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ABSTRACT

Recent advances in 3D Gaussian Splatting (3DGS) have enabled high-quality,
real-time novel-view synthesis from multi-view images. However, most exist-
ing methods assume the object is captured in a single, static pose, resulting in
incomplete reconstructions that miss occluded or self-occluded regions. We intro-
duce PFGS, a pose-aware 3DGS framework that addresses the practical challenge
of reconstructing complete objects from multi-pose image captures. Given im-
ages of an object in one main pose and several auxiliary poses, PFGS iteratively
fuses each auxiliary set into a unified 3DGS representation of the main pose. Our
pose-aware fusion strategy combines global and local registration to merge views
effectively and refine the 3DGS model. While recent advances in 3D foundation
models have improved registration robustness and efficiency, they remain limited
by high memory demands and suboptimal accuracy. PFGS overcomes these chal-
lenges by incorporating them more intelligently into the registration process: it
leverages background features for per-pose camera pose estimation and employs
foundation models for cross-pose registration. This design captures the best of
both approaches while resolving background inconsistency issues. Experimental
results demonstrate that PFGS consistently outperforms strong baselines in both
qualitative and quantitative evaluations, producing more complete reconstructions
and higher-fidelity 3DGS models.

1 INTRODUCTION

High-fidelity 3D object reconstruction from multi-view images is fundamental to modern computer
vision and graphics, powering applications in immersive content creation, virtual and augmented
reality, robotics, and digital twins. Among recent advances, 3D Gaussian Splatting (3DGS) (Kerbl
et al.| [2023) excels at real-time novel-view synthesis, providing a compact, continuous, and pho-
torealistic representation of radiance fields. To obtain high-quality 3DGS reconstructions, current
methods assume that the target object remains centered and stationary throughout capture.
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Figure 1: PFGS: Pose-Fused Gaussian Splatting for Complete Multi-Pose 3D Reconstruction.
Starting from a main-pose capture and an auxiliary-pose sequence, our method fuses both into a
unified 3D Gaussian Splatting model. PFGS performs robust multi-pose alignment and refinement
to integrate diverse viewpoints, completing geometry and appearance across self-occluded and hard-
to-see regions. The result is a photorealistic and view-consistent reconstruction that surpasses single-
pose limitations.
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Occlusion, support constraints, and limited physical access often necessitate changing the object’s
pose during image acquisition. Specifically, a user first captures a set of multi-view images in a main
pose and then acquires additional images in one or more auxiliary poses to form multi-pose image
captures, enabling comprehensive object reconstruction. This workflow-common in turntable-based
or handheld scanning-enables the recovery of occluded or hidden surfaces without redundant imag-
ing. Although conceptually straightforward, multi-pose reconstruction introduces several technical
challenges. First, the object’s pose changes across capture sessions, making it impossible to jointly
estimate camera parameters with standard Structure-from-Motion (SfM) techniques (Schonberger
& Frahm, [2016), which expect a static object relative to the background. Applying SfM naively to
the combined image set often results in mismatched or erroneous camera poses. Second, cross-pose
variations in appearance and geometry undermine reliable correspondence estimation and alignment,
particularly when relying solely on foreground cues. Recent advances in multi-view 3D foundation
models—such as MapAnything (Keetha et al., [2025), VGGT (Wang et al.| 2025}, Fast3R (Yang
et al., [2025) and MASt3R (Leroy et al.l [2024)—have demonstrated improved robustness over tra-
ditional SfM. However, our experiments show that these models struggle with large-scale datasets
(hundreds of views), yielding noisy or prohibitively expensive results even on high-end GPUs like
the NVIDIA RTX 4090. Third, merging independently reconstructed 3DGS models without careful
correction can introduce visual artifacts such as ghosting, splat duplication, and radiance inconsis-
tency.

To address the multi-pose challenge, we introduce Pose-Fused 3D Gaussian Splatting (PFGS), a
pose-aware framework for complete 3DGS object reconstruction, as illustrated in Figure [l PFGS
reconstructs a multi-pose object by fusing image sets captured in a main pose and an auxiliary pose
through a three-stage pipeline each time: global registration, local registration, and 3DGS model
completion. We first estimate initial camera poses and sparse points for each set and segment the
foreground regions for the main-pose and auxiliary-pose, respetively; these outputs are used to build
an initial 3DGS from the main-pose data. Global registration aligns the auxiliary views to the main-
pose coordinate system using a mix-pose image set. We align the main- and auxiliary-pose views
guiding by the estimated mix-pose views as via a silhouette-consensus fusion strategy that robustly
registers all auxiliary cameras to the main-pose coordinate frame. Local registration further refines
these alignments of auxiliary cameras. Finally, the aligned multi-pose data is used to fine-tune the
3DGS representation, yielding a unified and complete reconstruction. By iteratively applying these
stages, PFGS can incorporate additional auxiliary poses and progressively improve the completeness
of the reconstruction. To facilitate a rigorous pose evaluation, we construct a synthetic dataset
comprising five diverse objects, designed to mimic in-the-wild capture scenarios. In addition, to
assess the effectiveness of our method under real-world conditions, we collect a complementary
dataset consisting of five physical objects.

Experimental results demonstrate that PEFGS consistently outperforms baseline methods in both
qualitative fidelity and quantitative metrics, producing more complete reconstructions and superior
novel-view synthesis.

Our main contributions are summarized as follow.
* We present PFGS, a practical and efficient framework for complete object reconstruction
from multi-pose image captures incrementally for 3D Gaussian Splatting.

* We propose an effective global registration method for aligning image sets captured with
the object placed in different poses.

* We demonstrate that PFGS outperforms baselines in both camera registration and 3DGS
reconstruction quality on synthetic dataset, and is robust on real-world multi-pose captures.

2 RELATED WORK

2.1 MULTI-VIEW RECONSTRUCTION AND NOVEL VIEW SYNTHESIS

Traditional multi-view pipelines reconstruct 3D geometry of the scene from overlapping images
taken under a single pose configuration of the objects. Structure-from-Motion (SfM) first solves
pixel correspondences and estimates intrinsic and extrinsic camera parameters (Ozyesil et al., 2017).
Widely used systems such as ORB-SLAM (Mur-Artal et al.l 2015) and COLMAP (Schonberger
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& Frahm| 2016) combine feature extraction, matching, triangulation, and reconstruction. Co-
SLAM (Wang et al.| 2023a) further improves accuracy by jointly optimizing features, matches, and
camera poses, while VGGSfM (Wang et al.| 2023b) introduces an end-to-end differentiable SfM
pipeline for fully integrated optimization. Nevertheless, the result of SfM still relies on the sequen-
tial structure of the input images, making it vulnerable to sparse or multi-pose image captures.

Recent pointmap methods replace traditional SfM by predicting 3D points per image and align-
ing them to predict camera poses. DUSt3R (Wang et al 2024)) uses pairwise transformers but is
limited to image pairs, while MASt3R (Leroy et al.,[2024) scales to all views with a memory mech-
anism. Spann3R (Wang & Agapito, [2024) adds spatial memory for incremental fusion across wide
baselines, and Fast3R (Yang et al.| 2025) employs a lightweight two-stage decoder for real-time
reconstruction of thousands of images. VGGT (Wang et al., [2025)) unifies camera estimation, depth
prediction, and pointmap generation in a single feed-forward transformer. Therefore, pointmap
methods alleviate the sequential constraints of SfM and improve robustness to challenging captures.

Novel view synthesis, grounded in multi-view reconstruction, aims to generate photorealistic ren-
derings of a 3D scene from previously unseen viewpoints. Neural Radiance Fields (NeRF) (Yang
et al., 2021) represent a continuous 5D radiance field using a multilayer perceptron (MLP), where
volumetric ray marching integrates color along camera rays. Although NeRF achieves high visual fi-
delity, it is computationally expensive, with long training times and high inference latency caused by
dense sampling and repeated neural evaluations. In contrast, 3D Gaussian Splatting (3DGS) (Kerbl
et al.,|2023) employs an explicit set of Gaussian primitives, enabling real-time rendering and training
that typically converges within minutes. The quality of novel view synthesis is often bottlenecked
by multi-view reconstruction, which breaks down under pose misalignments. Multi-pose captures
exacerbate this issue, as background variations confuse both SfM and pointmap-based methods. We
address this challenge with a pose-aware fusion strategy that explicitly aligns and merges camera
poses for robust 3DGS reconstruction.

2.2  ONLINE 3DGS RECONSTRUCTION

Reconstructing dynamic objects via online streaming poses unique challenges. To achieve this, CF-
3DGS (Fu et al.,[2024) proposes an SfM-free pipeline that processes input images sequentially, in-
crementally growing Gaussians and updating camera poses as each new frame arrives. StreamGS (Li
et al., 2025)) extends this approach to unposed image streams by predicting and fusing per-frame
Gaussians on the fly, while GSFusion (Wei & Leutenegger, |2024) integrates TSDF fusion with
Gaussian splatting to merge RGB-D frames into a unified map and prune redundant splats for mem-
ory efficiency. However, like classical SfM, these methods assume a sequential input structure,
making them unsuitable for multi-pose image captures.

2.3 OBIJECT-FOCUSED 3DGS RECONSTRUCTION AND RESTORATION

Object-focused pipelines such as ObjectNeRF (Yang et al., [2021) and Co3D (Reizenstein et al.,
2021) exploit category-level priors or multi-instance fusion to streamline content creation. Recent
3D Gaussian Splatting based approaches, including HOGSA (Qu et al.| 2025), BIGS (On et al.
20235)), and GaussianObject (Yang et al., [2024)), further advance object-centric capture for biman-
ual hand-object interaction understanding and sparse-view reconstruction. However, these methods
rarely address the challenge of consolidating several partial reconstructions of the same object ac-
quired under different poses into a single, watertight geometry, which is critical for reliable down-
stream use.

A complementary avenue is to synthesize or restore intermediate views that bridge disparate poses
and provide additional supervision. RI3D (Paliwal et al. 2025) and Difix3D+ (Wu et al.l 2025)
follow this idea by using diffusion models (Ho et al., 2020; Rombach et al.| [2022) to suppress
artifacts and recover fine details. However, for multi-pose object reconstructions, these restoration
techniques would struggle to enforce cross-pose consistency through the diffusion prior.



Under review as a conference paper at ICLR 2026

Main Pose

Auxiliary Pose 2

Masked Images

Masked Images

s

Images ° Images
Camera Poses Camera Poses Camera Poses
‘ |
1 v
Pose Fusion (1st) Pose Fusion
(2nd)
Global Registration 3D Foundation Model  Silhouette-Consensus Local Registration
Inference Camera Pose Fusion Global
QDAA% QM% Registration
LN ] ™ 4 N
é: v g -~4V; BD: ‘
[ S e 1
> olo0 1 Loca
;.’ 8% Refinement
h i I
Model Completion Model_
Mixed-Pose Images Mixed-Pose Cameras ~ Fused Camera Poses Completion
T

¥ }

- &35 - » ¢ w

3DGS Model (Main) 3DGS Model (Main + Aux. 1) 3DGS Model (Main + Aux. 1 + Aux. 2)

Figure 2: System overview of PFGS. Top row: multi-view image sets are captured in a main pose
and one or more auxiliary poses; each set is preprocessed with background segmentation and SfTM
to estimate initial camera poses and sparse geometry. Middle row: we fuse the main pose with
the first auxiliary pose via global registration, local registration refinement, and 3DGS completion.
Within global registration, we select mixed-pose images from both sets and estimate their cameras
using a multi-view 3D foundation model; a silhouette-consensus camera-pose fusion then registers
the auxiliary-pose cameras to the main-pose cameras using the mixed-pose cameras as reference.
Bottom row: the 3DGS is updated incrementally by repeating this fusion for the first and subsequent
auxiliary poses.

3 METHODOLOGY

To obtain a complete 3DGS model of an object, users capture a main-pose image set and then acquire
additional views from one or more auxiliary poses to expose occluded geometry. To handle pose
changes and reliably merge all views despite SfM failures and cross-pose variations, we propose
PFGS. Figure 2] depicts the PFGS pipeline. Given a main-pose and an auxiliary-pose image set, we
first build a 3DGS from the main-pose images. We then estimate camera poses with COLMAP and
extract object masks with SAM?2 for both sets, respectively. The key component of each fusion of
the paired datasets is the global registration via a three-step process:

(i) we select a subset of visually overlapping views across poses (mixed-pose images);

(i) we estimate camera poses of the mixed-pose images using a multi-view 3D foundation
model (mixed-pose views), and

(i) we alignment the main-pose and auxiliary-pose views with the mixed-pose view through
a silhouette-consensus fusion strategy, which robustly registers all auxiliary cameras to the
main-pose coordinate frame.

This multi-step design balances efficiency and robustness. It avoids the instability of applying foun-
dation models to large image sets, while also addressing the limitations of traditional SfM in multi-
pose scenarios. Next, we perform local registration to further refine the auxiliary camera poses.
Finally, we conduct 3DGS model completion using all aligned views to fine-tune the 3DGS model.
For additional auxiliary poses, we repeat this routine, using the fused camera poses and fused 3DGS
as the main part and incorporating one auxiliary pose incrementally.
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3.1 GLOBAL REGISTRATION

The goal of the global registration stage is to align the auxiliary-pose cameras to the main-pose
coordinate system, enabling consistent multi-pose reconstruction. This is challenging due to cross-
pose appearance changes and the inability of traditional SfM to operate across non-rigid image sets.
To address these challenges, PFGS adopts a multi-step registration pipeline that combines feature-
based image selection, 3D foundation model inference, and silhouette-consensus pose alignment.

3.1.1 MIXED-POSE IMAGE SELECTION

We begin by selecting a subset of representative images across the main and auxiliary poses, which
we refer to as mixed-pose images. These serve as input to the 3D foundation model for pose esti-
mation. To select M images from the main set and N images from the auxiliary set, we first encode
all candidate images using the DINOv2 (Oquab et al.| [2023) image encoder to obtain feature de-
scriptors. Cosine similarity is then computed between all main—auxiliary image pairs. We retain
the top-ranked K pairs based on similarity and subsequently perform geometric verification using
VGGT. Specifically, VGGT predicts camera poses for each candidate pair, and we discard pairs if
the angle between their forward vectors exceeds ¢ degrees or if the angle between their up vec-
tors exceeds § degrees. This step enforces geometric consistency, which is crucial since multi-view
foundation models often fail when input images exhibit significantly divergent viewing directions.
For each verified top-K pair, we expand the selection by identifying the M — 1 nearest neighbors
of the main image in the main set, measured in its own camera coordinate space, and the N — 1
nearest neighbors of the auxiliary image in the auxiliary set, measured in its corresponding camera
coordinate space. We then compute the mean similarity across all pairwise combinations of the
resulting M and N images. This procedure is repeated for all verified top-K pairs, and the ex-
panded set corresponding to the highest mean similarity score is selected as the final representative
M and N images. In this way, the selected mixed-pose images are both geometrically consistent
and well-aligned in terms of viewing direction, thereby providing reliable input for subsequent pose
estimation.

3.1.2 3D FOUNDATION MODEL INFERENCE

The selected mixed-pose images are fed into Fast3R (Yang et al.,|2025) in a single forward pass,
yielding a set of jointly predicted camera poses in a shared coordinate frame. However, these poses
are in an arbitrary frame and need to be aligned to the original COLMAP reconstruction of the main
pose.

3.1.3 SILHOUETTE-CONSENSUS POSE FUSION

After estimating camera poses for the mixed-pose images using Fast3R, we perform a two-stage
silhouette-consensus fusion, F, to align all cameras into the coordinate frame of the main-pose
COLMAP reconstruction. This process estimates optimal similarity transformations (rigid and
scale) that minimize the silhouette misalignment between rendered 3DGS masks and foreground
masks produced by SAM?2.

We begin by defining a unit function,
(T7S) = ‘F(chnghR‘ef)a (1)

which estimates the rigid transformation 7" and scale factor s that align a source pose set Py to
a target pose set Py, evaluated by silhouette consistency over a reference set Fer. The function’s
procedure is detailed in Algorithm I}

To unify all camera poses within the main-pose coordinate frame, we apply the silhouette consensus
fusion in two stages. Each stage aligns one subset of poses using a silhouette-guided similarity
transformation (see Figure [3)).

Stage 1: Align the mixed-pose coordinate frame with the main-pose coordinate frame (Figure
Blleft)) We first align the predicted mixed-pose Fast3R cameras with the main-pose COLMAP
reconstruction. We estimate the optimal transformation by solving

(T, s%) = F (P Pogin, PAY), 2)

mix > mix
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Figure 3: Two-stage silhouette-consensus pose fusion. We align all cameras to the main-pose
coordinate frame through two stages. Stage I: Align the mixed-pose coordinate frame with the
main-pose coordinate frame. We select a pair of main-pose cameras from the mixed-pose Fast3R
predictions (Pg‘l‘;f”) and their corresponding cameras from the COLMAP reconstruction (P,q4n)-
A rigid transformation and scale (dynain/dmized) are computed from the selected pairs and applied
to all Fast3R predictions. The alignment is evaluated by rendering main-pose 3DGS masks using the
transformed auxiliary cameras in the mixed-pose group, and computing the average IoU against the
corresponding SAM2 masks. The transformation yielding the lowest average IoU is selected. Stage
2: Align the auxiliary-pose coordinate frame with the transformed mixed-pose coordinate frame
(now aligned to the main-pose frame) using the same process. This produces a unified multi-pose
camera configuration in the main-pose coordinate system for downstream optimization.

Algorithm 1 Silhouette-consensus fusion, F (P, P, Pref)

1: best_IoU < 0
2: for all pairs (p317p32) € Py do
3: Find corresponding (ps1, pr2) € Pt
4: T: Align ps; — p1 by matching position and forward direction
5: Estimate scale factor:
_ lpe1 — pe2l|
||psl — Ps2 H
6: s Apply (T, s) to all poses in Prer
7: Render main-pose 3DGS masks using Py; compute average IoU with corresponding SAM2
masks
8: if average IoU > best_IoU then
9: best_IoU « average IoU; store (T, s)
10: end if
11: Repeat the above steps by aligning pso — pio
12: end for

13: return optimal (7, s)

where Pn‘i‘if“ and P3.¥ represents main-pose cameras and auxiliary-pose cameras estimated from
mixed-pose images and Pp,, represents main-pose cameras of all main-pose images from
COLMAP. We then apply the resulting transformation to all Fast3R-predicted mixed-pose cameras:

Prix = (T, 5%) + Prix 3)

This produces a globally aligned set of mixed-pose cameras in the main-pose COLMAP coordinate
frame.

Stage 2: Align the auxiliary-pose coordinate frame with the transformed mixed-pose coordi-
nate frame (Figure[3[right)) Next, we align the COLMAP-estimated auxiliary cameras with their
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transformed Fast3R counterparts. We solve

(T*,S*) = ]:(Pauxv[:)aux Paux)a €]

mix »

where P,,x represents auxiliary-pose cameras from COLMAP and ]f’lfl‘l‘j(‘ represents transformed
auxiliary-pose cameras from Fast3R (after Stage 1) Applying this transformation gives the final

aligned auxiliary camera poses:

Py = (T*7 5*) * Paux (5
At the end of this two-stage procedure, all camera poses of main-poses and auxiliary-poses are
coherently transformed into the main-pose COLMAP coordinate system, providing a robust and
consistent initialization for the subsequent local registration step.

3.2 GRADIENT-BASED LOCAL REGISTRATION REFINEMENT

To further refine auxiliary-pose cameras alignment after global registration, we adopt a two-stage op-
timization with silhouette-guided followed by RGB-guided refinement. First, we align the auxiliary-
pose cameras by minimizing a silhouette loss between SAM2 masks and 3DGS-rendered masks of
the auxiliary-pose views, which provides robust geometric cues to correct residual misalignment. We
optimize a single global similarity transform (i.e., rotation, translation, scale) for the auxiliary-pose
camera group while keeping the 3DGS parameters fixed. Second, we fine-tune the same transform
using a photometric objective on the rendered RGB images to achieve the alignment of the details
without altering scene geometry.

3.3 3DGS MoDEL COMPLETION

Lastly, we complete the 3DGS model by fine-tuning the previous 3DGS with the registered main-
pose and auxiliary-pose views. However, we might have a large unbalanced image set between the
current auxiliary-pose views and the previous fused views. This might lead to biased optimization
and poor reconstruction quality from auxiliary viewpoints. Thus, we adopt a simple but effective
balanced sampling strategy. In each training iteration, we randomly sample a subset of images
from the previous fused views equal in number to the current auxiliary-pose images. The process
is repeated until the total iteration count (i.e., 30k) is reached. The resulting 3DGS model exhibits
high-quality reconstruction with consistent geometry and radiance across all viewpoints.

4 EXPERIMENTS

Dataset. To evaluate pose accuracy, we construct a synthetic dataset comprising five diverse objects,
using models collected from the Internet and placed within a casual room scene. For each object,
we render two distinct poses, and for each pose we uniformly sample 150 camera viewpoints over
a viewing hemisphere to emulate in-the-wild capture conditions. In addition, to assess the effec-
tiveness of our method in real-world settings, we collect a complementary dataset of five physical
objects. Four of these objects are captured in a photography studio using an automatic turntable,
each with two object poses, while one object is captured in an in-the-wild setting with three object
poses. For the synthetic data, we evaluate PFGS by comparing camera registration error and the
visual quality of the resulting 3DGS models against baseline methods. We perform registration on
all 150 images, and for novel view synthesis we adopt a train-test split, using 131 images for training
and 19 images for evaluation.

Metrics. Camera-registration error is reported as the angular difference between axes and the posi-
tion error in units in the synthetic scene, while 3DGS quality is measured with PSNR, SSIM, and
LPIPS. An ablation study further analyzes the contribution of each pipeline component and evalu-
ates the robustness of PFGS as the number of mixed-pose images varies. All experiments are run on
an NVIDIA GeForce RTX 4090 GPU, and the combined global and local registration stages require
22.6 minutes on average.

4.1 QUANTITATIVE AND QUALITATIVE EVALUATION

On our multi-pose dataset, we compare PFGS against three baselines: (i) VGGT applied to the
union of main- and auxiliary-pose images after background removal; (ii) Fast3R applied to the same
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Table 1: Quantitative comparison of camera-registration errors on different objects in the
synthetic dataset. Angles, A, are in degrees and distances, Ap, in units in the synthetic scene.

Lego Ship Violin
Method Ab, | Ab, | Af, | Apl Al | Af, | A0l Apl A0, | Af, | A0, Apl
VGGT 85.4469 514718 753138 29420 919138  71.6092 85.6433 3.4935 86.9461 74.4318 93.2568 5.4549
Fast3r 79.4932 754109 74.9609  6.9244 53.3980  44.9043 64.5457 2.4444 39.1897 59.6869 57.5947 3.8663
COLMAP 02542 02725 02997 0.0219 41.7649  47.5155 47.1624 2.1549 02435 02695 0.2762 0.0215
Ours 0.0135  0.0176  0.0157  0.0011  0.0158 0.0207  0.0190 0.0015  0.0242  0.0351  0.0320 0.0026
House Cottage

Method A, L A8, | AB.|  Apl A6, L A8, L A6 Apl
VGGT 972216 61.3596 88.3416 41.9638 777085  76.0321 87.2480 5.4729

Fast3r 49.8034 55.0978 47.5854  3.5795 782134 100.6664 83.7597 5.9660
COLMAP 212253 17.4291 24.1649 24664 0.1217 0.1008  0.1423  0.0095
Ours 0.0098  0.0089  0.0089  0.0017  0.0696 0.0804  0.0790 0.0058

Table 2: Quantitative comparison of 3DGS using different registration methods.

Lego Ship Violin House Cottage
Method ~ PSNRT SSIM{ LPIPS| PSNRT SSIM{ LPIPS| PSNRT SSIM{ LPIPS| PSNRf SSIM{ LPIPS| PSNRT SSIM{ LPIPS |
GT 35.813 0.991 0.008  30.349 0.969 0.023  37.379 0.993 0.006  37.742 0.991 0.010  32.281 0.966 0.029
COLMAP 35263  0.990 0.009 22120  0.923 0.101  36.072  0.992 0.007 27.610  0.955 0.069 32210  0.967 0.028
Ours 35704  0.991 0.009  30.168  0.969 0.022 37.375  0.993 0.006 37.669  0.991 0.010 32374  0.967 0.028

@ =,

@ J >

(a) Ground Truth (b) Main-pose model (c) Ours

Figure 4: Visual quality of 3DGS reconstructions. Panels show (a) ground-truth images, (b) the

main-pose model, and (c) our method. Within each panel, the left image is a rendered view and

the right image is a pixel-wise error map, where darker values denote larger ¢; differences from

ground truth. Our reconstruction closely approaches ground truth fidelity while visibly surpassing
the main-pose model.

union; and (iii) COLMAP run jointly on the main- and auxiliary-pose images using their foreground
masks. Table[l| reports angular difference (Af,,, Af,, Af,) and L2 position errors in meters (Ap)
to the real-world benchmark for four representative objects. VGGT and Fast3R suffer from reduced
feature coverage in masked images, yielding larger errors. In contrast, PFGS produces the lowest
orientation and position errors across all objects. We then compare 3DGS reconstructions built with
ground-truth (GT) camera poses, COLMAP estimates, and poses from PFGS in Table 2] PFGS
attains PSNR, SSIM, and LPIPS close to the GT baseline, indicating accurate camera registration
and consistent reconstruction quality. Figure[](top two rows) qualitatively compares a 3DGS model
trained on main-pose captures only with PFGS trained on multi-pose captures. These results validate
the effectiveness of PFGS. Additional evaluation are presented in Appendix [A1]
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Table 3: Ablation study of PFGS components

Method A6, | A6, A6.] Ap |

w/o Mixed Pose Selection (Random) 5.3513 7.7570 6.7388 0.6405
w/o Local Refinement  2.0455 2.4846 2.2947 0.1895
Ours  0.0266 0.0325 0.0309 0.0026

Table 4: Visual quality of real-world multi-pose object reconstruction

Main-Pose 3DGS Multi-Pose 3DGS
Case #Poses PSNRfT SSIM?T LPIPS | PSNR?T SSIM?T LPIPS |
Marshall 2 33.173 0.987 0.013  36.263 (+9.32%) 0.992 (+0.48%) 0.010 (-19.57%)
Hachiware 2 29.678 0.951 0.058 31.170 (+5.03%) 0.958 (+0.79%) 0.055 (-6.27%)
Toy bricks 2 31374 0.980 0.015 32590 (+3.88%) 0.985 (+0.52%) 0.013 (-10.85%)
Piccolo 2 26.858 0.953 0.043  30.313 (+12.86%) 0.971 (+1.95%) 0.032 (-25.91%)
Shin-chan 3 24.095 0.906 0.116  28.180 (+16.95%) 0.926 (+2.16%) 0.104 (-10.73%)

4.2 ABLATION STUDY

We examine the impact of the mixed pose selection and local registration refinement as shown in
Table [3| If we randomly select the mixed-pose images for the main-pose and auxiliary-pose for
our fusion pipeline, it leads the accuracy of the predicted global registration to be off. Regarding
to the local registration refinement, although our global registration can fuse the main-pose and
auxiliary-pose, the two groups of camera poses still have a little misalignment. We demonstrate
the local registration refinement improves the pose error from average angular error of around 2
degrees and position error around 0.18 meters. However, the local registration refinement cannot
fully correct errors introduced by random mixed-pose selection. Thus, we must use the global
registration with the mixed-psoe image selection and local registration refinement to fully utilize the
PFGS. In Appendix[A.2] we also test PEGS with different sizes of the input image sets.

4.3 EVALUATION OF THE REAL-WORLD MULTI-POSE CAPTURES

We also examine the robustness of PFGS with real-world multi-pose captures. As mentioned above,
we have four of the objects are captured in a photography studio using an automatic turntable with
two object poses, while one object is captured in an in-the-wild setting with three object poses. For
the mixed-pose selection, we set mixed-pose size M and N to 18 and the the top-ranked K to 500.
Figure |4| (bottom two rows) qualitatively compares a 3DGS model trained on main-pose captures
only with PFGS trained on multi-pose captures, demonstrating that PFGS effectively completes the
reconstructions with less difference to the ground truth.

5 CONCLUSION

We introduced Pose-Fused 3D Gaussian Splatting (PFGS), a pose-aware framework that achieves
complete 3DGS object reconstructions from multi-pose image captures incrementally. At the core of
PFGS is a global registration that fuses main-pose and auxiliary-pose with their mixed-pose images
using a silhouette-consensus fusion. On synthetic datasets, PFGS surpasses baselines in camera pose
recovery and 3DGS reconstruction quality. We also demonstrate high-quality 3DGS reconstructions
from real-world multi-pose captures using PFGS.

Although PFGS achieves high-fidelity results, two limitations remain. First, the pipeline relies on
COLMAP for initial camera poses; when feature matching fails in texture-poor scenes or with ex-
tremely sparse views, later registration stages can suffer. Second, we use Fast3R (Yang et al., [2025)
to estimate mixed-pose cameras; when the chosen views lack sufficient viewpoint overlap or ex-
hibit symmetric viewpoints, the estimated camera pose can become ambiguous or unstable. Future
work will pursue an end-to-end design that handles all auxiliary poses in a single pass, replaces
COLMAP with learning-based initialization, and incorporates lighter registration modules to reduce
runtime while maintaining accuracy.
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A APPENDIX

A.1 MORE QUALITATIVE EVALUATION

Additional qualitative results are provided in Figure [5] comparing synthetic (top three rows) and
real-world (bottom three rows) data. We contrast a 3DGS model trained on main-pose captures
with PFGS trained on multi-pose captures, further demonstrating that PFGS yields more complete
reconstructions with smaller deviations from the ground truth.

A.2 EVALUATION OF THE IMAGE SET SIZES

To assess the robustness of our proposed method under varying data availability, we conduct ablation
studies on the size and balance of the input image sets. Specifically, we evaluate two scenarios: (i)
balanced image sets, where the number of images per object pose is varied, and (ii) unbalanced
image sets, where the auxiliary-pose image set are provided with fewer images than the main-pose
1mage set.

Balanced Image Sets. We first investigate how performance changes as the total number of images
per pose increases. In Table [5] the results show that our method maintains reliable performance
across different set sizes. As expected, larger sets yield more accurate camera registration due to the
availability of richer geometric information. This improvement in pose accuracy also translates into
stronger novel view synthesis (NVS) results, with consistent gains in PSNR, SSIM, and LPIPS as
the set size grows.
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(a) Ground Truth

(b) Main-pose model

(c) Ours

Figure 5: Visual quality of more 3DGS reconstructions. Panels show (a) ground-truth images,
(b) the main-pose model, and (c) our method. Within each panel, the left image is a rendered view
and the right image is a pixel-wise error map, where darker values denote larger ¢; differences from
ground truth. Our reconstruction closely approaches ground truth fidelity while visibly surpassing

the main-pose model.

Table 5: Robustness against different image set sizes

Pose Error Novel View Synthesis
Set Size A0, | Af,] Af.] Ap | PSNRT SSIMT LPIPS |
60 0.2126 0.3074 0.2757 0.0162 32.884  0.976 0.019
90 0.0305 0.0349 0.0326 0.0030 34.144  0.982 0.016
150 0.0266 0.0325 0.0309 0.0026 34.658  0.982 0.015

Table 6: Robustness against unbalanced image set sizes. Each pair denotes (number of main
views, number of auxiliary views).

Pose Error Novel View Synthesis
SetSize Af,] A6, 1 Ab.] Apl PSNRT SSIMt LPIPS |
(150,60) 0.0197 0.0218 0.0231 0.0020 35235  0.984 0.014
(150,90) 0.0230 0.0262 0.0262 0.0023 35.008  0.983 0.015
(150, 150)  0.0266  0.0325 0.0309 0.0026  34.658  0.982 0.015

Unbalanced Image Sets Next, we examine the robustness of our approach when the main and
auxiliary image set size are unbalanced. For this experiment, the auxiliary subsets are obtained by
uniformly sampling images from the full set of 150. In Table [6] PFGS produces highly accurate
camera poses and competitive novel view synthesis results across all configurations. Interestingly,
while increasing the number of auxiliary images introduces slightly higher pose error, likely due
to the added difficulty of aligning a larger number of viewpoints, the overall novel view synthesis
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quality remains stable. We attribute the minor degradation in novel view synthesis performance to
increased lighting inconsistencies when more auxiliary views are introduced.

These findings demonstrate that our method is robust to both the size and balance of input image sets.
Even in challenging unbalanced scenarios, PFGS achieves consistently accurate pose estimation and
strong novel view synthesis performance, highlighting its practical applicability under diverse data
collection conditions.

A.3 EFFECT OF MIXED-POSE SET SI1ZE

Table 7: Ablation study on mixed-pose image set size

Mixed-Pose Set Size  Af, | A6, A0, | Apl

5 21805 3.0757 2.7001 0.1699
15 (Ours)  0.0266 0.0325 0.0309 0.0026
30 09771 13663 1.1997 0.0770

We further ablate the size of the mixed-pose image set used during global registration (Table [7).
This parameter controls the number of representative views drawn from different poses to guide the
alignment process.

When the mixed-pose set is too small (e.g., 5 images), the registration quality degrades significantly.
In this case, the limited reference pool fails to suppress the noise in the foundation model predictions,
resulting in large pose errors. Conversely, when the set size is too large (e.g., 30 images), we
observe that registration again becomes less reliable. We attribute this to the increased diversity of
viewpoints, which introduces inconsistencies that confuse the foundation model and lead to noisier
pose estimates.

Our default choice of around 15 images achieves the best trade-off, delivering highly accurate poses.
This suggests that a moderate number of mixed poses provides sufficient cross-pose constraints
without overwhelming the foundation model.

A.4 INCOMPLETE REGISTRATIONS IN THE COLMAP BASELINE

Table 8: Registration coverage of COLMAP on the synthetic dataset

Training Views Testing Views
Case All Registered All  Registered

Lego 262 257 (98.1%) 38 37(97.4%)
Ship 262 258 (98.5%) 38 38 (100%)
Violin 262 259 (989%) 38 38 (100%)
House 262 262 (100%) 38 38 (100%)
Cottage 262 243 (92.7%) 38 36 (94.7%)

Although COLMAP(Schonberger & Frahm), [2016) remains the strongest baseline in our compari-
son, it was unable to successfully register a very small fraction of cameras in the synthetic dataset.
Table [§] summarizes the statistics, showing that in nearly all cases more than 97% of cameras were
registered. These few missing views are rare and therefore have negligible impact on the over-
all results. Accordingly, in Table [T] and Table [2] we exclude missing cameras when computing
COLMAP’s pose error and novel view synthesis results, respectively.

A.5 MEMORY CONSTRAINTS OF 3D FOUNDATION MODELS

Feedforward 3D foundation models represent a significant advance and a paradigm shift for
structure-from-motion (SfM). However, their applicability remains constrained by memory limi-
tations, which restrict the number of input images. For example, while Fast3R(Yang et al.| [2025)
reports the ability to process large-scale datasets (e.g., up to 1,000 images) compared to earlier ef-
forts such as Dust3R (Wang et al., 2024), this requires industry-grade GPUs. On consumer-grade
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hardware, such as the RTX 4090, only a few hundred images can be accommodated (approximately
150 in our tests). Consequently, in the evaluation of camera pose registration reported in Table
VGGT(Wang et al., [2025) was run with 25 images per object pose, while Fast3R was run with 75
images per pose, all uniformly sampled from the complete set of 150 images per pose.

A.6 DECLARATION OF LLM USAGE

We used large language models (LLMs) solely for polishing the text in this paper. Specifically,
LLMs assisted in refining grammar, improving readability, and adjusting tone for academic writing.
All research ideas, methodology, analyses, results, and terminology definitions presented in this
work are original contributions from the authors and were not generated by LLMs.
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