

000 TF-JEPA: PREDICTIVE ALIGNMENT OF 001 TIME-FREQUENCY REPRESENTATIONS WITHOUT 002 CONTRASTIVE PAIRS 003

006 **Anonymous authors**

007 Paper under double-blind review

010 ABSTRACT

013 Learning generalizable representations from multivariate time series is challenging
014 due to complex temporal dynamics, distribution shifts, and the difficulty of
015 effectively designing contrastive pairs. We introduce TF-JEPA, a noncontrastive
016 self-supervised method that leverages predictive alignment to integrate representa-
017 tions from the time and frequency domains without relying on negative sampling.
018 Specifically, TF-JEPA utilizes dual online encoders for time and frequency domains,
019 each paired with its own momentum-updated target encoder, embedding both views
020 into a stable and unified latent space. Unlike conventional contrastive methods, this
021 predictive approach enables full end-to-end fine tuning for downstream adaptation.
022 Experimental results on diverse real world datasets, including sleep EEG classifica-
023 tion, gesture recognition, mechanical fault detection, and biosignal-based muscle
024 response classification, demonstrate that TF-JEPA matches or surpasses contrastive
025 and time frequency consistency baselines. TF-JEPA improves macro F1 scores by
026 up to 8.6 percentage points while also reducing GPU memory consumption by ap-
027 proximately 35%. These findings illustrate the promise of predictive alignment as
028 a broadly applicable and modality agnostic framework for self supervised learning
029 beyond traditional contrastive methods.

031 1 INTRODUCTION

034 Learning effective representations from time-series data is a fundamental yet challenging problem in
035 modern machine learning. Such data arise in critical domains, including healthcare, transportation,
036 and finance but differ markedly from images or text. Temporal dependencies, non-stationarity, and
037 frequent domain shifts across datasets hinder generalization Ismail Fawaz et al. (2018); Gupta et al.
038 (2021). Moreover, labeled time-series are often scarce and costly to obtain, especially in medical
039 settings that require expert annotation Harutyunyan et al. (2019). Transfer learning has emerged as a
040 powerful paradigm in time-series modeling, enabling pre-trained representations to generalize across
041 domains Ye & Dai (2021). Unlike vision or text, time-series signals possess a natural time-frequency
042 duality that many representation learning methods have yet to fully exploit. This duality is particularly
043 critical in physiological signals such as EEG Zhang & Yao (2021), where both spectral and temporal
044 features are diagnostically relevant. Classical signal processing has long used time-frequency analysis
045 to interpret non-stationary data Cohen (1995); Papandreou-Suppappola (2018), with FFT serving
046 as the foundational transformation Brigham (1988). These ideas have inspired recent adaptations
047 in neural time-series modeling Cheng et al. (2021). These factors motivate self-supervised learning
048 approaches capable of leveraging abundant unlabeled data and facilitating transfer across tasks.

049 Contrastive learning has become the dominant self-supervised paradigm for time-series: it pulls
050 together augmented views of the same sample (positive pairs) while pushing apart different samples
051 (negative pairs) Chen et al. (2020); van den Oord et al. (2019). However, applying contrastive learning
052 to time-series is particularly difficult because suitable augmentations and negative-pair selection are
053 challenging to design Zhang et al. (2022); Wickstrøm et al. (2022). These methods are sensitive to
augmentation choice, require large batch sizes or memory banks, and are often evaluated on a single
dataset, limiting cross-domain transferability Chen et al. (2020).

054 Recent non-contrastive approaches, notably the Joint Embedding Predictive Architecture (JEPA) Le-
 055 Cun (2023), have shown that strong representations can be learned without explicit negative pairs.
 056 In one approach, JEPA trains an online network to predict a momentum-updated target network’s
 057 representation of the same sample under different augmentations, sidestepping negative sampling
 058 and achieving state-of-the-art results in vision. Predictive objectives of this kind have not yet been
 059 systematically explored for timeseries data, where the natural dual view of time and frequency gives a
 060 compelling test bed. Bridging this gap calls for objectives that can integrate complementary views in
 061 any modality; time–frequency alignment therefore serves as an ideal task and the focus of this work.

062 A notable recent effort is Time–Frequency Consistency (TF-C) Zhang et al. (2022), which aligns
 063 time and frequency domain embeddings with a contrastive objective. TF-C showed that incorporating
 064 spectral structure can aid cross-domain generalization. At the same time, contrastive training
 065 introduces a dependence on cross-sample negatives (and thus large effective batch sizes or memory
 066 banks), sensitivity to augmentation and temperature choices, and the possibility of penalizing seman-
 067 tically similar “false negatives”. Because fine-tuning protocols vary in the literature, we report both
 068 linear-probe and full end-to-end fine-tuning results for TF-C in our comparisons.

069 In this work, we introduce TF-JEPA (Time-Frequency Joint Embedding Predictive Architecture), a
 070 non-contrastive self-supervised framework that aligns time and frequency representations through
 071 prediction rather than contrastive repulsion. First, we introduce a momentum-based dual-encoder
 072 architecture, consisting of an online time encoder and a momentum-updated frequency encoder. The
 073 momentum encoder provides stable predictive targets through exponential moving average updates.
 074 Second, predictive alignment eliminates negative pairs, thereby avoiding instance discrimination
 075 pitfalls. Finally, because TF-JEPA avoids contrastive collapse, the entire model remains trainable
 076 during downstream fine-tuning, allowing full adaptation to the target data distribution.

077 We evaluate TF-JEPA on diverse real-world benchmarks, including sleep EEG with epilepsy, fault
 078 detection, and gesture-recognition datasets. Our experiments show consistent improvements over self-
 079 supervised methods such as TF-C, improving accuracy and F1 significantly on some datasets. These
 080 results highlight the advantages of non-contrastive predictive objectives for robust time-frequency
 081 alignment.

082 In summary, our contributions are threefold: (1) we propose a momentum-based dual-encoder
 083 architecture for time-series that aligns time and frequency domain representations without negative
 084 pairs, (2) we demonstrate that this predictive alignment strategy yields transferable embeddings
 085 suitable for end-to-end fine-tuning, and (3) we achieve competitive or superior performance compared
 086 to existing methods on multiple real-world time-series benchmarks.

089 2 FROM TF-C TO TF-JEPA

091 Time–frequency consistency (TF-C) established that aligning a waveform with its own spectrum can
 092 improve cross-dataset transfer in biosignal analysis. Yet TF-C depends on a contrastive objective
 093 whose computational and methodological demands have become increasingly restrictive. Contrastive
 094 learning requires large batches or memory queues, stores an $\mathcal{O}(B^2)$ similarity matrix, and, in practice,
 095 is vulnerable to “false negatives” in which two nearly identical signals are pushed apart.

096 Subsequent frequency-aware variants reduce some of these drawbacks but introduce bespoke compo-
 097 nents. Examples include masked frequency auto-encoders Liu et al. (2024) and learnable Fourier
 098 filters, which rely on task-specific masking schemes that limit reuse.

100 TF-JEPA replaces the contrastive repulsion paradigm with predictive alignment, built on three design
 101 choices:

- 103 **1. Dual EMA targets.** A frozen time encoder and a frozen frequency encoder are updated
 104 after every step by an exponential moving average (EMA, momentum $m = 0.995$) of the
 105 online weights, providing stable target representations with no gradient overhead.
- 106 **2. Lightweight predictors.** Two small multilayer perceptrons, each mapping $\mathbb{R}^{128} \rightarrow \mathbb{R}^{128}$,
 107 transform the online embeddings so that they predict the corresponding target view. A

Figure 1: Architecture diagram for pre-training steps of TF-JEPA. This diagram communicates the three key ideas (i) time/frequency dual encoders, (ii) EMA targets, (iii) two cross-view predictors.

BYOL-style Grill et al. (2020) cosine loss

$$\mathcal{L} = \sum_{v \in \{t, f\}} \|p_{v \rightarrow \bar{v}} - z_{\bar{v}}^{\text{tg}}\|_{\text{cos}}$$

aligns the two domains without negative pairs or large batch queues.

3. **End-to-end fine-tuning.** Because the objective avoids contrastive collapse, all encoder weights can be unfrozen during downstream training, allowing full adaptation to the target distribution (for example, SleepEEG → Epilepsy or HAR → Gesture).

TF-JEPA retains TF-C’s intuition of cross-view alignment while reducing GPU memory by approximately 35% on 178-step EEG windows, operating with batches as small as 32, and improving cross-dataset transfer macro-F₁ by up to eight percentage points (for example, Fault Detection A → B).

2.1 WHY PREDICTIVE ALIGNMENT? INTUITION BEHIND TF-JEPA

Time and frequency as complementary “modalities”. A discrete time-series and its Fourier spectrum form two loss-less, invertible views of the same signal. Similar to image–text pairs in CLIP Radford et al. (2021) or audio–visual pairs in AVID Arandjelović & Zisserman (2017), these dual views emphasize different statistical regularities: the time domain exposes local temporal dynamics (e.g., waveform shape, transients), whereas the frequency domain highlights global rhythmic structure and stationarity. Leveraging both views therefore offers a built-in multi-modal supervision signal without requiring paired datasets from different sensors.

From contrastive repulsion to cross-view prediction. Contrastive objectives enforce invariance by repelling all other samples in the mini-batch, which costs $\mathcal{O}(B^2)$ memory and can mistreat near-duplicates as negatives. Joint-Embedding Predictive Architectures (JEPA) LeCun (2023) invert that idea: each online encoder predicts the latent vector produced by a slow-moving EMA target encoder of the opposite view. Concretely, the time encoder E_t^{on} learns to match the frequency target $z_f^{\text{tg}} = E_f^{\text{tg}}(x_f)$, while the frequency encoder E_f^{on} predicts the time target $z_t^{\text{tg}} = E_t^{\text{tg}}(x_t)$. This removes the need for negatives, keeps memory linear in B , and, like BYOL Grill et al. (2020), prevents collapse because the EMA targets evolve slowly yet non-trivially. Applying JEPA across time/frequency views yields three benefits

162
 163 Table 1: Target-task performance (%). **NormWear** and **CBraMod** are foundation models providing
 164 large-scale pre-trained physiological priors. NormWear is pre-trained on diverse wearable modalities;
 165 CBraMod is pre-trained on a large EEG corpus using criss-cross spatial-temporal attention and
 166 masked patch reconstruction. Both are fine-tuned only on each target dataset under identical heads
 167 and optimizers, without source→target transfer, serving as adaptation context for TF-JEPA.

Dataset	NormWear				CBraMod			
	AUC	AP	Acc.	F1	AUC	AP	Acc.	F1
Epilepsy	98.21	99.42	95.51	92.61	98.02	99.10	90.35	97.23
FD-B	84.54	67.15	58.30	61.56	71.14	64.75	75.49	65.58
Gesture	88.56	64.33	55.00	49.04	92.34	77.89	74.17	73.56
EMG	93.73	83.85	87.71	62.39	99.83	99.46	98.04	97.64

175
 176 1. **Semantic alignment.** Predicting one view from the other forces the network to focus on
 177 view-invariant factors (sleep stage, bearing damage, gesture identity) while disregarding
 178 nuisance details specific to either domain.
 179 2. **Stability without collapse.** EMA targets provide a non-trivial prediction signal that evolves
 180 slowly; empirical and theoretical analyses Tian et al. (2021); Bardes et al. (2022) show this
 181 circumvents trivial-solution collapse even with small batches.
 182 3. **Linear complexity.** No $B \times B$ similarity matrix or memory queue is formed, so memory
 183 and compute scale linearly with B .
 184

185 **Why alignment should emerge self-supervised.** Because the FFT is invertible, all task-relevant
 186 information in one view is present in the other. Minimizing the cosine distance between predicted
 187 and target embeddings therefore bounds the mutual information between the views from below Poole
 188 et al. (2019); the optimum is reached when each encoder concentrates that shared information into
 189 its latent code. In practice we observe that the resulting representations cluster by semantics across
 190 datasets, echoing the theoretical expectation that view agreement acts as an information bottleneck
 191 selecting factors that generalize across domains.
 192

193 **Relation to prior multi-modal JEPA work.** Concurrent studies have applied predictive objectives
 194 to RGB-depth pairs Assran et al. (2022) and image-audio pairs Alayrac et al. (2022). TF-JEPA is
 195 the first to exploit the intrinsic duality of a single signal, requiring no additional sensors or annotators.
 196 This property makes the method attractive for domains (e.g. medical telemetry, vibration monitoring)
 197 where extra modalities are costly or infeasible to collect.
 198

199 3 PROPOSED METHOD

200 As summarized previously, TF-JEPA learns a shared representation for raw time-series and their
 201 spectra without relying on negative pairs. Two encoders: one operating in the time domain and one
 202 in the frequency domain—are trained so that each predicts the other’s output through momentum-
 203 updated target networks, providing stable signals during optimization.
 204

205 3.1 MODEL

206 **Encoders.** For every sample we form two views: a time-domain sequence $x_t \in \mathbb{R}^{B \times T \times C}$ and its
 207 frequency-domain counterpart $x_f = |\text{FFT}(x_t)|$. Following the TF-C implementation¹, we compute
 208 a magnitude-only spectrum over the full segment (no STFT), with FFT size N equal to the sequence
 209 length defined in Appendix A. The phase information is discarded, and spectra are not normalized
 210 across the training set. During pre-training, frequency augmentations randomly zero out or add noise
 211 to 10% of frequency bins, while time-domain augmentations apply jittering with $\sigma = 0.8$. Each view
 212

213 ¹We note that while the TF-C paper describes using targeted single-component perturbations (E=1) with
 214 conditional boosting ($\alpha = 0.5$), their publicly available implementation uses a simpler approach that we adopt
 215 here for fair comparison.

216
217 Table 2: Transfer performance (%). **TS-TCC**^{*}, **TF-C**, and **TF-JEPA**[†] are pre-trained only on the
218 single source dataset indicated (column 1) and then fine-tuned on the corresponding target dataset,
219 following identical transfer-learning protocols. This setup allows direct comparison among three
220 models of similar size, each using substantially less pre-training data than the foundation models
221 in Table 1. The right-most column reports the margin of TF-JEPA over the best competing transfer
222 baseline on each task; positive values favor TF-JEPA.
223

TRANSFER TASK	TS-TCC				TF-C				TF-JEPA [†]				ΔF1	ΔAcc
	AUC	AP	Acc.	F1	AUC	AP	Acc.	F1	AUC	AP	Acc.	F1		
SLEEP EEG → EPILEPSY	96.27	86.23	85.88	82.48	98.11	94.56	94.95	91.49	99.07	94.51	95.31	92.24	↑0.75	↑0.36
FD-A → FD-B	85.23	83.80	73.85	77.31	94.35	92.09	89.34	91.62	99.98	99.47	99.28	99.47	↑↑7.85	↑9.94
HAR → GESTURE	86.60	65.61	63.33	59.91	89.55	65.91	68.33	65.79	91.47	73.16	75.66	74.34	↑8.55	↑7.33
ECG → EMG	96.35	85.19	85.88	82.48	87.53	82.74	85.37	80.51	92.53	79.41	87.80	80.03	↓2.45	↑1.92

224
225 is processed by an identical L -layer one-dimensional Transformer encoder with model dimension
226 d_{model} . After the Transformer, mean pooling over the temporal axis followed by a two-layer MLP
227 projector produces latent vectors
228

$$z_t^{\text{on}}, z_f^{\text{on}} \in \mathbb{R}^{d_z}, \quad d_z = 128.$$

229
230 **Momentum targets.** Frozen target encoders G_t^{tg} (time) and G_f^{tg} (frequency) are updated after every
231 optimization step by an exponential moving average (EMA) of the online encoder weights:
232

$$\theta^{\text{tg}} \leftarrow m \theta^{\text{tg}} + (1 - m) \theta^{\text{on}}, \quad 0.995 \leq m \leq 0.9995.$$

233 Because these target encoders are never back-propagated through, they add minimal memory and no
234 optimizer state while outputting the reference embeddings z_t^{tg} and z_f^{tg} .
235

236 **Predictors.** Two lightweight predictor MLPs with dimensions $128 \rightarrow 256 \rightarrow 128$ are applied
237 to the online embeddings. The time-view code is mapped to $p_{t \rightarrow f} = P_{t \rightarrow f}(z_t^{\text{on}})$ and trained to
238 match the target frequency embedding z_f^{tg} . Symmetrically, the frequency-view code is mapped to
239 $p_{f \rightarrow t} = P_{f \rightarrow t}(z_f^{\text{on}})$ and trained to match z_t^{tg} . Introducing such predictors, as in BYOL, helps stabilize
240 training and prevents representational collapse.
241

242 3.2 LOSS

243 The objective is the sum of two BYOL-style cosine similarity terms,
244

$$\mathcal{L}_{\text{TF-JEPA}} = \mathcal{L}_{\text{cos}}(p_{t \rightarrow f}, z_f^{\text{tg}}) + \mathcal{L}_{\text{cos}}(p_{f \rightarrow t}, z_t^{\text{tg}})$$

245 where,

$$\mathcal{L}_{\text{cos}}(p, z) = 2 - 2 \cdot \frac{p \cdot z}{\|p\|_2 \|z\|_2}$$

246 for each directional prediction. Maximizing cosine similarity aligns the two domains without requiring
247 negative samples.
248

249 4 EXPERIMENTS AND RESULTS

250 4.1 EXPERIMENTAL SETUP

251 We evaluate TF-JEPA on four widely-used cross-dataset transfer tasks in time-series representation
252 learning. Each non-foundational model (TF-JEPA, TF-C, and TS-TCC Eldele et al. (2021)) is pre-
253 trained exclusively on the specified source dataset using the recommended hyperparameters from
254 their respective papers, and then fine-tuned on the corresponding target dataset with identical classifier
255 heads. To ensure direct comparability, the classifier architecture, latent dimension $d_z = 128$, and
256 optimizer hyperparameters remain consistent across methods during fine-tuning. TF-JEPA employs a
257 smaller batch size of 32 due to its predictive alignment approach, while TF-C and TS-TCC require
258 a larger batch size of 128 to sufficiently sample negative pairs during contrastive training. This
259

assertion is confirmed with an ablation study across 6 batch sizes from 16 to 512. For example, with HAR transfer experiment TF-JEPA demonstrates robust performance across all batch sizes with a coefficient of variation of 2.05%, and accuracy saturating at around 76% for batch sizes ≥ 64 . Our choice of batch size 32 achieves competitive performance (75.66% accuracy, 91.47% AUC) while requiring significantly less memory than contrastive methods, with only a 0.35 percentage point accuracy trade-off compared to the saturation point. All experiments were conducted on a single NVIDIA A10 GPU (32 GB memory) using mixed-precision training.

We also select NormWear Luo et al. (2024) as our baseline state-of-the-art foundation model specifically tailored for wearable-sensing data, capable of extracting generalized, modality-agnostic representations from a diverse array of physiological signals (PPG, ECG, EEG, GSR, IMU). Its broad pre-training across multiple physiological signals and demonstrated effectiveness in various transfer scenarios provides a strong benchmark for evaluating generalizable representations.

We further include CBraMod Wang et al. (2025), a newly introduced brain foundation model for EEG decoding. Similar to NormWear, CBraMod is first pre-trained on a large heterogeneous corpus, here exclusively EEG, using a criss-cross Transformer backbone with parallel spatial-temporal attention and conditional masked EEG reconstruction on patch tokens. Following the same downstream adaptation role as NormWear, CBraMod is then fine-tuned solely on each target dataset (no source \rightarrow target transfer fine-tuning is performed). This provides a second foundation reference point that measures how well generalized priors from large-scale EEG pre-training can adapt to downstream decoding tasks under the same target fine-tuning protocol used for NormWear, allowing TF-JEPA to be contextualized against both broad wearable pre-training and large EEG-only pre-training priors.

TS-TCC, another contrastive learning method, was chosen due to its methodological similarity to TF-C and popularity as a representation-learning approach that explicitly addresses temporal dynamics and contextual relationships within time-series data. TF-C, our primary contrastive baseline, directly motivates TF-JEPA. It emphasizes time-frequency consistency, aiming to embed time-based and frequency-based representations of an example closely together within a shared latent space through contrastive methods. Evaluating against TF-C allows us to explicitly measure the impact and advantages of our proposed non-contrastive predictive alignment approach.

Together, these four methods, NormWear and CBraMod (generalized foundation models), TS-TCC (temporal-contextual contrastive), and TF-C (time-frequency consistency), provide a comprehensive benchmark spectrum. This range ensures a thorough evaluation of TF-JEPA’s ability to achieve robust and generalizable representations without reliance on contrastive pairs, highlighting both methodological innovation and practical advantages in computational efficiency and downstream performance.

4.2 TRANSFER LEARNING PERFORMANCE

Table 2 reports accuracy and macro- F_1 on the target datasets.

1. **SleepEEG \rightarrow Epilepsy.** Transfer from 82 healthy overnight EEG recordings to seizure detection in 500 subjects—a shift from benign to pathological patterns.
2. **FD-A \rightarrow FD-B.** Bearing-fault detection across two operating regimes with different torque and speed, testing robustness to mechanical covariate shift.
3. **HAR \rightarrow Gesture.** Daily full-body motions (50 Hz, nine channels) to fine-grained hand gestures (≈ 100 Hz, three channels), probing scale and granularity gaps.
4. **ECG \rightarrow EMG.** Cross-organ physiological transfer: single-lead cardiac rhythms (300 Hz) to tibialis-anterior electromyograms (4 kHz).

TF-JEPA surpasses contrastive methods on SleepEEG \rightarrow Epilepsy and on both domains of the Fault Detection benchmark and Gesture recognition, improving macro- F_1 by more than eight percentage points. TF-JEPA falls slightly short in the cross-organ physiological transfer task and a deeper analysis is shown below.

As shown in Figure 2, we notice that performance improves with higher EMA momentum m : we observe a positive correlation between m and transfer metrics (Pearson $r = 0.833$ across settings), with all metrics peaking at $m = 0.9995$. With 3 seeds for each m and a 95% CI on ΔF_1 , the best

324
 325 Table 3: Dataset statistics. C = number of classes after any relabelling; S = sampling rate; N_{pre} /
 326 N_{ft} give pre-training and fine-tuning sample counts. Window lengths follow cited preprocessing
 327 protocols.

328 Dataset	329 Domain	330 C	331 S (Hz)	332 Window	333 N_{pre}	334 N_{ft}
SleepEEG	EEG (sleep)	5	100	200	371 055	–
Epilepsy	EEG (seizure / normal)	2	178	178	–	60
FD-A	Vibro-acoustic (cond. A)	3	64 k	5 120	18 882	–
FD-B	Vibro-acoustic (cond. B)	3	64 k	5 120	–	18 864
HAR	9-axis IMU (daily activity)	6	50	128	10 299	–
Gesture	3-axis accel. (hand motion)	8	~100	256	–	440
ECG	Cardiac rhythm	4	300	1 500	8 528	–
EMG	Tibialis-anterior EMG	3	4 000	1 500	–	163

337
 338
 339 setting ($m = 0.9995$) exceeds the worst by +11.3pp in the HAR transfer experiment. This pattern
 340 generalizes across datasets: ECG shows the most dramatic sensitivity with a 39 percentage point
 341 improvement ($53.7\% \rightarrow 92.7\%$ accuracy), while SleepEEG exhibits optimal performance at the
 342 slightly lower $m = 0.995$ (90.8% accuracy). The dataset-dependent optimal momentum suggests
 343 that signal complexity influences the required target network stability. Biomedical time series with
 344 intricate temporal patterns (ECG, HAR) benefit most from ultra-slow updates ($m = 0.9995$), while
 345 sleep data achieves peak performance with moderate stability ($m = 0.995$). Intuitively, ultra-slow
 346 target updates stabilize the non-contrastive objective, improving stability and the signal-to-noise ratio
 347 in the target representations. The consistent superiority of high momentum values ($m \geq 0.995$) across
 348 all datasets validates the critical importance of target network stability in BYOL-style self-supervised
 349 learning for time series, with the EMA update rate of 0.05% or less proving optimal for complex
 350 temporal patterns.

375 Figure 2: Validation F1 on Gesture (fine-tuning) after pre-training on HAR with fixed EMA momenta.
 376 Dotted lines show with 3 seeds for each m and 95% arrival epochs, $m = 0.9995$ converges more
 377 slowly than lower m but yields the highest final score, so we adopt it when final accuracy is prioritized
 over time-to-stability.

We evaluate TF-JEPA on four diverse transfer-learning scenarios, each highlighting distinct challenges in generalization across physiological and mechanical domains. The SleepEEG to Epilepsy task tests transfer from structured, healthy sleep EEG patterns to pathological seizure detection. FD-A to FD-B examines robustness in industrial fault diagnostics across different mechanical operating conditions Lessmeier et al. (2016). The ECG to EMG transfer explores physiological cross-modality generalization from cardiac rhythms to muscle activation signals, despite significant organ-specific variations Clifford et al. (2017). Lastly, the HAR to Gesture task evaluates whether generalized motion features learned from daily human activities can facilitate recognition of fine-grained symbolic hand gestures Anguita et al. (2013). Collectively, these tasks comprehensively test TF-JEPA’s ability to extract representations that generalize across modalities, physiological states, and operational conditions.

4.3 ANALYSIS OF THE ECG TRANSFER CASE

The ECG→EMG transfer has three classes labeled 0, 1, and 2. As shown in Figure 3, TF-JEPA identifies class 2 reliably but frequently predicts label 1 when the ground truth is 0, leading to the observed macro- F_1 drop. Classes 0 and 1 differ mainly by subtle waveform-shape variations; the explicit repulsion term in TF-C appears to preserve this fine boundary, whereas TF-JEPA’s predictive loss focuses on cross-view alignment and is less sensitive to inter-sample separation. Introducing a class-balanced sampling during fine-tuning may help recover this distinction, and we leave that exploration to future work.

Figure 3: Confusion matrix for the 3-class test set (41 samples). Diagonal cells give correct predictions: class 0: 3/5, class 1: 15/17, class 2: 18/19 while off-diagonal counts expose the main failure mode. Class 0 & class 1 confusions (2 + 2 cases). Color intensity scales with sample count for quick visual emphasis.

4.4 RESOURCE USAGE

Because TF-JEPA eliminates the quadratic $B \times B$ similarity / logit tensor required by the NT-Xent loss, it trains 178-step EEG windows with a batch size of 32 in 3.4 GB of GPU memory, versus 5.3 GB for TF-C, and delivers a 1.6× speed-up on an NVIDIA A10G. When the batch size is held constant, removing that tensor still lowers peak memory by roughly 10–15 % and yields a 1.2–1.4× throughput gain. Note that TF-C keeps its negatives entirely within the current mini-batch, so the only memory reclaimed is the pair-wise logits; no separate negative queue is involved.

These efficiency gains come without sacrificing accuracy: TF-JEPA matches or outperforms TF-C on two of four challenging cross-dataset transfers and stays competitive on the others, underscoring predictive alignment as a lean, modality-agnostic alternative to contrastive objectives for self-supervised learning on structured time-series data.

432

5 CONCLUSION

434 This work introduces TF-JEPA, a predictive, non-contrastive framework for learning shared
 435 time-frequency representations from unlabeled time-series data. By coupling an online time encoder
 436 with a momentum-updated frequency encoder and training them with a lightweight cosine loss,
 437 TF-JEPA removes the need for negative pairs, lowers GPU memory by up to thirty-five percent, and
 438 improves cross-dataset transfer performance by as much as eight percentage points on representative
 439 benchmarks. Because the objective is stable without a contrastive repulsion term, all encoder weights
 440 remain trainable during downstream fine-tuning, enabling full adaptation to target distributions.

441 Future directions include scaling the method to longer sequences and additional modalities, integrating
 442 predictive alignment with complementary masked-reconstruction objectives, and analyzing the few
 443 tasks where TF-JEPA underperforms contrastive baselines in order to further strengthen its generality.

445

ETHICS STATEMENT

446 This work uses only publicly available, previously released datasets as cited in the paper; to the best
 447 of our knowledge these datasets are de-identified and were collected under the original providers'
 448 approvals and terms of use. We did not collect new human-subject data, perform interventions,
 449 or attempt re-identification. Potential risks include misuse of models for clinical or safety-critical
 450 decisions; our models are research prototypes and are not intended for real-time medical, industrial,
 451 or safety-critical deployment without appropriate validation. We report results fairly, include neg-
 452 ative/neutral findings where applicable (e.g., transfer tasks where performance lags), and disclose
 453 settings that materially affect results (e.g., batch size, momentum). We follow dataset licenses/terms
 454 and respect privacy. We are not aware of conflicts of interest or external sponsorship that could bias the
 455 work. Fairness concerns may arise from dataset shift and class imbalance; we partially address these
 456 via cross-dataset evaluation and ablations, and we encourage further audits with demographically
 457 annotated datasets.

459

REPRODUCIBILITY STATEMENT

460 We provide all training and evaluation details needed to reproduce results. Architectures, data
 461 processing, and loss are specified in Sections 3–4; full hyper-parameters and training schedules for
 462 TF-JEPA, TF-C, TS-TCC, and NormWear are listed in Tables 4, 7, 8, and 5. Dataset choices, window
 463 lengths, and class counts appear in Table 3. We report hardware and software versions in the appendix
 464 (Appendix A), and we fix random seeds. An anonymized code archive (training scripts, configs,
 465 and evaluation) is included in the supplementary material to facilitate end-to-end replication of the
 466 reported experiments.

469

REFERENCES

471 Jean-Baptiste Alayrac, Jeff Donahue, Pauline Luc, Antoine Miech, Iain Barr, Yana Hasson,
 472 Karel Lenc, Arthur Mensch, Katherine Millican, Malcolm Reynolds, Roman Ring, Eliza
 473 Rutherford, Serkan Cabi, Tengda Han, Zhitao Gong, Sina Samangooei, Marianne Monteiro,
 474 Jacob L Menick, Sebastian Borgeaud, Andy Brock, Aida Nematzadeh, Sahand Sharifzadeh,
 475 Mikołaj Bińkowski, Ricardo Barreira, Oriol Vinyals, Andrew Zisserman, and Karén
 476 Simonyan. Flamingo: a visual language model for few-shot learning. In S. Koyejo,
 477 S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh (eds.), *Advances in Neu-
 478 ral Information Processing Systems*, volume 35, pp. 23716–23736. Curran Associates, Inc.,
 479 2022. URL https://proceedings.neurips.cc/paper_files/paper/2022/file/960a172bc7fbf0177ccccbb411a7d800-Paper-Conference.pdf.

481 Davide Anguita, Alessandro Ghio, Luca Oneto, Xavier Parra Perez, and Jorge Luis Reyes Ortiz. A
 482 public domain dataset for human activity recognition using smartphones. In *Proceedings of the
 483 European Symposium on Artificial Neural Networks, Computational Intelligence and Machine
 484 Learning (ESANN)*, pp. 437–442, 2013.

485 Relja Arandjelović and Andrew Zisserman. Look, listen and learn, 2017. URL <https://arxiv.org/abs/1705.08168>.

486 Mahmoud Assran, Mathilde Caron, Ishan Misra, Piotr Bojanowski, Florian Bordes, Pascal Vincent,
 487 Armand Joulin, Michael Rabbat, and Nicolas Ballas. Masked siamese networks for label-efficient
 488 learning, 2022. URL <https://arxiv.org/abs/2204.07141>.

489 Adrien Bardes, Jean Ponce, and Yann LeCun. Vicreg: Variance-invariance-covariance regularization
 490 for self-supervised learning, 2022. URL <https://arxiv.org/abs/2105.04906>.

492 E. Oran Brigham. *The fast Fourier transform and its applications*. Prentice-Hall, Inc., USA, 1988.
 493 ISBN 0133075052.

494 Ting Chen, Simon Kornblith, Kevin Swersky, Mohammad Norouzi, and Geoffrey Hinton. Big self-
 495 supervised models are strong semi-supervised learners, 2020. URL <https://arxiv.org/abs/2006.10029>.

496 Joseph Y. Cheng, Hanlin Goh, Kaan Dogrusoz, Oncel Tuzel, and Erdin Azemi. Subject-aware
 497 contrastive learning for biosignals, 2021. URL <https://arxiv.org/pdf/2007.04871.pdf>.

498 Gari D. Clifford, Chengyu Liu, Benjamin Moody, H. Lehman Li=wei, Ikaro Silva, Qiao Li, A. E.
 499 Johnson, and Roger G. Mark. AF classification from a short single-lead ECG recording: The Phys-
 500 ioNet/computing in cardiology challenge 2017. In *Proceedings of the Computing in Cardiology
 Conference (CinC)*, pp. 1–4. IEEE, 2017.

501 Leon Cohen. *Time-Frequency analysis*. Prentice Hall, 1995.

502 Emadeldeen Eldele, Mohamed Ragab, Zhenghua Chen, Min Wu, Chee Keong Kwoh, Xiaoli Li,
 503 and Cuntai Guan. Time-series representation learning via temporal and contextual contrasting.
 504 In *Proceedings of the 30th International Joint Conference on Artificial Intelligence (IJCAI)*, pp.
 505 2352–2359, 2021.

506 Jean-Bastien Grill, Florian Strub, Florent Altché, Corentin Tallec, Pierre Richemond, Elena
 507 Buchatskaya, Carl Doersch, Bernardo Avila Pires, Zhaohan Guo, Mohammad Gheshlaghi Azar,
 508 Bilal Piot, koray kavukcuoglu, Remi Munos, and Michal Valko. Bootstrap your own latent - a new
 509 approach to self-supervised learning. In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and
 510 H. Lin (eds.), *Advances in Neural Information Processing Systems*, volume 33, pp. 21271–21284.
 511 Curran Associates, Inc., 2020. URL https://proceedings.neurips.cc/paper_files/paper/2020/file/f3ada80d5c4ee70142b17b8192b2958e-Paper.pdf.

512 Priyanka Gupta, Pankaj Malhotra, Jyoti Narwariya, Lovekesh Vig, and Gautam Shroff. Transfer
 513 learning for clinical time series analysis using deep neural networks, 2021. URL <https://arxiv.org/abs/1904.00655>.

514 Hrayr Harutyunyan, Hrant Khachatrian, David C. Kale, Greg Ver Steeg, and Aram Galstyan. Multitask
 515 learning and benchmarking with clinical time-series data. *Scientific Data*, 6(1):1–18, 2019.

516 Hassan Ismail Fawaz, Germain Forestier, Jonathan Weber, Lhassane Idoumghar, and Pierre-Alain
 517 Muller. Transfer learning for time series classification. In *2018 IEEE International Conference on
 518 Big Data (Big Data)*, pp. 1367–1376, 2018. doi: 10.1109/BigData.2018.8621990.

519 Yann LeCun. A path towards autonomous machine intelligence. *Tech. Rep., Meta AI*, 2023. White
 520 paper.

521 Christian Lessmeier, James Kuria Kimotho, Detmar Zimmer, and Walter Sextro. Condition monitoring
 522 of bearing damage in electromechanical drive systems by using motor current signals of electric
 523 motors: A benchmark dataset for data-driven classification. In *Proceedings of the Prognostics and
 524 Health Management Society European Conference (PHM-Europe)*, volume 3, 2016.

525 Ran Liu, Ellen L. Zippi, Hadi Pouransari, Chris Sandino, Jingping Nie, Hanlin Goh, Erdin Azemi,
 526 and Ali Moin. Frequency-aware masked autoencoders for multimodal pretraining on biosignals,
 527 2024. URL <https://arxiv.org/abs/2309.05927>.

528 Yunfei Luo, Yuliang Chen, Asif Salekin, and Tauhidur Rahman. Toward foundation model for
 529 multivariate wearable sensing of physiological signals, 2024. URL <https://arxiv.org/abs/2412.09758>.

540 Antonia Papandreou-Suppappola. *Applications in Time-Frequency signal processing*. CRC Press,
 541 2018.

542 Ben Poole, Sherjil Ozair, Aaron van den Oord, Alexander A. Alemi, and George Tucker. On
 543 variational bounds of mutual information, 2019. URL <https://arxiv.org/abs/1905.06922>.

544 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
 545 Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, and Ilya Sutskever.
 546 Learning transferable visual models from natural language supervision, 2021. URL <https://arxiv.org/abs/2103.00020>.

547 Yuandong Tian, Xinlei Chen, and Surya Ganguli. Understanding self-supervised learning dynamics
 548 without contrastive pairs, 2021. URL <https://arxiv.org/abs/2102.06810>.

549 Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with contrastive predictive
 550 coding, 2019. URL <https://arxiv.org/abs/1807.03748>.

551 Jiquan Wang, Sha Zhao, Zhiling Luo, Yangxuan Zhou, Haiteng Jiang, Shijian Li, Tao Li, and
 552 Gang Pan. Cbramod: A criss-cross brain foundation model for eeg decoding, 2025. URL
 553 <https://arxiv.org/abs/2412.07236>.

554 Kristoffer Wickstrøm, Michael Kampffmeyer, Karl Øyvind Mikalsen, and Robert Jenssen. Mixing up
 555 contrastive learning: Self-supervised representation learning for time series. *Pattern Recognition
 Letters*, 155:54–61, March 2022. ISSN 0167-8655. doi: 10.1016/j.patrec.2022.02.007. URL
 556 <http://dx.doi.org/10.1016/j.patrec.2022.02.007>.

557 Rui Ye and Qun Dai. Implementing transfer learning across different datasets for time series
 558 forecasting. *Pattern Recognition*, 2021.

559 Xiang Zhang and Lina Yao. *Deep learning for EEG-based brain–computer interfaces: Representations,
 560 algorithms and applications*. World Scientific, 2021.

561 Xiang Zhang, Ziyuan Zhao, Theodoros Tsiligkaridis, and Marinka Zitnik. Self-supervised
 562 contrastive pre-training for time series via time-frequency consistency. In S. Koyejo,
 563 S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh (eds.), *Advances in Neural
 564 Information Processing Systems*, volume 35, pp. 3988–4003. Curran Associates, Inc.,
 565 2022. URL https://proceedings.neurips.cc/paper_files/paper/2022/file/194b8dac525581c346e30a2cebe9a369-Paper-Conference.pdf.

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594 **A APPENDIX A. TF-JEPA EXPERIMENTAL SETTINGS**
 595

596 Unless stated otherwise, all experiments were run on a single NVIDIA A10G-32 GB GPU using
 597 PyTorch 2.7.0 + CUDA 12.8. Reproducibility is ensured by fixing the random seed to 42.
 598

599
 600 Table 4: Key hyper-parameters for **TF-JEPA**. d_{model} is the Transformer embedding dimension (equal
 601 to the aligned sequence length). “Batch / LR” list values for self-supervised pre-training (P) and
 602 supervised fine-tuning (F). All runs use dropout = 0.35.

Experiment (P → F)	d_{model}	Channels	Momentum m	Batch (P/F)	LR (P/F)	Epochs (P/F)
SleepEEG → Epilepsy	178	1	0.995	128 / 60	$3 \times 10^{-4} / 3 \times 10^{-4}$	10 / 100
FD-A → FD-B	5120	1	0.9995	64 / 60	$3 \times 10^{-4} / 3 \times 10^{-4}$	10 / 100
HAR → Gesture	206	1	0.9995	128 / 42	$3 \times 10^{-4} / 3 \times 10^{-4}$	10 / 100
ECG → EMG	1500	1	0.9995	128 / 41	$3 \times 10^{-6} / 3 \times 10^{-6}$	10 / 100

603
 604
 605
 606
 607
 608
 609
 610 Table 5: Hyper-parameters for **NormWear** fine-tuning. All runs use masking ratio = 0.8, patch size
 611 (9, 5), dropout = 0.35.

Target Dataset	Seq. Len.	Channels	Batch	LR	Epochs
Epilepsy	178	1	16	1×10^{-2}	100
FD-B	21	1	8	1×10^{-3}	100
Gesture	315	3	32	1×10^{-3}	100
EMG	96	1	32	1×10^{-3}	100

612
 613
 614
 615
 616
 617
 618
 619 Table 6: Hyper-parameters for **CBraMod** fine-tuning. All runs use dropout = 0.1, weight decay
 620 = 5×10^{-2} , pretrained weights.

Target Dataset	Seq. Len.	Channels	Batch	LR	Epochs
Epilepsy	178	1	8	1×10^{-4}	50
FD-B	5120	1	8	1×10^{-4}	50
Gesture	206	3	8	1×10^{-4}	50
EMG	1500	1	8	1×10^{-4}	50

621
 622
 623
 624
 625
 626
 627
 628
 629 Table 7: Hyper-parameters for **TFC**. Temperature = 0.2, dropout = 0.35.

Experiment (P → F)	Seq. Len.	Channels	Batch (P/F)	LR (P/F)	Epochs (P/F)
SleepEEG → Epilepsy	178	1	128 / 60	$3 \times 10^{-4} / 3 \times 10^{-4}$	10 / 100
FD-A → FD-B	5120	1	64 / 60	$3 \times 10^{-4} / 3 \times 10^{-4}$	10 / 100
HAR → Gesture	206	1	128 / 42	$3 \times 10^{-4} / 3 \times 10^{-4}$	40 / 100
ECG → EMG	1500	1	128 / 41	$3 \times 10^{-6} / 3 \times 10^{-6}$	100 / 100

630
 631
 632
 633
 634
 635
 636
 637 Table 8: Hyper-parameters for **TS-TCC**. Temperature = 0.2, dropout = 0.35.

Experiment (P → F)	Win. Len.	Channels	Batch (P/F)	LR (P/F)	Epochs (P/F)
SleepEEG → Epilepsy	178	1	32 / 16	$3 \times 10^{-4} / 3 \times 10^{-4}$	– / 80
FD-A → FD-B	5120	1	64 / 16	$3 \times 10^{-4} / 3 \times 10^{-4}$	40 / 40
HAR → Gesture	206	3	64 / 64	$3 \times 10^{-7} / 3 \times 10^{-7}$	5 / 5
ECG → EMG	1500	1	32 / 16	$3 \times 10^{-6} / 3 \times 10^{-4}$	10 / 20