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Abstract001

Recently, the concept of embodied intelligence002
has been widely accepted and popularized, lead-003
ing people to naturally consider the potential004
for commercialization in this field. In this work,005
we propose a specific real-world scenario sim-006
ulation — human-centered in-building embod-007
ied delivery. Furthermore, for this scenario,008
we have developed a brand-new virtual envi-009
ronment system from scratch, constructing a010
multi-level connected building space modeled011
after a polar research station. This environ-012
ment also includes autonomous human char-013
acters and robots with grasping and mobility014
capabilities, as well as a large number of inter-015
active items. Based on this environment, we016
have built a delivery dataset containing 13k017
language instructions to guide robots in pro-018
viding services. We simulate human behavior019
through human characters and sample their var-020
ious needs in daily life. Finally, we proposed021
a method centered around a large multimodal022
model to serve as the baseline system for this023
dataset. Compared to past embodied data work,024
our work focuses on an immersive virtual envi-025
ronment centered around human-robot interac-026
tion for industrial-grade scenarios. We believe027
this will bring new perspectives and exploration028
angles to the embodied community. Our code,029
dataset, and benchmark are publicly available.030

1 Introduction031

With the rapid development of embodied robotic032

technology, people are gradually becoming aware033

of its tremendous potential in various fields. Con-034

currently, there has been a surge of discussions and035

explorations within the community regarding em-036

bodied skill scenarios, such as navigation (Wang037

et al., 2024; Hao et al., 2020), manipulation (Li038

et al., 2023c; Jin et al., 2024), and instruction fol-039

lowing (Brohan et al., 2022b; Yenamandra et al.,040

2023), leading to the proposal of a series of models.041

Although the skill scenarios are diverse, people are042

concerned that the current skill scenarios are de- 043

signed to be overly simplistic for realism-aligned 044

application scenarios (Fu et al., 2024). And there 045

exists a noticeable gap between skill scenarios and 046

real-world application scenarios. Specifically, it is 047

widely believed that existing skill scenarios may 048

be inadequate in fully reflecting the potential is- 049

sues encountered in actual environments and do 050

not accurately capture users’ more precise interac- 051

tion needs with embodied robots (Bousmalis et al., 052

2023). Therefore, we argue that this inconsistency 053

with real-world commercial scenarios has hindered 054

the emergence of novel topics within the embodied 055

AI community in recent years. Therefore, we sug- 056

gest that exploring scenarios closer to real-world 057

applications can help further the development of 058

the embodied AI community (Zador et al., 2023; 059

Yang et al., 2023a). 060

In this work, we focus on simulating and data 061

construction for a highly anticipated express de- 062

livery service scenario called human-centered in- 063

building delivery. In today’s society, precise and ef- 064

ficient delivery services are crucial to the success of 065

many top companies. However, unlike large-scale 066

transshipment centers and external express deliv- 067

ery services that rely on public transportation, the 068

last step of the delivery stage faces significant chal- 069

lenges. For instance, private spaces like companies 070

in buildings or high-security residential areas often 071

prohibit external delivery services due to various se- 072

curity and management considerations. Moreover, 073

people typically move around inside buildings to 074

meet their needs and purposes. This delivery pro- 075

cess can impose tangible pressure on customers. 076

Therefore, precise item delivery to specified per- 077

sons in private spaces represents a significant op- 078

portunity for robotic services. In order to explore 079

this scenario, our contributions can be divided into 080

the following parts: 081

Scenario & Task Definition. The real-world in- 082

door service scenario is characterized by the need 083
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Figure 1: Human-centered in-building embodied delivery describes a task that originates from a real commercial
delivery scenario. It mainly refers to the precise delivery service for users in private spaces where external delivery
services cannot be used, achieved through embodied robots. This task typically requires the robot to locate the
target item based on the user’s needs (e.g., grasp a water bottle from the kitchen and bring it to me.) across multiple
rooms within the three-story building (a polar research station building, see the thumbnail in the top right corner)
and ultimately deliver it to the designated location/person. The robot needs to consider the user’s context (behavior
or schedule), as the user will be moving around the building according to their own goals during the delivery.

to account for numerous complex and intervening084

factors. We analyze the scenario and pinpoint the085

critical elements of the delivery service, as shown086

in Figure 1. Followed by formulating task objec-087

tives and definitions, which includes establishing088

the task’s premises, context, framework, and scope089

(Section 3).090

Simulation Environment. Grounded in the task091

setting and business requirements, we have con-092

structed from scratch a novel simulation environ-093

ment modelled after a real-world polar research094

station (referred to as the Polar Research Station095

Environment, PRS). This environment comprises096

a three-story building interconnected by stairs and097

a functional elevator. It integrates common human098

societal scenarios into a community-like pattern,099

such as bedrooms, gyms, offices, laboratories, med-100

ical rooms, wards, living rooms, leisure spaces, etc.101

This design aims to cover as a wide range of ev-102

eryday scenarios within the building as possible.103

Additionally, to simulate daily activities for deliv-104

ery services, the environment includes over a dozen105

virtual human characters engaging in activities ac-106

cording to their individual intentions. Furthermore,107

we provide a range of interactive objects to support 108

the tasks. Lastly, we have designed a robotic sim- 109

ulation with grasping and moving capabilities to 110

serve human character agents (Section 4). 111

Dataset. In constructing delivery service data, 112

we initially utilize the large language model (LLM) 113

to generate reasonable daily activities and varied de- 114

mands for virtual characters (Non-Playable Charac- 115

ter, NPC) based on their profiles. Consequently, the 116

robot is required to locate and deliver the appropri- 117

ate objects to meet the human characters’ demands 118

and accomplish task objectives. We continually 119

generate diverse data by modifying character needs, 120

daily routines, and target objects. Furthermore, we 121

incorporate a manual review and refinement stage 122

to ensure the balance of the task data (Section 5). 123

Baseline. We propose an LMM-based approach 124

as the baseline method, employing a modular ar- 125

chitecture encompassing language instruction anal- 126

ysis, multimodal target search, and robotic action 127

execution (Section 6). 128

Therefore, we will gradually introduce these con- 129

tents. Due to our substantial workload, additional 130

content will be included in the Appendix. 131
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2 Background132

In recent years, the concept of embodied AI has133

been widely recognized and popularized (Das et al.,134

2018; Gan et al., 2021; Brohan et al., 2022a, 2023).135

People have been actively exploring the capabil-136

ities of this new form of intelligent entity (Wu137

et al., 2024a), such as embodied instruction fol-138

lowing (Pashevich et al., 2021; Li et al., 2023d;139

Padmakumar et al., 2022), visual navigation (Hao140

et al., 2020), and manipulation grasping (Wu et al.,141

2024b). Furthermore, with the introduction of142

large models, significant progress has also been143

made in the field (Mousavian et al., 2019; Mu-144

rali et al., 2020). However, while researchers, in-145

vestors, and engineers generally believe that ex-146

isting skill-driven scenarios may demonstrate the147

potential of embodied robots (Jiang et al., 2022;148

Gao et al., 2022), their performance in comprehen-149

sive business scenarios remains uncertain, leading150

to widespread concern.151

To mitigate this issue, we believe that introduc-152

ing simulations of commercial scenarios might be153

a potential solution. The main difference from154

current skill-learning-oriented scenarios (Padalkar155

et al., 2023; Mandlekar et al., 2023) is that commer-156

cial scenarios typically prioritize meeting human157

needs. This not only requires the integration of158

multiple skills (Wu et al., 2023) to achieve service159

objectives but also entails incorporating elements160

such as human-robot interaction (Long et al., 2023),161

scenario diversity (Deitke et al., 2020), and human162

behavior portrayal. The benefits of doing so are163

twofold: firstly, it can make robot training more164

closely resemble real commercial scenarios, and165

secondly, it can introduce new, more specific topics166

to the community, further promoting the commu-167

nity’s evolution towards commercialization.168

Furthermore, we systematically examined a169

large number of existing virtual environment sys-170

tems (such as AI2thor (Kolve et al., 2017), Habi-171

tat (Puig et al., 2023), BEHAVIOR-1k (Li et al.,172

2023a), etc.(Makoviychuk et al., 2021; Handa et al.,173

2023; James et al., 2020)), which generally struggle174

to simultaneously support the depiction of commer-175

cial scenarios requiring interconnected multi-level176

architectural spaces, diverse and multi-functional177

social spaces (such as laboratories, medical rooms),178

customizable interactive human character and be-179

havior, a plethora of interactable items, and continu-180

ously changing motion states supported by physics181

engines (Todorov et al., 2012; Haviland and Corke,182

2023b,a). Thus, we constructed the aforementioned 183

simulation environment from scratch, which is in- 184

spired by the polar research stations from the real 185

world. Thus, we choose the human-centered in- 186

building delivery service as an initial exploration 187

into simulating embodied commercial scenarios. 188

3 Scenario Analysis & Task Definition 189

In the first place, we need to analyze and abstract 190

the authentic scenario in order to generate action- 191

able tasks and a quantifiable benchmark (Li et al., 192

2023a). In the context of precise in-building deliv- 193

ery services, referring to general robot tasks (Gao 194

et al., 2022; Li et al., 2024), we have identified 195

several potential key factors: 196

(1) Robots operate within a relatively fixed build- 197

ing space. (2) The residents within the building are 198

the recipients of the service, and they typically 199

move throughout the building based on personal 200

needs and objectives. Robots can access relevant 201

information about the recipients to better locate and 202

identify them. (3) The transportation service may 203

cover a substantial area, involving different floors 204

and rooms. (4) Robots typically need to understand 205

human instructions in order to search for and re- 206

trieve the correct target items, and deliver them to 207

the designated recipients. 208

Based on the aforementioned scenario require- 209

ments, we provide the following task definition and 210

settings, as shown in Table 1. 211

Figure 2: The available information in task. Context
information guides robots to have a specific task goal.

The distinction in design between skill scenarios 212

and commercial scenarios lies in their objectives. 213

Skill scenarios tend to focus on exploring the effi- 214

ciency of a particular skill under given conditions. 215

On the other hand, real application scenarios explo- 216

ration primarily revolves around identifying which 217

conditions and information are most effective for 218

achieving the ultimate goal in that scenario. There- 219
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Task Setting Content
Purpose Deliver the requested item to the vicinity of the designated character.
Delivery Items Items in the environment that can be grabbed and moved. (see item example

in Figure 2)
Customers Ten virtual human characters with different daily activities inside the build-

ing. They will move within the building for their own purposes.
Spatial Scope The reachable areas within different rooms of a three-story building.
Time Setting Real-world time, but simulation can be accelerated.
Customer Descrip-
tion

Self introduction and personal image photos, such as "I’m John, a supervisor
who’s often busy with meetings and office work. ... my office is Room 2 on
second floor. ... with a middle-aged man in a white shirt ... that’s me." (see
the personal image in Figure 2).

Scenario Map 2D projected obstacle map of scenario, and pre-sampled panoramic photos
at various locations on the map (see panoramic image of sampling position
in 2D obstacle map in Figure 2, which is built in advance or in real-time).

Robot Positioning We adopt relative localization rules for robot positioning, where its initial
position is always set to (0, 0, 0).

Robot Actions Movement, joint control, and manipulation.
Robot Skills Local navigation by coordinate, 6-DOF visual grasping, and pose adjust-

ment.
Sensors Two RGB-D cameras (head and arm), tactile sensors.
Customer Instruc-
tion

Describe the goal, Identify the target object, describe its location, and
confirm the target person of the delivery. For example, “Fetch the blue-
packaged water bottle from the wooden dining table in the kitchen and
deliver it to Imani, the woman in the blue shirt with black glasses, in the
kitchen room”.

Success Criteria Place the target object within a 3 meter range of the target person.
Constraints Completion within 8 minutes without any dangerous collisions and unavail-

ability of environmental metadata.

Table 1: Task settings and configuration of human-centered in-building embodied delivery task.

fore, for this delivery task, we strive to provide220

as comprehensive and diverse sensor information221

as possible to assist the robot in completing the222

task. Additionally, we continuously optimize the223

scenario and task design based on feedback from224

dataset users by adding more information channels.225

4 Simulation Environment226

Virtual environments typically need to meet the227

task requirements. Clearly, to depict corresponding228

physical indoor scenarios, existing environments229

are still constrained by factors such as the richness230

of the scene, the complexity of space, character231

portrayal, continuous environmental state systems,232

long-term operation, and the setup of items and233

robots. Therefore, we construct a brand-new vir-234

tual environment to support the tasks, as shown in235

Figure 3. Next, we will introduce the main features236

of the simulation environment.237

Social Scenarios & Space with Height. As we 238

mentioned, we need diverse common social sce- 239

narios. In existing work, we often see common in- 240

door spaces such as kitchens, bedrooms, and living 241

rooms, but less common are places like supermar- 242

kets, medical rooms, and studios. However, activi- 243

ties in different places vary greatly, and the premise 244

of depicting diverse human activities in commercial 245

scenarios is to include these settings. Moreover, it 246

is the people constantly moving within these spaces 247

that give them unique semantics. Additionally, we 248

notice that existing work often confines scenes to a 249

"flat" plane, with rare descriptions of "space with 250

height", greatly limiting the spatial utilization of 251

virtual environments in depicting complex scenes. 252

Our virtual environment takes these factors into 253

consideration. 254

Human Character. As mentioned earlier, the 255

behavior of humans in commercial scenarios needs 256
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Figure 3: PRS environment includes three-story buildings, items, human characters, and robots.

emphasis. The activities of the robot actually re-257

volve around human activities. Therefore, in our258

virtual environment, we support an LLM-driven259

human character system (Non-Playable Character,260

NPC agents design) that controls goals, actions,261

and interactions. In this task, we mainly adopt262

various forms of daily activities (working, resting,263

simple socializing, etc.) to depict the actions of264

characters. Since the delivery task is closely re-265

lated to the positions of characters, we primarily266

drive the movement of characters within the build-267

ing based on schedule information.268

Continuous Environment State. Our virtual en-269

vironment is primarily driven by a physics engine at270

its core, containing items with physical properties,271

so almost all movements are continuous (with ex-272

ceptions for specific object state changes controlled273

by scripts and interfaces). Even when we use robot274

control interfaces similar to the ALFRED style275

(Shridhar et al., 2020) (AI2-THOR(Kolve et al.,276

2017)), such as ”pick_obj()”, the movements it ex-277

ecutes require real-time implementation through278

continuous body control.279

Robot Configuration. We use a robot with280

grasping and movement capabilities. It is equipped281

with visual perception (RGB-D) and simple tactile282

perception based on rigid body collision. At the283

core, we have prepared various control methods284

for it. Users can control the robot either through285

an ALFRED-style interface (typically invoked by286

high-level action and LMMs with object segmenta-287

tion) or through a ROS-like interface.288

5 Dataset 289

We elaborate on the data collection process, encom- 290

passing the generation of language instructions, 291

item placement, and scene construction. Addition- 292

ally, we present the data annotation methodology 293

and results. Tasks, environments, and agents all 294

adhere to the PRS environment settings. The task 295

scenes are located within a three-story building in 296

the PRS environment. Target objects encompass 297

all interactive items, while functional equipment 298

follows physical engines and basic logic. Language 299

instructions originate from a task generator, refined 300

and reviewed manually through an LLM to ensure 301

accuracy and diversity (more details see Appendix 302

C). Although NPCs can move and act indepen- 303

dently in the environment (Li et al., 2023b), and 304

numerous interactive items and devices are present, 305

we can configure and access all their states from 306

the ground up, such as naming identifiers, spatial 307

coordinates, and physical attributes. Based on the 308

comprehensive environmental data obtained, we 309

can generate tasks in real-time using preset scal- 310

able templates (Liu et al., 2019) and polish task 311

instructions with a large language model. More- 312

over, the environment’s data interface can easily 313

acquire relevant task information to evaluate the 314

computation methods for generated task results. 315

(1) We constructed an environment-related PRS 316

corpus, collecting verbs, nouns, and adverbs corre- 317

sponding to actions, items, and locations. This cor- 318

pus includes manually designed scalable templates 319

that map verbs, nouns, and adverbs into sentences 320

related to the current environment using reason- 321
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Benchmark PRS(Ours) ALFRED EQA VirtualHome BEHAVIOR-1K Habitat iGibson

(Shridhar et al., 2020) (Das et al., 2018) (Puig et al., 2018) (Li et al., 2024) (Puig et al., 2023) (Shen et al., 2021)

Directive ✓ ✓ ✓ - ✓ ✓ -
Continuous State ✓ - - - ✓ ✓ ✓
Articulated Joints ✓ - - - ✓ - -
Mobile Characters ✓ - - ✓ - ✓ ✓
Autonomous NPC ✓ - - - - - -

Elevator ✓ - - - - - -
Long-term ✓ - - - - - -

Human-centered ✓ - - - - - -
Multi-floor ✓ - - - ✓ - -

Table 2: Comparison between PRS delivery tasks and existing popular embodied simulation dataset.

Test Set Validation Set

Task 918 5730
Instructions 1836 11460
Annotation GPT-4 GPT-4
Check Manual GPT-4
Ground Truth - ✓
Scenes 19 24
Object Categories 42 43

Table 3: The validation and test sets of the dataset en-
compass distinct NPC behaviors, task contexts, and
linguistic instructions. We validate against potential
common scenarios as a benchmark for solutions without
emphasizing training and fine-tuning. However, the vali-
dation set contains appropriately annotated information,
which can also be used as a training set.

able grammatical rules (Xu et al., 2022). (2) We322

continuously generate task statements in the run-323

ning simulated environment, refine and polish them324

using an LLM, and finally screen them to obtain325

13296 language instructions, as shown in Table 3.326

Unlike household tasks in Table 2, we specialize327

in the indoor environment of buildings and pay328

particular attention to how robots can deliver items329

across different floors and rooms in the building330

based on the needs of service recipients.331

6 Baseline Method332

The baseline method comprises multiple modules333

(Min et al., 2021), including the language, vision,334

and action modules, as shown in Figure 4, for tasks335

such as language parsing, navigation search, scene336

understanding, object recognition, segmentation,337

action, localization, and object manipulation.338

6.1 Language Module 339

The language module utilizes a large language 340

model (LLM) to process instructions ins and char- 341

acter introductions intro, outputting executable se- 342

quences based on pre-defined prompts (Wei et al., 343

2022), which specify the extraction of target infor- 344

mation and visual feature from the task context, 345

LLM(ins, intro, prompt) = res. The prompt 346

defines the output format with the fixed symbols 347

and includes result examples to facilitate the align- 348

ment of LLM output (Zamfirescu-Pereira et al., 349

2023). For instance, using the regular expres- 350

sion to decode relevant information, RE(res) =< 351

obj, recepobj , roomobj , npc, roomnpc >. The 352

executable sequences generated by LLM break 353

down the task into subtasks, including corre- 354

sponding information, such as target object search 355

[obj, ecepobj , roomobj ] (e.g., "white cup, dinner 356

counter, kitchen"), grasping [obj], delivery to 357

[roomnpc] (e.g., "office"), and person search [npc] 358

(e.g., "a man with grey coat"). Subsequently, the 359

robot sequentially performs these subtasks to ac- 360

complish the overall task accurately. 361

6.2 Vision Module 362

With information ("a white cup") from the language 363

module, the robot localize the specified object. The 364

intricate spatial layout within indoor environments 365

results in diverse positional arrangements of inter- 366

active objects, posing challenges for visual mod- 367

els in object detection. Furthermore, identifying 368

diminutive, occluded, or container-enclosed objects 369

presents a formidable obstacle (Zhu et al., 2021). 370

To enhance search and recognition efficiency, we 371

incorporate large receptacle information ("dinner 372

counter") derived from task instructions, or "the 373
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Figure 4: Modular method for the robot delivery task with LLM and LMM. LLMs and LMMs can achieve robotic
perception and environmental interaction by invoking ROS-like APIs of PRS simulator.

apple on the dining table", "the water cup on the374

desk." Nonetheless, conducting direct object recog-375

nition within a room for item retrieval may yield376

considerable errors (Inoue and Ohashi, 2022). Sup-377

pose the confidence threshold is set excessively378

high. In that case, the visual model may struggle379

to identify the target object due to the item’s un-380

known specific location and the potential distance381

of the robot from it. This can result in a limited382

number of pixels occupied by the object within383

the field of view, making it challenging to distin-384

guish its visual features. Conversely, setting the385

confidence threshold too low can readily lead to386

erroneous identifications, such as mistakenly iden-387

tifying objects with similar features as the intended388

target. Therefore, upon searching the target object389

in a room, the robot performs scene understanding390

using a large multimodal model (LMM) (Lu et al.,391

2023). Utilizing the current image captured by the392

robot’s camera and the textual description of the393

target object as input, coupled with a constraining394

prompt such as "Are there a white cup or large din-395

ing counter in the picture? Please answer ’yes’ if396

so, and ’no’ if not." The robot rotates its head cam-397

era to observe the environment and employs the398

output of the LMM to ascertain the target object’s399

presence within its field of view. Once the detec-400

tion of the target object is detected by the LMM,401

the robot proceeds to either approach the object402

or utilize a visual model (Kirillov et al., 2023) to403

recognize and segment its mask. Leveraging the ro-404

bust text-image alignment capabilities of LMM al-405

lows the robot to make reasonable decisions while406

mitigating ineffective visual processing outcomes.407

The visual module capitalizes on the LMM’s capac-408

ity to align comprehensive visual data with object 409

descriptions. Conversely, the small-scale visual 410

model focuses on local information to accurately 411

segment the mask of the target object, thereby fa- 412

cilitating an efficient and precise search process. 413

6.3 Action Module 414

Robots rely on environmental information and task 415

context to execute navigation, approach, and grasp- 416

ing actions. Following the spatial directives pro- 417

vided in the output of the language module, the 418

robot navigates to the designated area, such as "the 419

kitchen." By aligning the target room information 420

extracted from the instructions with the scene on 421

the semantic map, the robot uses the A-star algo- 422

rithm to plan an approximate route from its current 423

location to the target room and navigates accord- 424

ingly (Murray and Cakmak, 2022). With the seg- 425

mented mask of the target object through the search 426

strategy and recognition process, in conjunction 427

with depth data captured by the depth camera, the 428

robot calculates the approximate distance between 429

itself and the target object. Should the distance ex- 430

ceed the desired range (1m-3m), the robot devises 431

a local route based on map data to maneuver close 432

to the target object. It adjusts its position and ori- 433

entation by aligning its camera and body with the 434

target object (item or NPC). The robot accurately 435

identifies the item and acquires its 2D mask for 436

object grasping, serving as input parameters for the 437

PRS grasping API to complete the target grasping 438

action (Corke and Haviland, 2021). 439
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Method Task SR Parsing Manipulation Human Search Time Spent

Rule-Based + GD 3.4 25.9 14.7 21.1 3.15
GLM-4V 18.7 68.3 45.7 78.6 4.68
GLM-4V + GD 23.7 65.2 53.4 83.2 4.27
GPT-4V+ GD 28.5 69.7 57.1 85.2 5.13
GPT-4o + GD 32.2 71.7 59.2 88.7 4.59

Table 4: Results on test set. Method includes various models for the baseline method, and GD is Grounding
DINO(Liu et al., 2023) object detection model. Task SR is the success rate (SR) of the complete robot delivery task,
Parsing is the SR of language instruction parsing to correct target information, Manipulation represents object
grasping SR, Human Search is human character search SR, and Time Spent is time used (minute) on successful
task execution. The LMM API used in the experiments is provided by the 2024 version.

7 Experiments440

7.1 Evaluation Metrics441

Two conditions determine the success of a deliv-442

ery task: 1) successfully grasping the target object,443

which requires providing an accurate mask of the444

target object within an appropriate range, and 2)445

locating the target character, which is considered446

successful if the robot is within a Cartesian dis-447

tance of 3m from the character. The ultimate goal448

is to deliver the object to the vicinity of the target449

character. Therefore, the delivery task can be de-450

composed into two sub-tasks, and the experiment451

will evaluate the efficiency and success rate (SR) of452

completing these sub-tasks (Shridhar et al., 2020).453

7.2 Experimental Setup454

Task success is fulfilling all the prescribed success455

conditions in the instructions. During task exe-456

cution, the execution results are checked after all457

agent robots complete their actions. Each agent458

is allowed only one attempt and cannot repeat the459

execution. Any incorrect use of interface param-460

eters, collisions with obstacles, interactions with461

the wrong target, or dangerous movements will462

result in task failure. The task execution time is463

limited to 8 minutes (Li et al., 2024; Shridhar et al.,464

2020) (balance the limit and tractability for the465

task). Access to underlying environmental data is466

not permitted, but all robot interfaces provided by467

the PRS simulator are available. The PRS simulator468

offers interfaces for robot control and sensing. For469

the experiment, LLM employs GPT-4 and GLM-4470

(Zeng et al., 2022) (given the similarity in instruc-471

tion processing capabilities between GLM-4 and472

GLM-4V, they are not separately listed in the table),473

LMM utilizes GPT-4V(ison) (Yang et al., 2023b)474

and GLM-4V (Wang et al., 2023), and the visual475

detection model uses Grounding DINO (Liu et al., 476

2023), all in a zero-shot setting. The performance 477

of each sub-module will be tested separately with- 478

out other modules’ results. 479

7.3 Result 480

With a test set of 918 tasks, the efficiency of each 481

module was calculated in the experiment, includ- 482

ing language parsing, object search, and virtual 483

human character recognition. Experimental results 484

in Table 4 were compared, and the GPT-4o-based 485

method achieved a task success rate of 32.2%. 486

8 Conclusions 487

This work integrates previous work on skill- 488

learning scenarios and explores a specific in- 489

building scenario with human-robot interaction at 490

its core. Specifically, we have constructed a brand- 491

new immersive environment system for human- 492

centred in-building delivery services, including 493

multi-level spatial buildings, diverse functional 494

rooms, multi-role behavior systems, robots, and 495

item systems, as well as a delivery service dataset 496

and a baseline system. We believe that a signif- 497

icant and promising direction for the future is to 498

integrate existing skills to simulate specific, deter- 499

mined, commercial, high-fidelity simulation scenar- 500

ios, ultimately aiming to drive the development of 501

community technology toward commercialization 502

and realism-aligned robot service. 503

9 Limitations 504

Despite our efforts to address key issues in robotic 505

task design, several limitations are present in our 506

work. The simulation environment, though com- 507

prehensive, is confined to a three-story building, 508

which restricts the scope and generalizability of 509
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our findings to all real-world scenarios. While510

we incorporated a variety of scene categories, the511

number of environments remains limited, and the512

multi-level space architecture we developed lacks513

sufficient diversity. Additionally, the autonomous514

NPCs used for human-robot interaction have con-515

strained capabilities due to performance limitations.516

Furthermore, the behavior of NPCs has been sim-517

plified to reduce computational costs, which may518

impact the realism of the simulated environment.519

Additionally, the language prompts are restricted520

to English, which limits the diversity of the dataset,521

and the study focuses on a single complex simu-522

lated environment, in contrast to the unpredictabil-523

ity and diversity found in real-world settings. De-524

spite manual verification, the content generated by525

the large language models (LLM) and large multi-526

modal models (LMM) may still exhibit biases and527

imbalances.528

10 Ethical Considerations529

Ethical concerns are central to our work, especially530

in data collection and robot deployment. While531

we have undertaken manual reviews to minimize532

biases, the dataset may still contain unintentional533

biases that may not reflect the full range of user534

needs, particularly those outside mainstream indoor535

scenarios. Additionally, although our study adheres536

to existing laws and regulations governing robot537

usage, deploying mobile robots in indoor spaces538

may raise privacy concerns for users and others.539

The human-robot interaction aspect of our robot540

delivery task could also introduce potential safety541

hazards and risks of object damage in real-world ap-542

plications. Although ethical considerations are not543

explicitly discussed in the paper, we emphasize the544

importance of ensuring no privacy infringements or545

data breaches occur in the simulation and dataset.546

Researchers utilizing these resources are required547

to agree to basic terms, taking responsibility for548

any outcomes. We encourage open-sourcing of the549

code to promote transparency and foster commu-550

nity collaboration.551
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A Benchmark865

To investigate preliminary commercial scenarios866

of robotic applications, we introduce the human-867

centered in-building embodied delivery task, aim-868

ing to deliver specified items to the vicinity of the869

target human character. We developed the PRS870

simulation environment and collected a dataset re-871

lated to delivery tasks. Consequently, the delivery872

task benchmark encompasses a simulator, environ-873

ment API, dataset, evaluation metrics, and baseline874

methods, as follows:875

.
prs-delivery

simulator
Linux
Windows
macOS

dataset
validation set
test set

environment information
semantic map
NPC information
Robot.urdf
environment setting

baseline Method
LLM

LMM
object detection model
main

evaluation
API document

B Simulator 876

In light of our conceptualization of robotic service, 877

and in order to better simulate comprehensive ap- 878

plication scenarios, we have developed the Polar 879

Research Station (PRS), a three-story building con- 880

taining different rooms, providing (1) a PhysX- 881

supported physical environment, (2) autonomous 882

characters for performing human behaviors, (3) 883

robots with perception sensors and interaction abil- 884

ities, (4) interactive objects and devices with contin- 885

uous state changes, and (5) available API for LLMs 886

and LMMs. Figure 6 shows rich scenes that are 887

close to the real world. The PRS rendering engine 888

utilizes Unity and offers a diverse range of Python 889

APIs. The resource is user-friendly (Python-only) 890

and can even run without a GPU. 891

C Task Dataset 892

The dataset is represented as a JSON file in Listing 893

1, and task initialization, execution, and evaluation 894

are accomplished using the Python API. The task 895

involves a variety of objects with different styles, 896

as depicted in the Figure 7. NPCs in the environ- 897

ment engage in continuous simulated life activities, 898

generating various needs over time, such as eating, 899

drinking, working, and resting. At these moments, 900

NPCs potentially require certain items to fulfill 901

their demands (e.g., food, drinks, mobile phones). 902

Thus, we simulate robot delivery services by col- 903

lecting these needs. By querying environmental 904

data, we automatically gather a large number of de- 905

livery tasks. We refine the language content using 906

the LLM and conduct manual checks and correc- 907

tions, as shown in Figure 8. Specifically, we intro- 908

duce LMM to perform textual annotation (visual 909

feature description) of image data to decrease man- 910

ual work and increase diversity. Figure 10 indicates 911

ten distinct NPCs as the service targets, each with 912

their own profile and preferences. Figure 11 illus- 913

trates the spatial distribution of scenes within the 914

task set, demonstrating long-range visibility across 915

spaces. 916
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Figure 5: A data generation instance. We generate human activities, target objects, robot positions, task instructions,
and a complete process of robot execution based on the settings combined with large language models.

Figure 6: Two-dimensional floor plan of the Polar Re-
search Station building.

Listing 1: JSON file format for a human-centered in-
building embodied delivery task, including task parame-
ters and descriptions.

1 {917
2 "task_id": "1918

_2025_02_11T12_45_49_10_1_1"919
3 "npc_name": "Imani",920
4 "npc_id": 1,921
5 "time": "2025-02-11T12:45:49",922
6 "npc_action": "sit",923
7 "npc_position": {924
8 "x": -16.02390480041504,925
9 "y": 0.0,926

10 "z": -8.445791244506836},927

11 "target_object_name": " 928
WaterBottle_Blue_1", 929

12 "target_object_type": " 930
WaterBottleBlue", 931

13 "target_object_pos": { 932
14 "x": -16.878999710083008, 933
15 "y": 0.7600002288818359, 934
16 "z": -5.263000011444092}, 935
17 "directive": [ 936
18 "Grasp the blue water bottle 937

from the wooden dining 938
table in the kitchen and 939
bring it to me in the 940

kitchen room.", 941
19 "Fetch the blue-packaged 942

water bottle from the 943
wooden dining table in 944
the kitchen and deliver 945
it to Imani, the woman 946
in the blue shirt with 947
black glasses, in the 948
kitchen room."], 949

20 "npc_description": "I'm Imani, a 950
scientific advisor at a 951

polar research station. My 952
room number is 1, and my 953
office is located in office 954
1. I often lead a regular 955
life. My fashion preferences 956
include blue shirts and 957

black glasses." 958
21 } 959
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Figure 7: Interactive objects for grasping and delivery with physical properties and authentic textures.

C.1 Data Augmentation960

The delivery tasks encompass 10 NPCs, 23 rooms,961

and 47 types of items. We utilize various NPC962

information (e.g., names, occupations, habits) and963

actions, and alter the positions of NPCs, items,964

and robots to enrich the benchmark distribution.965

For each robotic delivery task, natural language966

instructions with relevant context are provided to967

simulate the robot’s instruction following.968

C.2 Dataset Split969

Unlike past supervised learning settings, we pro-970

pose that embodied tasks in simulated scenar-971

ios need not be based on the independent iden-972

tically distributed (IID) assumption. Consequently,973

we modify the setting from the traditional "train-974

develop-test" to "free mode-develop-test," omitting975

an explicit training set (with ground truth informa-976

tion included in the validation set for training or977

fine-tuning purposes). In the free mode, researchers978

can freely collect data without restrictions to de-979

velop and debug solutions, such as visual recog-980

nition, scene understanding, and search strategies.981

We argue that this setting is more advantageous982

for large multimodal models (zero-shot) and closer983

to real-world scenarios, where it is impossible to984

pre-acquire all user scenarios but rather to handle985

various potential scenarios with general solutions.986

C.3 Accessibility987

We have made the PRS simulator and robot de-988

livery dataset available and accessible to all. The989

simulator is provided in Linux (Ubuntu), macOS,990

and Windows, with continuous updates and mainte-991

nance. We explicitly offer a usable API and usage992

examples. Additionally, we have opened an online993

result evaluation for the validation and test sets by 994

Eval AI. 995

C.4 Responsibility 996

We are responsible for the content of the simula- 997

tor and dataset, ensuring no infringement or pri- 998

vacy breaches. Researchers must agree to our basic 999

terms before usage, which include taking respon- 1000

sibility for outcomes resulting from utilizing these 1001

resources for development, deployment, and re- 1002

search. We encourage researchers to open-source 1003

their code to facilitate community efforts. 1004

D Delivery Process 1005

Figure 9 shows that the task can be decomposed 1006

into several subtasks, each with explicit goals and 1007

termination conditions. The robot delivers items 1008

amidst dynamic environmental changes and NPC 1009

behaviors. Additionally, the environment features 1010

numerous interactive objects, resulting in unpre- 1011

dictable circumstances throughout the task, as il- 1012

lustrated in Figure 12. 1013

D.1 Robotic Skill 1014

In the delivery task, some executions are simplified 1015

for industrial and standard processes. Robot 1016

manipulation and navigation remain significant 1017

challenges, with different AI models addressing 1018

various robot types. We focus on comprehen- 1019

sive simulation of scenarios and performance 1020

evaluation without delving into the details of 1021

robot skill learning. Consequently, based on 1022

robotics standards, we provide a high-level API 1023

(ROS-like, e.g., prs.agent.goto_target_goal((- 1024

2.25, 0.1, -7.25), radius=1.7), 1025

prs.agent.object_interaction(input_matrix=segment 1026
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Figure 8: Automatic generation pipeline of the task instruction with corpus, templates, and LLM.

matrix, manipulation=1, camera_type=0)) for1027

navigation and grasping. Specifically, we offer a1028

rough obstacle map and semantic and observation1029

image sampling (facilitating scene comprehension1030

and room differentiation), obviating the need1031

for robot SLAM in large spaces during each1032

task execution. For the robot to successfully1033

grasp the target object, a correct segment mask1034

must be provided within a 1.2m range, with1035

the PRS environment already offering built-in1036

coordinate transformation, inverse kinematics (IK)1037

calculations, and joint control. Thus, the task1038

solutions utilize ROS-like APIs, which abstract1039

the specific robot model and align more closely1040

with general algorithms. The ROS-like API1041

setup allows for robot morphology and structure1042

modifications at a low cost, enhancing sim2real1043

performance.1044

D.2 Baseline Reproducibility1045

We employ a zero-shot setting (LLM, LMM, zero-1046

shot object detection model) instead of model fine-1047

tuning in the baseline method. We have released the1048

baseline and dataset document. This setup holds1049

significant advantages in reproduction and sec-1050

ondary development. Besides replacing models, re-1051

searchers can explore better prompts, target search-1052

ing, navigation strategies, semantic alignment, con-1053

text processing, etc., to enhance the robot’s effi-1054

ciency.1055

E Contributions 1056

Threads Frames Per Second (FPS)

Nums RTX3090 RTX4050 RTX4090

1 93.1 62.7 123.5
2 62.4 45.6 96.4
3 43.9 28.4 67.1
4 30.5 16.7 45.2
5 21.4 - 33.7
6 - - 26.3

Table 5: Performance of the PRS environment under
different thread counts and GPU. The PRS environment
supports parallel simulation and achieves high frame
rates across multiple hardware configurations. Based
on a robust physics engine (PhysX), it enables robots to
collect data for vision models or attempt manipulations
for reinforcement learning (RL). We have considered
agent training (RL or multimodal data collection) within
the PRS environment.

Our work introduces a novel simulation environ- 1057

ment that advances robotic learning and interaction 1058

in complex, long-term, and human-centered set- 1059

tings. Unlike previous benchmarks, we emphasize 1060

realistic environmental contexts, time-sensitive in- 1061

teractions, and human-robot collaboration. Key 1062

contributions include: 1063
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E.1 Robotic Manipulation Framework1064

Grasping is fundamental to robotic manipulation,1065

placing, moving, opening, and closing. In error1066

analysis, most failures arise from unsuccessful1067

grasps due to action failure or target misidentifi-1068

cation. High-level commands primarily cause ma-1069

nipulation errors, as low-level inverse kinematics1070

and joint dynamics seldom lead to significant fail-1071

ures.1072

E.2 Enhanced Simulation Environment1073

Unlike Behavior-1K, our simulation integrates mul-1074

tiple rooms into multi-layered buildings and in-1075

corporates a time dimension, enabling continuous1076

learning over long-term simulations. Compared1077

to Habitat 3.0, we introduce LLM-driven NPCs1078

with needs-based autonomous behaviors, support-1079

ing human-robot collaboration and realistic service-1080

oriented tasks.1081

E.3 Physics-Driven Robotics Benchmark1082

Built on a robust physics engine, the PRS envi-1083

ronment supports robotic data collection for vision1084

models and reinforcement learning (RL). We pro-1085

vide 40+ object categories for manipulation verifi-1086

cation and fine-tuning, improving the generaliza-1087

tion of robotic grasping models. Additional 3D1088

resources further enhance robotic interaction capa-1089

bilities.1090

E.4 Realistic Task Design1091

In contrast to Omnigibson (Behavior-1K), we de-1092

fine robotic delivery tasks with human simula-1093

tion, environmental context, complex spatial se-1094

mantics, and long-term sequences rather than iso-1095

lating navigation or manipulation as standalone1096

tasks. Our benchmark integrates autonomous NPCs1097

and multi-room, multi-story environments to reflect1098

real-world task demands, supporting long-term sim-1099

ulations and practical robotic service modeling.1100

E.5 Scalability and Generalization1101

With a modular architecture and efficient rendering1102

pipeline, we continuously expand scenarios and1103

architectural structures to enhance model training1104

and generalization testing. Given that no simula-1105

tion fully replicates the real world, we assess zero-1106

shot robotic performance in the PRS delivery task1107

to evaluate LMM-based robotic systems’ ability to1108

provide practical services. We provide standard-1109

ized APIs, including ROS-like interfaces and LMM1110

integration, facilitating real-world deployment.1111

E.6 Agent Training and RL Support 1112

The PRS platform enables RL and multimodal 1113

data collection, offering APIs for sensor signal re- 1114

trieval (RGB-D, tactile), environmental data access, 1115

and motor control (discrete motion, joint angles, 1116

forces). Interactive elements such as articulated 1117

objects, NPCs, elevators, and virtual devices enrich 1118

training environments. An automatic task gener- 1119

ator enhances usability, allowing large-scale task 1120

generation for model validation. 1121

E.7 Performance and Efficiency 1122

The PRS environment maintains a physics frame 1123

rate of 60 fps, meets RL requirements, and achieves 1124

rendering rates exceeding standard RGB-D cam- 1125

eras. Motor-level and joint control APIs support 1126

precise robotic learning and benchmarking. 1127

E.8 Zero-Shot Benchmarking for LMMs 1128

Our baseline employs zero-shot evaluation with- 1129

out fine-tuning, testing the general understanding 1130

capabilities of Large Multimodal Models (LMMs) 1131

in robotic tasks. LLM-generated language instruc- 1132

tions resemble real-world dialogues and undergo 1133

manual review to remove biases and ambiguity. 1134

Customizable instruction generation enhances task 1135

scenario diversity. 1136

E.9 Occlusion Handling in 3D Environments 1137

Instead of relying on point cloud completion, our 1138

approach allows robots to change viewpoints dy- 1139

namically to locate objects, leveraging multiple 1140

perspectives for robust target identification. 1141

Connected, Multi-Layered Spatial Contexts Un- 1142

like prior works such as ProcTHOR, our environ- 1143

ment features semantically rich multi-layer build- 1144

ings rather than isolated rooms, incorporating au- 1145

tonomous NPCs with daily routines. This fosters 1146

realistic robotic interactions, supporting human- 1147

like task engagement and long-term goal execution. 1148

Error Analysis in Robotic Delivery By evaluating 1149

sub-task performance in baseline models, we iden- 1150

tified key failure sources: 1151

• 40%: Manipulation failures (grasping errors) 1152

• 29%: Language inference errors 1153

• 18%: Object localization failures 1154

• 13%: Inability to locate target NPCs 1155

Since delivery success depends on completing all 1156

sub-tasks, improving each module enhances overall 1157
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performance. Our findings highlight grasping and1158

object search as significant challenges in robotic1159

service applications.1160

E.10 LMMs in Robotics1161

LMMs provide extensive world knowledge and rea-1162

soning abilities, supporting instruction parsing, be-1163

havior planning, perception, and decision-making.1164

Unlike traditional robotic learning, LMMs elimi-1165

nate the need for frequent retraining of visual and1166

language models. In our PRS delivery benchmark,1167

a zero-shot LMM-based system achieved a 32.2%1168

task success rate, demonstrating LMMs’ potential1169

while underscoring remaining challenges in object1170

search and manipulation.1171

E.11 Distinctions1172

Our work advances robotic simulation by inte-1173

grating realistic human-robot interactions, scalable1174

task modeling, and robust environmental dynamics,1175

bridging the gap between academic research and1176

real-world deployment.1177

E.11.1 Autonomous NPCs1178

Virtual human characters that engage in indepen-1179

dent activities based on environmental context1180

rather than serving as mere obstacles.1181

E.11.2 Long-Term Simulation1182

The environment supports the continuous execution1183

of multiple tasks within the same spatiotemporal1184

setting rather than resetting after each task instance.1185

E.11.3 Human-Centered Tasks1186

Robotic execution is guided by contextual informa-1187

tion about specific NPCs rather than purely linguis-1188

tic instructions.1189

F Limitations1190

Although we have considered data augmentation1191

and variations in style, we only constructed a three-1192

story building and thus cannot cover all scenarios.1193

Our dataset content has been manually verified,1194

but the generated content of LLM and LMM may1195

still exhibit bias and imbalance. To reduce com-1196

putational expense, we simplified NPC behaviors.1197

We simulated a robot application scenario, but the1198

real world is far more complex and unpredictable.1199

LLM prompts include different tone and content1200

requirements to synthesize diverse and universal1201

data, albeit limited to English content.1202

G Future Work 1203

In-building delivery is a realistic commercial sce- 1204

nario, differing from the popular factory assembly 1205

line scenario in that it involves more considera- 1206

tion of human-robot interaction. Therefore, in our 1207

future work, we will introduce (1) richer user inter- 1208

action behaviors, such as users being able to send 1209

real-time location hints to the robot, and (2) longer- 1210

term user behavioral data, enabling the robot to 1211

summarize user behavior patterns for more precise 1212

service autonomously. (3) More diverse scenarios, 1213

items, and tasks. Our business scenario design, 1214

virtual environment setup, and dataset collection 1215

will iterate and continuously improve alongside re- 1216

search efforts in the community, commercial devel- 1217

opments, the robotics industry, and user research. 1218

Figure 9: A flowchart visually representing the sequen-
tial steps and decision points involved in the human-
centered in-building embodied delivery task.
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Figure 10: The frequency of NPC appearances with different jobs and habits in the PRS dataset.

Figure 11: Statistics of different scenes and interactive object categories in the dataset.

Figure 12: Demonstrations showcasing examples of the delivery task in PRS scenarios.
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