -7.94e+04(2.7e-05)(+)
—0.5 _2.0 —2.0 = -
10 22
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Figure 1: The convergence curve for the HEVP across various datasets with different parameters
(m, n,p).
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Figure 2: The convergence curve for HEVP across various datasets with different parameters
(m, n,p).

» Experiment Settings. All methods are implemented using Pytorch on an Intel 2.6 GHz processor
with an A40 (48GB). For HSPP, we fix o to 1. Each method employs the same random J-orthogonal
matrix. The built-in solver Admm is used to solve the unconstrained minimization problem in CSDM.
We provide our code in the supplemental material.

» Experiment Results. Table [T]and Figure ] display the accuracy and computational efficiency
for HEVP, while Figure@presents the results for HSPP, leading to the following observations: (i)
GS-JOBCD and JJOBCD consistently deliver better performance than the other methods. (if) Other
methods frequently encounter poor local minima, whereas GS-JOBCD effectively escapes these
minima and typically achieves lower objective values, aligning with our theory that our methods
locate stronger stationary points. (iif) VR-J-JOBCD outperforms both J-JOBCD and CSDM when
dealing with a large dataset characterized by an infinite-sum structure.

6 Conclusions

In this paper, we propose a new approach JOBCD, which is based on block coordinate descent, for
solving the optimization problem under J-orthogonality constraints. We discuss two specific variants
of JOBCD: one based on a Gauss-Seidel strategy (GS-JOBCD), the other on a variance-reduced
Jacobi strategy. Both algorithms capitalize on specific structural characteristics of the constraints to
converge to more favorable stationary solutions. Notably, VR-J-JOBCD incorporates a variance-
reduction technique into a parallel framework to reduce oracle complexity in the minimization of
finite-sum functions. For both GS-JOBCD and VR-]J-JOBCD, we establish the oracle complexity
under mild conditions and strong limit-point convergence results under the Kurdyka-Lojasiewicz
inequality. Some experiments on the hyperbolic eigenvalue problem and structural probe problem
show the efficiency and efficacy of the proposed methods.
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Appendix

The appendix is organized as follows.

Appendix E] introduces some notations, technical preliminaries, and relevant lemmas.
Appendix [B] concludes some additional discussions.

Appendix [C| presents the proofs for Section

Appendix [D] offers the proofs for Section 3]

Appendix [E] contains the proofs for Section ]

Appendix [F contains several extra experiments, extensions and discussions of the proposed methods.

A Notations, Technical Preliminaries, and Relevant Lemmas

A.1 Notations

In this paper, we denote the Lowercase boldface letters represent vectors, while uppercase letters
represent real-valued matrices. We use the Matlab colon notation to denote indices that describe
submatrices. The following notations are used throughout this paper.

* N : Set of natural numbers

* R: Set of real numbers

* n): {1,2,..,n}

* ||x||: Euclidean norm: ||x|| = ||x|l2 = v/(x,x)

¢ x;: the i-th element of vector x

* X, ;or X;; : the (i, j™) element of matrix X

s vec(X) : vec(X) € R"*1, the vector formed by stacking the column vectors of X

* mat(x) € R"*", Convert x € R""*! into a matrix with mat(vec(X)) = X

« XT : the transpose of the matrix X

* sign(t) : the signum function, sign(¢) = 1if ¢ > 0 and sign(¢) = —1 otherwise

* X ®Y : Kronecker product of X and Y

¢ det(D) : Determinant of a square matrix D € R"*"D € R™*"

 C2 : the number of possible combinations choosing k items from n without repetition.
* 0, : A zero matrix of size n x r; the subscript is omitted sometimes

e I.: I, € R™*", Identity matrix

* X > 0(or > 0) : the Matrix X is symmetric positive semidefinite (or definite)

* Diag(x): Diagonal matrix with x as the main diagonal entries.

* tr(A) : Sum of the elements on the main diagonal A: tr(A) =" A;;

* ||X]|« : Nuclear norm: sum of the singular values of matrix X

* || X]|| : Operator/Spectral norm: the largest singular value of X

* | X||r : Frobenius norm: (3, ij)l/z

* Vf(X) : classical (limiting) Euclidean gradient of f(X) at X

e V7f(X) : Riemannian gradient of f(X) at X

* Z¢(X) : the indicator function of a set £ with Z¢ (X)) = 0 if X € £ and otherwise 400
o dist(¢,¢’) : the distance between two sets with dist(&, &) £ infxee xreer | X — X' ||r
* Z¢(x) : the indicator function of a set { with Z¢(x) = 0 if x € £ and otherwise +co.

13



517

518
519
520

521

522

524
525

526

527
528
529
530

531

532

533

535

536
537

538

539

540

541

542

543

544

545

546
547

A.2 Relevant Lemmas

k
Lemma A.l. (Lemma 6.6 of [51]]) For any W € R™ ™, we have: chz’”l W (B, B)|I =
ECkY W+ ch2y, Dt W2, Here, the set {By, By, ,Bcx} represents all possible
combinations of the index vectors choosing k items from n without repetition.

Lemma A.2. We have S, be the set of |S4.| = b samples from [N|, drawn with replacement and
uniformly at random. Then, ¥t, Xt € R™"*", we have:

Eill§ Yies, V(X = VX = s Ee [IVi(XY) = VX

Proof. The proof is exactly the same as in Lemma 2.8 of [5]]. O
Lemma A.3. The tangent space Tx J of manifold constructed by X" IX = J, with X € R™ ", is :
TxJ £ {Y e R | XTJY +YTJX =0}, (13)

where Y = tY with t is a positive scalar approaching 0.

Proof. Assuming point X € R™*" lies on manifold 7, we have: h(X) = X"JX — J. Moving
along Y € R™*" in the tangent space of X, we obtain:

RX+Y)=X+Y) J(X+Y)-J
=X"JX+X"JY+YIJX+Y'JY -J
EXTIY +YTIX+YTIY
EiXTIY + 1Y TIX +2YTIY
where step @ uses X TJX = J; step @ uses Y = ¢Y.

Since t is a positive scalar approaching 0, we can ignore the higher-order term: 2YTIY. Ac-
cording to the properties of the tangent space of any manifold, we have: h(X +Y) =0, In
other words, X'JY + Y "JX = 0, i.e. we obtain the defining equation for the tangent space:
TxJ 2 {Y e R | XTJY + Y'JX = 0}. O

B Additional Discussions

B.1 On the Global Optimal Solution for Problem (7)

In Section 2.1} we have demonstrated how to use the breakpoint search method to obtain an optimal
solution for the case of V = (¢ %) of Problem . Since the structure of the other three cases

Ve {( 5% 2),(%° 2), (5 75)}is exactly the same except for the coefficients of Problem @i we

8 c § —¢
will provide the corresponding coefficients in Problem : ming s ac¢+bs+c &2 +dcs+es?, and
omit the specific analysis process.

Case (a).'V = (_65 }'g)l a= Py + P223 b= —.P12 - P, c= %(Ql} + Qé.ll + Q_14 + Q44 ,
d=—3(Q21+Qs1+ Q124 Qa2+ Q13+ Qu3+ Q24 +Qss), and € = 3(Q22+ Q32+ Qa3+ Qs3).

)
)
Case b). V= (° F)ia= Py + P, b= —Pis+Pa,c=1(Qi1 — Qi — Qus + Qua).
)
)
)

S c

d= %(Qm - Q31 + Q12 — Q42 - Q13 + Q43 - Q24 + Q34), ande = %(Qm - Q32 - Q23 + Q33 .
Case (C)-.V = (S :2):a = .P11 - Py, b = _P12 +.P21, c= %(Qn_ - Q4.1 — Q.14 + Q44 ,
d=3(-Q21+Qs1 —Qi24 Qa2+ Q13— Qu3+ Q24— Qs4), and € = 3(Q22 — Q32 — Qa3+ Qs3).
C Proofs for Section 2]

C.1 Proof of Lemma2.1]

Proof. Defining Jgs = J(Ug, Us) , then we have: JUp = UgJgg, Ug J = Jgz Uy , and U] JU =
Jgs.
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Part (a). For any V € R?*2 and B € {Bi}ic:?ﬁ, we have:
[(XF]TIXT - XTIX

2 XTIJUR(V - LU X + [Up(V - L)U] X]TIX

+[Up(V — 1)Uy X] " J[Up(V — 1) Up X]
= XT[JUR(V -1)U] + Ug(V —1L,)TUJJ + Up(V - Ip) Uy JUR(V - I,) U |X
= X [Upde(V —L)U; +Ug(V —I) "I Up + Up(V — L) " Jg(V — I,)U; |X
= X'UpJe(V-IL)+ (V-IL) Jg+ (V-1) Jg(V - 1)U X
= XUV IV — J5]U; X
@

0.

Part (b). Using the update rule for X+ = X + Up(V — I,)UJ X € R™*", we derive:

Xt —X|r = [|Us(V—-15)U; X|[¢
®
< | Uslle- I[(V = I)Ug X[,
®
< sl IV =T2)|lF - IUg [l - [IX]|es
®

IV = Tof[e - [ X][F,

where step @ and step @ use the norm inequality that ||[AX||g < |[|A]|g - || X]|¢ for any A and X;
step ® uses || Ug|| = ||Uz || = 1.

Part (c). We define Z = U X. We derive:

IX* =X = [Us(V-L)Z|%
2 vec(Ug(V —1,)Z) Hvec(Ug(V — I,)Z)
2 Vee(V-I,)(ZT @ Up) TH(Z" ® Ug)vec(V — 1)
= [[V- IQ”%ZT@UB)TH(ZT@UB)
@ 2

where step @ uses || X||% = vec(X) " Hvec(X); step @ uses (ZT @ R)vec(U) = vec(RUZ) for
all R, Z and U of suitable dimensions; step @ uses the choice of Q = Q £ (ZT @ Ug) "H(Z" ®

Us). O

C.2 Proof of Lemma[2.3]

Proof. We denote w = ¢ + e. According to the properties of trigonometric functions, we have: (i)
72 ~ ~ g ~
ae— ;(ii)§2:ﬁ;(iii)t:§ with | t] < 1.

- 5, leading to: ¢ = =L § = —£L
e 2 eading to: ¢ ﬂ,b T

We discuss two cases for Problem (8.

Case (a). ¢ = \/lliﬂ,é = \/% Problem lﬁi is equivalent to the following problem: iy =
—t -t

a+tb + w+td

arg min,, — e. Therefore, the optimal solution /i can be computed as:

1-% 1-¢
COSh(ﬂ+) = \/ﬁ, and Sinh(ﬂ+) = \/%W (14)
Case (b). ¢ = \/:?,é = \/IE? Problem lﬁb is equivalent to the following problem: ji_ =
argmin, L‘ﬁs + “{f%;j — e. Therefore, the optimal solution jz_can be computed as:

1-t

1 .

cosh(fi_) = Wt and sinh(g_) = \/% (15)
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We define the objective function as: E'(, 5) £ aé + b3 + cc + dé5 + e32. In view of (14) and (1 .
the optimal solution pair [cosh(ji, sinh(f)] for problem (8]) can be computed as:

[cosh(j2), sinh(j1)] = argmin F'(c, s),

le,s
s.t. [, 8] € {[cosh(fi),sinh(fiy)], [cosh(f—),sinh(a_)]}

Importantly, it is not necessary to compute the values i1 for (T4) and fi_ for (T3).

O
C.3 Proof of Lemma[2.4]
Proof. The objective function for B (i) as in Equation (3) is formulated as :

XY + 5V = T3 gr + (Vi = LIV AKX Ty )

Part (1). For the part of ||V; — I||& g1 it is obviously irrelevant.
Part (2). For the part of (V; — I, [V f(X?)(X?)T]g B, B, )) we note that [Vf(Xt)(Xt)T]B?)Bf,) =
[V FOXON B, DX TI(,BL,) = [7£(X) (Bl DX (B, )] T , which just use the informa-
tion of block BE - The proof ends O

C.4 Proof of Lemma[2.3]

Proof. Part (a). For the purpose of analysis, we define the following: Vi € [§], K; = Usg, (Vi —
Ig)U;( i)X.

e

152, [Us,, (Vi — I)UZ X]|I2

-
K[ + Kol + -+ [ Ky 2
2 YL IUs, (Vi - T)Ug X

where step @ uses the definition of K; and the assumption that B € Y'; step @ uses the definition of
Squared Frobenius Norm; step @ uses the definition of K;.

Part (b). Using the update rule for Xt = X + [Z"/Q U, (Vi— Ig)UB( |JX € R™™, we have the
following inequalities:

IX* =X = ([ Us,, (Vi - L)Ug X2 (16)
@ n
= Y IUs,, (Vi - L)Ug | X2 (17)
@
< SV - Lol X, (18)

where step @ uses the conclusion of Part (a); step @ uses the same proof process of Part (b) of lemma

21

Part (¢). We derive the following results:

1 2
S 1% = Xi = 3II0 Us ) (Vi — 1)Uy 1X 3y

IR I Us,,, (Vi — L)US X%

II@

@
n/2
< ISRV - Ll

16
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where step @ uses the conclusion of Part (a); step @ uses the same proof process of Part (¢) of lemma

Part (d). We derive the following results:

SV = I, [(V(X) — G)X ags,)

S ([ Us,,, (Vi — 1)U X, [(V(X) - G)))

B(s)

(X+ =X, [(VF(X) - G)))

<X - X[2 + LIVAX) - G2
< sl IF+ 2 IVFAX) - Gl

® , -

< SIXIESET Vi - LR + 3V F(X) - G|} (19)
where step @ uses VA, B, 1||A — B||Z = [|A|Z + 3||B||2 — (A, B) > 0, with A = | XT — X||2
and B = ||[Vf(X) — G]||2; step @ uses the conclusion of Part (B). O

D Proofs for Section

D.1 Proof of Lemma [3.1]

Proof. We consider the Lagrangian function of problem (T):

L(X,A) = f(X)— (A, XTIX - J). (20)
Setting the gradient of £(X, A) w.r.t. X to zero yields:
VF(X) - IXA = 0. @1

Part (a). Multiplying both sides by X' and using the fact that XTJX = J, we have JA =
X TV f(X). Multiplying both sides by JT and using J'J = I, we have A = JX TV f(X). Since A
is symmetric, we have A = V f(X)TXJ. Putting this equality into Equality yields the following
first-order optimality condition for Problem (T):

VF(X) =IX[Vf(X)]TXJ. (22)

Part (b). We let G = V f(X). We derive the following results:

G=JXG™XJ 2 JX'T.G=JX"-JXG"XJ
2 JX'G=G'XJ
2 XIXTG)XT = X(GTXI)XT
£ XJXTGXTJJ=JIXGTXIXT (23)
L& =8 o LAl A
£GT EXe)
2 (XG'J)-IX = (JGX").IX
2 XG'X =JGJ
2 JXGTXJ =G,

where step @ uses the results of left-multiplying both sides by JXT; step @ uses J-XTJX = JJ =1I;
step @ uses the results of left-multiplying both sides by X and subsequently right-multiplying them
by XT; @ uses G = JXGTXJ; step ® uses the the results of right-multiplying both sides by JX;
step ® uses JJ = I and X"JX = J; step @ uses the results of left-multiply both sides by J and
right-multiplied by J.

Given Equality (23), we conclude that the critical point condition is equivalent to the requirement
that the matrix XV f(X)TJ is symmetric, which is expressed as XG'J = [XGTJ]T. O

D.2 Proof of Theorem 3.3

Proof. We use X and X to denote any BS-point and critical point, respectively.
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ForallB € Q£ {By,B,,...,Bc:z }, we have:

I € arg\lfr.leisr%B Q(V;X,B).
where G(V; X, B) £ f(X) + 5[V = L2l 1 + (V = L[V f(X)(X) ]zs)-
The Euclidean gradient of G(V; X, B) can be computed as:

G 2 mat((Q + 012) vec(V — 1)) + [V£(X)(X) gs- 24)

Given Lemma we set the Riemannian gradient of G(V; X, B) w.rt. 'V to zero, leading to the
following first-order optimality condition:

0=VsG6(V;X,B)=G - UJJVG"VIU;. (25)
Letting V = I, and using the definition of G, we have:

025 = [VF(X)(X) e — JeaG T Jps, VB € {Bi}n,

= 040 = UJ[VAX)XT|Us — J55UJ [XVf(X)|UsJs, VB € {B:} <7
2 0y, = [Vf(X)XT]UB UL IXVFX)TIIU,, VB € (B,

2 0., = [VAX)XT] - IXVFE)TW,

2 PIVAXXT] = VX)X,

where step @ uses U,;r J= JBBU; and JUp = UgJgp; step @ uses the the following results for any
W € R**"™:

(VB € {B:}C", 05 = UJ WUz = Wgz) = (W =0,,.,); (26)

step @ uses the fact that both sides are left-multiplied by J. We conclude that the matrix JV f (X)XT
is symmetric. Using Claim (b) of Lemma we conclude that X is a also a critical point.

Notably, the condition in Equation (23)) is a necessary but not sufficient condition. This is because
BS-point is the global minimum of Problem: arg miny¢ 7, G(V;X,B), according to Definition

B2 O

E Proofs for Section 4|

E.1 Proof of Lemmaf4.3

Proof. By the definition of G, we have

Eq (|Gt — V(X2

PE[IIE 20 V(X = V(X [E] +

(1= PELG + & S0 (VA(XD) = V(X)) = VXY

PE(IIF S0y V(XD = VAX[E] + (1= p)E [| G = VAXED2)
(1= P)Ea [l E 0 (VA(XY) = V(X)) = VAX) + VX))

lle

e

18



621

622

623
624

625

626

627

628

629

630

631

632

633

where step @ uses formula @); step @ uses that G*~1 — V f(X*~1) is measurable w.r.t. //~! and
E.[ll& SV (VXY = V(X)) = V(XD + Vf(XP1)]2] = 0. We further have

Ex[|GF = Vf(X)|Z]

S PRI, VXY = VIXDIR] + (1 - p)Es [|GH — VA2
(1= P)E [ X0, (VF(XE) = VA(XY)|13]

@ ~
< ”EN DE, [V £:(X") = VAXIE] + (1 = p)E,a |G = V(X 2]
+ LB |V £(XY) — VA(XY|]
® _ ~
< HNTNG2 4 (1B [[G - VAKX R
L2X*(1— n
D [T VL - )] @7

where step @ uses that for any random variable X, E[(X — E[X])?] < ]E[XQ] step @ uses lemma
step @ uses assumption .3} Inequality (2)) and Part (b) of lemma O

E.2 Proof of theorem 4.6
Proof. For simplicity, we use B instead of B. We will show that the following inequality holds :
IV = Lff < F(XY) = F(XH), (28)
Since V* is the global optimal solution of Problem (3}, we have:
G(V:X"B) <G(V;X"B),V € T
Letting V = I, we have: G(V*; X*,B) < G(Iy; X*, B). We further obtain:

IV = Lol or + (V! = L [VF(X*)(X) ]ss) < 0. (29)
Using Inequality () with N = 1 and Part (¢) of Lemma[2.1] we have:

FXTN) < FX) + (VE = Iy, [VAX) (X Tes) + 511V~ LG (30)
Adding Inequality (29) and together, we obtain the inequality in (28). Using the result of Part (b)

in Lemmathat ”X”;;'?HF < |V — I||2, we have the following sufficient decrease condition:

F
Xt _xt||2

f(XH-l) _ f(Xt gnvt _ IQH %H ||Xt\|§ Il (31)

We now prove the global convergence. Taking the expectation for Inequality (3T)), we obtain a lower
bound on the expected progress made by each iteration for Algorithm|T}

Egees [f(XH)] = Ee: [f(XY)] < ~Ee [5] V' — L2,
Summing up the inequality above over t = 0, 1,...,T, we have:
- _

Eet[§ 30 [V = L[f] < f(X0) = Eeras [f(XTH1)] < £(X°) - f(X).

As a result, there exists an index ¢ with 0 < ¢ < T such that
Eei[|VF — L|lf] < ey [F(X0) = F(X)]. (32)

Furthermore, for any ¢, we have:

E(XH £ C2 ZZ ”1 dist(Io, arg miny G(V; Xt B;))? = Ee [Vt — L3 (33)
Combining Inequality (32)) and equality (33), we have the following result:

) e e
Ee [I[V! - L|j2) = £(XF) < 2UEN-IX), (34)
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We will give the arithmetic operations of GS-JOBCD. By the chosen parameters and Inequality (34),
we have . ~
£ 2(/(XO—f(X
g(Xt) S (f(O(T)Jrlf)( ) S €.

We define Ag = f(Xg) — f(X)andset T + 1 = QEAQO . Denoting m; to be the number of arithmetic
operations at ¢-th iteration, we have for ¢ > 1:

Eet[me] = O(2N).

Then we have for ¢ > 1, the total number of arithmetic operations M T in T iterations to obtain
e-BS-point is
Eer[MT] = Eee[Y[_omi] = 2T+ 1)N = O((T + 1)N).

We have (T'+ 1)N = ]\ﬂﬁ)o _ O(AiN). -

E.3 Proof of Theorem 4.7]

Proof. For simplicity, we use B instead of B'. Defining V:t as the global optimal solution of
argminy, 7 (V.; X* B), we have:

T(V.';X!,B) < T(V;X',B),Yi,V, € T,
Letting V; = I, Vi, we have: T(V."; X!, B) < T (I5; X!, B). We further obtain:

ISR IVE=Ta)2 g + S (VE =T [GHXY) T, p,,)) < 0. (35)

Using the results of telescoping Inequality (Z) over i from 1 to N with Part (¢) of Lemma 23] we
have:

SN < FXY + AV I, [VAX)X o p,) + 5 20 Vi~ Talz G6)
Adding inequality (33), and (36) together, we obtain the inequality in (37).
§IIIVE -T2
< S = SR 4 SIEVE L [(VAXY) = GY(X) g pa,))
S X - X ¢

where step @ uses Part (d) of Lemma
Taking expectation on both sides of 1neuahty (37) with respect to all randomness of the algorithm,
and adding the inequality in Lemmaix 5= to 3 ), we have:

%HXtIPZ"/2 Vi- L +5I[V/X) -G 3D

_x2  L3X*(1-p) n
(X — S DR [ | VE - L3

2 2pb’
< Eef(XD)] ~ Buon [fXHY)] 4 20062 4 LR(E [ut] B [u ) (38)
Summing up the inequality above over ¢t =0, 1,..., T, we have:

_x2? L2X%(1 2
(B O R [T S [V L)

< FXO) =B [f(XT)) + TERESD 02 4 LB (10 — By [u? 1))
< FX0) - f(X) + TR 0% + SR (u0 — B, [uT 1)) (39)

As a result, there exists an index ¢ with 0 < ¢ < T such that

-xX? L3X?(1-p) n/2
(855 — 5 (T + DE[S 1 [VE - 1))

< FXO) - f(X) + GRS 0% 4+ L2 (00 — E,r [uT 1)) (40)

— <2
0-X>  LiX’(1-p)
2 2pb’

Defining w = , furthermore, for any ¢ and Vi, we have:

E(X') = & X0 Ep[dist(Iy, arg miny, T(V; X!, B7)%) = B« [Y17 [V - LJ)2) (D)
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Combining inequality (#0) and (@#I]) , we have the following result:

EXN< s (FXO) — F(X) + TG o? + L2(u0 — Ern[ul™1]))  (42)

By the chosen parameters and Inequality (@2), we have

E(X") < iz (F(X0) = F(X) + TR0 + 22 (w0 — Ejrn [uT 1)) < e,

We define Ay = f(Xo) — f(X) andset T + 1 = f—ﬁ“}. Denoting m: to be the number of arithmetic
operations to update the ¢-th block at ¢-th iteration, we have fort > 1

E,+[mi] = O(2(pb + (1 — p)b)).
Letting m; be the number of arithmetic operations in the ¢-the iteration, we have for ¢t > 1
B, [my] = B[S0/ mi] = O((pb + (1 — p)¥')n/2 x 2) = O(n(pb + (1 — p)b)).
Hence, the total number of arithmetic operations M7 in T iterations to obtain e-BS-point is
Er[M] =B, [>21 my] = O(bn) + B [Y_, mi] = O(bn + Tn(pb + (1 — p)b')).

. _x2 L:X°(1-p) =2 =2
Since b= N, = Vband p = =X _ 2 o P — 1(6-X —L?X ), we have

W =

bl
[

nT(pb+ (1 —p)V) = nﬁ% o < ﬁ%' = O(Ae/X),

E.4 Proof of Theorem d.10]

Proof. For simplicity, we use B instead of B!. We notice that the Riemannian gradient of 7 (V; X*,B)
at the point V; = I, Vi . Defining G = G![X!]T and using JUg = UgJgs, Uy J = JgzUj ,we
have:

VsT(V.=IxX,B) =Y/} U] GUg, — Ul JG JUg, (43)

=1 7Bg) B
Then, we prove the following important lemmas.

Lemma E.1. We have the following result for VR-J-JOBCD: E, .1 [|G* — G+ ||¢] < pE,«[Vut] +
LyE e [[|XE = X ]

Proof. By the definition of ét, with the choice of b= N, b = Vb and p= we have

bl
g

Eon[[|GF — G le]

L Epal|G - 20, VAXTY) = 52 S (VAXH) = V(X)) — (1 )G ]
= Eun[[pG! — B Y0, V(X = 552 S0 (VX = V(X)) |e)
S PEenlIG - VAXT ] + SRR, VAKX - V(XY
S PEAIG — VXOIE] + B [|VF(XE) — ¥ F(X)]Je]
PR [0 VA (XIH) = V£(X)||f]
£ PE VA + s [[VF(XE) = VXY ] + (1= p)Eyens [V £:(XH) — V£(X0) ]
< PEAIVA] £ LyBe X! — X4 g

where step @ uses formula (EI); step @ uses norm inequality and } Z?:l V(X)) = V(X
with b = N and norm inequality; step ® uses triangle inequality that ||[A — B[ < ||A — C||¢ +
|IC — B||F, for any A, B and C; step @ the definition of u?; step ® uses Inequality (2) and the results
of telescoping it over ¢ from 1 to V. O
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Lemma E.2. (Riemannian gradient Lower Bound for the Iterates Gap) We de-

fine ¢2BX+VX)G+(1+V +2(X +VX))Ly + (14 V. It holds that:
. n n uwt I~ —2<

Eyeo [dist (0, V., T (Lo X1, BH)] < - B [S172[VE - L[] + 228 (X + VX).

Proof. For notation simplicity, we define:

Qio éUBTm [GtﬂHXHl]TUB(WW (44)
Qu 2Ug [G[X] T Us ), Vi, (45)
Qi 2£U3 | [G! - GM[X] T U, , Vi (46)
First, using the optimality of V¢,i € {1,--- , 5 } for the subproblem, we have:
022 =G; — Jp, VIG] VJg, (47)
where G; = mat((Q + 01y) vec(V! — I,)) + Ug,, )Gf(Xf)TUB(i) : (48)
2Ta A7,

Using the relation that Cllv = T;1 + T;2, we obtain the following results from the above equality:
022 = (Tir + Ti2) — g, Vi(Tir 4+ Yiz) "VIds
2002 = Yot + Q1 + Qo — T, VE(Tir + iy + Q2) TV
=0 = JB(“V;?(TM + Qi + QiQ)TViJBu) = Ti1 — Qio, (49)
where step @ uses Y;o = ;1 + ;2. Then we derive the following results:

ELtJrl[diSt( VJT< .= IQ;XH'l Bt+1))] =E t+1[||VJT( .= IQ;Xt+1,Bt+1)HF]

= Bl DU (G X — IX G T Uy |
e E, | Zn/2 Ul;l—( )(GtJrl[XtJrl}T _ JXt+1[Gt+1]TJ)UB(i) IF]
2 Bl 2015 Qio — Ja, Qi In, ]
2Bl M5 (0 — Qi) + it — (Te, U — Te, U Te,) — In, 2 T, lIF)
< B2 Qi Qatlle] + B [0 Js O s, — Js, Qs ]

FE o [ 05 Qin — T, Q1 T, ]
< B2 Q0 - Qatlle] + B [ 212 00 — QLI + Byt [ 502 Q01 — T, 5 s, ]
2 OB Qi — Qarlle] + Bt [ 12 Q01— T s, ]
2B [l 73 Qo — Qi ]

Bl 073 I, VAo + Qi+ Qui2) TV, — Tir — Qio — Jp, Q) ]
< OB Qo — Qutlle] + B0 T VITL Vs — Tallel+

n/2 < n/2
E [l 03 VIQLVE = Q] + B [| 05 35, VIQLVETs ) — QuollF]

where step @ uses Equality ; step @ uses the fact that both the working set B* and B**! are selected
randomly and unlformly; step @ uses the definition of €2, in ; step @ uses —2;1 + 2;1 = 0
and —Q,; + Q| = 0; step ® uses the norm inequality; step ® uses the norm inequality; step @ uses
the norm inequality; step ® uses Equality (@9); step @ uses the norm inequality. We now establish
individual bounds for each term for Inequality (50).
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For the first term 2, [|| 372 Q0 — Q1 ||¢] in (50):
2B, (|| i3 o — Qulle] = 2B [l 2 UG,

B(i)

[GH[X" — X']

]

® n V

= 2B, X3 [GH[Us,, (Vi — 1) Ug, X7 ||¢]

@ — n/2 X7t

< 2XGE[|| 2V~ Ty||f]

®@ P

< 9XGE, Y2 (V! - Lle) D

where step @ uses [X* — X']g;3, = Us, (V} — L) Uz | X'; step @ uses the inequality | XY [|r <

[ X|[e[Y || for all X and Y repeatedly and the fact that V¢, |G||r < G and V¢, ||X*||r < X; step ®
uses the norm inequality.

For the second term ¢ [|| Zn/2 I, VIY | VIiJs, — Talle] in ll
2
B I3 Jng, VT VETn ) = Y]

< RIS VTRV B[] S0 Tl

S 1+ VR T Talle]

S (14 V[ 12 mat(Q + L) vee(V! — L)) [¢]

< 1+ V))Q+ 0Ll - Ea[| 12 VE - L]

< 1+ VAL +0) Ea [V~ L] (52)

where step @ uses the triangle inequality; step @ uses the inequality || XY ||r < [|X||¢]Y]|F for all
X and Y and V¢, |[V!||g < V; step ® uses the definition of T;;; step @ uses the choice of Q < LI
and the norm inequality.

For the third term E,[|| Y72 VIQT V! — Q] ||¢] in , we have:

1591

E. [l 03 VIQLVE— Q] ]

S B VIQL(VE - To) + (Vi - 1)) |

$ AV [l [V - Toll]

< (X VIR D2 IG5 - V! — Lol

< (X+ VR)GE (D)2 V! - Lol (53)

where step @ uses the fact that —VIQ[ I, + VIQ = 0; step @ uses the norm inequality and
Vt, [[Vt]|r < V; step ® uses the fact that Q1 [|r = [|[Ug  GX!TUg,, ||r < X||G!||f, Vi which

B(i)
can be derived using the norm inequality ; step @ uses the fact that VX, || G!||r < G.

For the fourth term E . || ZWQ Iz, >VfQZT2VtJB( ) Q;2|l¢] in , we have:
n/2
Byl S35 T, VIQL Vs, — Qial[e]

< B2 VIOLVIE] + Bl 02 Q]

S A+ VIR Q]

2 1+ VR X5 Ug (G- GYXY] F]

S 3K+ VRE[G - &)

S 2R+ VR (B, [Var] + LB, [IIX — XY ]

S X4 VRE NV + & VORI VI Ll o)
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where step @ uses the triangle inequality; step @ uses the norm inequality and V¢, || VE||g < V; step ®
uses the definition of Vi, ;5 = UBTU) [G! — GY[X!]TUg,,, in ; step @ uses the norm inequality
and Vt, || X||g < X; step ® uses Lemma step ® uses Part (b) in Lemmaand v, IXHlF < X
In view of([51), (32), (33)), (54), and (30), we have:
Eona[[VaT (Tas XU+ B [[¢]

< (X 4+ VR)E, [Val] + (1 + o + 3+ cd) - B[S 2 || VE - L]

= X+ VXEVul] + 0B [S1] [ V]~ Lale]
where ¢ = 2XG, o = (1+V°)(Ly 4+ 6),¢5 = X+ VX)G,and ¢y = 2(X° + V'X)L;. O
Lemma E.3. We have the following results: dist(0,V 7 f(X")) < ~v - ||V2T(I2; X%, B) | +
90X /By [ul] with 2 X,/C2.

Proof. We have the following inequalities:

IVo (XN £ [IVAXY) - IXHVF(X)) X
2| VAXHXHTIXIT - IXH(V (X)) TITXT e
< VAKX - IXH(TF(XY) I IXT ¢
< RIVAX (XY - IXH(TXD) I

where step @ uses the definition of V7 f(X?); step @ uses JJ =Tand X TJX =J = XTJXJ =
JJ =T, step @ uses the norm inequality and ; step @ uses V¢, || X! || < X.

We Consider |V f(X!)(XH) T — IXH V(X)) TI||¢:

VX)X = IXHV (X)) Tl

IGH(X")T = IXHGH)TI[le + [(VF(X') = G(X)T = IXH(VF(X') = G T T
IGH(X") T = IXHGH)TI[|e + [VF(XE) = Gl - [IX! e + [IXE e - [V F(XF) — G[Je
IGHXH) T — IXHGH) TI||e + 2X /By [u]

where step @ uses VA, B, ||A||r — [|B|lr < ||]A — B||¢; step @ uses the norm inequality; step @
uses Vi, | X*||g < X. Thus,

X(IGHXOT — IXHGH)TI||r + 2X° /o [ul]
X/C2- |15 Uy, [GHXHT = IXHGH TIUs [|f] + 2K /Eee o]

X\/C2 - |V 7T (Iy; X, B)||f + 2X° /Eve [uf]

where step @ uses Lemma with W = GH(X))T — IX*(G")TJ and k = 2; step @ uses the
definition of V 7 7 (Iy; X*, B). O

INe IN® |INe

IV F (X

l® IANe IA

We now present the following useful lemma.

Lemma E4. We define TxJ = {Y e R"*" | Ax(Y) =0} and Ax(Y) = X"JY +YTJIX.
Forany G € R™" and X" IJX = J, the unique minimizer of the following optimization problem:
Y= arg minyery,, 7 M(Y) = 3 Y — G||I2:7

2
satisify h(Y) < h(G — JXGTXJ).

Proof. We note that Y =argminyerys ||Y — G| = arg miny 1Y — G|2,
s.t. X'JY +YTJIX =0. Introducing a multiplier A € R™*™ for the linear con-

straints X'JY +YTJX =0, we have following Lagrangian function: L(Y;A)=
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HY -G +(XTIY + YTIX,A). We naturally derive the following first-order optimality
condition: Y — G +JXA =0, X'JY 4+ Y "JX = 0. Incorporating the term Y = G — JXA
into XTJY + YTJX = 0, we obtain:

XTXA+ATXTX=G"JX+X"JG (55)
Any A satisfying formula (59)) is a feasible point, so we can easily find :
XTXA=X"JG
XA =JG
XTIXA =XTJIG
JA=XTG
A=JXTG
A=GTXJ (56)

Je o Jeo s |o

where step @ uses the fact that any matrix X satisfying the J-orthogonality constraint has a determinant
of 1 or -1, thus inv(X) exists; step @ multiply both sides of the equation by XJ;step ® uses
XTJX = J and JJ = I; step @ multiply both sides of the equation by J and uses JJ = I; step ®
uses the fact that A is a symmetric matrix.

Therefore, a feasible solution Y can be computedas Y = G —JXA =G —J XGTXJ. Since Y
is the optimal solution, there must be ~(Y) < h(G — JIXGTXJ). O

We now present the proof of this lemma.
Lemma E.5. For any X € R™*", it holds that dist(0, V f°(X)) < dist(0, V 7 f(X)).
Proof. For the purpose of analysis, we define the nearest J orthogonal matrix to an arbitrary matrix

Y € R™*" is given by P 7(X). Similarly, we have P, 7(V f(X)) for projecting gradient V f(X)
into space Tx 7.

We recall that the following first-order optimality conditions are equivalent for all X € R™*" :

(0 € V(X)) & (0 € Prxg (VF(X))). (57)
Therefore, we derive the following results:
dist(0, V(X)) = infyevsex) Yl (58)
= infyep, v Yl (59)
We let G € V f(X) and obtain the following results from the above equality:
dist(0, V(X)) < |G —IXGT X, (60)
2 Vs F(X)[lr £ dist(0, V.7 £(X)). (61)

where step @ uses Lemma step @ uses V7 f(X) = G — JXG " XJ with G € V£ (X). O

First of all, since °(X) £ f(X) + Z7(X) is a KL function, we have from Proposition that:
dist(0, V f°(X"))

V7 f(X)]|f, (62)

where step @ uses Lemma Here, () is some certain concave desingularization function. Since
©(-) is concave, we have:

VA € R,AY € R, o(AH) + (A — AT (A) < p(A). 63)
Applying the inequality above with A = f(X?*) — f(X) and AT = f(X**!) — f(X), we have:

(f(X") = FXFD) (F(X) = £(X))
< p(f(X) = f(X)) = o(f(XH) - f(X) = £ (64)

1
@' (fe(X)—fo(X))

e IA
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728 With the sufficient descent condition as shown in Theorem[4.7] we derive the following inequalities:
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E 2302 |V - L2

< Eu[f(Xt)—f(Xt“)]+1]ELt[||Xt||r2:]]Ew[Z"/2 Vi L|2] + iE[u] (65
L Bl [EE S|V - LRI<E.[f(X!) — FX] + QEu[uﬂ (66)
(67)

where step @ uses V¢, || X!|r < X.

E (X S0 |1V - L3

S Bl 4 1wl
= el (f(X)—f(X)) 27
@
< B[V f(XO)[|F] + 3E.[u’]
&) _
< Ebt[é't’yHVjT(Ig;Xt,B)HF+25tX2 B, [uf] + 1B, [u']
@
< EBul€o M2V — To|lf] + £ (X + V'X) /Eee [u]]
28X /By [uf] + LB [ul]
®
< Euf sfwf\/Z”/ZHVt L L2
+E4(2X° + X + Y2V ) VE, [ul]) + LB, [u]
® t2 ’ n 0 tut
< Be[M + G IV - Ljg + B
12 (2% 44 EX 4+ TEVX)?
- 7229 VEVRY + 1R, [uf]
L BP0+ G VI — L[] + S [uf] (68)

where step @ uses the sufficient descent condition as shown in Theorem step
@ uses Inequality (64) and (62) with X = X! and X = X; step @ uses lemma
2]

2. 2
! ; step ® uses Va; € R, ”“*‘T'L'“”" gx/zﬁﬂﬂj"

E.3[ ; step @ uses Lemma |[E.

; step © applies the inequality that V6 > 0,a,b,ab < % + QL; with
a—\/Z”/QIIVt ' Lll2 b=/ T a= /Ex[u],b = EY( 29X’ + 2 X+7”pV X);

np<x 2
step @ denote A2 £ R R ) + nZ(f . To simplify the formula, we define

20
R =300 | VE -T2
Multiplying both sides by 2 and taking the square root of both sides, we have:

Ec[y0-XVR] < \JE €222 + 0% 4 (0 + 1)E,[u]
< E[EPA2) + Bt [VORTT] 4 1/(0 + 1)E,e [ul]
< EAHVOE, A [VRE 4+ 1/ (0 4 1) /B,y [ul] (69)

To recursively eliminate term /(6 + 1)E,: [u?], we take the root of both sides of the Inequality in
Lemma .3t

]Ebf, [ut}

IN

2
i((j\\/] llj) 2+\/1— ]Et 1ut 1 +\/LX(1 P) Lt 1[Nt*1]

N o2 T ) B [u Y] 4 EE 0 BT (70)
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E.[\/o - VR < &t (VI 4/ EE 0 D VO R, [VRET) +
«/ \/(a+1 (VEr [T — VE [a]) + VO+1  [p(N—b) o2(71)

iV aN=1°
- =T _
With the choice V6’ = 9;X2 o/ EEX b(’l p) 17\/5%, we have:

E 0 —XCVR] < g+ (YR, [VRET) +

LD (VBT - VEA) + 2 FR )

Adding Inequality

Rearranging terms, we have:

B, [\/0 — KOV — Byt [YX /RET]

< gig 4 YERY(OD \/(a+‘1 (VE [T = VE ) + Yo /502 (73)

Summing the inequality above overt = 1,2...,7T, we have:
Vo - x\/NT]JrETl[V“ VR
S Q[thlgt 6+1 \/EUU,O \/IET’LLT

+1 /p(N—b)O_2+ \/e—i"’ /R0

T t V1 \/ 9+1 p(N—=b) o2 \/0 X?
< AX Tt o2+ e R o+ Bl VR
T \/7\/(9+1 T/0+1 N—b) o X oo
< AV E o2 + —visp é)((N )02 +Y \/§(V +v2)?
where step @ uses the fact that E,r [u”] > 0 and E,0 [u°] < b(]y\f b) ; step @ uses Vi, |[V|g <V,

then, [|V; *Izllp < (IIVz\IFJrIIIzII )2 < X+v2)? and S IVY - L[ < 2(V+v2)2

Define ¢ = Y2V (0+1) 24 T \/% f((j\\,lf; 02 and rearrange terms, we have:

—VI-»p HN-10
E (X T VN <ay?l & rey VX [y /o) (74)
Considering 2 Y, £, we have:
AN, € 2 AN p(F(X) — F(X) — p(f(XIH) — £(X)
2 Ap(f(X) ~ (X)) — o(f(XTH) — f(X))]
< Ap(FXY) - £(X)) 75)

where step @ uses the definition of £° in (64); step @ uses a basic recursive reduction; step ® uses the
fact the desingularization function ¢(-) is positive. Combining Inequality (74) and (75]), we obtain :

Eq[558 ST, VR < Up(£(X) — f(X)) + €+ VEE [2V 4 Va2

Using the inequality that “XJr Xl < HXH+XHXHF < 32|V, — 1|2 as shown in Part (b) in Lemma

[2:3] we have:
Ba[555 S0, X - X1e] < Ho(FXY) — F(R) + €+ YT [5(V 4 V)2

Sinceb:N’b/:\/Bandp:#b”@* 1(0;1 b(N 1) 0% + T\/GL b(zJ\\; 8‘72:0

we can get the expression for C:

E, [, X9 = Xi|le] < C
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C:

2
6—-X

S @p(f(XY) — F(X) + VX 1V 1 v2))

) 23201 /a <2 . —
Considering that: /¢’ = 6;X — fob(,l P T eir_lp = \/GQX - \/L%XZ(I +0)(1+N2)2 +

np 2

2 P, NP 52572
Ni) = O(N1), we have: A = \/(2X ik );gw 2 V0 + "ZZ?Q = O(N}M). Finally, we have

N
C = O(so(f(XNg/‘Lf(X))) ]

E.5 Proof of Theorem [4.9]
Proof. For simplicity, we use B instead of B?. Initially, we prove the following important lemmas.

Lemma E.6. (Riemannian gradient Lower Bound for the Iterates Gap) We define ¢ = (3X +VX)G +
1+ X+ V- VX)Ly + (1 + V0. It holds that: Egvi:[dist(0, V 7G(Iy; X1 BH1))] <
¢ Bee [V — Lo|fl.

Proof. The proof process is exactly the same as in lemma[E.2]and will not be repeated here. O

The following lemma is useful to outline the relation of |V 7 f(X")||¢ and ||V 7G(I2; X*, B)||f.

Lemma E.7. We have the following results:
dist(0, V7 f(X")) < v+ Ege—1 [dist(0, V 7 G (Io; XY, B))] with v £ X/C2.

Proof. We have the following inequalities:

IVAf(XDE £ |G- IXHGHTX I3
2 IGHXYH)TIX!T — IXH(GYHTIIXL||2
< GHXY)T — IXH(GHTIZIX T2
< XWIZ, with W 2 GI(XY)T — IX!(GY)TJ
< X2 Ee U [GHX)T - IXH(G) TI]Us 2]
®

X'C2 Bt [|V 76(1o; X1, B)|12]

where step @ uses the definition of V7 f(X?); step @ uses JJ =Tand X 'JX =J = X TJXJ =
JJ = I, step ® uses the norm inequality and ; step @ uses the definition of W £ G!(X*)T —
JXY(GH)TJ and V¢, || X!||g < X ; step ® uses Lemma with & = 2; step ® uses the definition
of V 7G(I; X, B). Taking the square root of both sides, we finish the proof of this lemma. O

Finally, we obtain our main convergence results. First of all, since f°(X) £ f(X) + Z7(X) is a KL
function, we have from Proposition [4.§]that:

@
m < dist(0, vfo(X/)) < ||vjf(x/)”F, (76)

where step @ uses Lemmal[E.5] Here, (-) is some certain concave desingularization function. Since
©(+) is concave, we have:

VA e R, AT e R, o(AT) + (A = AT)'(A) < ¢(A).
Applying the inequality above with A = f(X*) — f(X) and AT = f(X**1) — f(X), we have:
(F(XT) = FXH))' (F(XF) = £(X))
< p(f(X) = f(X)) = (f(XH) = (X)) £ & (77)

28



773

774
775

776
777

778

779
780

781
782

783
784

785

We derive the following inequalities:

Ea[ZIV! ~LlF] < Eelf(X!) - f(XH)

St

w’(f(Xt)—f(X))]

IN® NS

Eee|
Eee [TV (X))
Ee: [€7]|V 7G(To; X, B) ]

E¢i-1[E99[V! ™ — Ly|f]

IN® INe IN® |IN©

Vit _ |2 + 090 v > o,

Eeer [& —

2l

where step @ uses the sufﬁc1ent descent condition as shown in Theorem step @ uses Inequality
st uses Inequality (76) with X’ = X* and X = X; step @ uses LemmalE.7} step ® uses

Lemma , step ® applies the inequality that V6’ > 0, a, b, ab < % + Qb—;, witha = [|[VI~! — Ly ||¢
and b = E'¢.

Multiplying both sides by 2 and taking the square root of both sides, we have:

VEE[IV! ~Lolle] < /32 4 B[V~ LJEL Y0 > 0

<
®
<

>0,

VIE [V~ T[] + €22

where step @ uses the inequality that v/a + b < \/a + v/b for all @ > 0 and b > 0. Summing the
inequality above over ¢ = 1,2...,¢, we have:

VOB [|'V! — Lofl] = VOEeo[[VO — Lo|le] + 021 (VO — VO)Ee [| VI — L]

< }—Z%Zﬁzlgi

D23 (X — F(K)) = p(FXH) - F(X)
22 [p(F(XY) - F(X)) - p(F(XIHT) = (X))

< B (fXY) - (X)),

where step @ uses the definition of £% in (77)); step @ uses a basic recursive reduction step @ uses
the fact the desingularization function ¢(+) is positive. With the choice 8’ = £, we have:

VOE[|[V! — L|le] + L S B[V — L)

< Z2o(f(XY) = (X)) + YEeo[[|VO — o] (78)

® _ _

< BLo(f(XY) - (X)) + L(V+V2), (79)
where step @ uses Vt [VIle < V,then, ||V — Iz|[r < [ V]le + |II|[r < V + /2. Finally, we obtain

from Inequality
%ZE:I Ea (V' - L] < m@u(Xl) — FX) + 3V + VD)
2 Y Eel (V+v2)

where step @ uses the inequality that ”XM%XL”F < ||\71 — I ||r as shown in Part (b) in Lemma
Finally, we can get the expression for C:

O 2 B0 o (F(X1) — F(X)) +X(V +v2) = nO(p(f(X') — f(X)))

X =X e] < (FFPe(f(XY) = £(X)) +

N\><\
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F Additional Experiment Details and Results

F.1 Additional Details for Hyperbolic Structural Probe Problem

To begin with, we give the definition of the Ultrahyperbolic manifold UZ:%, which will be used in
Ultra-hyperbolic geodesic distance d (x,y) and Diffeomorphism ¢(-).

» Ultrahyperbolic manifold. Vectors in an ultrahyperbolic manifold is defined as U2? = {x =
(z1,22,-+ ,Tpiq) | € RV : [x[|2 = —a?}[48], where « is a non-negative real number denoting
the radius of curvature. [|x||2 = (x,X), ., Vx,y € RPY, (x,y), = >0 x;y; — Z?:Z_H X;y; is
a norm of the induced scalar product. The hyperbolic and spherical manifolds can be defined as
H, =U2L S, =U%,

» Ultra-hyperbolic geodesic distance. The ultra-hyperbolic geodesic distance [27][28]] d (-, -) is
acosh ™! (| &Yha)) | XYha| >
acos™ (] b‘@# |)  otherwise. '

formulated: Vx € U7,y € UR? and o > 0, do(x,y) = {

» Diffeomorphism. [Theorem 1 Diffeomorphism of [49]]]: Any vector x € RP x R can be mapped
S v

into U7 by a double projection ¢ = ¢~ Log, with 1)(x) = t ), v iz)= CEIviE s

y proj o =¢ og V) =(,t ) v (2) (\/+||nu)

IIt]
) € UP9 withs € R? and t € RY - z = ( z ) €RP x S% withv € R? and u € S%.

where x = ( :
F.2 Additional application: Ultra-hyperbolic Knowledge Graph Embedding

The J orthogonal matrix can be used as an isometric linear operator in the Ultrahyperbolic manifold,
[48] et al. extended the knowledge graph model from hyperbolic space to Ultra-hyperbolic space
(named as UltraE) by this property. The UltraE model is formulated as follows:

min L(R,E,b) £ -4 > (logs(h,r,t) + > log(1 — s(h/,r',t)))
R.EDb (h,rt)EA (W P )EAL, Ly
op ] st t) =o(—d%(R,Ey,E;) + b, + by +6)
1 RTIR, =J

where E € R"*" with E;, = E(h,:) € U294, b € R" with b, = b(r) € R, R € R"*"*" with
R, = R(r,:;,:) e R"*™and J = [16’ fiq J; A € N¥*3 ig the set of positive triplets, Al €

NV>kx3 denotes the set of negative triples constructed by corrupting (h,7,t); § is a global margin
hyper-parameter, o (-) is the sigmoid function, n. represents the number of entities and n,. represents
the number of relations; d,,(+) stands for the Ultra-hyperbolic geodesic distance (refer to .

» Experiment Details. We selected a batch of FB15K and WN18RR respectively as the data set for
the Ultra-hyperbolic Knowledge Graph Embedding problem, (training set size, test set size, number
of entities, number of relations) are (719,308,135,22) and (545,233,208,5) respectively. n = 36,
p=18,0 =5, a = 1 and k = 50. In order to highlight the difference between J orthogonal
optimization, in the UltraE model, all entities and biases of the optimization algorithm are optimized
using ADMM by Pytorch, Ir = 5e — 4. We use the Adagrad optimizer in Pytorch to optimize the
J-orthogonality constraint variable in the CS model.

F.3 Experiment result

» Hyperbolic Eigenvalue Problem. Table 2]and Figure [3] @] 5] are supplementary experiments for
HEVP. Several conclusions can be drawn. (i) GS-JOBCD often greatly improves upon UMCM,
ADMM and CSDM. This is because our methods find stronger stationary points than them. (ii)
J-JOBCD is a parallel version of GS-JOBCD and thus exhibits significantly faster convergence. (iii)
The proposed methods generally give the best performance.

» Hyperbolic Structural Probe Problem. Table[3|and Figure|[6] [7]are supplementary experiments
for HSPP. Several conclusions can be drawn. (i) J-JOBCD often greatly improves upon UMCM,
ADMM and CSDM (ii) VR-J-JOBCD is a reduced variance version of J-JOBCD and thus exhibits
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significantly faster convergence for problems with large samples. (iii) The proposed methods generally
give the best performance.

» Ultra-hyperbolic Knowledge Graph Embedding Problem. Figure 8] [9] [[0|and[IT]are supplemen-
tary experiments for UltraE. Several conclusions can be drawn. (i) In terms of Epoch performance,
J-JOBCD and VR-J-JOBCD often greatly improves upon CSDM, thus they show better MRR and
hits results. (ii) In models with limited sample sizes, the computational efficiency of VR-J-JOBCD
is inferior to that of J-JOBCD. This discrepancy arises because each iteration in VR-J-JOBCD
necessitates two instances of backpropagation, thus consuming substantial computational resources.
(iii) The proposed methods generally give the best performance.
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F.3.1 Hyperbolic Eigenvalue Problem

Table 2: The convergence curve of the compared methods for solving HEVP. (+) indicates that after
the convergence of the CSDM, UMCM and ADMM, utilizing the GS-JOBCD for optimization
markedly enhances the objective value. The 19, 2nd and 3" best results are colored with red, green
and blue, respectively. (n, p) represents the dimension and p-value of the J orthogonal matrix (square

matrix). The value in () stands for ZZ IXTIX — J|;;.

dataname | (m-n-p) UMCM | ADMM CSDM GS-JOBCD J-JOBCD | UMCM+GS-JOBCD | ADMM+GS-JOBCD | CSDM+GS-JOBCD
time limit=30s
cifar (1000-100-50) [ -1.05e+04(3.0e-09) [ -1.05e+04(3.0e-09) [ -5.28¢+04(4.8¢-09) T -7.76e+04(1.6¢-08 -7.96e+04(1.1e-08)(+) [ -5.86e+04(8.4e-09)(+) [ -8.50e+04(1.2e-08)(+)
CnnCaltech | (2000-1000-500) | -5.89e+02(2.9¢-08) -7.86e+02(3.8e-10) | -7.68e+02(5.2e-10) -6.71e+02(2.9e-08)(+) | -6.73e+02(3.6e-10)(+) | -8.49e+02(4.3e-10)(+)
gisette (3000-1000-500) | -3.22e+06(3.1e-10) e-1 -5.16e+06(3.9¢-10) | -7.13e+06(5.9e-10) -4.63e+06(3.7e-10)(+) 74e+06(3.7e-10)(+) | -6.31e+06(4.6e-10)(+)
mnist (1000-780-390) | -8.65e+04(4.1e- ]0) -8.4 558+U4(4 le- 10) -1.63e+05(4.9¢-10) 2.23e+05(6.6e-10) -1.59e+05(4.7e-10)(+) 48e+05(4.7e-10)(+) | -2.04e+05(5.7e-10)(+)
randn10 (10-10-5) 1.29e+02(9.7; 1.29e+02(9. 3.03e+02(2.3e-01) | -3.96e+01(9.7¢-02) -7.05e+01(9.7e-02)(+) 75e+01(9.7e-02)(+) | 2.29e+02(2.3e-01)(+)
randn100 (100-100-50) -1.03e+04(3.0e- 09) -1.03e+04(2.5e-07) | -1.98e+04(5.1¢-09) | -1.49e+04(2.7¢-08) -1.33e+04(1.4e-08)(+) 31e+04(2.5e-07)(+) | -2.20e+04(1.8e-08)(+)
randn1000 | (1000-1000-500) | -1.16e+06(3.1e-10) 16e+06(3.1e- -1.47e406(3.9¢-10) | -1.20e+06(4.4e-10) -1.18e+06(3.5e-10)(+) 18e+06(3.5e-10)(+) | -1.49e+06(4.7e-10)(+)
sector (500-1000-500) | -3.61e+03(3.1e-10) | -3.61e+03(3.1e-10) | -5.35¢+03(3.9¢-10) | -6.68e+03(5 -4.73e+03(3.7e-10)(+) 85e+03(3.6e-10)(+) | -6.47e+03(4.6e-10)(+)
TDT2 (1000-1000-500) | -4.25e+06(3.1e-10) | -4.25e+06(3.1e-10) | -6.37e+06( -8.20e+061 -5.67e+06(3.7e-10)(+) 93e+06(3.7e-10)(+) | -7.85e+06(4.8e-10)(+)
wla (2470-290-145) | -3.02e+04(1.1e-04) | -3.02e+04(1.1e-04) | -5.42¢+04( -4.76e+04(1.1e-04)(+) | -4.57e+04(1.1e-04)(+) | -6.32e+04(4.4e-04)(+)
cifar (1000-100-70) | -7.32e+03(1.9¢-09) 77 ?2c+0"»(| 9c 09) -4.84¢+04(1.0e-08)(+) | -4.30e+04(7.6e-09)(+) | -7.52e+04(1.3e-08)(+)
CnnCaltech | (2000-1000-700) | -4.33e+02(2.1e-08) -2. ‘<8c+(\v(l 6e-08) | -4.86e+02(2.1e-08)(+) | -4.85e+02(2.6e-10)(+) | -5.98e+02(3.0e-10)(+)
gisette (1000,700) -2.45e+06(2.2¢-10) - 2e-10) | -9.17e+06(1.0e-08) | -3.15e+06(2.5e-10)(+) 25e+06(2.5e-10)(+) | -4.25e+06(2.7e-10)(+)
mnist (1000-780-500) | -7.05e+04(3.1e-10) | -7.05e+04(3.1e-10) 21e+05(3.6e-10) 3e-10) | -6.28e+05(1.9¢-08) | -1.14e+05(3.5e-10)(+) 21e+05(3.6e-10)(+) | -1.59e+05(4.3e-10)(+)
randn10 (10-10-7) 1.61e+02(5.6e-02) | 1.61e+02(5.6¢-02) | 3.46e+02(1. Xc 01) 1e+02) | -1.64e+00(5.6¢-02) | 3.69e+01(5.6e-02)(+) | -8.63e+02(5.6e-02)(+) | 2.96e+02(1.8e-01)(+)
randn100 (100,70) -8.00e+03(1.9¢-09) '8 00e+03(1. Xc 07) 41e+04(2.9¢-09) 9e-08) -9.68e+03(9.3e-09)(+) | -9.75e+03(1.8e-07)(+) | -1.64e+04(1.3e-08)(+)
randn1000 | (1000-1000-700) | -8.88e+05(2.2¢-10) 07e+06(2.7e-10) Ae-10) | -3.24e+06(4.3e-08) | -9.04e+05(2.6e-10)(+) | -9.05e+05(2.5e-10)(+) | -1.09e+06(3 10)(+)
sector (500-1000-700) | -2.66¢+03(2.2¢-10) 3.63¢+03(2.5¢-10) 8e-10) | -8.93e+03(9.1e-09) 260+03(2.4¢-10)(+) | -4.12+03(2.8¢-10)(+)
TDT2 (1000-1000-700) | -3.15e+06(2.2¢-10) 4.33e+06(2.5¢-10) 4e-10) 75e+06(2.4e-10)(+) | -4.77e+06(2.8¢-10)(+)
wla (2470-290-200) | -2.77e+04(8.0e-10) .77e+04(8.0e-10) | -3.93c+04(1.1e-09) 1e-09) | -3.97e+05(5.6e-08) 73e+04(1.7e-09)(+) | -5.45e+04(2.9e-09)(+)
ifar (1000-100-90) | -6.42¢+03(1.2¢-09) | -6.426+03(12¢-09) 59e+04(1.2¢-00) 108 5056+ 0865.65.08) | 24 64e+04(6.36-09)(+) = 35c+04(7.0e-09)(+) | -3.89¢+04(6.7¢-09)(+)
CnnCaltech | (2000-1000-900) | -3.10e+02(1.1e-08) | -3.10e+02(1.2e-10) 3.41e+02(1.3e-10) Te-10) | -1.65e+03(8.0e-09) | -3.29e+02(1.1e-08)(+) | -3.32e+02(1.3e-10)(+) | -3.61e+02(1.4e-10)(+)
gisette | (3000-1000-900) | -1.74e+06(1.2e-10) | -1.74e+06(1.2¢-10) | -2.05¢+06(1 2e-10) | 2.57e+06(1 8e-10) | -6.46¢+06(8.0e-09) | -2.00e+06(13e-10)(+) | -1.99e+06(1.2e-10)(+) | -2.33e+06(1.4e-10)(+)
‘mnist (1000-780-650) | -5.19e+04(1.9¢-10) | -5.19e+04(1.9¢-10) 2e+04(2.2e-10) | -1.02¢+05(2.9¢-10) | -4.03e+05( -6.75e+04(2.1e-10)(+) | -6.58e+04(2.1e-10)(+) | -7.54e+04(2.4e-10)(+)
randn10 (10-10-9) 5.33e+02(1.7e-01) | 5.33e+02(1.7e-01) =+02(1.3¢-01) | -1.03e+12(5.5e+02) 221e+02(1.7e-01)(+) | -3.46e+02(1.7e-01)(+) | 1.54e+02(1.3e-01)(+)
randn100 (100-100-90) | -6.14e+03(1.1e-07) | -6.14e+03(1.26-09) | -8.14c+03(1 4¢-09) | -8.31e+03(1.5¢-08) | -1.31e+04( -7.74e+03(1.2¢-07)(+) | -7.77e+03(1.3¢-08)(+) | -9.69¢+03(1.1e-08)(+)
randn1000 | (1000-1000-900) | -6.33e+05(1.2e-10) | -6.33e+05(1.2e-10) | -6.84e+05(1.3¢-10) 6.46e+05(1.9¢-10) | -1.87e+06(1.8¢-08) | -6.39e+05(1.3e-10)(+) | -6.39e+05(1.3e-10)(+) | -6.90e+05(1.5e-10)(+)
sector (500-1000-900) | -1.92e+03(1.2e-10) | ~1.92e+03(1.2e-10) | 2.18e+03(1.26-10) | 2.50e+03(1.6¢-10) | -5.84e+03(6.5¢-09) | -2.12e+03(1.2e-10)(+) | -2.13e+03(1.2e-10)(+) | -2.34e+03(1.de-10)(+)
TDT2 (1000-1000-900) | -2.26e+06(1.2¢-10) 26e+06(1.2¢-10) | -2.58¢+06(1.2¢-10) | -2.90e+06(1.6¢-10) | - 2.53e+06(1.2e-10)(+) | -2.51e+06(1.2e-10)(+) | -2.83e+06(1.3e-10)(+)
wla (2470-290-250) | -2.03e+04(5.4e-10) | -2.03e+04(5.4e-10) | 2.41e+04(59¢-10) | -3.746+04(2.9¢-09) | -2.59e+05(3.3e-08) | -2.82e+04(1.2e-09)(+) | -3.17e+04(1.4e-09)(+) | -3.78e+04(1.5e-09)(+)
time limit=60s
cifar (1000-100-50) [ -1.05e+04(3.0e-09) [ -1.05e+04(3.0e-09) [ -5.28c+04(4.7¢ -9.03e+04(2.2¢-08) T -1.14e+05(1.1e-07) | -8.07e+04(1.5e-08)(+) | -6.87e+04(1.3e-08)(+) [ -1.0Te+05(1.6e-08)(+)
CnnCaltech | (2000-1000-500) | -5.89e+02(2.9¢-08) | -5.89e+02(3.1e-10) | -9.79¢+02(4 -9.58e+02(9.9e-10) | -6.68e+03(4.7e-08) | -7.13e+02(2.9e-08)(+) | -7.23e+02(4.3e-10)(+) | -1.05e+03(5.9e-10)(+)
gisette (3000-1000-500) | -3.22e+06(3.1e-10) .22e+06(3.1e-10) | -6.54e+06 -8.84e+06(9.7e-10) | -1.29e+07(2.1e-08) | -5.55e+06(4.1e-10)(+) | -5.67e+06(4.2e-10)(+) | -8.02e+06(6.4e-10)(+)
mnist (1000-780-390) | -8.65e+04(4.1e-10) | -8.65e+04(4.1e-10) | -2.28c+05(5 2.75e+05(9.5e-10) | -9.32e+05(; 08) | -1.80e+05(5.4e-10)(+) | -1.88e+05(5.4e-10)(+) | -2.83e+05(6.8e-10)(+)
randn10 (10-10-5) 1.29e+02(9. 1.29e+02(9.7¢-02) 24?e+02lZ 2e-01) | -3.96e+01(9.7¢-02) | -7.07e+01(9.7e-02) | -2.27e+05(9.7e-02)(+) | -3.46e+02(9.7e-02)(+) | -2.94e+05(2.2e-01)(+)
randn100 (100-100-50) -1.03e+04(3.0e-09) | -1.03e+04(2.5e-07) | -1.98e+04(5.4e-0 -1 8]e+04(4 3e- 08) -3.88e+04(1.9e-07) | -1.41e+04(1.9e-08)(+) | -1.44e+04(2.5e-07)(+) | -2.41e+04(2.9e-08)(+)
randn1000 | (1000-1000-500) | -1.16e+06(3.1e-10) 16e+06(3.1e-10) | -1.79e+06(4 06(6.0e-10) | -7.79e+06(1.5e-07) | -1.19e+06(3.9e-10)(+) | -1.19e+06(4.0e-10)(+) | -1.81e+06(5.7e-10)(+)
sector (500-1000-500) | -3.61e+03(3.1e-10) | -3.61e+03(3.1e-10) | -6.63c+03(4 03(9.1e-10) | -1.11e+04(1.7e-08) 53e+03(4.2e-10)(+) | -5.63e+03(4.3e-10)(+) | -7.83e+03(5.8e-10)(+)
TDT2 (1000-1000-500) | -4.25e+06(3.1e-10) | -4.25e+06(3.1e-10) | -8.31e+06(4 -9.87e+06(8.9e-10) 3e+07(1.7e-08) 51e+06(4.1e-10)(+) | -6.80e+06(4.2e-10)(+) | -9.33e+06(5.3e-10)(+)
wla (2470-290-145) | -3.02e+04(1.1e-04) .02e+04(1.1e-04) | -5.63e+04(1.0¢ 3e+04(1.1e-04) | -2.07e+06(1.1e-04) 44e+04(1.1e-04)(+) | -5.42e+04(1.1e-04)(+) | -6.91e+04(1.0e-04)(+)
cifar (1000-100-70) -7.32e+03(1.9¢-09) e+03(1.9¢-09) | -3.29¢+04(3) 9¢-0: -9.31e+04(9.6¢-08) 69e+04(1.4¢-08)(+) | -5.87e+04(1.4¢-08)(+) | -8.58e+04(1.8¢-08)(+)
CnnCaltech | (2000-1000-700) | -4.33¢+02(2.1¢-08) e+02(2.2e-10) | -6.99¢+02(3 5.7¢-10) | -4.74e+03(3.1e-08) 23¢+02(2.1-08)(+) | -5.21e+02(2.7e-10)(+) | -7.62e+02(4.1e-10)(+)
gisette (1000,700) 2.45¢+06(2.2¢-10) | -2.45¢+06(2.2¢-10) | -4.99¢+06(2 5 )6(6.0¢-10) | -1.15¢+07(1.6e-08) T1e+06(2.6¢-10)(+) | -3.86e+06(2.7e-10)(+) | -5.81c+06(3.7¢-10)(+)
mnist (1000-780-500) | -7.05e+04(3.1e-10) | -7.05e+04(3.1e-10) 62e+05(4. 5(6.8¢-10) +05(2.6¢ .34e+05(4.0e-10)(+) | -1 4Ic+05(3 9e-10)(+) | -2.00e+05(5.1e-10)(+)
randn10 (10-10-7) 1.61e+02(5.6e-02) | 1.61e+02(5.6¢-02) | 3.81e+02(1.6e-01) 345c+1m9 0e+06) 5 19¢+04(5.6¢-02)(+) 3.39¢+02(1.6¢-01)(+)
randn100 (100,70) -8.00e+03(1.9¢-09) | -8.00e+03(1.8¢-07) 41e+04(2.9¢-09) 1.3 )4(3.2¢-08) 04e+04(1.3e-08)(+) | - e+04(2.7e-08)(+)
randn1000 | (1000-1000-700) | -8.88¢+05(2.2¢-10) 106(3.00-10) | -9250+05(4 56-10) 09¢+05(2.8¢-10)(+) | - c+06(3.8¢-10)(+)
sector (500-1000-700) | -2.66¢+03(2.2¢-10) 5.05¢+03(3.0¢-10) )3(5.6¢-10) -3.74e+03(2.7e-10)(+) | - c+03(4.0¢-10)(+)
TDT2 (1000-1000-700) | -3.15¢+06(2.2¢-10) 6.13¢+06(3.1¢-10) )6(5.7¢-10) -4.55¢+06(2.7¢-10)(+) | - .99¢+06(4. 1e-10)(+)
wla (2470-290-200) | -2.77¢+04(8.0e-10) 77c+04(8 0e-10) | -4.00e+04(1.1¢-09) )4(1.2e-08) -4.71e+04(3.6e-09)(+) | - -6.55e+04(5.1e-09)(+)
cifar (1000-100-90) | -6.42¢+03(1.2¢-09) | -6.42¢+03(12¢-09) 60c+04(1.5¢-00) | -4.91c+04(2.0¢-08 ~2.12¢+04(1.2¢-08)(+) 4 87c+04(1.7e-08)(+)
CnnCaltech | (2000-1000-900) | -3.10e+02(1.1e-08) | -3.10e+02(1.2e-10) 3.15e+02(1.2¢-10) | -4.25e+02(3.1e-10, -3.44e+02(1.1e-08)(+) —3 A4le+02(1.4e-10)(+) | -3.45e+02(1.4e-10)(+)
gisette | (3000-1000-900) | -1.74e+06(1.2¢-10) | -1.74e+06(1.2¢-10) | -2.59¢+06(1.4¢-10) | -3.09¢+06(2.6¢-10 -2.21e+06(1.3e-10)(+) | -2.19e+06(1.3e-10)(+) | -2.79e+06(1.7e-10)(+)
‘mnist (1000-780-650) | -5.19e+04(1.9¢-10) | -5.19e+04(1.9¢-10) e-10) | -1.35e+05(4.4 7.34e+04(2.2e-10)(+) | -7.07e+04(2.3¢-10)(+) | -9.21e+04(2.8¢-10)(+)
randn10 (10-10-9) 5.33e+02(1.7e-01) | 5.33e+02(1.7¢-01) 01) | -L28e+194. nmv» 22.71e+04(1.7e-01)(+) | 4.49e402(1.7¢-01)(+) | 2.41e+02(2.3¢-01)(+)
randn100 (100-100-90) | -6.14e+03(1.1e-07) | -6.14e+03(1.2¢-09) | -8.14c+03(1.7¢-09) | -1.08¢+04(2.6¢-08) | -1 6L+04w.7 08) | -8.18¢+03(1.2¢-07)(+) | -8.15¢+03(1.2¢-08)(+) | -1.12¢+04(2. 1e-08)(+)
randn1000 | (1000-1000-900) | -6.33e+05(1.2¢-10) | -6.33¢+05(1.2¢-10) | -7.65¢+05(1.5¢-10) | -6.49¢+05(24e-10 08) | -6.42e+05(1.4e-10)(+) | -6.41e+05(1.4e-10)(+) e+05(1.8¢-10)(+)
sector (500-1000-900) | -1.92¢+03(1.2¢-10) | ~1.92¢403(1.2¢-10) | -2.66¢+03(1 4e-10) | -2.800+03(2. e 10 1e-08) | -2.23e+03(1.3e-10)(+) | -2.32e+03(1.4e-10)(+) e+03(1.7e-10)(+)
TDT2 (1000-1000-900) | -2.26e+06(1.2¢-10) e+06(1.2e-10) 3.18e+06(1.4e-10) 3.33e+06(2.0e-10) | -8.1 81L+06(‘) Te-09) | -2.72e+06(1.4e-10)(+) | -2.73e+06(1.3e-10)(+) | -3.37e+06(1.7e-10)(+)
wla (2470-290-250) | -2.03e+04(5.4e-10) | -2.03e+04(5.4e-10) | 2.42¢+04(7.0¢-10) | -4.96e+04(7.16-09) | -1.56e+06(2.5¢-07) | -3.55e+04(3.2e-09)(+) | -3.67e+04(2.9e-09)(+) | -4.36e+04(2.8¢-09)(+)
time limit=90s
cifar (T000-100-50) [ -1.05e+04(3.0e-09) | -1.05e+04(3.0e-09) | -5 28c+04(5 4c-00) [ -1.03¢+05(2.60-08) | -1.1Te+05(1.4e-07) | -8.38e+04(1.7e-08)(+) | -8.39e+04(1.9e-08)(+) | -1.24e+05(2.6e-08)(+)
CnnCaltech | (2000-1000-500) | -5.89e+02(2.9¢-08) -1.11e+03(5 0) )| -9.16e+03(6.9e-08) | -7.44e+02(2.9e-08)(+) | -7.51e+02(4.6e-10)(+) | -1.15e+03(6.9e-10)(+)
gisette (3000-1000-500) | -3.22e+06(3.1e-10) -8.53e+06(4.9¢-10) -1.36e+07(2.6e-08) | -6.21e+06(4.6e-10)(+) | -6.23e+06(4.9e-10)(+) | -9.65e+06(7.9e-10)(+)
mnist (1000-780-390) | -8.65e+04(4.1e-10) -2.56e+05(5.6e-10) -1.20e+06(4.1e-08) | -2.05e+05(5.8e-10)(+) | -2.11e+05(6.1e-10)(+) | -3.06e+05(7.6e-10)(+)
randn10 (10-10-5) 1.29¢+02(9.7¢-02) 2.45e+02(2.3¢-01) -3.97¢+02(9.7¢-02) | 1.17e+01(9.7e-02)(+) | -2.66e+09(1.1e+00)(+) | 1.55e+01(2.3e-01)(+)
randn100 (100-100-50) -1.03e+04(3.0e-09) -1.98e+04(4.4e -4.37e+04(2.6e-07) | -1.50e+04(2.5¢-08)(+) | -1.54e+04(2.6e-07)(+) | -2.41e+04(4.2e-08)(+)
randn1000 | (1000-1000-500) | -1.16e+06(3.1e-10) -1.93e+06(5.0e -1.04e+07(2.3e-07) | -1.19e+06(4.1e-10)(+) | -1.19e+06(4.4e-10)(+) | -1.95e+06(6.7e-10)(+)
sector (500-1000-500) | -3.61e+03(3.1e-10) -7.90e+03(4.9e -1.06e+04(2.0e-08) 56e+03(4.3e-10)(+) | -5.69e+03(4.3e-10)(+) | -8.51e+03(6.4e-10)(+)
TDT2 (1000-1000-500) | -4.25e+06(3.1e-10) -9.39e+06(4.8e-10) -1.42e+07(2.1e-08) 65e+06(4.4e-10)(+) | -6.89e+06(4.2e-10)(+) | -1.04e+07(6.5e-10)(+)
wla (2470-290-145) | -3.02e+04(1.1e-04) -5.72e+04(2.7e-05) -9.32e+06(1.1e-04) T4e+04(1.1e-04)(+) | -6.40e+04(1.1e-04)(+) | -7.94e+04(2.7e-05)(+)
Cifar (T000-100-70) | -7.32¢+03(1.9¢-09) 3.29¢+04(3.1¢-09) T1.36+05(1.2¢-07) 05¢+04(1.8¢-08)(+) | -6.42e+04(1.8¢-08)(+) | -9.76e+04(2.5¢-08)(+)
CnnCaltech | (2000-1000-700) | -4.33e+02(2.1e-08) 7.42e+02(3.1e-10) -6.63e+03(4.7e-08) 23e+02(2.1e-08)(+) | -5.38e+02(3.0e-10)(+) | -8.08e+02(4.2e-10)(+)
gisette (1000,700) -2.45¢+06(2.2¢-10) e+06(2.2e-10) | -5.56c+06(3. e 10) -3.90e+06(3.0e-10)(+) | -4.02e406(3.0e-10)(+) | -6.62e+06(4.4e-10)(+)
‘mnist (1000-780-500) | -7.05e+04(3.1e-10) | -7.05e+04(3.1e-10) 71e+05(4.5¢-10) -1.09¢+06(3.5¢-08) | ~1.58e+05(4.3¢-10)(+) | -1.46e+05(4.4e-10)(+) | -2.23e+05(5.9¢-10)(+)
randn10 (10-10-7) 1.616402(5.60-02) | 1.61e+02(5.6¢-02) | 3.33¢+02(1.7¢-01) | 6.45¢+01(5.6¢-( 5.58¢+01(5.6¢-02) | 1.15e+02(5.6e-02)(+) | 8.86e+01(5.6e-02)(+) | 1.67e+02(1.7e-01)(+)
randn100 100,70) -8.00e+03(1.9¢-09) | -8.00e+03(1.8e-07) 41e+04(3.0e-09) \ 43e+04(3.0e-08) | -2 61)L+04(I Te-07) | -1.05e+04(1.4e-08)(+) | -1 ()Se+()4(l 8e-07)(+) | -1.87e+04(3.2e-08)(+)
randn1000 | (1000-1000-700) | -8.88e+05(2.2e-10) | -8.88e+05(2.2e-10) 36e+06(3.1e-10) +05(4.6e-10) | -7.05e+06(1.4e-07) | -9.10e+05(2.8e-10)(+) -1.37e+06(4.2e-10)(+)
sector (500-1000-700) | -2.66e+03(2.2¢-10) | -2.66e+03(2.2e-10) | -5.64c+03(3.2e-10) | -5.40e+03(5.2¢-10) | -1.53e+04(1.8¢-08) | -3.67e+03(2.6e-10)(+) | - -5.94e+03(4.0e-10)(+)
TDT2 (1000-1000-700) | -3.15e+06(2.2¢-10) e+06(2.2e-10) | -6.78e¢+06(3 2¢-10) 6.43e+06(5.0e-10) | -1.33e+07(1.6e-08) | -4.49e+06(2.9e-10)(+) | - -7.19e+06(4.2e-10)(+)
wla (2470-290-200) | -2.77¢+04(8.0e-10) | -2.77¢+04(8.0e-10) | 4.00e04(116-09) | -7.60e+04(1.2¢-08) | -8.13e+06(1 3¢-06) e+04(4.8¢-09)(+) | - -6.47e+04(5.6¢-09)(+)
ifar (1000-100-90) | -6.42¢+03(1.2¢-09) | -6.426+03(1 2¢-09) 60e+04(136-00) 5. 24¢+04(1.26-07) e+04(6.1e-09)(+) ~3.60c+04(7.8¢-09)(+)
CnnCaltech | (2000-1000-900) | -3.10e+02(1.1e-08) | -3.10e+02(1.2e-10) | -4.05¢+02(1 6e-10) 3166+03(2.0-08) | 3. 45e+02(1.1e-08)(+) Ey 4264+02(1 de-10)(+) | 4.366+02(2.0e-10)(+)
gisette | (3000-1000-900) | -1.74e+06(1.2¢-10) | -1.74e+06(1.2e-10) | -2.84c+06(1 4e-10) -9.300+06(1.6¢-08) | -2.16¢+06(1.3e-10)(+) | -2.15¢+06(1.3¢-10)(+) | -3.06e+06(1.6e-10)(+)
‘mnist (1000-780-650) | -5.19e+04(1.9¢-10) | -5.19e+04(1.9¢-10) 2.4e-10) -8.43e+04(2.3e-10)(+) | -8.21e+04(2.3e-10)(+) | -1.06e+05(2.7e-10)(+)
randn10 (10-10-9) 5.33e+02(1.7e-01) | 5.33e+02(1.7e-01) le-01) 1.80e+01(1.7e-01)(+) | -6.43e+00(1.7e-01)(+) | -1.06e+02(2.1e-01)(+)
randn100 (100-100-90) | -6.14e+03(1.1e-07) | -6.14e+03(1.2¢-09) 5e-0) -8.09e+03(1.2e-07)(+) | -8.48e+03(1.7e-08)(+) | -1.11e+04(2.1e-08)(+)
randn1000 | (1000-1000-900) | -6.33e+05(1.2¢-10) | -6.33e+05(1.2¢-10) Se-10) -6.42e+05(1.5e-10)(+) | -6.44e+05(1.5e-10)(+) | -7.94e+05(2.0e-10)(+)
sector (500-1000-900) | -1.92e+03(1.2¢-10) 2e+03(1.2¢-10) Se-10) -2.26e+03(1.3e-10)(+) | -2.30e+03(1.3e-10)(+) | -2.99e+03(1.7e-10)(+)
TDT2 (1000-1000-900) | -2.26e+06(1.2¢-10) | -2.26e+06(1.2¢-10) Se-10) 1.20e+07(14¢-08) | -2.73e+06(1.3e-10)(+) | -2.65¢+06(1.3e-10)(+) | -3.57e+06(17e-10)(+)
wla (2470-290-250) | -2.03e+04(5.4e-10) | -2.03e+04(5.4e-10) | -2.42¢+04(6.2¢-10) -9.37e+06(1.1¢-06) | -3.95e+04(3.5¢-09)(+) | -3.90e+04(3.5¢-09)(+) | -5.02e+04(3.4e-09)(+)
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Figure 3: The convergence curve of the compared methods for solving HEVP with varying (m, n, p).
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Figure 4: The convergence curve of the compared methods for solving HEVP with varying (m, n, p).
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Figure 5: The convergence curve of the compared methods for solving HEVP with varying (m, n, p).
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835 F.3.2 Hyperbolic Structural Probe Problem

Table 3: The convergence curve of the compared methods for solving HSPP. (+) indicates that
after the convergence of the CSDM, utilizing the J-OBCD for optimization markedly enhances the
objective value. The 19, 2 and 3" best results are colored with red, green and blue, respectively.

(n, p) represents the dimension and p-value of the J orthogonal matrix (square matrix). The value in
() stands for ZZ IXTIX — J|;j.

] [ (map | ADMM ] UMCM ] CSDM [ JJOBCD | VRI-JOBCD | CSDM+J-JOBCD
time limit=30s
20News (9423-50-25) | 6.47e+04(2.4e-03) | 6.47e+04(2.4e-03) [ 6.45c+04(2.0c-03) | 6.40c+04(2.4c-03) | 6.26e+04(2.4e-03) | 6.31e+04(2.0e-03)(+)
Cifar (10000-50-25) | 1.49e+07(2.4¢-03) | 1.49e+07(2.4¢-03) | 1.49e+07(2.0e-03) | 1.46e+07(2.4¢-03) | 1.45e+07(2.5¢-03) | 1.46e+07(2.0e-03)(+)
cnnCaltech | (3000-96-48) | 3.08¢+04(3.5¢-09) | 3.08e+04(3.5¢-09) | 3.03e+04(2.3¢-05) | 1.64e+04(4.0e-08) | 1.64e+04(4.7e-08) | 1.74e+04(2.3e-05)(+)
E2006 (5000-100-50) | 5.54e+04(3.5¢-09) | 5.54e+04(3.5¢-09) | 5.54e+04(1.9¢-05) | 5.53e+04(9.0e-08) | 5.53e+04(1.2e-07) | 5.53e+04(1.9¢-05)(+)
gisette (6000-50-25) | 1.61e+05(2.4e-03) | 1.61e+05(2.4e-03) | 1.52¢+05(1 JH; ).06e+04(2.4¢-03) | 7.48e+04(2.4e-03) | 8.65e¢+04(1.6e-03)(+)
Mnist (6000-92-46) | 6.94e+06(3.6e-09) | 6.94e+06(3.6e-09) | 6.93¢+06(2. 5) | 6.50e+06(4.0e-05) | 6.48e+06(8.7e-05) 6.93e+06(2.1e-05)
news20 (7967-50-25) | 6.12e+04(2.4¢-03) | 6.12+04(2.4¢-03) | 6.12e+04(2.0¢ z) 6.126+04(2.4¢-03) | 6.12e+04(2.4¢-03) | 6.12e+04(2.0e-03)
randn5000 | (5000-100-50) | 1.84e+06(3.5¢-09) | 1.84e+06(3 )9) | 1.84e+06(2.C 1.77e+06(1.4¢-07) | 1.56e+06(9.9e-05) 1.84e+06(2.0e-05)
randn10000 | (10000-50-25) | 2.66e+06(2.4e-03) | 2.66e+06(2.4e-03) | 2.66e+06(2 2.64e+06(2.4e-03) | 2.34e+06(2.5¢-03) 2.66e+06(2.5¢-03)
wla (2477-100-50) | 2.71e+04(3.5¢-09) | 2.71e+04(3.5¢-09) | 2.47c+04(1. 5) | 2.05e+04(3.6e-08) | 1.92e+04(5.1e-08) 2.47e+04(1.6e-05)
20News (9423-50-35) | 7.89¢+04(3.7¢-09) | 7.89e+04(3.7¢-09) | 7.85e+04(2.4e-05) | 7.85e+04(8.6e-09) | 7.71e+04(2.7¢-08) | 7.64e+04(2.4e-05)(+)
Cifar (10000-50-35) | 1.48c+07(5.5¢-03) | 1.48e¢+07(5.5¢-03) | 1.48¢+07(6.2¢-03) | 1.43e+07(5.5e-03) | 1.43e+07(5.7e-03) | 1.43e+07(6.2e-03)(+)
cnnCaltech | (3000-96-70) | 3.75e+04(2.0e-09) | 3.75e+04(2.0e-09) | 3.71e+04( -05) | 2.40e+04(2.5¢-08) | 1.87e+04(3.4e-08) | 2.15e+04(1.3e-05)(+)
E2006 (5000-100-75) | 6.79e+04(1.0e-03) | 6.79e+04(6.3e-04) | 6.79e+04( -04) (x 65e+04(6.3e-04) | 6.34e+04(6.3e-04) | 6.69e+04(5.8e-04)(+)
gisette (6000-50-35) | 1.89e+05(5.5e-03) | 1.89e+05(5.5e-03) | 1.83e+05( -03) | 1.24e+05(5.5¢-03) | 1.03e+05(5.5¢-03) | 1.17e+05(4.7e-03)(+)
Mnist (6000-92-70) | 6.75e+06(2.0e-09) | 6.75e+06(2.0e-09) | 6.74c+06(1.4e-05) | 6.30e+06(7.7¢-05) | 6.20e+06(3.7e-04) | 6.24e+06(7.0e-05)(+)
news20 (7967-50-35) | 7.26e+04(5.5e-03) | 7.26e+04(5.5e-03) | 7.26e+04(4.9¢-03) | 7.26e+04(5.5e-03) | 7.25e+04(5.5¢-03) 7.26e+04(4.9¢-03)
randn5000 | (5000-100-75) | 1.75¢+06(6.3¢-04) | 1.75¢+06(6.3¢-04) 75e+06(6.1e-04) | 1.44e+06(6.6e-04) | 1.70e+06(6.3e-04) 1.75e+06(6.1e-04)
randn10000 | (10000-50-36) | 2.56e+06(3.7¢-09) | 2.56e+06(3.7¢-09) | 2.56e+06( -05) | 2.56e+06(5.9¢-09) | 2.54e+06(2.2e-08) | 2.56e+06(2.0e-05)(+)
wla (2477-100-75) | 3.36e+04(6.3e-04) | 3.36e+04(6.3e-04) | 3.16e+04( -04) | 2.53e+04(6.3e-04) | 2.48e+04(6.3e-04) | 2.90e+04(5.5e-04)(+)
20News (9423-50-45) | 8.79e+04(4.8e-03) | 8.79e+04(4.8e-03) | 8.73c+04(4.6e-03) | 8.62e+04(4.8¢-03) | 8.60e+04(4.8¢-03) | 8.68e+04(4.6e-03)(+)
Cifar (10000-50-45) | 1.47¢+07(4.8¢-03) | 1.47¢4+07(4.8¢-03) | 1.47e+07(4.60-03) | 1.46¢+07(4.8¢-03) | 1.41e+07(7.2¢-03) | 1.46e+07(4.6e-03)(+)
cnnCaltech | (3000-96-85) | 4.13¢+04(9.2¢-04) | 4.14e+04(4.4¢-04) | 4.11e+04( 2.59e+04(4.46-04) | 2.25e+04(4.4¢-04) | 2.65¢+04(6.5¢-04)(+)
E2006 (5000-100-90) | 7.44¢+04(1.2¢-09) | 7.444+04(1.2¢-09) | 7.44e+04( 6.95¢+04(6.5¢-08) | 6.92e+04(3.8¢-07) | 6.93e+04(7.5e-06)(+)
gisette (6000-50-45) | 2.25e+05(4.8¢-03) | 2.25e+05(4.8¢-03) | 2.10e+05(5.2¢-03) | 1.42e+05(4.82-03) | 1.50e+05(4.8¢-03) | 1.54e+05(5.2e-03)(+)
Mnist (6000-92-85) | 6.73¢+06(1.0¢-03) | 6.73¢+06(1.0¢-03) | 6.73e+06(1 6.67¢+06(1.0e-03) | 6.22e+06(1.1e-03) | 6.61e+06(1.1e-03)(+)
news20 (7967-50-45) | 8.24e+04(4.8e-03) | 8.24e+04(4.8e-03) | 8.24e+04(4.5 8.24e+04(4.8e-03) | 8.24e+04(4.8e-03) 8.24e+04(4.5e-03)
randn5000 | (5000-100-85) | 1.72¢+06(1.3¢-03) | 1.72e406(1.3¢-03) | 1.72e+06(1.4e +06(1.3e-0. 1.56e+06(1.3e-03) 1.72e+06(1.4e-03)
randn10000 | (10000-50-45) | 2.54e+06(3.3¢-09) | 2.54e+06(3.3e-09) | 2.54e+06(1.9¢-05) | 2.53e+06(4.9¢-09) | 2.46e+06(3.3e-08) 2.54e+06(1.9e-05)
wla (2477-100-90) | 4.10e+04(1.2e-09) | 4.10e+04(1.2e-09) | 3.76c+04(6.4¢-06) | 3.77e+04(4.2¢-09) | 3.27e+04(1.1e-08) | 3.48e+04(6.4e-06)(+)
ime limit=60s
20News (9423-50-25) | 6.47¢+04(2.4¢-03) | 6.47e+04(2.4e-03) [ 6.42c+04(1.9¢-03) | 6.32e+04(2.4¢-03) | 6.35¢+04(2.4c-03) | 6.29¢+04(1.9¢-03)(+)
Cifar (10000-50-25) | 1.49e¢+07(2.4¢-03) | 1.49e+07(2.4¢-03) | 1.49e+07(1.7¢-03) | 1.45e+07(2.5¢-03) | 1.45e+07(2.5¢-03) | 1.45e+07(1.7e-03)(+)
cennCaltech | (3000-96-48) | 3.08¢+04(3.5¢-09) | 3.08e+04(3.5¢-09) | 3.00c+04(2.4¢-05) | 1.92¢+04(3.8¢-08) | 1.52¢+04(4.8¢-08) | 1.67c+04(2.4e-05)(+)
E2006 (5000-100-50) | 5.54e+04(3.5¢-09) | 5.54e+04(3.5¢-09) | 5.54e+04( 5.51e+04(1.6e-07) | 5.23e+04(3.9¢-07) | 5.51e+04(2.3e-05)(+)
gisette (6000-50-25) | 1.61e+05(2.4e-03) | 1.61e+05(2.4e-03) | 1.46¢+05(2 9.76e+04(2.4¢-03) | 7.20e+04(2.4e-03) | 8.40e+04(2.1e-03)(+)
Mnist (6000-92-46) | 6.94e+06(3.6e-09) | 6.94e+06(3.6e-09) | 6.93c+06(2. 6.47e+06(1.4e-04) | 6.45e+06(3.0e-04) 6.93e+06(2.1e-05)
news20 (7967-50-25) | 6.12e+04(2.4e-03) | 6.12e+04(2.4e-03) | 6.12e+04(2.0e- 03) 6.12e+04(2.4¢-03) | 6.12e+04(2.4e-03) |  6.12e+04(2.0e-03)
randn5000 | (5000-100-50) | 1.84e+06(3.5¢-09) | 1.84e+06(3.5¢-09) | 1.84e+06(1.9¢-05 1.59e+06(8.3e-05) | 1.51e+06(4.9e-04) 1.84e+06(1.9¢-05)
randn10000 | (10000-50-25) | 2.66e+06(2.4e-03) | 2.66e+06(2.4e-03) | 2.66e+06(2 2.58e+06(2.4e-03) | 2.37e+06(2.4e-03) 2.66e+06(2.5e-03)
wla (2477-100-50) | 2.71e+04(3.5¢-09) | 2.71e+04(3.5¢-09) | 2.41e+04(].: 2.33e+04(1.3e-08) | 1.89e+04(6.0e-08) 2.41e+04(1.5¢-05)
20News (9423-50-35) | 7.89e+04(3.7¢-09) | 7.89e+04(3.7¢-09) | 7.84c+04(2 7.63e+04(3.3¢-08) | 7.60e+04(5.3e-08) | 7.84e+04(2.1e-05)
Cifar (10000-50-35) | 1.48e+07(5.5¢-03) | 1.48e+07(5.5¢-03) | 1.48e+07(6. 1.43e+07(5.6e-03 1.42e+07(5.7e-03) | 1.43e+07(6.5e-03)(+)
cnnCaltech (3000-96-70) | 3.75e+04(2.0e-09) | 3.75e+04(2.0e-09) | 3.69e+04(1 1.93e+0: )8 1.89e+04(3.6e-08) | 2.19e+04(1.1e-05)(+)
E2006 (5000-100-75) | 6.79e+04(1.0e-03) | 6.79e+04(6.3e-04) | 6.79e+04(5.6e-04) | 6.48e+( ) 6.36e+04(6.3¢-04) | 6.39e+04(5.6e-04)(+)
gisette (6000-50-35) | 1.89e+05(5.5¢-03) | 1.89e+05(5. Se -03) | 1.80e+05(4.4e-03) | 1.14e+05(5.5¢-0: 9.97e+04(5.5¢-03) | 1.24e+05(4.4e-03)(+)
Mnist (6000-92-70) | 6.75e+06(2.0e-09) 6. 6.21e+06(5.4e-04) | 6.17e+06(2.0e-04) | 6.21e+06(3.4e-04)(+)
news20 (7967-50-35) | 7.26e+04(5.5¢-03) 7.2 7.25e+04(5.5e-03) | 7.25e+04(5.5¢-03) | 7.25¢+04(4.8e-03)(+)
randn5000 | (5000-100-75) | 1.75e+06(6.3¢-04) +06(6.3e-04) | 1 1.44e+06(7.2¢-04) | 1.35e+06(9.9e-04) 1.75e+06(6.1e-04)
randn10000 | (10000-50-36) | 2.56e+06(3.7¢-09) | 2.56e+06(3.7¢-09) | 2.56e+06(2.0e-05) | 2.56e+06(5.4¢-09) | 2.41e+06(2.6e-07) 2.56e+06(2.0e-05)
wla (2477-100-75) | 3.36e+04(6.3e-04) | 3.36e+04(6.3e-04) | 3.10e+04(5.4¢-04) | 3.32e+04(6.3¢-04) | 2.57e+04(6.3e-04) 3.10e+04(5.4e-04)
20News (9423-50-45) | 8.79e+04(4.8¢-03) | 8.79e+04(4.8e-03) | 8. 7Tc+04(4. 8.73c+04(48¢-03) | 8.57e+04(4.8¢-03) | 8.66e+04(4.5¢-03)(+)
Cifar (10000-50-45) | 1.47e+07(4.8¢-03) | 1.47e+07(4.8¢-03) | 1.47e+07(4 1.46e+07(4.8e-03) | 1.46e+07(4.8e-03) | 1.46e+07(4.5e-03)(+)
cnnCaltech | (3000-96-85) | 4.13¢+04(9.2¢-04) | 4.14c+04(4.4¢-04) | 4.09¢+04( 2.69e+04(4.4¢-04) | 2.44e+04(4.4e-04) | 2.40e+04(7.2¢-04)(+)
E2006 (5000-100-90) | 7.44e+04(1.2¢-09) | 7.44e+04(1.2¢-09) | 7.44e+04(6.1¢-06) | 6.92e+04(8.2¢-08) | 6.90e+04(1.3e-07) | 6.94e+04(6.1e-06)(+)
gisette (6000-50-45) | 2.25e+05(4.8e-03) | 2.25e+05(4.8e-03) | 2.10e+05(5.2¢ H 3) | 1.63e+05(4.8¢-03) | 1.37e+05(4.8e-03) 2.10e+05(5.2e-03)
Mnist (6000-92-85) | 6.73¢+06(1.0e-03) | 6.73e+06(1.0e-03) | 6.73e+06(1 6.65e+06(1.0e-0: 6.12e+06(1.3e-03) 6.73e+06(1.1e-03)
news20 (7967-50-45) | 8.24e+04(4.8e-03) | 8.24e+04(4.8e-03) 8.24e+04(4.8e-03) | 8.24e+04(4.8e-03) 8.24e+04(4.4e-03)
randn5000 | (5000-100-85) | 1.72¢+06(1.3¢-03) | 1.72¢+06(1.3¢-03) | 1.72¢+06(1.4e 1.65e+06(1.3e-0 1.56e+06(1.3e-03) 1.72e+06(1.4e-03)
randn10000 | (10000-50-45) | 2.54e+06(3.3¢-09) | 2.54e+06(3.3e-09) | 2.54e+06(1.9¢-05) | 2.53e+06(9.0e-09) | 2.34e+06(2.5¢-07) 2.54e+06(1.9e-05)
wla (2477-100-90) | 4.10e+04(1.2e-09) | 4.10e+04(1.2e-09) | 3.64c+04(6.0e-06) | 3.45¢+04(1.0e-08) | 3.16e+04(1.0e-08) | 3.34e+04(6.0e-06)(+)
ime limit=90s
20News (9423-50-25) | 6.47¢+04(2.4¢-03) | 6.47e+04(2.4e-03) [ 6.41c+04(1.8¢-03) | 6.31c+04(2.4c-03) | 6.25¢+04(2.4¢-03) |  6.41e+04(1.8¢-03)
Cifar (10000-50-25) | 1.49e+07(2.4¢-03) | 1.49e+07(2.4¢-03) | 1.49e+07(2.0e-03) | 1.45e+07(2.5¢-03) | 1.45e+07(2.6e-03) | 1.45e+07(2.0e-03)(+)
cnnCaltech | (3000-96-48) | 3.08e+04(3.5¢-09) | 3.08e+04(3.5¢-09) | 2.98c+04(2.2¢-05) | 1.89e+04(4.0e-08) | 1.52e+04(4.5¢-08) | 1.74e+04(2.2¢-05)(+)
E2006 (5000-100-50) | 5.54e+04(3.5¢-09) | 5.54e+04(3.5¢-09) | 5.54e+04(2.1¢-05) | 5.34e+04(2.7¢-07) | 5.22e+04(3.0e-07) | 5.30e+04(2.1e-05)(+)
gisette (6000-50-25) | 1.61e+05(2.4e-03) | 1.61e+05(2.4e-03) | 1.42¢+05(2.3¢-03) | 9.50e+04(2.4¢-03) | 8.14e+04(2.4e-03) | 7.44e+04(2.3¢-03)(+)
Mnist (6000-92-46) | 6.94e+06(3.6e-09) | 6.94e+06(3.6e-09) | 6.93¢+06(2.0e-05) | 6.45¢+06(3.6e-04) | 6.42e+06(1.4e-03) 6.93e+06(2.0e-05)
news20 (7967-50-25) | 6.12e+04(2.4¢-03) | 6.12e+04(2.4¢-03) | 6.12e+04(1.9¢-03) | 6.12¢+04(2.4¢-03) | 6.12e+04(2.4e-03) | 6.12e+04(1.9¢e-03)
randn5000 | (5000-100-50) | 1.84e+06(3.5¢-09) | 1.84e+06(3.5¢-09) | 1.84e+06(1.9¢-05) | 1.63e+06(1.4e (lﬁ! 1.52e+06(6.9e-04) 1.84e+06(1.9¢-05)
randn10000 | (10000-50-25) | 2.66e+06(2.4e-03) | 2.66e+06(2.4e-03) | 2.66e+06(2.5¢-03) | 2.65¢+06(2.4¢-03) | 2.25e+06(2.7¢-03) 2.66e+06(2.5e-03)
wla (2477-100-50) | 2.71e+04(3.5¢-09) | 2.71e+04(3.5¢-09) | 2.34e+04( 2.24e+04(1.9¢ (1‘41 2.00e+04(4.3e-08) | 1.90e+04(1.5e-05)(+)
20News (9423-50-35) | 7.89e+04(3.7¢-09) | 7.89e+04(3.7¢-09) 8de+04( 7.66e+04(4.5¢-08) | 7.57e+04(1.6e-07) | 7.70e+04(2.3¢-05)(+)
Cifar (10000-50-35) | 1.48c+07(5.5¢-03) | 1.48e+07(5.5¢-03) | 1.48e+07( 1 4n+() 5 (u (lv] 1.42e+07(6.2e-03) | 1.43e+07(7.1e-03)(+)
cnnCaltech | (3000-96-70) | 3.75e¢+04(2.0e-09) | 3.75e+04(2.0e-09) | 3.67c+04(1 0 2.29e+04(2.5¢-08) | 2.16e+04(1.4e-05)(+)
E2006 (5000-100-75) | 6.79e+04(1.0e-03) | 6.79e+04(6.3¢-04) | 6.79e+04( +0: 6.36e+04(6.3¢-04) | 6.38e+04(5.5e-04)(+)
gisette (6000-50-35) | 1.89e+05(5.5¢-03) | 1.89e+05(5.5¢-03) | 1.78c+05(4 () 9.77e+04(5.5¢-03) | 1.10e+05(4.2e-03)(+)
Mnist (6000-92-70) | 6.75¢+06(2.0e-09) | 6.75e+06(2.0e-09) | 6.74e+06(1. 5) 5 6.15e+06(2.4e-03) | 6.22e+06(6.7e-04)(+)
news20 (7967-50-35) | 7.26e+04(5.5¢-03) | 7.26e+04(5.5e-03) | 7.26e+04(4 3 7.25c+04(5.5c—03) 7.25e+04(5.5e-03) | 7.25e+04(4.6e-03)(+)
randn5000 | (5000-100-75) | 1.75¢+06(6.3¢-04) | 1.75¢+06(6.3¢-04) | 1.75¢+06(6.1¢-04) | 1.39e+06(1.2¢-03) | 1.38e+06(1.0e-03) 1.75e+06(6.1e-04)
randn10000 | (10000-50-36) | 2.56e+06(3.7¢-09) | 2.56e+06(3.7¢-09) | 2.56e+06(2.0e-05) | 2.56e+06(4.4¢-09) | 2.51e+06(3.5¢-08) 2.56e+06(2.0e-05)
wla (2477-100-75) | 3.36e+04(6.3e-04) | 3.36e+04(6.3e-04) | 3.04e+04(5.2¢-04) | 2.64e+04(6.3¢- IH! 2.58e+04(6.3e-04) | 2.56e+04(5.2e-04)(+)
20News (9423-50-45) | 8.79e+04(4.8¢-03) | 8.79e+04(4.8e-03) | &.70c+04(4. 8.66c+04(4.8c- () 8.58¢+04(4.8¢-03) | 8.61e+04(4.4e-03)(+)
Cifar (10000-50-45) | 1.47e¢+07(4.8¢-03) | 1.47e+07(4.8¢-03) | 1.47e+07(4. 1.46e+07(4.8e-( 1.41e+07(8.6e-03) | 1.41e+07(5.7e-03)(+)
cnnCaltech (3000-96-85) | 4.13e+04(9.2¢-04) | 4.14e+04(4.4e-04) | 4.07e+04( 2.47e+04(4.4e- ()4 2.38e+04(4.4e-04) | 2.91e+04(8.2e-04)(+)
E2006 (5000-100-90) | 7.44e+04(1.2e-09) | 7.44e+04(1.2e-09) | 7.44e+04( 6.89e+04(9.4e-08) | 6.99¢+04(7.9¢-08) | 7.09e+04(8.7e-06)(+)
gisette (6000-50-45) | 2.25e+05(4.8e-03) | 2.25e+05(4.8e-03) | 2.09¢+05( 1.83¢+05(4.8¢-03) | 1.34e+05(4.8¢-03) |  2.09e+05(5.2¢-03)
Mnist (6000-92-85) | 6.73e+06(1.0e-03) | 6.73e+06(1.0e-03) | 6.73e+06(1. 6.72e+06(1.0e-03) | 6.14e+06(1.1e-03) 6.73e+06(1.1e-03)
news20 (7967-50-45) | 8.24¢+04(4.8¢-03) | 8.24c+04(4.8¢-03) | 8.24e+04(4.2¢-03) | 8.24¢+04(4.8¢-03) | 8.24e+04(4.8¢-03) |  8.24e+04(4.2¢-03)
randn5000 | (5000-100-85) | 1.72c+06(1.3¢-03) 72e+06(1.3e-03) | 1.72e+06(1.4e-03) | 1.46e+06(1.3e-03) | 1.55¢+06(1.3e-03) 1.72e+06(1.4e-03)
randn10000 | (10000-50-45) | 2.54¢+06(3.3¢-09) | 2.54e+06(3.3¢-09) | 2.54e+06(1.9¢-05) | 2.53e+06(5.8¢-09) | 2.52e+06(9.7¢-09) 2.54e+06(1.9¢-05)
wla (2477-100-90) | 4.10e+04(1.2¢-09) | 4.10e+04(1.2e-09) | 3.56c+04(6.5¢-06) | 3.86e+04(2.3¢-09) | 2.95e+04(1.7e-08) | 3.07e+04(6.5e-06)(+)
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Figure 6: The convergence curve of the compared methods for solving HSPP by epochs with varying
(m,mn,p).
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Figure 7: The convergence curve of the compared methods for solving HSPP by time with varying
(m, n,p).
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836

F.3.3 Ultra-hyperbolic Knowledge Graph Embedding
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Figure 8: Epoch performance of CS, J-JOBCD, and VR-J-JOBCD in training UltraE on FB15k.
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Figure 9: Time performance of CS, J-JOBCD, and VR-J-JOBCD in training UltraE on FB15k.
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Figure 10: Epoch performance of CSDM, J-JOBCD, and VR-J-JOBCD in training UltraE on
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Figure 11: Time performance of CSDM, J-JOBCD, and VR-J-JOBCD in training UltraE on WN18RR.
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1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: In the abstract, we highlighted our contributions, including algorithm develop-
ment, theoretical analysis, and empirical study.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: Please refer to the assumptions made for the optimization problem outlined in
the introduction and Section

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

40



889

890
891

892

893

894
895
896
897
898
899
900
901

902

903

904
905
906

907

908
909

910

911

912
913
914

915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931

933
934
935
936
937
938
939
940
941

942

Answer: [Yes]

Justification: We have added a hyperlink before each theoretical result, which points to the
complete proof located in the appendix.

Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

¢ Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We have provided sufficient details for reproducing the results of the paper,
such as parameter settings, runtime environments, and dataset descriptions.

Guidelines:

» The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]
Justification: We have included all the code and data in the supplemental materials.
Guidelines:

* The answer NA means that paper does not include experiments requiring code.

¢ Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so ”No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental Setting/Details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We have provided sufficient details for solving the optimization problem,
encompassing hyperparameter settings and dataset generation.

Guidelines:

» The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:

Justification: For simplicity, we only demonstrate the convergence behavior of the objective
function by varying the time or iterations. Our methods exhibit clear advantages over the
compared methods. Such results have demonstrated significance in the experiments.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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8.

10.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments Compute Resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification:

Guidelines: We have outlined the types of compute workers, detailing CPU and memory
specifications.

» The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code Of Ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: Our research aligns with the ethical guidelines outlined by NeurIPS.
Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: The paper addresses theoretical questions on algorithm complexity, which, to
the best of our knowledge, pose no negative social impact.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.
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11.

12.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

 The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The dataset used in the experiments is published on an open site without
license.

Guidelines:
» The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.
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15.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New Assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: The experiments do not involve new datasets.
Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and Research with Human Subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: No crowdsourcing or human object is involved.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: No crowdsourcing or human object is involved.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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