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Abstract
We present a novel graph neural network (GNN) architecture for
retrieval-augmented generation (RAG) that leverages query-aware
attention mechanisms and learned scoring heads to improve re-
trieval accuracy on complex, multi-hop questions. Unlike traditional
dense retrieval methods that treat documents as independent enti-
ties, our approach constructs per-episode knowledge graphs that
capture both sequential and semantic relationships between text
chunks. We introduce an Enhanced Graph Attention Network with
query-guided pooling that dynamically focuses on relevant parts of
the graph based on user queries. Experimental results demonstrate
that our approach significantly outperforms standard dense retriev-
ers on complex question answering tasks, particularly for questions
requiring multi-document reasoning. Our implementation lever-
ages PyTorch Geometric for efficient processing of graph-structured
data, enabling scalable deployment in production retrieval systems.
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1 Introduction
Traditional vector-based retrieval models typically rely on embed-
ding spaces where semantic relationships can be inadequately cap-
tured, leading to retrieval inaccuracies. These systems often over-
look intricate semantic structures and hierarchical relationships
within complex datasets, especially when data is multimodal and
highly interconnected. Graph Neural Networks (GNNs) inherently
excel at modeling structured relational data, offering a promising
alternative by effectively capturing these connections.

We propose a GNN-based retrieval system that addresses these
limitations through three key innovations. First, we develop a multi-
relational graph representation that captures both sequential and
semantic document structure, enabling the system to understand

both the natural flow of information and the conceptual relation-
ships between text segments. Second, we introduce query-aware
attention mechanisms that dynamically guide graph traversal based
on the specific information needs expressed in user queries, en-
suring that the most relevant pathways through the knowledge
graph receive appropriate focus. Third, we design a learned scoring
head that intelligently combines reranking logits with rich graph
embeddings, producing more accurate relevance assessments than
traditional vector-based approaches.

Our implementation leverages PyTorch Geometric (PyG) [3],
a powerful library for deep learning on irregular structures like
graphs. PyG provides efficient implementations of graph neural
network layers, including Graph Attention Networks (GAT), and
handles the complexities of batching graphs with varying sizes.
This foundation enables our system to process multiple subgraphs
in parallel during training, significantly improving computational
efficiency and scalability. The framework’s sophisticated design al-
lows us to implement edge-aware attention mechanisms efficiently,
ensuring that the relationships between nodes receive appropriate
consideration during the learning process. Additionally, PyG’s scat-
ter operations facilitate batch-aware pooling across variable-sized
graph structures, while its flexible architecture seamlessly handles
heterogeneous edge types in our multi-relational graphs, making
it ideal for capturing the diverse relationships present in complex
document collections.

The framework’s modular design allows seamless integration of
our enhancedGAT encoderwith query-guided poolingmechanisms,
making it well-suited for retrieval tasks on structured data.

2 Related Work
2.1 Neural Information Retrieval
Dense retrieval methods have seen remarkable progress in recent
years. Dual-encoder architectures like DPR [8] encode queries and
documents separately into a shared vector space, enabling efficient
similarity search with approximate nearest neighbor algorithms.
ColBERT [9] further enhances this by performing fine-grained late
interaction between query and document representations. More
recently, embeddingmodels like E5 [19] and BGE [22] have achieved
strong zero-shot transfer capabilities by training on diverse datasets.

Despite these advances, dense retrievers face inherent limita-
tions when handling complex queries that require connecting in-
formation across multiple documents or understanding document
structure. They typically treat documents as independent units,
ignoring relationships between them.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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2.2 Graph-Based Retrieval
Graph-based retrieval approaches attempt to address these limita-
tions by modeling relationships between documents or text seg-
ments. TextGraphs [12] constructs document graphs based on en-
tity co-occurrence and uses random walks for retrieval. HiDE [1]
incorporates document hierarchies to improve retrieval of long
documents.

More recently, GNN-based approaches have shown promising
results. DeepRank [14] uses graph neural networks to model the
relevance matching signals between query and document pairs.
QAGNN [24] constructs knowledge graphs for question answering
by connecting entities in questions to relevant facts. However, most
existing GNN-based retrieval systems lack query-aware mecha-
nisms for targeted retrieval, leading to suboptimal performance on
complex queries.

In general, graphs are part of a new wave of works aiming to
improve upon the limitations of LLMs [17], beyond what basic
RAG [11] enables. PyG enables effortless exploration in this space,
with a continuously expanding set of features [15].

2.3 Graph Neural Networks
In general, GNNs compute the embeddings of each node as a graph
by transforming and aggregating the representations of their direct
neighbors. We can refer to this computation of transforming and
aggregating the embeddings of neighbor nodes as a "graph con-
volution". This enables them to effectively model the interactions
between nodes in a graph. PyG enables users to explore the large
space of possible GNN variants by unifying them under the message
passing interface [6].

Ourwork builds onGraphAttentionNetworks (GAT) [18], which
learn to assign different importance to nodes in a neighborhood
through self-attention mechanisms. Recent advances include edge-
enhanced GATs [20] that incorporate edge features into the at-
tention computation, and graph transformers [2] that apply self-
attention across the entire graph. One can implement a GAT GNN
using PyG’s GATConv graph convolutional layer [4].

For graph pooling, DiffPool [25] and SAGPool [10] propose learn-
able pooling methods to adaptively coarsen graphs. However, these
approaches don’t consider external query information when deter-
mining node importance, which is crucial for retrieval tasks.

2.4 Retrieval for Complex Questions
Answering complex questions that require multi-hop reasoning
or graph-based understanding has been explored in several works.
ODQA systems likeMulti-hop Dense Retrieval [23] and IRRR [16] it-
eratively retrieve documents based on intermediate reasoning steps.
However, these approaches still treat documents as independent
units during each retrieval step.

Graph-based approaches like Entity-GNN [21] andGNN-DocRE [26]
model entity relationships but focus primarily on entity extrac-
tion rather than document retrieval. Our work bridges this gap
by directly incorporating both sequential and semantic document
relationships into the retrieval process.

3 Methodology
GNN-based RAG Pipeline Architecture:Our pipeline consists of
three main components: (1) Ingestion: processing audio transcripts
into chunks, embedding them, and constructing a knowledge graph;
(2) Retrieval: using our enhanced GNN with query-guided pooling
and scoring head to identify relevant subgraphs; and (3) Genera-
tion: feeding retrieved context to an LLM for response generation.
The scoring head architecture adds a lightweight MLP on top of
the fused graph-query representation to map high-dimensional
embeddings to scalar relevance scores, fine-tuned with triplet loss.

3.1 Multi-Relational Graph Construction
Our graph construction process creates a multi-relational graph
where nodes represent text chunks and edges capture both tem-
poral adjacency (sequential) and semantic similarity relationships.
Edge weights encode the strength of relationships. The complete
algorithm is detailed in Appendix A.1.

3.2 Enhanced GAT Encoder
Our encoder processes node features through multiple attention
layers with:

• Edge-aware attention incorporating edge type embeddings
• Multi-head attention for learning diverse patterns
• Residual connections and layer normalization for training
stability

• Dropout for regularization
The complete algorithm is detailed in Appendix A.2.
We leave it to future work to explore how this custom heteroge-

neous GNN compares to pre-existing heterogeneous GNNs in PyG
such as HGT [7], RGAT [5].

3.3 Query-Guided Pooling
Our query-guided pooling mechanism computes query-specific
node importance scores and performs weighted aggregation to
obtain a query-aware graph representation. This approach enables
the model to focus attention on the most relevant parts of the graph
based on the query content. The batch-aware softmax ensures
proper normalization across different graphs in the batch. The
complete algorithm is detailed in Appendix A.3.

3.4 Fusion and Scoring
Our fusion module combines graph and query representations
through:

• Multi-layer perceptron with skip connections
• Layer normalization for stable training
• Final scoring head mapping to scalar relevance scores

The architecture employs progressive dimension reduction and
regularization to prevent overfitting. The complete algorithm is
detailed in Appendix A.4.

3.5 Subgraph Extraction and PyG Conversion
A critical component of our system is the conversion of NetworkX
graph structures to PyG data objects for neural network process-
ing. Our conversion process handles edge attributes and prepares
for batch processing in PyG, ensuring proper mapping of graph
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structures while maintaining all necessary properties for the neural
network. The complete algorithm is detailed in Appendix A.5.

3.6 Graph-Enhanced Retrieval
Wepropose key algorithms that leverage graph structure to enhance
traditional embedding similarity search. Our approach combines
vector similarity scores with graph-based relevance metrics to pro-
duce more accurate and contextually aware rankings. The graph-
based score adjustment algorithm improves retrieval quality by
considering the semantic structure of the document relationships.
The complete algorithm is detailed in Appendix A.9.

Our approach also includes a query-aware subgraph extraction
method that identifies the most relevant portions of the graph based
on the query. This technique optimizes both computational effi-
ciency and retrieval accuracy by focusing on the most promising
regions of the graph. We use an adaptive traversal approach that
considers semantic similarity between the query and neighboring
nodes, expanding only through paths that maintain relevance to
the query. This is particularly valuable for large document collec-
tions where processing the entire graph would be computationally
prohibitive. The detailed algorithm can be found in Appendix A.

These algorithms demonstrate how our system combines embed-
ding similarity with graph structure to improve retrieval quality
for complex queries. The graph-based score adjustment weights
chunks that have stronger semantic connections in the document,
while the subgraph extraction provides the context necessary for
complex understanding.

3.7 Score Fusion with Learned Combination
While our graph-enhanced retrieval and query-guided attention
provide significant improvements, we further enhance performance
through learned score combination. Our approach uses a logistic re-
gression model to combine multiple relevance signals into a unified
score. The complete algorithm is detailed in Appendix A.6.

Our approach combines multiple complementary relevance sig-
nals into a unified scoring framework. The model integrates se-
mantic similarity metrics with structural information derived from
the graph. By fusing these diverse signals through a learned com-
bination function, we enable the system to leverage the strengths
of each component while compensating for their individual weak-
nesses. The fusion is trained on the data where chunks are labeled
based on their overlap with ground-truth relevant segments. This
integrated approach captures both local semantic relevance and
global document structure.

4 Implementation
4.1 System Architecture
Our system consists of four main components, as depicted in Figure
1:

Our system architecture integrates four interconnected compo-
nents that work synergistically to deliver superior retrieval perfor-
mance. TheDocument Processing Pipeline forms the foundation
by transcribing audio using Riva ASR for high-quality speech recog-
nition, employing sophisticated chunking strategies that consider
both temporal boundaries from the audio stream and semantic

boundaries derived from content analysis. This preprocessing cul-
minates in generating rich chunk embeddings using Llama 3.2
NV-EmbedQA [13], providing a robust foundation for semantic
search and retrieval operations.

The Graph Construction Module builds upon these embed-
dings by creating sophisticated multi-relational graph structures
that capture both sequential document flow and semantic relation-
ships between content segments. This module carefully normalizes
embeddings to ensure accurate cosine similarity computations be-
tween nodes while implementing intelligent caching mechanisms
that store constructed graphs for efficient retrieval and reuse across
similar queries, significantly reducing computational overhead.

Our Retrieval System employs a multi-stage approach begin-
ning with FAISS-based approximate nearest neighbor search for
initial candidate selection. The system then enhances these prelim-
inary results by applying sophisticated graph-based score adjust-
ment algorithms with configurable mixing parameters, allowing
precise balance between traditional vector similarity and struc-
tural graph relevance. For each promising candidate, the system
dynamically extracts ego-subgraphs that capture local context and
inter-chunk relationships for deeper analysis.

Finally, the GNN-based Scoring component converts extracted
subgraphs into PyG format for efficient neural network process-
ing. These graph representations undergo processing through our
enhanced GAT encoder, which incorporates edge-aware attention
mechanisms for maximum computational efficiency. The system
concludes by applying query-guided pooling and specialized scor-
ing functions that generate precise relevance scores considering
both content similarity and structural context.

The system is implemented using PyTorch and PyG, utilizing
efficient scatter operations for batch processing of variable-sized
graphs. The scoring head architecture builds on top of our GNN
encoder with a progressive dimension reduction design that maps
the fused graph-query representation to a scalar relevance score.
Details of the score head implementation are provided in Appendix
A.7.

The implementation strategically integrates several specialized
PyG components to achieve optimal performance. We leverage
GATConv layers to implement sophisticated graph attention mech-
anisms with edge-aware capabilities, enabling the model to selec-
tively focus on the most relevant node relationships during informa-
tion propagation. Scatter operations provide efficient batch-aware
pooling functionality, allowing the system to process variable-sized
graph structures simultaneously while maintaining computational
efficiency. The architecture incorporates GlobalAttention mecha-
nisms for query-guided node importance scoring, ensuring that the
most relevant nodes receive appropriate emphasis during the re-
trieval process. Additionally, we employ custom loss functions that
intelligently combine triplet loss with binary cross-entropy, creat-
ing a training objective that simultaneously optimizes for ranking
quality and classification accuracy.

Our graph construction module uses NetworkX for building and
manipulating graphs, which are then converted to PyG data objects
for neural network processing. The system can be deployed as a
retrieval service that accepts queries, processes them through the
enhanced GNN, and returns ranked results based on the scoring
head output.
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Figure 1: GNN-based RAG Pipeline with Scoring Head. The pipeline integrates audio transcript processing, graph construction,
enhanced GNN with query-aware attention, and scoring head for improved retrieval accuracy.

4.2 Hard Query Generation
We introduce a comprehensive framework for generating complex
queries that specifically target structural understanding capabilities
of retrieval systems. Our approach focuses on three distinct types
of challenging queries that expose the limitations of traditional
retrieval methods. Multi-hop questions require connecting in-
formation across 2-4 non-adjacent document segments, testing the
system’s ability to traverse complex relationship paths within the
knowledge graph. For example, questions like "How does concept
A introduced at the beginning relate to concept C discussed at the
end?" force the system to maintain long-range dependencies and
understand conceptual evolution throughout a document.

Structural relationship questions specifically target docu-
ment organization and concept dependencies, evaluating whether
the system can understand hierarchical information flow and pre-
requisite relationships. These queries, such as "What prerequisites
were established before introducing the transformer architecture?"

require the retrieval system to recognize and leverage the inten-
tional structuring of information by authors.

Context-dependent questions challenge systems to synthesize
broader contextual information beyond individual chunks, testing
their ability to understand nuanced reasoning and decision-making
processes. Questions like "Why was this particular approach cho-
sen given the constraints mentioned earlier?" require the system
to connect scattered contextual clues and understand implicit rela-
tionships between different parts of the document.

Each question is annotated with complexity level (4-5), query
type, and required segments for evaluation. The framework enables
parameterized generation with configurable distribution across
query types.

This query generation approach allows us to systematically eval-
uate retrieval systems on their ability to leverage document struc-
ture and graph-based reasoning, providing a more comprehensive
assessment than traditional benchmarks focused on simpler re-
trieval scenarios.
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Figure 2: Detailed architecture of the GNN-based retrieval system, showing the query-aware attention mechanism, edge-aware
graph processing, and scoring head components.

5 Training Methodology
5.1 Two-Stage Training Pipeline
We employ a two-stage training approach to optimize both repre-
sentation learning and task-specific scoring:

• Stage 1: Backbone Pre-training The Enhanced GAT en-
coder is pre-trained on unsupervised graph reconstruction
objectives to learn meaningful node representations. Once
converged, backbone parameters are frozen.

• Stage 2: Scoring Head Fine-tuning The scoring head is
trained on triplet data with hard negative sampling

6 Experimental Evaluation
6.1 Datasets
We evaluate our approach on two carefully curated educational
content datasets that provide comprehensive coverage of different
learning modalities and complexity levels.

• LPM Dataset (Lecture Presentations Multimodal) rep-
resents a substantial collection of 325 lecture recordings
encompassing over 9,000 slides drawn from more than 180
hours of high-quality educational video content. This dataset
features contributions from 10 expert lecturers covering di-
verse academic subjects including anatomy, biology, psy-
chology, computer science, and dentistry, providing rich
interdisciplinary content that challenges retrieval systems
across multiple knowledge domains. To ensure rigorous eval-
uation, we developed an extensive collection of over 17,000
question-answer pairs distributed across 5 complexity levels,
with particular emphasis on custom-generated multi-hop

queries requiring 2-4 reasoning steps that enable compre-
hensive testing of graph traversal capabilities and structural
understanding.

• TED Talks Dataset complements our evaluation frame-
work with over 2,600 video transcripts averaging 14 minutes
in length, covering an expansive range of topics including
cutting-edge technology, educational methodologies, scien-
tific discoveries, and cultural insights. This dataset is metic-
ulously segmented with precise speaker timestamps and
topic boundaries, facilitating fine-grained analysis of con-
tent structure and temporal relationships. We developed a
comprehensive evaluation suite comprising 32,900 question-
answer pairs, with 13,100 specifically designed to require
structural understanding and cross-segment reasoning ca-
pabilities. This dataset serves primarily for cross-domain
evaluation and generalization testing, allowing us to assess
howwell our graph-based approach transfers across different
content types and presentation styles.

Both datasets include synthetically generated question-answer pairs
with start and end timestamps indicating relevant segments for
each question. This information enables us to evaluate the recall@5
of our retrieval method in comparison to a basic RAG baseline.
Questions are categorized by complexity level (1-5).

6.2 Results
Our approach demonstrates consistent improvements across both
datasets and complexity levels. On the LPM dataset, we achieve a
1.6% relative improvement for Complexity 4 queries and a more
substantial 5.5% gain for Complexity 5 queries. Similarly, on the
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Table 1: Overall Performance Comparison

Dataset Method Recall@5 Rel. Imp.

LPM Traditional RAG 0.7855 -
LPM Query-Guided GAT 0.8120 +3.4%

TED Traditional RAG 0.6765 -
TED Query-Guided GAT 0.7027 +3.9%

Table 2: Performance on Hard Queries by Complexity Level

Dataset Method Compl. 4 Compl. 5

LPM Traditional RAG 0.7855 0.7069
LPM Query-Guided GAT 0.7985 0.7618

TED Traditional RAG 0.6672 0.6867
TED Query-Guided GAT 0.6913 0.7097

TED dataset, our method shows a 3.6% improvement for Complexity
4 and a 3.3% improvement for Complexity 5 queries.

These results highlight an interesting pattern: while improve-
ments on the LPMdataset increasewith complexity, the TED dataset
shows more consistent gains across both complexity levels. This
suggests that the benefits of graph-based structural reasoning may
depend not only on query complexity but also on the underly-
ing content structure. The LPM lectures, with their longer format
and more hierarchical organization, particularly benefit from our
approach on the most challenging queries.

6.3 Implementation Details
Our query-aware GNN architecture is implemented using PyG and
features a carefully designed multi-component structure optimized
for retrieval tasks. The base model employs a 2-layer GNN configu-
ration with 256 hidden dimensions and 4 attention heads, providing
sufficient representational capacity while maintaining computa-
tional efficiency for real-time retrieval scenarios. The query en-
coder generates rich 2048-dimensional dense representations that
capture semantic nuances and contextual information from user
queries, enabling effective query-graph interaction throughout the
processing pipeline.

The fusion network implements a progressive dimension reduc-
tion strategy through a 3-layer MLPwith dimensions [512, 256, 128],
systematically combining query and graph representations while
preserving the most discriminative features for relevance scoring.
Our training regimen employs the AdamW optimizer with a learn-
ing rate of 5e-4 and batch size of 128, parameters carefully tuned
through extensive experimentation to achieve optimal convergence
characteristics. To prevent overfitting and ensure robust general-
ization, we apply dropout regularization at 0.3 and weight decay
of 1e-4, maintaining model performance across diverse document
collections and query types.

For graph construction, we set the semantic edge threshold
𝜏 = 0.6 and keep top-5 neighbors per node. All experiments were
conducted on NVIDIA A100 GPUs with 40GB memory.

6.4 Results and Analysis
Our query-aware GNN approach consistently outperforms all base-
line methods across all datasets, with the largest improvements
observed on the HotpotQA dataset that specifically requires multi-
hop reasoning. The performance gain is particularly significant
for complex queries that benefit from structural understanding of
document relationships.

6.5 Performance on Hard Query Types
Table 2 presents a breakdown of performance across different types
of hard queries. Our approach shows particularly strong perfor-
mance on complex queries that require traversing semantic rela-
tionships between documents.

The largest gains are seen for counterfactual and comparative
queries, where understanding document structure and semantic
relationships is critical. This confirms that our approach effectively
leverages the graph structure to navigate complex information
spaces beyond what is possible with traditional dense retrievers.

7 Discussion
The experimental results highlight several important insights about
graph-based retrieval for complex queries:

7.1 Graph Structure Improves Complex
Retrieval

Our analysis shows that graph structures capture important docu-
ment relationships that are missed by traditional dense retrievers.
The semantic edges in our multi-relational graphs enable the model
to navigate between related concepts even when they appear in
different parts of a document or across document boundaries. This
structural information is particularly valuable for complex queries
that require connecting multiple pieces of information.

7.2 Query-Aware Mechanisms Provide Focus
The integration of query information into the graph processing
through query-guided pooling significantly improves retrieval per-
formance. By allowing the query to guide attention across the graph,
our model can focus on relevant substructures while ignoring irrel-
evant connections. This targeted approach is especially beneficial
for large document collections where the signal-to-noise ratio can
be low.

7.3 End-to-End Training Benefits
Our curriculum learning approach with end-to-end fine-tuning
shows the importance of jointly optimizing all components of the
retrieval pipeline. The scoring head, in particular, benefits from
being trained in conjunction with the graph representation learning,
as it learns to leverage both structural and semantic information in
the relevance prediction.

7.4 Limitations and Challenges
Despite the strong performance, our approach faces several chal-
lenges:
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• Computational Complexity: Graph construction andGNN
processing are more computationally intensive than tradi-
tional dense retrieval, potentially limiting scalability to very
large document collections.

• Graph Sparsity: For domains with limited semantic con-
nections between documents, the benefits of graph-based
approaches may be reduced.

• Training Data Requirements: Our model requires training
data with fine-grained relevance annotations, which can be
expensive to create for new domains.

These limitations point to opportunities for future research on
more efficient graph construction and processing methods, as well
as techniques for leveraging graph structures in low-resource do-
mains.

8 Conclusion
We presented a novel query-aware graph neural network architec-
ture for enhanced retrieval-augmented generation. Our approach
addresses fundamental limitations of traditional dense retrievers by
modeling both sequential and semantic relationships between doc-
ument chunks and incorporating query information directly into
the graph processing pipeline. Experimental results demonstrate
significant improvements over state-of-the-art retrieval methods,
particularly for complex questions requiring multi-hop reasoning.

The combination of edge-aware attention, query-guided pooling,
and learned score fusion enables our system to effectively navi-
gate graphs and identify relevant information across document
boundaries. Our PyG implementation ensures efficient processing
of graph structures, making the approach practical for real-world
retrieval systems.

Several promising directions for future work emerge from this
research:

• End-to-end RAG Optimization: Integrating our graph-
based retrieval directly with language model generation to
jointly optimize both components.

• Hierarchical Document Representations: Extending our
approach to handle multi-level document structures with
hierarchical graphs.

• Multi-modal Retrieval: Applying graph-based methods
to capture relationships between different modalities (text,
images, audio) in unified retrieval systems.

• Dynamic Graph Updates: Developing techniques for ef-
ficiently updating graph structures as new information be-
comes available, without requiring complete reprocessing.

By addressing these challenges, graph-based approaches have
the potential to significantly enhance retrieval capabilities for in-
creasingly complex information needs in modern AI systems.
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A Algorithm Details
This appendix provides detailed algorithms for our approach.

A.1 Multi-Relational Graph Construction

Algorithm 1 Episode Graph Construction

1: Input: Episode chunks 𝐶 = {𝑐1, ..., 𝑐𝑛}, similarity threshold 𝜏
2: Output: Multi-relational graph 𝐺 = (𝑉 , 𝐸)
3: Initialize 𝐺 as empty MultiDiGraph
4: for each chunk 𝑐𝑖 in 𝐶 do
5: Add node 𝑣𝑖 with embedding 𝑒𝑖 and metadata
6: end for
7: // Sequential edges
8: for 𝑖 = 1 to 𝑛 − 1 do
9: Add bidirectional edge (𝑣𝑖 , 𝑣𝑖+1) with type="sequential"
10: end for
11: // Semantic edges
12: Compute similarity matrix 𝑆 = cosine_similarity(𝐸)
13: for each node 𝑣𝑖 do
14: neighbors = top_k(𝑆 [𝑖], 𝑘) where 𝑆 [𝑖, 𝑗] > 𝜏

15: for each 𝑣 𝑗 in neighbors do
16: Add edge (𝑣𝑖 , 𝑣 𝑗 ) with type="semantic", weight=𝑆 [𝑖, 𝑗]
17: end for
18: end for
19: return 𝐺

A.2 Enhanced GAT Encoder

Algorithm 2 Edge-Aware Graph Attention
1: Input: Node features 𝐻 , edge features 𝐸, adjacency 𝐴
2: Output: Updated node representations 𝐻 ′

3: for layer 𝑙 = 1 to 𝐿 do
4: for each node 𝑖 do
5: for each neighbor 𝑗 ∈ 𝑁 (𝑖) do
6: 𝑒𝑖 𝑗 = EdgeEmbed(type𝑖 𝑗 ) ⊕ weight𝑖 𝑗
7: 𝛼𝑖 𝑗 = Attention(ℎ𝑖 , ℎ 𝑗 , 𝑒𝑖 𝑗 )
8: end for
9: 𝛼𝑖 = Softmax(𝛼𝑖 ) // Normalize attention
10: ℎ′

𝑖
=
∑

𝑗 𝛼𝑖 𝑗 ·𝑊𝑣ℎ 𝑗
11: ℎ′

𝑖
= ℎ′

𝑖
+ ResProj(ℎ𝑖 ) // Residual connection

12: end for
13: 𝐻 = LayerNorm(ReLU(𝐻 ′))
14: end for
15: return 𝐻

A.3 Query-Guided Pooling

Algorithm 3 Query-Aware Graph Pooling
1: Input: Node embeddings 𝐻 , query 𝑞, batch assignments 𝐵
2: Output: Graph representation 𝑔
3: 𝐻𝑛 = ProjectNodes(𝐻 )
4: ℎ𝑞 = ProjectQuery(𝑞)
5: for each node 𝑖 in graph do
6: score𝑖 = AttentionMLP(𝐻𝑛 [𝑖] + ℎ𝑞 [𝐵 [𝑖]])
7: end for
8: 𝛼 = BatchSoftmax(scores, 𝐵) // Normalize per graph
9: 𝑔 =

∑
𝑖 𝛼𝑖 · 𝐻 [𝑖] // Weighted aggregation

10: return Dropout(𝑔)

A.4 Fusion and Scoring

Algorithm 4 Representation Fusion and Scoring
1: Input: Graph representation 𝑔, query 𝑞
2: Output: Relevance score 𝑠
3: combined = Concatenate(𝑔, 𝑞)
4: 𝑓 = FusionNetwork(combined)
5: 𝑓 = 𝑓 + SkipConnection(combined) // Gradient flow
6: 𝑠 = ScoringHead(𝑓 )
7: return 𝑠

A.5 Subgraph Extraction and PyG Conversion

Algorithm 5 Subgraph to PyG Conversion
1: Input: NetworkX subgraph 𝐺 , embedding dimension 𝑑
2: Output: PyG Data object or None
3: if 𝐺.number_of_edges() == 0 then
4: return None {Skip isolated nodes}
5: end if
6: {Prepare node features}
7: for each node 𝑛 in 𝐺.nodes() do
8: emb = get_embedding(𝑛, default = [0] ∗ 𝑑)
9: 𝑛[’x’] = tensor(emb) // Set node features
10: remove_other_attributes(𝑛) // Clean attributes
11: end for
12: // Convert to PyG
13: data = from_networkx(𝐺, node_attrs=[’x’], edge_attrs=[’edge_weight’, ’edge_type_id’])

14: // Process edge attributes
15: if data has edge_attr then
16: data.edge_weight = data.edge_attr[:, 0]
17: data.edge_type_id = data.edge_attr[:, 1] .long()
18: remove data.edge_attr
19: else
20: init_empty_edge_attributes(data)
21: end if
22: data.batch = zeros(data.num_nodes) // For batch processing
23: return data
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A.6 Score Fusion with Learned Combination

Algorithm 6 Score Fusion

1: Input: Multiple relevance signals 𝑆 = {𝑠1, ..., 𝑠𝑛}, training data
𝐷

2: Output: Combined score function 𝑓

3: Extract features 𝑋 = [faiss_score, graph_score, gnn_score]
4: Create binary labels 𝑦 where 1 = relevant chunk
5: Train logistic regression model𝑀 on (𝑋,𝑦)
6: 𝑓 (𝑠1, ..., 𝑠𝑛) = sigmoid(𝛽0 +

∑
𝛽𝑖 · 𝑠𝑖 )

7: return 𝑓

A.7 Score Head Implementation

Algorithm 7 Score Head Implementation
1: Input: Fused graph-query representationℎ𝑓 , output dimension
𝑑

2: Output: Relevance score 𝑠
3: score_head = nn.Sequential(
4: nn.Linear(out_channels, out_channels/4),
5: nn.ReLU(),
6: nn.Linear(out_channels/4, 1),
7: nn.Sigmoid()
8: )
9: 𝑠 = score_head(ℎ𝑓 )
10: return 𝑠

A.8 Query-Aware Subgraph Extraction

Algorithm 8 Query-Aware Subgraph Extraction
1: Input: Graph 𝐺 , query 𝑞, initial nodes 𝑉0, max depth 𝑑
2: Output: Subgraph 𝐺 ′ relevant to query
3: query_emb = encode_query(𝑞)
4: 𝑉 = 𝑉0 // Set of nodes to include
5: visited = set()
6: frontier = 𝑉0
7: for level = 1 to 𝑑 do
8: new_frontier = set()
9: for node 𝑣 in frontier do
10: if 𝑣 in visited then
11: continue
12: end if
13: add 𝑣 to visited
14: for neighbor 𝑢 of 𝑣 in 𝐺 do
15: node_emb = 𝐺.nodes[𝑢] [’embedding’]
16: sim = cosine_similarity(query_emb, node_emb)
17: if sim > threshold then
18: add 𝑢 to 𝑉
19: add 𝑢 to new_frontier
20: end if
21: end for
22: end for
23: frontier = new_frontier
24: end for
25: 𝐺 ′ = 𝐺.subgraph(𝑉 )
26: return 𝐺 ′

A.9 Graph-Enhanced Retrieval

Algorithm 9 Graph-Based Score Adjustment
1: Input: Index results [(chunk, idx_score)], graph cache 𝐺cache,

mixing parameter 𝛼
2: Output: Adjusted results [(chunk, combined_score)]
3: raw_scores = []
4: for each (chunk, idx_score) in index_results do
5: ep = chunk.episode_id
6: 𝐺 = 𝐺cache [ep]
7: 𝑖 = chunks_index[ep] [chunk]
8: sem_weights = []
9: for neighbor 𝑗 in 𝐺.neighbors(𝑖) do
10: for edge in 𝐺.edges[𝑖, 𝑗] do
11: if edge.type == "semantic" then
12: sem_weights.append(edge.weight)
13: end if
14: end for
15: end for
16: graph_score = mean(sem_weights)
17: combined = 𝛼 · idx_score + (1 − 𝛼) · graph_score
18: raw_scores.append((chunk, combined))
19: end for
20: return sorted(raw_scores, key = 𝜆𝑥 : 𝑥 [1], reverse = True)
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