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Abstract

The mutually-exciting Hawkes process (ME-HP) is a natural choice to model
reciprocity, which is an important attribute of continuous-time edge (dyadic) data.
However, existing ways of implementing the ME-HP for such data are either
inflexible, as the exogenous (background) rate functions are typically constant
and the endogenous (excitation) rate functions are specified parametrically, or
inefficient, as inference usually relies on Markov chain Monte Carlo methods
with high computational costs. To address these limitations, we discuss various
approaches to model design, and develop three variants of non-parametric point
processes for continuous-time edge modelling (CTEM). The resulting models are
highly adaptable as they generate intensity functions through sigmoidal Gaussian
processes, and so provide greater modelling flexibility than parametric forms. The
models are implemented via a fast variational inference method enabled by a
novel edge modelling construction. The superior performance of the proposed
CTEM models is demonstrated through extensive experimental evaluations on four
real-world continuous-time edge data sets.

1 Introduction

Continuous-time edge (or dyadic) data, which comprise information on edges (between two individu-
als or nodes) and their times of occurrence, arise naturally in many applications, such as sending and
receiving messages, posting and answering comments on social networks, and purchasing groceries
in online stores. Reciprocity is an important attribute of edge data, in that many edges are induced
as responses to previous oppositely-directed edges (e.g. a reply email is written in response to an
initial message between two individuals). As a result, mutually-exciting Hawkes processes (ME-
HP) [13, 12], which regard the directed edges as events, are commonly used to analyse edge data
[3, 8, 25, 29, 26, 20]. For example, [3] uses the ME-HP to model the reciprocity of group-wise edges,
and [20] uses sparse exchangeable random measures [4, 28] to model the ME-HPs exogenous values.

However, these existing methods are either limited in modelling flexibility, or inefficient to implement.
For the former, the exogenous (background rate) functions in the ME-HP are typically assumed
to be static and the endogenous (excitation) functions are specified parametrically, which may be
inadequate for modelling complex real-world systems. E.g., the exogenous intensities may exhibit
daily or weekly periodicity, and the endogenous functions might not be strictly decreasing over time.
For the latter, Markov chain Monte Carlo (MCMC) methods are usually adopted for model inference,
which usually require high computational costs and large output storage. Without proper scalable
inference methods, it is difficult to deploy these models to larger-scale datasets.
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In this work, to address the above limitations, we develop continuous-time edge models (CTEM)
based on non-parametric point processes. The CTEM models also use point processes to model
data specific to nodal pairs. CTEMs have two major differences compared to existing approaches:
Firstly, they place sigmoidal Gaussian process priors on the individual exogenous functions and
endogenous functions. As a result, the exogenous functions are able to evolve over time and account
for gradual changes and variations in the background environment (such as, e.g., trends or periodicity).
Similarly, non-parametric modelling of the endogenous functions enables more behaviour choices
(e.g., the rate of decrease in the excitation functions may vary over time, or there might be increases
in mutual-excitation effects). Secondly, we develop an efficient variational inference method for
model inference, which is more suited for large-scale data modelling than MCMC methods.

By specifying K exogenous functions and K endogenous functions, we propose a family of three
non-parametric CTEM models on N nodes, in which the directed edges from node i to node j are
regarded as events for the (i, j)-th point process:

• Nodal pair-specific Poisson process (NP-PP): For each directed nodal pair (i, j), i, j ∈
{1, . . . , N}, the intensity function for their Poisson process is constructed from the linear
combination of K exogenous functions and nodes i, j’s latent exogenous features.

• Nodal pair-specific mutually-exciting Hawkes process (NP-HP): We additionally include
the combination of K endogenous functions and nodes i, j’s latent endogenous features as
the endogenous functions for the (i, j)-th ME-HP.

• Mutually-exciting Hawkes process with edge clustering (NP-HP-C): Rather than using
nodal pair-specific endogenous functions, we associate each edge with a latent label, and
assume that those edges with the same label are allocated to the same endogenous function.

The last approach may be used to model the phenomenon that many edges are often associated with
certain behavioural or other patterns. For instance, messages may be grouped into particular labelled
events, or edges associated with different patterns may generate different triggering effects.

Inspired by inference techniques [5, 31] which adopt the Polya-Gamma trick to form conjugate
models for sigmoidal Gaussian process-modulated Poisson processes and Hawkes processes, we
develop mean-field variational algorithms to enable fast inference for the proposed models. In
addition we also construct a fast variational inference solution to the Dirichlet-Hawkes process related
models [7, 19, 24], which typically heavily rely on Sequential Monte Carlo [6] methods.

In summary, the merits of the proposed CTEM family include: (1) Modelling flexibility: The
proposed models are highly flexible as they are able to describe both exogenous and endogenous
functions using non-parametric sigmoidal Gaussian processes. The experimental results on four
real-world data sets show clear periodic patterns in both exogenous and endogenous functions. (2)
Inferential efficiency: To the best of our knowledge, this is the first work to develop fast variational
inference for the continuous-time edge modelling problem, making it suitable for large-scale relational
modelling settings; (3) Modelling choice exploration: The CTEM family permits different structural
choices in modelling continuous-time edge data, including nodal pair-specific intensity functions and
latent label determined endogenous functions.

2 Background on mutually-exciting Hawkes processes for edge data

The mutually-exciting Hawkes process [12, 13] is a special case of the temporal point process (TPP).
TPPs are realised through sets of events in a time interval [0, T ], and are parameterised by an intensity
function λ(t), which states that the probability of an event occurring in any infinitesimal time interval
[t, t+ dt) is λ(t)dt. TPPs which are independent of the history of the process (e.g. a Poisson point
process) are not well-suited to describe edge data (which comprise directed events from one node to
another), as the occurrence of edges may be the result of responses to previous oppositely-directed
edges. For example, receiving a message from a person would likely increase the probability of
sending a response message to that person over the following time period.

The ME-HP provides a natural way to model the reciprocity of edge data. Its intensity functions
λij(t), which describes edge generation from node i to node j at time t, depend on the historical
edges from node j to node i. We use the triplet (im, jm, tm) to denote an edge, meaning that among
all edges, the m-th one is initiated from node im to node jm and occurred at time tm. Using fij(t)

2



and gij(t) as the exogenous function and endogenous function from node i to node j respectively,
the intensity function λij(t) and the likelihood L(·) of the ME-HP over all M edges is

λij(t) = fij(t) +
∑

m′:im′=j∩jm′=i

gij(t− tm′), (1)

L({λij(t)}(i,j):i̸=j |{(im, jm, tm)}Mm=1|) =
∏

(i,j):i ̸=j

e− ∫ T
0

λij(t)dt
∏

m′:im′=i∩jm′=j

λij(tm′).


(2)

ME-HP with block models: Stochastic block models [22, 21, 14] are a classical way to describe static
edge data, via partitioned nodal groups and group-wise edges. Several methods [3, 8, 25, 29, 26, 20]
have incorporated stochastic block models within the ME-HP to describe edge data reciprocity.
Among these, the HPGP-IRM [25] is the most similar model to ours, with the generative process

ν ∼ CRP(1 : N), λij(t) = γν(i)ν(j) +
∑

m′:im′=j∩jm′=i

βij(Fi, Fj)gij(t− tm′) (3)

where ν is a Chinese Restaurant Process (CRP) [23] group partition on all N nodes, γν(i)ν(j) is
the exogenous intensity from person i’s group ν(i) to person j’s group ν(j), βij(Fi, Fj) is the
endogenous scalar measuring the feature similarity between person i and person j through their
features Fi, Fj , and the occurrence times {tm}m follow a Hawkes process (HP) with intensity
function λij(t). Similar to other approaches, the HPGP-IRM specifies parametric functions for both
exogenous and endogenous functions, and its MCMC-based approach to inference is not practical in
large-scale settings. Further, the absence of edge clustering capability means that intrinsic structure
among persons, especially the sharing of endogenous functions, can not be explored.

3 Non-parametric point processes for continuous-time edge modelling

The family of Continuous-Time Edge Modelling (CTEM) methods is inspired by three motivations:
constructing highly flexible models to adequately describe the complexities of real world edge data;
enabling fast variational inference; and exploring different modelling choices for studying continuous-
time edge data. The following sections introduce three non-parametric point processes, in which the
intensity functions are generated from sigmoidal Gaussian processes.

3.1 Nodal pair-specific non-parametric Poisson processes (NP-PP)

The first approach (NP-PP) is to use nodal pair-specific Poisson processes to model the continuous-
time edge data. This involves K exogenous functions σ(fk(t)), where fk(t) is a random function
generated from a Gaussian process and σ(x) = 1/(1 + exp(−x)) is the sigmoidal function to ensure
the positiveness of the intensity values. Each node i is assumed to have K-length positive latent
exogenous features πππi ∈ [R+]1×K , in which the k-th entry πik represents node i’s affiliation with the
k-th exogenous feature. The intensity function of the Poisson process for generating edges from node
i to node j is thus a linear combination of {σ(fk(t))}k weighted by πππi,πππj , with the corresponding
generative process described as follows:

1. Generate fk(t) ∼ GP(0, κ(f)
k ) for group features k = 1, . . . ,K, where GP(0, κ) denotes a

Gaussian process with mean 0 and covariance function κ(·, ·).
2. Generate {πik}Ni=1 ∼ Gam(aπ, bπ) for group features k = 1, . . . ,K, where Gam(a, b)

denotes a Gamma distribution with mean a/b and variance a/b2.

3. Generate the time stamps of edges from node i to node j as: {(i, j, tm′)}m′ ∼
PoissonProcess(λij(t)), with intensity function λij(t) =

∑
k πikπjk · σ(fk(t)).

Under this setting, the intensity functions between any nodal pair are symmetric λij(t) = λji(t).
Together, πik and πjk scale the k-th exogenous intensity onto the interval (0, πikπjk). Nodes with
similar feature-affiliation values are more likely to generate edges. The L1-norm of the latent features
of a node πππi indicates its edge activity, since a larger value means it is more likely to induce edges.
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This non-parametric setting provides greater modelling flexibility than those using static or piecewise-
constant exogenous functions. I.e., the NP-PP allows each exogenous function to change over time,
while most existing approaches [3, 8, 25, 29, 26, 20] use a time-constant exogenous intensity value,
even though real-world settings are known to vary in this manner. [8] also used Poisson processes to
model the edges, however, their intensity functions are piecewise-constant with the changepoints and
intensty values almost pre-fixed, which is substantially less flexible than our approach.

However, without incorporating endogenous functions, the NP-PP cannot describe the reciprocity
property of continuous-time edges. A direct consequence might be overestimated exogenous intensi-
ties, as they need to explain all edges, and consequently lower model performance.

3.2 Nodal pair-specific non-parametric Hawkes process (NP-HP)

Our second approach is to use mutually-exciting Hawkes processes (ME-HP) to model the continuous-
time edge data. In addition to the non-parametric exogenous functions in the first approach, the
NP-HP includes nodal pair-specific endogenous functions to model the reciprocity of edge data. In
particular, the endogenous function for the (i, j)-th nodal pair is structured as

∑
k ρikρjk · σ(gk(t)),

where {σ(gk(t))}k are random functions from a sigmoidal Gaussian process and ρρρi ∈ [R+]1×K is
node i’s K-length latent endogenous features. As a result, the occurrence of an edge at time tm is
either instantiated by the exogenous effect (i.e.

∑
k πikπjk · σ(fk(tm))) or triggered by one of its

historical oppositely-directed edges (through the endogenous effect
∑

k ρikρjk · σ(gk(tm − tm′)),
where m′ ∈ Hij(tm) and Hij(t) = {m′ : (tm′ < t) ∩ (im′ , jm′) = (j, i)} denotes the set of
historical (i.e. occurring before time stamp t) oppositely-directed (i.e. from node j to node i) edges).
Since the occurrence of an edge increases the intensity function value of its future oppositely-directed
edges, the NP-HP can describe reciprocity well. It’s generative process is described as follows:

1. Generate fk(t) ∼ GP(0, κ(f)
k ), gk(t) ∼ GP(0, κ(g)

k ), k = 1, . . . ,K.
2. Generate πik ∼ Gam(aπ, bπ), ρik ∼ Gam(aρ, bρ), i = 1, . . . , N, k = 1, . . . ,K.
3. Simultaneously generate two sets of triplets {(i, j, tm′)}m′ and {(j, i, tm′)}m′ , which are

edges initiated from node i to node j, and from node j to node i respectively, from Hawkes
processes with the following intensity functions:

λij(t) =
∑
k

πikπjk · σ(fk(t)) +
∑
k

∑
m′:m′∈Hij(t)

ρikρjk · σ(gk(t− tm′)), (4)

λji(t) =
∑
k

πjkπik · σ(fk(t)) +
∑
k

∑
m′:m′∈Hji(t)

ρjkρik · σ(gk(t− tm′)). (5)

Since the functions {σ(gk(t))}k are also drawn from sigmoidal Gaussian process, the NP-HP’s
endogenous functions possess greater flexibility than previous approaches, in which the endogenous
functions are typically specified as exponential functions. Incorporating the product of the nodes’
latent endogenous features ensures that these endogenous functions are nodal pair specific, as for the
exogenous functions. However, NP-HP assumes that each nodal pair would use same endogenous
functions for all its edges. This might be unable to describe the changes in the edges, such as emails
with different topics between two persons might generate distinct endogenous effects.

3.3 Non-parametric Hawkes process with edge-clustering effects (NP-HP-C)

The third approach introduces an edge clustering mechanism for the mutually-exciting Hawkes
process with nodal pair-specific exogenous functions. Here each generated edge is assigned a latent
group label. The NP-HP-C generative process for edges in the time period [0, T ] is then as follows:

1. Generate fk(t) ∼ GP(0, κ(f)
k ), gk(t) ∼ GP(0, κ(g)

k ), k = 1, . . . ,K.
2. Generate πik ∼ Gam(aπ, bπ), k = 1, . . . ,K, i = 1, . . . , N ;
3. Generate vk ∼ Gam(av, bv), k = 1, . . . ,K, where vk is the scaling variable for the k-th

endogenous function σ(gk(t)).
4. For each pair of nodes {(i, j) : 1 ≤ i < j ≤ N}, generate triplets

{(i, j, t(m
′)

ij ), b
(m′)
ij , z

(m′)
ij }m′ and {(j, i, t(m

′′)
ji ), b

(m′′)
ji , z

(m′′)
ji }m′′ for the two directed edges
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according to the following procedure, until tM ′ ≤ T < tM ′+1, tM ′′ ≤ T < tM ′′+1.
Initialise the current time stamp at t∗ = 0 and set Mij = Mji = 0. Then:

(a) Starting from t∗, obtain two candidate event times t̄ij = min({t̄(l)ij }l|t̄
(l)
ij > t∗), t̄ji =

min({t̄(l)ji }l|t̄
(l)
ji > t∗), where the two time sequences {t̄(l)ij }l, {t̄

(l)
ji }l are generated

from:

{t̄(l)ij }l ∼ PoissonProcess(
K∑

k=1

πikπjkσ(fk(t)) +

Mji∑
m′=1

v
z
(m′)
ji

· σ(g
z
(m′)
ji

(t− t
(m′)
ji ))), (6)

{t̄(l)ji }l ∼ PoissonProcess(
K∑

k=1

πikπjkσ(fk(t)) +

Mij∑
m′=1

v
z
(m′)
ij

· σ(g
z
(m′)
ij

(t− t
(m′)
ij ))). (7)

(Note that the second term in Eqs (6) and (7) is not involved when Mij = Mji = 0).
If t̄ij > T ∩ t̄ji > T , break for this nodal pair and start generating edges for other
pairs.

(b) If t̄ij < t̄ji, set Mij = Mij + 1, t∗ = t
(Mij)
ij = t̄ij and generate b

(Mij)
ij , z

(Mij)
ij

from (m′ = 1, . . . ,Mji)

P (b
(Mij)

ij , z
(Mij)

ij ) ∝

 πikπjkσ(fk(t∗)), if b(Mij)

ij = 0, z
(Mij)

ij = k;

v
z
(m′)
ji

σ(g
z
(m′)
ji

(t∗ − t
(m′)
ji )), if b(Mij)

ij = m′, z
(Mij)

ij = z
(m′)
ji ,

else, set Mji = Mji + 1, t∗ = t
(Mji)
ji = t̄ji and generate b

(Mji)
ji , z

(Mji)
ji from (m′ =

1, . . . ,Mij)

P (b
(Mji)

ji , z
(Mji)

ji ) ∝

 πikπjkσ(fk(t∗)), if b(Mji)

ji = 0, z
(Mji)

ji = k;

v
z
(m′)
ij

σ(g
z
(m′)
ij

(t∗ − t
(m′)
ij )), if b(Mji)

ji = m′, z
(Mji)

ji = z
(m′)
ij .

where Mij is the number of edges from node i to node j, and where t(m)
ij , b

(m)
ij ∈ {{0}∪Hij(t

(m)
ij )},

and z
(m)
ij ∈ {1, . . . ,K} denote the time, “source” factor (i.e., exogenous rate or endogenous rates)

and latent label of the m-th edge from node i to node j respectively. The above generative process
produces observations between nodal pairs in the form {{(i, j, t(m

′)
ij ), b

(m′)
ij , z

(m′)
ij }Mij

m′=1}i ̸=j . For
notational convenience, we reformat these as {(im, jm, tm), bm, zm}Mm=1, with m denotes the edge
number among all the edges, for the following discussion.

In this generative process, steps 1 & 2 generate the exogenous function random bases and the
nodes’ latent features, in the same way as for the NP-HP. The exogenous function in the NP-HP-
C
∑

k πikπjk · σ(fk(t)) is also nodal-pair specific. Step 3 generates the scaling variables for K
endogenous functions. Step 4.(a) generates two directed edges between each nodal pair. Starting
from any time stamp t∗, the Poisson processes with the current intensity functions (Eqs (6) and (7))
are used to generate the candidate edge occurrence time stamps t̄ij , t̄ji for each edge direction. If
both t̄ij , t̄ji are larger than T , which means that the two Poisson processes do not generate edges in
(t∗, T ], we stop generating edges for this nodal pair. Otherwise, we use the earlier candidate time
stamp (e.g. we take t̄ij if t̄ij < t̄ji) as the actually occurring edge time, and add its triggering effect
to the oppositely-directed intensity function (from the actual occurrence time).

Step 4.(b) uses the idea of branching structure [17, 32] to describe the “source” factor of the edge
triplet (im, jm, tm). That is, bm = 0 if the triplet (im, jm, tm) is instantiated by an exogenous
intensity and bm = m′(m′ ∈ Himjm(tm)) if the triplet (im, jm, tm) is triggered by its historical
oppositely-directed edge triplet (jm, im, tm′). At the same time, zm ∈ {1, . . . ,K} is the latent label
of (im, jm, tm) which determines the pattern group to which (im, jm, tm)’s triggering effect belongs.
The edges with the same label use the same endogenous function. In this way, the endogenous
functions are shared among the edges of all nodal pairs. Those edges triggered by the same labelled
edges (through the same labelled endogenous function) or instantiated by the same labelled exogenous
component are associated with the same endogenous function. This process is visualised in Figure 1.

As previously mentioned, NP-HP-C’s clustering mechanism for the endogenous functions of edges
can help modelling practical phenomena, such as urgent emails would usually result in fast response,
regardless of the nodal pair. What is more, NP-HP-C uses a much smaller number (K) of endogenous
functions than NP-HP. This small number might be able to help NP-HP-C avoid overfitting issues.
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Figure 1: (Left panel) Visualisation of edge generation between nodes i and j in the NP-HP-C.
Different edge colours (red, green, blue) represent different edge-group labels. Arrows (grey-dotted
and black solid arrows) link the exogenous functions and past oppositely-directed edges to current
edges, and they together represent all potential triggering relationships between mutually-excited
edges. Black solid arrows denote the actual triggering relationships. If an edge is triggered by one of
its past oppositely-directed edges, their colours (i.e labels) are the same. (Right panel) From top to
bottom: the exogenous functions {σ(fk(t))}3k=1, the endogenous functions {vk · σ(gk(t))}3k=1, and
the corresponding intensity functions λij(t), λji(t) between nodes i and j.

3.4 Mean-field variational inference

To implement faster posterior inference than a MCMC implementation, we use the strategy of [5, 31]
to develop mean-field variational posterior approximation [2]. In particular, [5] integrated a Poly-
Gamma trick into a variational approximation for the sigmoidal Gaussian process-modulated Poisson
process, and [31] applied similar techniques in the simple Hawkes point process setting. For e.g. the
NP-HP-C model, we aim to approximate the joint posterior distribution of sigmoidal Gaussian process
modulated random functions {fk(t), gk(t)}k, the endogenous function scaling values {vk}k, the
latent features {πik}i,k, and the branching variables {bm}m and latent labels {zm}m for all edges.
Full details of the variational model and updates are provided in the Supplementary Material.

Variational distributions for bm, zm: Since bm, zm are discrete random variables, we can adopt
categorical distributions as their variational distributions. It is noted that when calculating the
likelihood for zm, which denotes the latent label of the m-th edge (im, jm, tm), we need to include
all the edges triggered by the m-th edge (i.e. (jm′ , im′ , tm′) : bm′ = m ∩ (im, jm) = (jm′ , im′)).

In order to reduce the computational cost of the Gaussian process regression, we use the sparse Gaus-
sian process approximation [27] to calculate Eq[fk(t)],Eq[f

2
k (t)],Eq[gk(t)] and Eq[g

2
k(t)], making it

scale to the number of edges [5].

Computational complexity: The CTEM models provide an efficient solution to large-scale
continuous-time edge data modelling. Let NE denote the number of observed edges, NET =∑

m #{Fimjm(tm)} denote the number of potential triggering phenomena between all oppositely-
directed edges, NIN denote the number of inducing points for sparse Gaussian process approximation
and K denote the number of latent features. The computational cost of the CTEM models then scales
with O((NET +NE)K +NEN

2
INK), which scales linearly to the number of edges and would be

suitable for large-scale continuous-time edge datasets.

4 Related work

Of the various approaches which use the ME-HP to model continuous-time edge data, the Hawkes
Infinite Relational Model (Hawkes-IRM) [3] was the first to apply the ME-HP on the edges be-
tween groups formed by the nodes partition. By using the stochastic block model [22, 21, 14], the
Hawkes-IRM model adopted static exogenous rates. The Hawkes-Dual Latent Space Embedding
model (Hawkes-DLS) [29] created latent space vectors for nodes and used the products over these
vectors to construct the exogenous and endogenous functions in the ME-HP. [26] adopted the nested-
CRP [11, 1] to construct a hierarchical structure in the exogenous function when using the ME-HP
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Table 1: Continuous-time edge dataset information. N is the number of nodes, NE is the number of unique
edges, NEC is the number of edges (including their counts), and T is the number of days.

Dataset N NE NEC T Dataset N NE NEC T
Email 793 1 032 81 371 17.34 College 1 417 15 329 41 371 21.37

Overflow 7 274 21 291 41 710 133.60 Ubuntu 71 8576 24 062 47 298 147.35

for continuous-time edges. [20] applied the same ME-HP in the framework of sparse exchangeable
random measures [4, 28], and obtained continuous-time sparse exchangeable random measures. [30]
adopted the Hierarchical Gamma Process to construct static exogenous function rates.

We note that the marginal probability of zm, obtained by summing over the values of bm in their
joint probability function P (zm, bm) in NP-HP-C, is similar to the one used in the Dirichlet-Hawkes
process (DHP) and its variants [7, 19, 24]. The NP-HP-C model has three major differences with these
DHP models: 1) These DHP models consider the particular latent feature in triggering the current
event. In contrast, the NP-HP-C model simultaneously specifies the particular latent feature (through
zm) and the particular historical oppositely-directed edges (through bm); 2) We are able to develop a
fast variational inference algorithm for this model (Section 3.4), whereas inference for DHP models
relies on Sequential Monte Carlo methods; 3) The NP-HP-C model describes continuous-time edge
data, whereas DHP models are mainly used for streaming text data.

Instead of using point processes to model the continuous-time edges, the approaches of [9, 10] studied
time-discretised networks and used Bernoulli emission distributions to model all the binary-valued
edges at each observed timestamp. They adopted Gaussian processes/Nested Gaussian processes
to generate continuous-time features for each node at the observed timestamps. The approach
of [18] also considered continuous-time edges. It extended the Poisson IRM by using histogram or
kernel approximations to model the time-varying exogenous rate function, whereas our NP-PP uses
Sigmoidal Gaussian Processes approximation.

5 Experiments

We perform experiments on four continuous-time edge datasets (Table 1) collected from the Stanford
Large Social Network Dataset [16]. In each dataset the occurrence time of an edge is recorded
to the nearest second. We scale them onto the interval [0, T ] by dividing the recorded time by
24× 3600, so that T is the total number of observation days. The first two datasets (Email, College)
comprise instant response-typed edges (replying to emails and sending messages), while the last two
(Overflow, Ubuntu) comprise edges recording relatively slow replies (writing answers to questions or
commenting on others’ answers).

Experimental setup: We use the Gaussian kernel functions, κ(f)
k (ti, tj) = θ

(f)
k e−0.5(ti−tj)

2/(δ
(f)
k )2

and κ
(g)
k (ti, tj) = θ

(g)
k e−0.5(ti−tj)

2/(δ
(g)
k )2 , in the Gaussian processes for generating random func-

tions {fk(t)}Kk=1 and {gk(t)}Kk=1 respectively, where θ
(f)
k , θ

(g)
k are scaling parameters and δ

(f)
k , δ

(g)
k

are bandwidth parameters. These parameters are optimized by applying the ADAM algorithm [15]
on the Evidence Lower Bound of the variational distributions. The parameters av, bv of the endoge-
nous function scaling values vk and the parameters aπ, bπ of the latent feature πik are given a prior
distribution of Gam(0.1, 0.1) and optimized through the variational inference. We usually set 400
iterations for the MF-VI algorithm. Without particular specifications, we set the number of latent
features as K = 5.

Comparison methods: The CTEM models are compared to the following benchmark methods:
(1) the Poisson-Infinite Relational Model (Poisson-IRM) [3]; (2) the Hawkes-Infinite Relational
Model (Hawkes-IRM) [3]; (3) the Hawkes Dual Latent Space model (Hawkes-DLS) [29]; and
(4) Hawkes process with overlapping communities (HawkesNetOC) [20]. We use the exponential
function as the endogenous functions and implement Markov chain Monte Carlo (MCMC) methods
for the Poisson-IRM and the Hawkes-IRM models to the best of our ability. Inference for the
Hawkes-DLS model and Hawkes-NetOC is executed by using the authors’ provided code. The
default settings of Hawkes-NetOC and and Hawkes-DLS are used in the comparison. We use the
previously developed CTM model constructions, giving the non-parametric Poisson process (NP-PP),
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Table 2: Testing log-likelihood and Area Under ROC Curve (AUC).

Models Testing Log-Likelihood AUC
Email College Overflow Ubuntu Email College Overflow Ubuntu

Poisson-IRM −62 320 −58 552 −90 786 −96 630 77.46 79.18 83.14 83.20
Hawkes-IRM −58 341 −59 461 −88 746 −90 435 79.42 80.14 85.16 84.14
Hawkes-DLS −59 810 −56 237 −97 505 −93 485 80.15 80.16 81.63 80.19

HawkesNetOC −57 483 −57 706 −88 193−88 193−88 193 −89 850−89 850−89 850 83.17 81.38 83.48 82.24
NP-PP −68 475 −71 154 −133 839 −136 830 78.16 79.71 89.15 86.77
NP-HP −53 121 −55 729 −114 277 −120 419 81.78 81.57 89.58 86.78

NP-HP-C −50 126−50 126−50 126 −53 958−53 958−53 958 −125 387 −134 027 85.2985.2985.29 82.1782.1782.17 89.9189.9189.91 88.0288.0288.02

non-parametric Hawkes process (NP-HP), and non-parametric Hawkes process with edge clustering
(NP-HP-C).

5.1 Testing Log-likelihood and link-prediction performance

The performance of each model is evaluated through its model fitting performance to the Testing
edges and its capability to predict future edges. The edges of each dataset are sorted according to their
occurrence times, and the dataset split into a training set (the first 70% of edges) and a testing set (the
remaining 30%). The comparisons between the CTEM and other models are based on two criteria:
the log-likelihood for the edges in the testing time period, and the AUC values on randomly sampled
sub-interval in the testing time period. We use Eq. (2) to calculate the log-likelihood, in which the
intensity function λij(t) is either the exogenous function (for Poisson processes) or a combination of
the exogenous and endogenous functions (for Hawkes processes).

For the AUC calculation, we first uniformly sample 100 time stamps ti in the time interval of the
test dataset, and then evaluate the probability of an edge appearing between all nodal pairs in the
time window [ti, ti + δ). We compute AUC values for each time window [ti, ti + δ). The final
link-prediction performance score is the mean of these 100 AUC values on all time windows.

The results are displayed in Table 2. Due to the space limit, we have provided the standard error in
the Supplementary Material. The CTEM models perform differently for the two types of datasets.
For the instant-response datasets, the NP-HP and NP-HP-C produces better performance in both
testing log-likelihood and AUC. This may indicate that our exogenous functions and endogenous
functions are fitted better than the comparison methods. However, for the slow-response datasets,
the CTEM models performs worse in the testing log-likelihoods, although it still produces better
prediction performance. A possible reason is that these two datasets have relatively simple patterns
(here low-response activities) which can be well captured by simple rate functions. For instance,
the exogenous functions for these slow-response datasets did not show clear periodicities (see the
right two panels in the top row of Figure 2). Simple rate functions like constant functions may
well describe the exogenous effects. For the endogenous effects, they are dominated by one single
endogenous function in both Overflow and Ubuntu (see the right two panels in the bottom row of
Figure 2). One single exponential decay function may also capture these simple patterns.

5.2 Visualisations for exogenous functions and endogenous functions

The top row in Figure 2 presents the mean exogenous function values
∑

(i,j):i ̸=j

∑
k πikπjk ·σ(fk(t))

for the NP-PP, NP-HP and NP-HP-C models. With the vertical dotted lines separating the time lines
into weeks, daily periodicity is quite clear for the instant-response datasets (i.e. Email, College),
and approximate weekly periodicity for Overflow and Ubuntu. The weekend effect is also easily
identifiable in Email, a gradual increasing trend in location and scale for College, and occasional
weeks of peak high and low activity for the slow response datasets. For the latter, the large activity
spikes could be explained by sudden interest in popular topics being discussed on the message boards.

In terms of performance difference within the CTEM models, the exogenous values of the NP-PP
model (blue lines) are always higher than those of the NP-HP and NP-HP-C models, and the NP-HP
(green lines) usually produces the smallest values. The former may occur as the NP-PP model is
using the exogenous functions to explain all edges as it does not have endogenous functions. The
latter may occur as the NP-HP models less edges than the NP-HP-C. For the slow-response datasets,
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Figure 2: Top row: mean exogenous functions 1
N(N−1)

∑
i ̸=j

∑
k πikπjk · σ(fk(t)) for the NP-PP,

NP-HP and NP-HP-C models on each dataset. The axes show the the exogenous rates (y-axis) and the
number of days (x-axis). Vertical dotted lines in each panel indicate weekly intervals. Bottom row:
fitted endogenous functions {vk · σ(gk(t))}k for NP-HP-C on each dataset. Panel legends indicate
the proportion of triggered edges explained by each function. In order to improve visualisation,
exogenous functions with weight under 0.1 are not shown.

the average values are similar for the NP-PP and NP-HP-C models. This may be explained as the
endogenous effects may be more important to the instant-response data than the slow-response data.

The bottom row in Figure 2 illustrates the most influential endogenous functions of the NP-HP-C
model. Within our expectation that endogenous effects would become weaker along with the time, the
values of all main endogenous functions have sharp decreases in the beginning period. Three of the
datasets also exhibit (daily or weekly) periodicity, which indicates that for these data there has been
an increase in triggered responses above and beyond the increase in events attributable to background
(exogenous) rates. This is less obviously the case for the College dataset, where, despite some initial
periodicity, many of the endogenous functions become constant after a certain time. We are unaware
of any related discussions of periodic endogenous functions for these data in the literature.

We have provided visualisations for other variables in the Supplementary Material.

5.3 Intensity functions λij(t) and influence of the number of latent features

The left two panels of Figure 3 show the intensity functions λij(t) of the NP-HP-C for randomly
selected nodal pairs on an instant-response (Email) and a slow-response (Overflow) dataset. The daily
periodicity is again strongly apparent in λij(t) for Email, and more muted weekly periodicity for
λij(t) in Overflow. We note that most of the observed edges (points on the x-axis) are located in
regions where the intensity increases, indicating correct performance.

The right two panels of Figure 3 show the influence of different number of latent features K.
Predictive performance appears less sensitive to K for the instant-response datasets, which perhaps
have simpler structures, than the slow-response datasets, as the latter have improved performance
with increasing K. Consistent with the complexity analysis, running times are linear in the number
of edges. As the NP-HP-C with K = 5 requires ∼ 60 seconds for one iteration with 80 000 edges,
we need ∼ 6 hours of for posterior inference on these edges (with 400 iterations).

6 Conclusion

In this work, we have explored three non-parametric point process models for continuous-time
edge data. The sigmoidal Gaussian process priors for the exogenous and endogenous functions
enable flexible modelling, and strong predictive performance. The developed mean-field variational
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Figure 3: Left two panels: example nodal pair-intensity function λij(t) for NP-HP-C on Email and
Overflow. middle right panel: AUC prediction performance for NP-HP-C with K = 1, 3, 5. Right
most: Running time (seconds per iteration on a laptop) comparison for NP-HP-C with K = 1, 3, 5.

inference algorithm allows the models to work at scale. The experimental results on four real world
data sets demonstrate superior performance compared to the state-of-the-art.
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