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Abstract

Recently, the concept of embodied intelligence
has been widely accepted and popularized, lead-
ing people to naturally consider the potential
for commercialization in this field. In this work,
we propose a specific real-world scenario sim-
ulation — human-centered in-building embod-
ied delivery. Furthermore, for this scenario,
we have developed a brand-new virtual envi-
ronment system from scratch, constructing a
multi-level connected building space modeled
after a polar research station. This environ-
ment also includes autonomous human char-
acters and robots with grasping and mobility
capabilities, as well as a large number of inter-
active items. Based on this environment, we
have built a delivery dataset containing 13k
language instructions to guide robots in pro-
viding services. We simulate human behavior
through human characters and sample their var-
ious needs in daily life. Finally, we proposed
a method centered around a large multimodal
model to serve as the baseline system for this
dataset. Compared to past embodied data work,
our work focuses on an immersive virtual envi-
ronment centered around human-robot interac-
tion for industrial-grade scenarios. We believe
this will bring new perspectives and exploration
angles to the embodied community. Our code,
dataset, and benchmark are publicly available.

1 Introduction

With the rapid development of embodied robotic
technology, people are gradually becoming aware
of its tremendous potential in various fields. Con-
currently, there has been a surge of discussions and
explorations within the community regarding em-
bodied skill scenarios, such as navigation (Wang
et al., 2024; Hao et al., 2020), manipulation (Li
et al., 2023c; Jin et al., 2024), and instruction fol-
lowing (Brohan et al., 2022b; Yenamandra et al.,
2023), leading to the proposal of a series of models.
Although the skill scenarios are diverse, people are

concerned that the current skill scenarios are de-
signed to be overly simplistic for realism-aligned
application scenarios (Fu et al., 2024). And there
exists a noticeable gap between skill scenarios and
real-world application scenarios. Specifically, it is
widely believed that existing skill scenarios may
be inadequate in fully reflecting the potential is-
sues encountered in actual environments and do
not accurately capture users’ more precise interac-
tion needs with embodied robots (Bousmalis et al.,
2023). Therefore, we argue that this inconsistency
with real-world commercial scenarios has hindered
the emergence of novel topics within the embodied
Al community in recent years. Therefore, we sug-
gest that exploring scenarios closer to real-world
applications can help further the development of
the embodied Al community (Zador et al., 2023;
Yang et al., 2023a).

In this work, we focus on simulating and data
construction for a highly anticipated express de-
livery service scenario called human-centered in-
building delivery. In today’s society, precise and ef-
ficient delivery services are crucial to the success of
many top companies. However, unlike large-scale
transshipment centers and external express deliv-
ery services that rely on public transportation, the
last step of the delivery stage faces significant chal-
lenges. For instance, private spaces like companies
in buildings or high-security residential areas often
prohibit external delivery services due to various se-
curity and management considerations. Moreover,
people typically move around inside buildings to
meet their needs and purposes. This delivery pro-
cess can impose tangible pressure on customers.
Therefore, precise item delivery to specified per-
sons in private spaces represents a significant op-
portunity for robotic services. In order to explore
this scenario, our contributions can be divided into
the following parts:

Scenario & Task Definition. The real-world in-
door service scenario is characterized by the need
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Figure 1: Human-centered in-building embodied delivery describes a task that originates from a real commercial
delivery scenario. It mainly refers to the precise delivery service for users in private spaces where external delivery
services cannot be used, achieved through embodied robots. This task typically requires the robot to locate the
target item based on the user’s needs (e.g., grasp a water bottle from the kitchen and bring it to me.) across multiple
rooms within the three-story building (a polar research station building, see the thumbnail in the top right corner)
and ultimately deliver it to the designated location/person. The robot needs to consider the user’s context (behavior
or schedule), as the user will be moving around the building according to their own goals during the delivery.

to account for numerous complex and intervening
factors. We analyze the scenario and pinpoint the
critical elements of the delivery service, as shown
in Figure 1. Followed by formulating task objec-
tives and definitions, which includes establishing
the task’s premises, context, framework, and scope
(Section 3).

Simulation Environment. Grounded in the task
setting and business requirements, we have con-
structed from scratch a novel simulation environ-
ment modelled after a real-world polar research
station (referred to as the Polar Research Station
Environment, PRS). This environment comprises
a three-story building interconnected by stairs and
a functional elevator. It integrates common human
societal scenarios into a community-like pattern,
such as bedrooms, gyms, offices, laboratories, med-
ical rooms, wards, living rooms, leisure spaces, etc.
This design aims to cover as a wide range of ev-
eryday scenarios within the building as possible.
Additionally, to simulate daily activities for deliv-
ery services, the environment includes over a dozen
virtual human characters engaging in activities ac-
cording to their individual intentions. Furthermore,

we provide a range of interactive objects to support
the tasks. Lastly, we have designed a robotic sim-
ulation with grasping and moving capabilities to
serve human character agents (Section 4).

Dataset. In constructing delivery service data,
we initially utilize the large language model (LLM)
to generate reasonable daily activities and varied de-
mands for virtual characters (Non-Playable Charac-
ter, NPC) based on their profiles. Consequently, the
robot is required to locate and deliver the appropri-
ate objects to meet the human characters’ demands
and accomplish task objectives. We continually
generate diverse data by modifying character needs,
daily routines, and target objects. Furthermore, we
incorporate a manual review and refinement stage
to ensure the balance of the task data (Section 5).

Baseline. We propose an LMM-based approach
as the baseline method, employing a modular ar-
chitecture encompassing language instruction anal-
ysis, multimodal target search, and robotic action
execution (Section 6).

Therefore, we will gradually introduce these con-

tents. Due to our substantial workload, additional
content will be included in the Appendix.



2 Background

In recent years, the concept of embodied Al has
been widely recognized and popularized (Das et al.,
2018; Gan et al., 2021; Brohan et al., 2022a, 2023).
People have been actively exploring the capabil-
ities of this new form of intelligent entity (Wu
et al., 2024a), such as embodied instruction fol-
lowing (Pashevich et al., 2021; Li et al., 2023d;
Padmakumar et al., 2022), visual navigation (Hao
et al., 2020), and manipulation grasping (Wu et al.,
2024b). Furthermore, with the introduction of
large models, significant progress has also been
made in the field (Mousavian et al., 2019; Mu-
rali et al., 2020). However, while researchers, in-
vestors, and engineers generally believe that ex-
isting skill-driven scenarios may demonstrate the
potential of embodied robots (Jiang et al., 2022;
Gao et al., 2022), their performance in comprehen-
sive business scenarios remains uncertain, leading
to widespread concern.

To mitigate this issue, we believe that introduc-
ing simulations of commercial scenarios might be
a potential solution. The main difference from
current skill-learning-oriented scenarios (Padalkar
et al., 2023; Mandlekar et al., 2023) is that commer-
cial scenarios typically prioritize meeting human
needs. This not only requires the integration of
multiple skills (Wu et al., 2023) to achieve service
objectives but also entails incorporating elements
such as human-robot interaction (Long et al., 2023),
scenario diversity (Deitke et al., 2020), and human
behavior portrayal. The benefits of doing so are
twofold: firstly, it can make robot training more
closely resemble real commercial scenarios, and
secondly, it can introduce new, more specific topics
to the community, further promoting the commu-
nity’s evolution towards commercialization.

Furthermore, we systematically examined a
large number of existing virtual environment sys-
tems (such as AI2thor (Kolve et al., 2017), Habi-
tat (Puig et al., 2023), BEHAVIOR-1k (Li et al.,
2023a), etc.(Makoviychuk et al., 2021; Handa et al.,
2023; James et al., 2020)), which generally struggle
to simultaneously support the depiction of commer-
cial scenarios requiring interconnected multi-level
architectural spaces, diverse and multi-functional
social spaces (such as laboratories, medical rooms),
customizable interactive human character and be-
havior, a plethora of interactable items, and continu-
ously changing motion states supported by physics
engines (Todorov et al., 2012; Haviland and Corke,

2023b,a). Thus, we constructed the aforementioned
simulation environment from scratch, which is in-
spired by the polar research stations from the real
world. Thus, we choose the human-centered in-
building delivery service as an initial exploration
into simulating embodied commercial scenarios.

3 Scenario Analysis & Task Definition

In the first place, we need to analyze and abstract
the authentic scenario in order to generate action-
able tasks and a quantifiable benchmark (Li et al.,
2023a). In the context of precise in-building deliv-
ery services, referring to general robot tasks (Gao
et al., 2022; Li et al., 2024), we have identified
several potential key factors:

(1) Robots operate within a relatively fixed build-
ing space. (2) The residents within the building are
the recipients of the service, and they typically
move throughout the building based on personal
needs and objectives. Robots can access relevant
information about the recipients to better locate and
identify them. (3) The transportation service may
cover a substantial area, involving different floors
and rooms. (4) Robots typically need to understand
human instructions in order to search for and re-
trieve the correct target items, and deliver them to
the designated recipients.

Based on the aforementioned scenario require-
ments, we provide the following task definition and
settings, as shown in Table 1.
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Figure 2: The available information in task. Context
information guides robots to have a specific task goal.

The distinction in design between skill scenarios
and commercial scenarios lies in their objectives.
Skill scenarios tend to focus on exploring the effi-
ciency of a particular skill under given conditions.
On the other hand, real application scenarios explo-
ration primarily revolves around identifying which
conditions and information are most effective for
achieving the ultimate goal in that scenario. There-



Task Setting

Content

Purpose

Deliver the requested item to the vicinity of the designated character.

Delivery Items

Items in the environment that can be grabbed and moved. (see item example
in Figure 2)

Customers Ten virtual human characters with different daily activities inside the build-
ing. They will move within the building for their own purposes.
Spatial Scope The reachable areas within different rooms of a three-story building.

Time Setting

Real-world time, but simulation can be accelerated.

Customer Descrip-
tion

Self introduction and personal image photos, such as "I’'m John, a supervisor
who’s often busy with meetings and office work. ... my office is Room 2 on
second floor. ... with a middle-aged man in a white shirt ... that’s me." (see
the personal image in Figure 2).

Scenario Map

2D projected obstacle map of scenario, and pre-sampled panoramic photos
at various locations on the map (see panoramic image of sampling position
in 2D obstacle map in Figure 2, which is built in advance or in real-time).

Robot Positioning

We adopt relative localization rules for robot positioning, where its initial
position is always set to (0, 0, 0).

Robot Actions Movement, joint control, and manipulation.

Robot Skills Local navigation by coordinate, 6-DOF visual grasping, and pose adjust-
ment.

Sensors Two RGB-D cameras (head and arm), tactile sensors.

Customer Instruc-
tion

Describe the goal, Identify the target object, describe its location, and
confirm the target person of the delivery. For example, “Fetch the blue-
packaged water bottle from the wooden dining table in the kitchen and
deliver it to Imani, the woman in the blue shirt with black glasses, in the
kitchen room”.

Success Criteria

Place the target object within a 3 meter range of the target person.

Constraints

Completion within 8 minutes without any dangerous collisions and unavail-
ability of environmental metadata.

Table 1: Task settings and configuration of human-centered in-building embodied delivery task.

fore, for this delivery task, we strive to provide
as comprehensive and diverse sensor information
as possible to assist the robot in completing the
task. Additionally, we continuously optimize the
scenario and task design based on feedback from
dataset users by adding more information channels.

4 Simulation Environment

Virtual environments typically need to meet the
task requirements. Clearly, to depict corresponding
physical indoor scenarios, existing environments
are still constrained by factors such as the richness
of the scene, the complexity of space, character
portrayal, continuous environmental state systems,
long-term operation, and the setup of items and
robots. Therefore, we construct a brand-new vir-
tual environment to support the tasks, as shown in
Figure 3. Next, we will introduce the main features
of the simulation environment.

Social Scenarios & Space with Height. As we
mentioned, we need diverse common social sce-
narios. In existing work, we often see common in-
door spaces such as kitchens, bedrooms, and living
rooms, but less common are places like supermar-
kets, medical rooms, and studios. However, activi-
ties in different places vary greatly, and the premise
of depicting diverse human activities in commercial
scenarios is to include these settings. Moreover, it
is the people constantly moving within these spaces
that give them unique semantics. Additionally, we
notice that existing work often confines scenes to a
"flat" plane, with rare descriptions of "space with
height", greatly limiting the spatial utilization of
virtual environments in depicting complex scenes.
Our virtual environment takes these factors into
consideration.

Human Character. As mentioned earlier, the
behavior of humans in commercial scenarios needs
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Figure 3: PRS environment includes three-story buildings, items, human characters, and robots.

emphasis. The activities of the robot actually re-
volve around human activities. Therefore, in our
virtual environment, we support an LLM-driven
human character system (Non-Playable Character,
NPC agents design) that controls goals, actions,
and interactions. In this task, we mainly adopt
various forms of daily activities (working, resting,
simple socializing, etc.) to depict the actions of
characters. Since the delivery task is closely re-
lated to the positions of characters, we primarily
drive the movement of characters within the build-
ing based on schedule information.

Continuous Environment State. Our virtual en-
vironment is primarily driven by a physics engine at
its core, containing items with physical properties,
so almost all movements are continuous (with ex-
ceptions for specific object state changes controlled
by scripts and interfaces). Even when we use robot
control interfaces similar to the ALFRED style
(Shridhar et al., 2020) (AI2-THOR(Kolve et al.,
2017)), such as “pick_obj()”, the movements it ex-
ecutes require real-time implementation through
continuous body control.

Robot Configuration. We use a robot with
grasping and movement capabilities. It is equipped
with visual perception (RGB-D) and simple tactile
perception based on rigid body collision. At the
core, we have prepared various control methods
for it. Users can control the robot either through
an ALFRED-style interface (typically invoked by
high-level action and LMMs with object segmenta-
tion) or through a ROS-like interface.

5 Dataset

We elaborate on the data collection process, encom-
passing the generation of language instructions,
item placement, and scene construction. Addition-
ally, we present the data annotation methodology
and results. Tasks, environments, and agents all
adhere to the PRS environment settings. The task
scenes are located within a three-story building in
the PRS environment. Target objects encompass
all interactive items, while functional equipment
follows physical engines and basic logic. Language
instructions originate from a task generator, refined
and reviewed manually through an LLM to ensure
accuracy and diversity (more details see Appendix
C). Although NPCs can move and act indepen-
dently in the environment (Li et al., 2023b), and
numerous interactive items and devices are present,
we can configure and access all their states from
the ground up, such as naming identifiers, spatial
coordinates, and physical attributes. Based on the
comprehensive environmental data obtained, we
can generate tasks in real-time using preset scal-
able templates (Liu et al., 2019) and polish task
instructions with a large language model. More-
over, the environment’s data interface can easily
acquire relevant task information to evaluate the
computation methods for generated task results.
(1) We constructed an environment-related PRS
corpus, collecting verbs, nouns, and adverbs corre-
sponding to actions, items, and locations. This cor-
pus includes manually designed scalable templates
that map verbs, nouns, and adverbs into sentences
related to the current environment using reason-



Benchmark  |PRS(Ours) ALFRED EQA VirtualHome BEHAVIOR-1K  Habitat iGibson
(Shridhar et al., 2020) (Das et al., 2018) (Puig et al., 2018)  (Lietal., 2024)  (Puig et al., 2023) (Shen et al., 2021)

Directive v v v - v v -
Continuous State v - - - v v v
Articulated Joints v - - - v - -
Mobile Characters| v/ - - v - v v
Autonomous NPC| v/ - - - - - -
Elevator v - - - - - -
Long-term v - - - - - -
Human-centered v - - - - - -
Multi-floor v - - - v - -

Table 2: Comparison between PRS delivery tasks and existing popular embodied simulation dataset.

Test Set  Validation Set

Task 918 5730
Instructions 1836 11460
Annotation GPT4 GPT-4
Check Manual GPT-4
Ground Truth - v
Scenes 19 24
Object Categories 42 43

Table 3: The validation and test sets of the dataset en-
compass distinct NPC behaviors, task contexts, and
linguistic instructions. We validate against potential
common scenarios as a benchmark for solutions without
emphasizing training and fine-tuning. However, the vali-
dation set contains appropriately annotated information,
which can also be used as a training set.

able grammatical rules (Xu et al., 2022). (2) We
continuously generate task statements in the run-
ning simulated environment, refine and polish them
using an LLLM, and finally screen them to obtain
13296 language instructions, as shown in Table 3.

Unlike household tasks in Table 2, we specialize
in the indoor environment of buildings and pay
particular attention to how robots can deliver items
across different floors and rooms in the building
based on the needs of service recipients.

6 Baseline Method

The baseline method comprises multiple modules
(Min et al., 2021), including the language, vision,
and action modules, as shown in Figure 4, for tasks
such as language parsing, navigation search, scene
understanding, object recognition, segmentation,
action, localization, and object manipulation.

6.1 Language Module

The language module utilizes a large language
model (LLM) to process instructions ins and char-
acter introductions intro, outputting executable se-
quences based on pre-defined prompts (Wei et al.,
2022), which specify the extraction of target infor-
mation and visual feature from the task context,
LLM (ins,intro,prompt) = res. The prompt
defines the output format with the fixed symbols
and includes result examples to facilitate the align-
ment of LLM output (Zamfirescu-Pereira et al.,
2023). For instance, using the regular expres-
sion to decode relevant information, RE(res) =<
obj, recepopj, roO0Mgp;, NPC, TOOMype.  >.  The
executable sequences generated by LLM break
down the task into subtasks, including corre-
sponding information, such as target object search
[0bj, ecepop;, roomey;) (e.g., "white cup, dinner
counter, kitchen"), grasping [obj]|, delivery to
[roomy,pc| (e.g., "office"), and person search [npc]
(e.g., "a man with grey coat"). Subsequently, the
robot sequentially performs these subtasks to ac-
complish the overall task accurately.

6.2 Vision Module

With information ("a white cup") from the language
module, the robot localize the specified object. The
intricate spatial layout within indoor environments
results in diverse positional arrangements of inter-
active objects, posing challenges for visual mod-
els in object detection. Furthermore, identifying
diminutive, occluded, or container-enclosed objects
presents a formidable obstacle (Zhu et al., 2021).
To enhance search and recognition efficiency, we
incorporate large receptacle information ("dinner
counter') derived from task instructions, or "the



Prompt

| Task Instruction |

Grasp the shiny apple from the kitchen's dining table and
carry it to the office for me.

| NPC Introduction |

Parsing to Target Object information

Item: <shiny apple, dinner counter, kitchen>
NPC: <woman in blue shirt with glasses, office 1>

Reasoning

Text Prompt Task Planning
n

M
17 17

NPC: I'm Lydia, a scientific advisor. My room number is 1,
and my office is located in office 1. My fashion preferences
include blue shirts and black glasses ...

RGB-D Camera

Scene
Understanding

(o .

—

o — 1 - Object ‘
Detection|

Route Planning

Navigate to <room>
- <+—Navigate to <receptacle>

|

(i
(A
ESE P

Figure 4: Modular method for the robot delivery task with LLM and LMM. LLMs and LMMs can achieve robotic
perception and environmental interaction by invoking ROS-like APIs of PRS simulator.
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apple on the dining table", "the water cup on the
desk." Nonetheless, conducting direct object recog-
nition within a room for item retrieval may yield
considerable errors (Inoue and Ohashi, 2022). Sup-
pose the confidence threshold is set excessively
high. In that case, the visual model may struggle
to identify the target object due to the item’s un-
known specific location and the potential distance
of the robot from it. This can result in a limited
number of pixels occupied by the object within
the field of view, making it challenging to distin-
guish its visual features. Conversely, setting the
confidence threshold too low can readily lead to
erroneous identifications, such as mistakenly iden-
tifying objects with similar features as the intended
target. Therefore, upon searching the target object
in a room, the robot performs scene understanding
using a large multimodal model (LMM) (Lu et al.,
2023). Utilizing the current image captured by the
robot’s camera and the textual description of the
target object as input, coupled with a constraining
prompt such as "Are there a white cup or large din-
ing counter in the picture? Please answer ’yes’ if
so, and 'no’ if not." The robot rotates its head cam-
era to observe the environment and employs the
output of the LMM to ascertain the target object’s
presence within its field of view. Once the detec-
tion of the target object is detected by the LMM,
the robot proceeds to either approach the object
or utilize a visual model (Kirillov et al., 2023) to
recognize and segment its mask. Leveraging the ro-
bust text-image alignment capabilities of LMM al-
lows the robot to make reasonable decisions while
mitigating ineffective visual processing outcomes.
The visual module capitalizes on the LMM’s capac-

ity to align comprehensive visual data with object
descriptions. Conversely, the small-scale visual
model focuses on local information to accurately
segment the mask of the target object, thereby fa-
cilitating an efficient and precise search process.

6.3 Action Module

Robots rely on environmental information and task
context to execute navigation, approach, and grasp-
ing actions. Following the spatial directives pro-
vided in the output of the language module, the
robot navigates to the designated area, such as "the
kitchen." By aligning the target room information
extracted from the instructions with the scene on
the semantic map, the robot uses the A-star algo-
rithm to plan an approximate route from its current
location to the target room and navigates accord-
ingly (Murray and Cakmak, 2022). With the seg-
mented mask of the target object through the search
strategy and recognition process, in conjunction
with depth data captured by the depth camera, the
robot calculates the approximate distance between
itself and the target object. Should the distance ex-
ceed the desired range (1m-3m), the robot devises
a local route based on map data to maneuver close
to the target object. It adjusts its position and ori-
entation by aligning its camera and body with the
target object (item or NPC). The robot accurately
identifies the item and acquires its 2D mask for
object grasping, serving as input parameters for the
PRS grasping API to complete the target grasping
action (Corke and Haviland, 2021).



Task SR ‘ Parsing Manipulation Human Search Time Spent

Method

Rule-Based + GD 34 259
GLM-4V 18.7 68.3
GLM-4V + GD 23.7 65.2
GPT-4V+ GD 28.5 69.7
GPT-40 + GD 32.2 71.7

14.7 21.1 3.15
45.7 78.6 4.68
53.4 83.2 4.27
57.1 85.2 5.13
59.2 88.7 4.59

Table 4: Results on test set. Method includes various models for the baseline method, and GD is Grounding
DINO(Liu et al., 2023) object detection model. Task SR is the success rate (SR) of the complete robot delivery task,
Parsing is the SR of language instruction parsing to correct target information, Manipulation represents object
grasping SR, Human Search is human character search SR, and Time Spent is time used (minute) on successful
task execution. The LMM API used in the experiments is provided by the 2024 version.

7 Experiments

7.1 Evaluation Metrics

Two conditions determine the success of a deliv-
ery task: 1) successfully grasping the target object,
which requires providing an accurate mask of the
target object within an appropriate range, and 2)
locating the target character, which is considered
successful if the robot is within a Cartesian dis-
tance of 3m from the character. The ultimate goal
is to deliver the object to the vicinity of the target
character. Therefore, the delivery task can be de-
composed into two sub-tasks, and the experiment
will evaluate the efficiency and success rate (SR) of
completing these sub-tasks (Shridhar et al., 2020).

7.2 Experimental Setup

Task success is fulfilling all the prescribed success
conditions in the instructions. During task exe-
cution, the execution results are checked after all
agent robots complete their actions. Each agent
is allowed only one attempt and cannot repeat the
execution. Any incorrect use of interface param-
eters, collisions with obstacles, interactions with
the wrong target, or dangerous movements will
result in task failure. The task execution time is
limited to 8 minutes (Li et al., 2024; Shridhar et al.,
2020) (balance the limit and tractability for the
task). Access to underlying environmental data is
not permitted, but all robot interfaces provided by
the PRS simulator are available. The PRS simulator
offers interfaces for robot control and sensing. For
the experiment, LLM employs GPT-4 and GLM-4
(Zeng et al., 2022) (given the similarity in instruc-
tion processing capabilities between GLM-4 and
GLM-4V, they are not separately listed in the table),
LMM utilizes GPT-4V(ison) (Yang et al., 2023b)
and GLM-4V (Wang et al., 2023), and the visual

detection model uses Grounding DINO (Liu et al.,
2023), all in a zero-shot setting. The performance
of each sub-module will be tested separately with-
out other modules’ results.

7.3 Result

With a test set of 918 tasks, the efficiency of each
module was calculated in the experiment, includ-
ing language parsing, object search, and virtual
human character recognition. Experimental results
in Table 4 were compared, and the GPT-40-based
method achieved a task success rate of 32.2%.

8 Conclusions

This work integrates previous work on skill-
learning scenarios and explores a specific in-
building scenario with human-robot interaction at
its core. Specifically, we have constructed a brand-
new immersive environment system for human-
centred in-building delivery services, including
multi-level spatial buildings, diverse functional
rooms, multi-role behavior systems, robots, and
item systems, as well as a delivery service dataset
and a baseline system. We believe that a signif-
icant and promising direction for the future is to
integrate existing skills to simulate specific, deter-
mined, commercial, high-fidelity simulation scenar-
ios, ultimately aiming to drive the development of
community technology toward commercialization
and realism-aligned robot service.

9 Limitations

Despite our efforts to address key issues in robotic
task design, several limitations are present in our
work. The simulation environment, though com-
prehensive, is confined to a three-story building,
which restricts the scope and generalizability of



our findings to all real-world scenarios. While
we incorporated a variety of scene categories, the
number of environments remains limited, and the
multi-level space architecture we developed lacks
sufficient diversity. Additionally, the autonomous
NPCs used for human-robot interaction have con-
strained capabilities due to performance limitations.
Furthermore, the behavior of NPCs has been sim-
plified to reduce computational costs, which may
impact the realism of the simulated environment.
Additionally, the language prompts are restricted
to English, which limits the diversity of the dataset,
and the study focuses on a single complex simu-
lated environment, in contrast to the unpredictabil-
ity and diversity found in real-world settings. De-
spite manual verification, the content generated by
the large language models (LLM) and large multi-
modal models (LMM) may still exhibit biases and
imbalances.

10 Ethical Considerations

Ethical concerns are central to our work, especially
in data collection and robot deployment. While
we have undertaken manual reviews to minimize
biases, the dataset may still contain unintentional
biases that may not reflect the full range of user
needs, particularly those outside mainstream indoor
scenarios. Additionally, although our study adheres
to existing laws and regulations governing robot
usage, deploying mobile robots in indoor spaces
may raise privacy concerns for users and others.
The human-robot interaction aspect of our robot
delivery task could also introduce potential safety
hazards and risks of object damage in real-world ap-
plications. Although ethical considerations are not
explicitly discussed in the paper, we emphasize the
importance of ensuring no privacy infringements or
data breaches occur in the simulation and dataset.
Researchers utilizing these resources are required
to agree to basic terms, taking responsibility for
any outcomes. We encourage open-sourcing of the
code to promote transparency and foster commu-
nity collaboration.
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A  Benchmark

To investigate preliminary commercial scenarios
of robotic applications, we introduce the human-
centered in-building embodied delivery task, aim-
ing to deliver specified items to the vicinity of the
target human character. We developed the PRS
simulation environment and collected a dataset re-
lated to delivery tasks. Consequently, the delivery
task benchmark encompasses a simulator, environ-
ment API, dataset, evaluation metrics, and baseline
methods, as follows:

L,prs—delivery
| simulator
Linux
Windows
macOS
| dataset
validation set
test set
| environment information
semantic map
NPC information
Robot .urdf
environment setting
| baseline Method

LLLM
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LMM
object detection model
main

| evaluation

| API document

B Simulator

In light of our conceptualization of robotic service,
and in order to better simulate comprehensive ap-
plication scenarios, we have developed the Polar
Research Station (PRS), a three-story building con-
taining different rooms, providing (1) a PhysX-
supported physical environment, (2) autonomous
characters for performing human behaviors, (3)
robots with perception sensors and interaction abil-
ities, (4) interactive objects and devices with contin-
uous state changes, and (5) available API for LLMs
and LMMs. Figure 6 shows rich scenes that are
close to the real world. The PRS rendering engine
utilizes Unity and offers a diverse range of Python
APIs. The resource is user-friendly (Python-only)
and can even run without a GPU.

C Task Dataset

The dataset is represented as a JSON file in Listing
1, and task initialization, execution, and evaluation
are accomplished using the Python API. The task
involves a variety of objects with different styles,
as depicted in the Figure 7. NPCs in the environ-
ment engage in continuous simulated life activities,
generating various needs over time, such as eating,
drinking, working, and resting. At these moments,
NPCs potentially require certain items to fulfill
their demands (e.g., food, drinks, mobile phones).
Thus, we simulate robot delivery services by col-
lecting these needs. By querying environmental
data, we automatically gather a large number of de-
livery tasks. We refine the language content using
the LLM and conduct manual checks and correc-
tions, as shown in Figure 8. Specifically, we intro-
duce LMM to perform textual annotation (visual
feature description) of image data to decrease man-
ual work and increase diversity. Figure 10 indicates
ten distinct NPCs as the service targets, each with
their own profile and preferences. Figure 11 illus-
trates the spatial distribution of scenes within the
task set, demonstrating long-range visibility across
spaces.
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search Station building.

Listing 1: JSON file format for a human-centered in-
building embodied delivery task, including task parame-,,
ters and descriptions.

{

"task_id": "1
_2025_02_11T12_45_49_10_1_1"
"npc_name": "Imani",

"npc_id": 1,
"time": "2025-02-11T12:45:49",
"npc_action": "sit",
"npc_position": {
"x": -16.02390480041504,
nyu: 0.0,
"z": -8.445791244506836},
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"target_object_name": "
WaterBottle_Blue_1",
"target_object_type": "

WaterBottleBlue",

"target_object_pos": {

"x": -16.878999710083008,

"y": 0.7600002288818359,

"z": -5.263000011444092},

"directive": [
"Grasp the blue water bottle
from the wooden dining
table in the kitchen and
bring it to me in the
kitchen room.",

"Fetch the blue-packaged
water bottle from the
wooden dining table in
the kitchen and deliver
it to Imani, the woman
in the blue shirt with
black glasses, in the
kitchen room."],

"npc_description": "I'm Imani, a

scientific advisor at a

polar research station. My

room number is 1, and my
office is located in office

1. I often lead a regular

life. My fashion preferences

include blue shirts and
black glasses."



Figure 7: Interactive objects for grasping and delivery with physical properties and authentic textures.

C.1 Data Augmentation

The delivery tasks encompass 10 NPCs, 23 rooms,
and 47 types of items. We utilize various NPC
information (e.g., names, occupations, habits) and
actions, and alter the positions of NPCs, items,
and robots to enrich the benchmark distribution.
For each robotic delivery task, natural language
instructions with relevant context are provided to
simulate the robot’s instruction following.

C.2 Dataset Split

Unlike past supervised learning settings, we pro-
pose that embodied tasks in simulated scenar-
ios need not be based on the independent iden-
tically distributed (IID) assumption. Consequently,
we modify the setting from the traditional "train-
develop-test" to "free mode-develop-test,” omitting
an explicit training set (with ground truth informa-
tion included in the validation set for training or
fine-tuning purposes). In the free mode, researchers
can freely collect data without restrictions to de-
velop and debug solutions, such as visual recog-
nition, scene understanding, and search strategies.
We argue that this setting is more advantageous
for large multimodal models (zero-shot) and closer
to real-world scenarios, where it is impossible to
pre-acquire all user scenarios but rather to handle
various potential scenarios with general solutions.

C.3 Accessibility

We have made the PRS simulator and robot de-
livery dataset available and accessible to all. The
simulator is provided in Linux (Ubuntu), macOS,
and Windows, with continuous updates and mainte-
nance. We explicitly offer a usable API and usage
examples. Additionally, we have opened an online
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result evaluation for the validation and test sets by
Eval AL

C.4 Responsibility

We are responsible for the content of the simula-
tor and dataset, ensuring no infringement or pri-
vacy breaches. Researchers must agree to our basic
terms before usage, which include taking respon-
sibility for outcomes resulting from utilizing these
resources for development, deployment, and re-
search. We encourage researchers to open-source
their code to facilitate community efforts.

D Delivery Process

Figure 9 shows that the task can be decomposed
into several subtasks, each with explicit goals and
termination conditions. The robot delivers items
amidst dynamic environmental changes and NPC
behaviors. Additionally, the environment features
numerous interactive objects, resulting in unpre-
dictable circumstances throughout the task, as il-
lustrated in Figure 12.

D.1 Robotic Skill

In the delivery task, some executions are simplified
for industrial and standard processes. Robot
manipulation and navigation remain significant
challenges, with different Al models addressing
various robot types. We focus on comprehen-
sive simulation of scenarios and performance
evaluation without delving into the details of
robot skill learning. Consequently, based on
robotics standards, we provide a high-level API
(ROS-like, e.g., prs.agent.goto_target_goal((-
2.25, 0.1, -7.25), radius=1.7),
prs.agent.object_interaction(input_matrix=segment
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matrix, manipulation=1, camera_type=0)) for
navigation and grasping. Specifically, we offer a
rough obstacle map and semantic and observation
image sampling (facilitating scene comprehension
and room differentiation), obviating the need
for robot SLAM in large spaces during each
task execution. For the robot to successfully
grasp the target object, a correct segment mask
must be provided within a 1.2m range, with
the PRS environment already offering built-in
coordinate transformation, inverse kinematics (IK)
calculations, and joint control. Thus, the task
solutions utilize ROS-like APIs, which abstract
the specific robot model and align more closely
with general algorithms. The ROS-like API
setup allows for robot morphology and structure
modifications at a low cost, enhancing sim2real
performance.

D.2 Baseline Reproducibility

We employ a zero-shot setting (LLM, LMM, zero-
shot object detection model) instead of model fine-
tuning in the baseline method. We have released the
baseline and dataset document. This setup holds
significant advantages in reproduction and sec-
ondary development. Besides replacing models, re-
searchers can explore better prompts, target search-
ing, navigation strategies, semantic alignment, con-
text processing, etc., to enhance the robot’s effi-
ciency.

15

E Contributions

Threads ‘ Frames Per Second (FPS)
Nums ‘ RTX3090 RTX4050 RTX4090
1 93.1 62.7 123.5

2 62.4 45.6 96.4

3 439 28.4 67.1

4 30.5 16.7 452

5 21.4 - 33.7

6 - - 26.3

Table 5: Performance of the PRS environment under
different thread counts and GPU. The PRS environment
supports parallel simulation and achieves high frame
rates across multiple hardware configurations. Based
on a robust physics engine (PhysX), it enables robots to
collect data for vision models or attempt manipulations
for reinforcement learning (RL). We have considered
agent training (RL or multimodal data collection) within
the PRS environment.

Our work introduces a novel simulation environ-
ment that advances robotic learning and interaction
in complex, long-term, and human-centered set-
tings. Unlike previous benchmarks, we emphasize
realistic environmental contexts, time-sensitive in-
teractions, and human-robot collaboration. Key
contributions include:



E.1 Robotic Manipulation Framework

Grasping is fundamental to robotic manipulation,
placing, moving, opening, and closing. In error
analysis, most failures arise from unsuccessful
grasps due to action failure or target misidentifi-
cation. High-level commands primarily cause ma-
nipulation errors, as low-level inverse kinematics
and joint dynamics seldom lead to significant fail-
ures.

E.2 Enhanced Simulation Environment

Unlike Behavior-1K, our simulation integrates mul-
tiple rooms into multi-layered buildings and in-
corporates a time dimension, enabling continuous
learning over long-term simulations. Compared
to Habitat 3.0, we introduce LLM-driven NPCs
with needs-based autonomous behaviors, support-
ing human-robot collaboration and realistic service-
oriented tasks.

E.3 Physics-Driven Robotics Benchmark

Built on a robust physics engine, the PRS envi-
ronment supports robotic data collection for vision
models and reinforcement learning (RL). We pro-
vide 40+ object categories for manipulation verifi-
cation and fine-tuning, improving the generaliza-
tion of robotic grasping models. Additional 3D
resources further enhance robotic interaction capa-
bilities.

E.4 Realistic Task Design

In contrast to Omnigibson (Behavior-1K), we de-
fine robotic delivery tasks with human simula-
tion, environmental context, complex spatial se-
mantics, and long-term sequences rather than iso-
lating navigation or manipulation as standalone
tasks. Our benchmark integrates autonomous NPCs
and multi-room, multi-story environments to reflect
real-world task demands, supporting long-term sim-
ulations and practical robotic service modeling.

E.5 Scalability and Generalization

With a modular architecture and efficient rendering
pipeline, we continuously expand scenarios and
architectural structures to enhance model training
and generalization testing. Given that no simula-
tion fully replicates the real world, we assess zero-
shot robotic performance in the PRS delivery task
to evaluate LMM-based robotic systems’ ability to
provide practical services. We provide standard-
ized APIs, including ROS-like interfaces and LMM
integration, facilitating real-world deployment.
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E.6 Agent Training and RL Support

The PRS platform enables RL and multimodal
data collection, offering APIs for sensor signal re-
trieval (RGB-D, tactile), environmental data access,
and motor control (discrete motion, joint angles,
forces). Interactive elements such as articulated
objects, NPCs, elevators, and virtual devices enrich
training environments. An automatic task gener-
ator enhances usability, allowing large-scale task
generation for model validation.

E.7 Performance and Efficiency

The PRS environment maintains a physics frame
rate of 60 fps, meets RL requirements, and achieves
rendering rates exceeding standard RGB-D cam-
eras. Motor-level and joint control APIs support
precise robotic learning and benchmarking.

E.8 Zero-Shot Benchmarking for LMMs

Our baseline employs zero-shot evaluation with-
out fine-tuning, testing the general understanding
capabilities of Large Multimodal Models (LMMs)
in robotic tasks. LLM-generated language instruc-
tions resemble real-world dialogues and undergo
manual review to remove biases and ambiguity.
Customizable instruction generation enhances task
scenario diversity.

E.9 Occlusion Handling in 3D Environments

Instead of relying on point cloud completion, our
approach allows robots to change viewpoints dy-
namically to locate objects, leveraging multiple
perspectives for robust target identification.

Connected, Multi-Layered Spatial Contexts Un-
like prior works such as ProcTHOR, our environ-
ment features semantically rich multi-layer build-
ings rather than isolated rooms, incorporating au-
tonomous NPCs with daily routines. This fosters
realistic robotic interactions, supporting human-
like task engagement and long-term goal execution.
Error Analysis in Robotic Delivery By evaluating
sub-task performance in baseline models, we iden-
tified key failure sources:

* 40%: Manipulation failures (grasping errors)
* 29%: Language inference errors

* 18%: Object localization failures

* 13%: Inability to locate target NPCs

Since delivery success depends on completing all
sub-tasks, improving each module enhances overall



performance. Our findings highlight grasping and
object search as significant challenges in robotic
service applications.

E.10 LMMs in Robotics

LMMs provide extensive world knowledge and rea-
soning abilities, supporting instruction parsing, be-
havior planning, perception, and decision-making.
Unlike traditional robotic learning, LMMs elimi-
nate the need for frequent retraining of visual and
language models. In our PRS delivery benchmark,
a zero-shot LMM-based system achieved a 32.2%
task success rate, demonstrating LMMs’ potential
while underscoring remaining challenges in object
search and manipulation.

E.11 Distinctions

Our work advances robotic simulation by inte-
grating realistic human-robot interactions, scalable
task modeling, and robust environmental dynamics,
bridging the gap between academic research and
real-world deployment.

E.11.1 Autonomous NPCs

Virtual human characters that engage in indepen-
dent activities based on environmental context
rather than serving as mere obstacles.

E.11.2 Long-Term Simulation

The environment supports the continuous execution
of multiple tasks within the same spatiotemporal
setting rather than resetting after each task instance.

E.11.3 Human-Centered Tasks

Robotic execution is guided by contextual informa-
tion about specific NPCs rather than purely linguis-
tic instructions.

F Limitations

Although we have considered data augmentation
and variations in style, we only constructed a three-
story building and thus cannot cover all scenarios.
Our dataset content has been manually verified,
but the generated content of LLM and LMM may
still exhibit bias and imbalance. To reduce com-
putational expense, we simplified NPC behaviors.
We simulated a robot application scenario, but the
real world is far more complex and unpredictable.
LLM prompts include different tone and content
requirements to synthesize diverse and universal
data, albeit limited to English content.

G Future Work

In-building delivery is a realistic commercial sce-
nario, differing from the popular factory assembly
line scenario in that it involves more considera-
tion of human-robot interaction. Therefore, in our
future work, we will introduce (1) richer user inter-
action behaviors, such as users being able to send
real-time location hints to the robot, and (2) longer-
term user behavioral data, enabling the robot to
summarize user behavior patterns for more precise
service autonomously. (3) More diverse scenarios,
items, and tasks. Our business scenario design,
virtual environment setup, and dataset collection
will iterate and continuously improve alongside re-
search efforts in the community, commercial devel-
opments, the robotics industry, and user research.
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Figure 9: A flowchart visually representing the sequen-
tial steps and decision points involved in the human-
centered in-building embodied delivery task.
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Figure 10: The frequency of NPC appearances with different jobs and habits in the PRS dataset.
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Figure 11: Statistics of different scenes and interactive object categories in the dataset.

Figure 12: Demonstrations showcasing examples of the delivery task in PRS scenarios.
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