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ABSTRACT

Learning generalizable representations from multivariate time series is challeng-
ing due to complex temporal dynamics, distribution shifts, and the difficulty of
effectively designing contrastive pairs. We introduce TF-JEPA, a noncontrastive
self-supervised method that leverages predictive alignment to integrate representa-
tions from the time and frequency domains without relying on negative sampling.
Specifically, TF-JEPA utilizes dual online encoders for time and frequency domains,
each paired with its own momentum-updated target encoder, embedding both views
into a stable and unified latent space. Unlike conventional contrastive methods, this
predictive approach enables full end-to-end fine tuning for downstream adaptation.
Experimental results on diverse real world datasets, including sleep EEG classifica-
tion, gesture recognition, mechanical fault detection, and biosignal-based muscle
response classification, demonstrate that TF-JEPA matches or surpasses contrastive
and time frequency consistency baselines. TF-JEPA improves macro F1 scores by
up to 8.6 percentage points while also reducing GPU memory consumption by ap-
proximately 35%. These findings illustrate the promise of predictive alignment as
a broadly applicable and modality agnostic framework for self supervised learning
beyond traditional contrastive methods.

1 INTRODUCTION

Learning effective representations from time-series data is a fundamental yet challenging problem in
modern machine learning. Such data arise in critical domains, including healthcare, transportation,
and finance but differ markedly from images or text. Temporal dependencies, non-stationarity, and
frequent domain shifts across datasets hinder generalization Ismail Fawaz et al. (2018); Gupta et al.
(2021). Moreover, labeled time-series are often scarce and costly to obtain, especially in medical
settings that require expert annotation Harutyunyan et al. (2019). Transfer learning has emerged as a
powerful paradigm in time-series modeling, enabling pre-trained representations to generalize across
domains Ye & Dai (2021). Unlike vision or text, time-series signals possess a natural time-frequency
duality that many representation learning methods have yet to fully exploit. This duality is particularly
critical in physiological signals such as EEG Zhang & Yao (2021), where both spectral and temporal
features are diagnostically relevant. Classical signal processing has long used time–frequency analysis
to interpret non-stationary data Cohen (1995); Papandreou-Suppappola (2018), with FFT serving
as the foundational transformation Brigham (1988). These ideas have inspired recent adaptations
in neural time-series modeling Cheng et al. (2021). These factors motivate self-supervised learning
approaches capable of leveraging abundant unlabeled data and facilitating transfer across tasks.

Contrastive learning has become the dominant self-supervised paradigm for time-series: it pulls
together augmented views of the same sample (positive pairs) while pushing apart different samples
(negative pairs) Chen et al. (2020); van den Oord et al. (2019). However, applying contrastive learning
to time-series is particularly difficult because suitable augmentations and negative-pair selection are
challenging to design Zhang et al. (2022); Wickstrøm et al. (2022). These methods are sensitive to
augmentation choice, require large batch sizes or memory banks, and are often evaluated on a single
dataset, limiting cross-domain transferability Chen et al. (2020).
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Recent non-contrastive approaches, notably the Joint Embedding Predictive Architecture (JEPA) Le-
Cun (2023), have shown that strong representations can be learned without explicit negative pairs.
In one approach, JEPA trains an online network to predict a momentum-updated target network’s
representation of the same sample under different augmentations, sidestepping negative sampling
and achieving state-of-the-art results in vision. Predictive objectives of this kind have not yet been
systematically explored for timeseries data, where the natural dual view of time and frequency gives a
compelling test bed. Bridging this gap calls for objectives that can integrate complementary views in
any modality; time–frequency alignment therefore serves as an ideal task and the focus of this work.

A notable recent effort is Time–Frequency Consistency (TF-C) Zhang et al. (2022), which aligns
time and frequency domain embeddings with a contrastive objective. TF-C showed that incorporat-
ing spectral structure can aid cross-domain generalization. At the same time, contrastive training
introduces a dependence on cross-sample negatives (and thus large effective batch sizes or memory
banks), sensitivity to augmentation and temperature choices, and the possibility of penalizing seman-
tically similar ”false negatives”. Because fine-tuning protocols vary in the literature, we report both
linear-probe and full end-to-end fine-tuning results for TF-C in our comparisons.

In this work, we introduce TF-JEPA (Time-Frequency Joint Embedding Predictive Architecture), a
non-contrastive self-supervised framework that aligns time and frequency representations through
prediction rather than contrastive repulsion. First, we introduce a momentum-based dual-encoder
architecture, consisting of an online time encoder and a momentum-updated frequency encoder. The
momentum encoder provides stable predictive targets through exponential moving average updates.
Second, predictive alignment eliminates negative pairs, thereby avoiding instance discrimination
pitfalls. Finally, because TF-JEPA avoids contrastive collapse, the entire model remains trainable
during downstream fine-tuning, allowing full adaptation to the target data distribution.

We evaluate TF-JEPA on diverse real-world benchmarks, including sleep EEG with epilepsy, fault
detection, and gesture-recognition datasets. Our experiments show consistent improvements over self-
supervised methods such as TF-C, improving accuracy and F1 significantly on some datasets. These
results highlight the advantages of non-contrastive predictive objectives for robust time-frequency
alignment.

In summary, our contributions are threefold: (1) we propose a momentum-based dual-encoder
architecture for time-series that aligns time and frequency domain representations without negative
pairs, (2) we demonstrate that this predictive alignment strategy yields transferable embeddings
suitable for end-to-end fine-tuning, and (3) we achieve competitive or superior performance compared
to existing methods on multiple real-world time-series benchmarks.

2 FROM TF-C TO TF-JEPA

Time–frequency consistency (TF–C) established that aligning a waveform with its own spectrum can
improve cross-dataset transfer in biosignal analysis. Yet TF–C depends on a contrastive objective
whose computational and methodological demands have become increasingly restrictive. Contrastive
learning requires large batches or memory queues, stores anO(B2) similarity matrix, and, in practice,
is vulnerable to “false negatives” in which two nearly identical signals are pushed apart.

Subsequent frequency-aware variants reduce some of these drawbacks but introduce bespoke compo-
nents. Examples include masked frequency auto-encoders Liu et al. (2024) and learnable Fourier
filters, which rely on task-specific masking schemes that limit reuse.

TF–JEPA replaces the contrastive repulsion paradigm with predictive alignment, built on three design
choices:

1. Dual EMA targets. A frozen time encoder and a frozen frequency encoder are updated
after every step by an exponential moving average (EMA, momentum m = 0.995) of the
online weights, providing stable target representations with no gradient overhead.

2. Lightweight predictors. Two small multilayer perceptrons, each mapping R128→R128,
transform the online embeddings so that they predict the corresponding target view. A
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Figure 1: Architecture diagram for pre-training steps of TF-JEPA. This diagram communicates the
three key ideas (i) time/frequency dual encoders, (ii) EMA targets, (iii) two cross-view predictors.

BYOL-style Grill et al. (2020) cosine loss

L =
∑

v∈{t,f}

∥∥pv→v̄ − ztg
v̄

∥∥
cos

aligns the two domains without negative pairs or large batch queues.

3. End-to-end fine-tuning. Because the objective avoids contrastive collapse, all encoder
weights can be unfrozen during downstream training, allowing full adaptation to the target
distribution (for example, SleepEEG→Epilepsy or HAR→Gesture).

TF–JEPA retains TF–C’s intuition of cross-view alignment while reducing GPU memory by ap-
proximately 35% on 178-step EEG windows, operating with batches as small as 32, and improving
cross-dataset transfer macro-F1 by up to eight percentage points (for example, Fault Detection A→B).

2.1 WHY PREDICTIVE ALIGNMENT? INTUITION BEHIND TF–JEPA

Time and frequency as complementary “modalities”. A discrete time–series and its Fourier
spectrum form two loss-less, invertible views of the same signal. Similar to image–text pairs in
CLIP Radford et al. (2021) or audio–visual pairs in AVID Arandjelović & Zisserman (2017), these
dual views emphasize different statistical regularities: the time domain exposes local temporal dy-
namics (e.g., waveform shape, transients), whereas the frequency domain highlights global rhythmic
structure and stationarity. Leveraging both views therefore offers a built-in multi-modal supervision
signal without requiring paired datasets from different sensors.

From contrastive repulsion to cross-view prediction. Contrastive objectives enforce invariance
by repelling all other samples in the mini-batch, which costs O(B2) memory and can mistreat
near-duplicates as negatives. Joint-Embedding Predictive Architectures (JEPA) LeCun (2023) invert
that idea: each online encoder predicts the latent vector produced by a slow-moving EMA target
encoder of the opposite view. Concretely, the time encoder Eon

t learns to match the frequency target
ztg
f = Etg

f (xf ), while the frequency encoder Eon
f predicts the time target ztg

t = Etg
t (xt). This removes

the need for negatives, keeps memory linear in B, and, like BYOL Grill et al. (2020), prevents collapse
because the EMA targets evolve slowly yet non-trivially. Applying JEPA across time/frequency views
yields three benefits
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Table 1: Transfer performance (%). NormWear is a foundation model first pre-trained on diverse
wearable-sensing datasets (PPG, ECG, EEG, GSR, and IMU) from multiple public sources and then
fine-tuned on the target datasets listed. TS-TCC*, TF-C, and TF-JEPA† are instead pre-trained only
on the single source dataset indicated (column 1) and then fine-tuned on the corresponding target
dataset, following identical transfer-learning protocols. This setup allows direct comparison among
three models of similar size, each using substantially less pre-training data than NormWear. The
right-most column reports the margin of TF-JEPA over the best competing method on each task,
∆F1 = F1TJ − F1best; positive values favor TF-JEPA.

TRANSFER TASK
NORMWEAR (FOUNDATION) TS-TCC (SOURCE) TF-C (SOURCE) TF-JEPA† (SOURCE)

∆F1
AUC AP ACC. F1 AUC AP ACC. F1 AUC AP ACC. F1 AUC AP ACC. F1

SLEEPEEG→EPILEPSY 98.21 99.42 95.51 92.61 96.27 86.23 85.88 82.48 98.11 94.56 94.95 91.49 99.07 94.51 95.31 92.24 ↓0.37
FD-A→FD-B 84.54 67.15 58.30 61.56 85.23 83.80 73.85 77.31 94.35 92.09 89.34 91.62 99.98 99.47 99.28 99.47 ↑7.85
HAR→GESTURE 88.56 64.33 55.00 49.04 86.60 65.61 63.33 59.91 89.55 65.91 68.33 65.79 91.47 73.16 75.66 74.34 ↑8.55
ECG→EMG 93.73 83.85 87.71 62.39 96.35 85.19 85.88 82.48 87.53 82.74 85.37 80.51 92.53 79.41 87.80 80.03 ↓2.45

1. Semantic alignment. Predicting one view from the other forces the network to focus on
view-invariant factors (sleep stage, bearing damage, gesture identity) while disregarding
nuisance details specific to either domain.

2. Stability without collapse. EMA targets provide a non-trivial prediction signal that evolves
slowly; empirical and theoretical analyses Tian et al. (2021); Bardes et al. (2022) show this
circumvents trivial-solution collapse even with small batches.

3. Linear complexity. No B ×B similarity matrix or memory queue is formed, so memory
and compute scale linearly with B.

Why alignment should emerge self-supervised. Because the FFT is invertible, all task-relevant
information in one view is present in the other. Minimizing the cosine distance between predicted
and target embeddings therefore bounds the mutual information between the views from below Poole
et al. (2019); the optimum is reached when each encoder concentrates that shared information into
its latent code. In practice we observe that the resulting representations cluster by semantics across
datasets, echoing the theoretical expectation that view agreement acts as an information bottleneck
selecting factors that generalize across domains.

Relation to prior multi-modal JEPA work. Concurrent studies have applied predictive objectives
to RGB–depth pairs Assran et al. (2022) and image–audio pairs Alayrac et al. (2022). TF–JEPA is
the first to exploit the intrinsic duality of a single signal, requiring no additional sensors or annotators.
This property makes the method attractive for domains (e.g. medical telemetry, vibration monitoring)
where extra modalities are costly or infeasible to collect.

3 PROPOSED METHOD

As summarized previously, TF–JEPA learns a shared representation for raw time-series and their
spectra without relying on negative pairs. Two encoders: one operating in the time domain and one
in the frequency domain—are trained so that each predicts the other’s output through momentum-
updated target networks, providing stable signals during optimization.

3.1 MODEL

Encoders. For every sample we form two views: a time-domain sequence xt ∈ RB×T×C and its
frequency-domain counterpart xf = |FFT(xt)|. Following the TF-C implementation1, we compute
a magnitude-only spectrum over the full segment (no STFT), with FFT size N equal to the sequence
length defined in Appendix A. The phase information is discarded, and spectra are not normalized
across the training set. During pre-training, frequency augmentations randomly zero out or add noise
to 10% of frequency bins, while time-domain augmentations apply jittering with σ = 0.8. Each view

1We note that while the TF-C paper describes using targeted single-component perturbations (E=1) with
conditional boosting (α = 0.5), their publicly available implementation uses a simpler approach that we adopt
here for fair comparison.
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is processed by an identical L-layer one-dimensional Transformer encoder with model dimension
dmodel. After the Transformer, mean pooling over the temporal axis followed by a two-layer MLP
projector produces latent vectors

zon
t , zon

f ∈ Rdz , dz = 128.

Momentum targets. Frozen target encoders Gtg
t (time) and Gtg

f (frequency) are updated after every
optimization step by an exponential moving average (EMA) of the online encoder weights:

θtg ← mθtg + (1−m) θon, 0.995 ≤ m ≤ 0.9995.

Because these target encoders are never back-propagated through, they add minimal memory and no
optimizer state while outputting the reference embeddings ztg

t and ztg
f .

Predictors. Two lightweight predictor MLPs with dimensions 128 → 256 → 128 are applied
to the online embeddings. The time-view code is mapped to pt→f = Pt→f (z

on
t ) and trained to

match the target frequency embedding ztg
f . Symmetrically, the frequency-view code is mapped to

pf→t = Pf→t(z
on
f ) and trained to match ztg

t . Introducing such predictors, as in BYOL, helps stabilize
training and prevents representational collapse.

3.2 LOSS

The objective is the sum of two BYOL-style cosine similarity terms,

LTF-JEPA = Lcos(pt→f , z
tg
f ) + Lcos(pf→t, z

tg
t )

where,
Lcos(p, z) = 2− 2 · p · z

∥p∥2∥z∥2
for each directional prediction. Maximizing cosine similarity aligns the two domains without requiring
negative samples.

4 EXPERIMENTS AND RESULTS

4.1 EXPERIMENTAL SETUP

We evaluate TF-JEPA on four widely-used cross-dataset transfer tasks in time-series representation
learning. Each non-foundational model (TF-JEPA, TF-C, and TS-TCC Eldele et al. (2021)) is pre-
trained exclusively on the specified source dataset using the recommended hyperparameters from
their respective papers, and then fine-tuned on the corresponding target dataset with identical classifier
heads. To ensure direct comparability, the classifier architecture, latent dimension dz = 128, and
optimizer hyperparameters remain consistent across methods during fine-tuning. TF-JEPA employs a
smaller batch size of 32 due to its predictive alignment approach, while TF-C and TS-TCC require
a larger batch size of 128 to sufficiently sample negative pairs during contrastive training. This
assertion is confirmed with an ablation study across 6 batch sizes from 16 to 512. For example, with
HAR transfer experiment TF-JEPA demonstrates robust performance across all batch sizes with a
coefficient of variation of 2.05%, and accuracy saturating at around 76% for batch sizes ≥ 64. Our
choice of batch size 32 achieves competitive performance (75.66% accuracy, 91.47% AUC) while
requiring significantly less memory than contrastive methods, with only a 0.35 percentage point
accuracy trade-off compared to the saturation point. All experiments were conducted on a single
NVIDIA A10 GPU (32 GB memory) using mixed-precision training.

We also select NormWear Luo et al. (2024) as our baseline state-of-the-art foundation model specifi-
cally tailored for wearable-sensing data, capable of extracting generalized, modality-agnostic rep-
resentations from a diverse array of physiological signals (PPG, ECG, EEG, GSR, IMU). Its broad
pre-training across multiple physiological signals and demonstrated effectiveness in various transfer
scenarios provides a strong benchmark for evaluating generalizable representations.

TS-TCC, another contrastive learning method, was chosen due to its methodological similarity to TF-
C and popularity as a representation-learning approach that explicitly addresses temporal dynamics
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Table 2: Dataset statistics. C = number of classes after any relabelling; S = sampling rate; Npre /
Nft give pre-training and fine-tuning sample counts. Window lengths follow cited preprocessing
protocols.

Dataset Domain C S (Hz) Window Npre Nft

SleepEEG EEG (sleep) 5 100 200 371 055 –
Epilepsy EEG (seizure / normal) 2 178 178 – 60
FD-A Vibro-acoustic (cond. A) 3 64 k 5 120 18 882 –
FD-B Vibro-acoustic (cond. B) 3 64 k 5 120 – 18 864
HAR 9-axis IMU (daily activity) 6 50 128 10 299 –
Gesture 3-axis accel. (hand motion) 8 ∼100 256 – 440
ECG Cardiac rhythm 4 300 1 500 8 528 –
EMG Tibialis-anterior EMG 3 4 000 1 500 – 163

and contextual relationships within time-series data. TF-C, our primary contrastive baseline, directly
motivates TF-JEPA. It emphasizes time-frequency consistency, aiming to embed time-based and
frequency-based representations of an example closely together within a shared latent space through
contrastive methods. Evaluating against TF-C allows us to explicitly measure the impact and
advantages of our proposed non-contrastive predictive alignment approach.

Together, these three methods, NormWear (generalized foundation model), TS-TCC (temporal-
contextual contrastive), and TF-C (time-frequency consistency), provide a comprehensive benchmark
spectrum. This range ensures a thorough evaluation of TF-JEPA’s ability to achieve robust and
generalizable representations without reliance on contrastive pairs, highlighting both methodological
innovation and practical advantages in computational efficiency and downstream performance.

4.2 TRANSFER LEARNING PERFORMANCE

Table 1 reports accuracy and macro-F1 on the target datasets.

1. SleepEEG→Epilepsy. Transfer from 82 healthy overnight EEG recordings to seizure
detection in 500 subjects—a shift from benign to pathological patterns.

2. FD-A→FD-B. Bearing-fault detection across two operating regimes with different torque
and speed, testing robustness to mechanical covariate shift.

3. HAR→Gesture. Daily full-body motions (50Hz, nine channels) to fine-grained hand
gestures (≈ 100Hz, three channels), probing scale and granularity gaps.

4. ECG→EMG. Cross-organ physiological transfer: single-lead cardiac rhythms (300 Hz) to
tibialis-anterior electromyograms (4 kHz).

TF–JEPA surpasses contrastive methods on SleepEEG→Epilepsy and on both domains of the Fault
Detection benchmark and Gesture recognition, improving macro-F1 by more than eight percentage
points. TF-JEPA falls slightly short in the cross-organ physiological transfer task and a deeper
analysis is shown below.

As shown in Figure 2, we notice that performance improves with higher EMA momentum m: we
observe a positive correlation between m and transfer metrics (Pearson r = 0.833 across settings),
with all metrics peaking at m = 0.9995. With 3 seeds for each m and a 95% CI on ∆F1, the best
setting (m = 0.9995) exceeds the worst by +11.3pp in the HAR transfer experiment. This pattern
generalizes across datasets: ECG shows the most dramatic sensitivity with a 39 percentage point
improvement (53.7% → 92.7% accuracy), while SleepEEG exhibits optimal performance at the
slightly lower m = 0.995 (90.8% accuracy). The dataset-dependent optimal momentum suggests
that signal complexity influences the required target network stability. Biomedical time series with
intricate temporal patterns (ECG, HAR) benefit most from ultra-slow updates (m = 0.9995), while
sleep data achieves peak performance with moderate stability (m = 0.995). Intuitively, ultra-slow
target updates stabilize the non-contrastive objective, improving stability and the signal-to-noise ratio
in the target representations. The consistent superiority of high momentum values (m ≥ 0.995) across
all datasets validates the critical importance of target network stability in BYOL-style self-supervised
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learning for time series, with the EMA update rate of 0.05% or less proving optimal for complex
temporal patterns.

Figure 2: Validation F1 on Gesture (fine-tuning) after pre-training on HAR with fixed EMA momenta.
Dotted lines show with 3 seeds for each m and 95% arrival epochs, m = 0.9995 converges more
slowly than lower m but yields the highest final score, so we adopt it when final accuracy is prioritized
over time-to-stability.

We evaluate TF-JEPA on four diverse transfer-learning scenarios, each highlighting distinct challenges
in generalization across physiological and mechanical domains. The SleepEEG to Epilepsy task
tests transfer from structured, healthy sleep EEG patterns to pathological seizure detection. FD-A
to FD-B examines robustness in industrial fault diagnostics across different mechanical operating
conditions Lessmeier et al. (2016). The ECG to EMG transfer explores physiological cross-modality
generalization from cardiac rhythms to muscle activation signals, despite significant organ-specific
variations Clifford et al. (2017). Lastly, the HAR to Gesture task evaluates whether generalized
motion features learned from daily human activities can facilitate recognition of fine-grained symbolic
hand gestures Anguita et al. (2013). Collectively, these tasks comprehensively test TF-JEPA’s ability
to extract representations that generalize across modalities, physiological states, and operational
conditions.

4.3 ANALYSIS OF THE ECG TRANSFER CASE

The ECG→EMG transfer has three classes labeled 0, 1, and 2. As shown in Figure 3, TF-JEPA
identifies class 2 reliably but frequently predicts label 1 when the ground truth is 0, leading to the
observed macro-F1 drop. Classes 0 and 1 differ mainly by subtle waveform-shape variations; the
explicit repulsion term in TF-C appears to preserve this fine boundary, whereas TF-JEPA’s predictive
loss focuses on cross-view alignment and is less sensitive to inter-sample separation. Introducing
a class-balanced sampling during fine-tuning may help recover this distinction, and we leave that
exploration to future work.

4.4 RESOURCE USAGE

Because TF–JEPA eliminates the quadratic B ×B similarity / logit tensor required by the NT–Xent
loss, it trains 178-step EEG windows with a batch size of 32 in 3.4 GB of GPU memory, versus

7
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Figure 3: Confusion matrix for the 3-class test set (41 samples). Diagonal cells give correct
predictions: class 0: 3/5, class 1: 15/17, class 2: 18/19 while off-diagonal counts expose the main
failure mode. Class 0 & class 1 confusions (2 + 2 cases). Color intensity scales with sample count for
quick visual emphasis.

5.3 GB for TF–C, and delivers a 1.6× speed-up on an NVIDIA A10G. When the batch size is held
constant, removing that tensor still lowers peak memory by roughly 10–15 % and yields a 1.2–1.4×
throughput gain. Note that TF–C keeps its negatives entirely within the current mini-batch, so the
only memory reclaimed is the pair-wise logits; no separate negative queue is involved.

These efficiency gains come without sacrificing accuracy: TF-JEPA matches or outperforms TF-C on
two of four challenging cross-dataset transfers and stays competitive on the others, underscoring pre-
dictive alignment as a lean, modality-agnostic alternative to contrastive objectives for self-supervised
learning on structured time-series data.

5 CONCLUSION

This work introduces TF-JEPA, a predictive, non-contrastive framework for learning shared
time–frequency representations from unlabeled time-series data. By coupling an online time encoder
with a momentum-updated frequency encoder and training them with a lightweight cosine loss,
TF-JEPA removes the need for negative pairs, lowers GPU memory by up to thirty-five percent, and
improves cross-dataset transfer performance by as much as eight percentage points on representative
benchmarks. Because the objective is stable without a contrastive repulsion term, all encoder weights
remain trainable during downstream fine-tuning, enabling full adaptation to target distributions.

Future directions include scaling the method to longer sequences and additional modalities, integrating
predictive alignment with complementary masked-reconstruction objectives, and analyzing the few
tasks where TF-JEPA underperforms contrastive baselines in order to further strengthen its generality.

ETHICS STATEMENT

This work uses only publicly available, previously released datasets as cited in the paper; to the best
of our knowledge these datasets are de-identified and were collected under the original providers’
approvals and terms of use. We did not collect new human-subject data, perform interventions,
or attempt re-identification. Potential risks include misuse of models for clinical or safety-critical
decisions; our models are research prototypes and are not intended for real-time medical, industrial,
or safety-critical deployment without appropriate validation. We report results fairly, include neg-
ative/neutral findings where applicable (e.g., transfer tasks where performance lags), and disclose
settings that materially affect results (e.g., batch size, momentum). We follow dataset licenses/terms
and respect privacy. We are not aware of conflicts of interest or external sponsorship that could bias the
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work. Fairness concerns may arise from dataset shift and class imbalance; we partially address these
via cross-dataset evaluation and ablations, and we encourage further audits with demographically
annotated datasets.

REPRODUCIBILITY STATEMENT

We provide all training and evaluation details needed to reproduce results. Architectures, data
processing, and loss are specified in Sections 3–4; full hyper-parameters and training schedules for
TF-JEPA, TF-C, TS-TCC, and NormWear are listed in Tables 3, 5, 6, and 4. Dataset choices, window
lengths, and class counts appear in Table 2. We report hardware and software versions in the appendix
(Appendix A), and we fix random seeds. An anonymized code archive (training scripts, configs,
and evaluation) is included in the supplementary material to facilitate end-to-end replication of the
reported experiments.
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A APPENDIX A. TF-JEPA EXPERIMENTAL SETTINGS

Unless stated otherwise, all experiments were run on a single NVIDIA A10G-32 GB GPU using
PyTorch 2.7.0 + CUDA 12.8. Reproducibility is ensured by fixing the random seed to 42.

Table 3: Key hyper-parameters for TF-JEPA. dmodel is the Transformer embedding dimension (equal
to the aligned sequence length). “Batch / LR” list values for self-supervised pre-training (P) and
supervised fine-tuning (F). All runs use dropout = 0.35.

Experiment (P→F) dmodel Channels Momentum m Batch (P/F) LR (P/F) Epochs (P/F)

SleepEEG→Epilepsy 178 1 0.995 128 / 60 3× 10−4 / 3× 10−4 10 / 100
FD-A→FD-B 5120 1 0.9995 64 / 60 3× 10−4 / 3× 10−4 10 / 100
HAR→Gesture 206 1 0.9995 128 / 42 3× 10−4 / 3× 10−4 10 / 100
ECG→EMG 1500 1 0.9995 128 / 41 3× 10−6 / 3× 10−6 10 / 100

Table 4: Hyper-parameters for NormWear fine-tuning. All runs use masking ratio = 0.8, patch size
(9, 5), dropout = 0.35.

Target Dataset Seq. Len. Channels Batch LR Epochs

SleepEEG→Epilepsy 178 1 16 1× 10−2 100
FD-A→FD-B 21 1 8 1× 10−3 100
HAR→Gesture 315 3 32 1× 10−3 100
ECG→EMG 96 1 32 1× 10−3 100

Table 5: Hyper-parameters for TFC. Temperature = 0.2, dropout = 0.35.
Experiment (P→F) Seq. Len. Channels Batch (P/F) LR (P/F) Epochs (P/F)

SleepEEG→Epilepsy 178 1 128 / 60 3× 10−4 / 3× 10−4 10 / 100
FD-A→FD-B 5120 1 64 / 60 3× 10−4 / 3× 10−4 10 / 100
HAR→Gesture 206 1 128 / 42 3× 10−4 / 3× 10−4 40 / 100
ECG→EMG 1500 1 128 / 41 3× 10−6 / 3× 10−6 100 / 100

Table 6: Hyper-parameters for TS-TCC. Temperature = 0.2, dropout = 0.35.
Experiment (P→F) Win. Len. Channels Batch (P/F) LR (P/F) Epochs (P/F)

SleepEEG→Epilepsy 178 1 32 / 16 3× 10−4 / 3× 10−4 – / 80
FD-A→FD-B 5120 1 64 / 16 3× 10−4 / 3× 10−4 40 / 40
HAR→Gesture 206 3 64 / 64 3× 10−7 / 3× 10−7 5 / 5
ECG→EMG 1500 1 32 / 16 3× 10−6 / 3× 10−4 10 / 20

12


	Introduction
	From TF-C to TF-JEPA
	Why predictive alignment? Intuition behind TF–JEPA

	Proposed Method
	Model
	Loss

	Experiments and Results
	Experimental setup
	Transfer learning performance
	Analysis of the ECG transfer case
	Resource usage

	Conclusion
	Appendix A. TF-JEPA Experimental Settings

