
EFFICODER: Enhancing Code Generation in Large Language Models
through Efficiency-Aware Fine-tuning

Dong Huang * 1 2 Guangtao Zeng * 3 Jianbo Dai 4 Meng Luo 2 Han Weng 5 Yuhao Qing 1 Heming Cui 1

Zhijiang Guo † 6 Jie M. Zhang 7

Abstract

As Large Language Models (LLMs) play an im-
portant role in code generation, enhancing both
correctness and efficiency has become crucial.
Current methods primarily focus on correctness,
often overlooking efficiency. To address this gap,
we introduce EFFICODER to improve both aspects
by fine-tuning LLMs on a high-quality dataset
EFFIINSTRUCT comprising correct and efficient
code samples. Our method involves leveraging
multiple LLMs to generate diverse candidate code
solutions for various tasks across different pro-
gramming languages. We then evaluate these so-
lutions by measuring their execution time and
memory usage through local execution. The code
solution with the lowest execution time and mem-
ory consumption is selected as the final output for
each task. Experimental results demonstrate sig-
nificant improvements when fine-tuning with EF-
FIINSTRUCT. For instance, Qwen2.5-Coder-7B-
Instruct’s pass@1 score increases from 44.8% to
57.7%, while the average execution time for cor-
rect tasks decreases by 48.4%. EFFICODER offers
a scalable and effective solution for advancing AI-
driven code generation, benefiting both software
development and computational problem-solving.
Dataset and Code are available at https://
github.com/huangd1999/EffiCoder.

1. Introduction
Large Language Models (LLMs) have recently made signif-
icant strides across various tasks (OpenAI, 2023; Anthropic,

*Equal contribution 1University of Hong Kong 2National Uni-
versity of Singapore 3Singapore University of Technology and
Design 4University of Edinburgh 5Beijing University of Posts and
Telecommunications 6University of Cambridge 7King’s College
London. Correspondence to: Zhijiang Guo <zg283@cam.ac.uk>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

2024; Meta, 2024), including code-related applications like
code completion (Chen et al., 2021; Austin et al., 2021),
debugging (Haque et al., 2022; Chen et al., 2023), and trans-
lation (Rozière et al., 2020; Ahmad et al., 2023). Before
deploying LLMs into integrated development environments,
it is crucial to ensure that the generated code meets the re-
quired efficacy standards. To address this, researchers have
explored various datasets to fine-tune LLMs, thereby im-
proving the efficacy of LLM-generated code (Ouyang et al.,
2022; Wei et al., 2022). For example, Code Alpaca (Chaud-
hary, 2023) utilized the Self-Instruct framework (Wang et al.,
2023) to synthesize data, while WizardCoder (Luo et al.,
2024) employed the Evol-Instruct technique (Xu et al., 2024)
to generate heuristic prompts for diverse solutions. Addi-
tionally, OSS-Instruct (Wei et al., 2024b) created new cod-
ing problems using open-source snippets with LLMs, and
Octopack (Muennighoff et al., 2024) focused on curating
high-quality Git commit messages that resemble natural
language instructions. These efforts have led to increased
correctness in LLM-generated code.

However, existing works primarily focus on enhancing the
correctness of LLM-generated code while neglecting to op-
timize its efficiency. As a result, the efficiency of such code
often falls short compared to canonical solutions written
by human developers. Recent studies (Shi et al., 2024; Niu
et al., 2024; Du et al., 2024; Huang et al., 2024a; Liu et al.,
2024b) also point out that LLM-generated code typically ex-
hibits lower efficiency in execution time and memory usage.
For instance, on the EffiBench benchmark (Huang et al.,
2024b), even the most advanced LLMs, such as GPT-4-
Turbo, produced less efficient code, with average and worst-
case execution times being 1.69 and 45.49 times longer
than those of canonical solutions, respectively. Efficiency is
crucial because inefficient code consumes more computa-
tional resources, leading to higher energy consumption and
increased operational costs. This is particularly important in
the context of sustainability, as the demand for computing
power continues to grow, and reducing the environmen-
tal impact of large-scale computations becomes a pressing
concern. Furthermore, inefficient code may be impractical
for use in resource-constrained environments, such as mo-
bile devices or embedded systems, where both energy and

1

https://github.com/huangd1999/EffiCoder
https://github.com/huangd1999/EffiCoder


EFFICODER: Enhancing Code Generation in Large Language Models through Efficiency-Aware Fine-tuning

processing power are limited. This underscores the urgent
need to develop new methods that can enhance both the
correctness and efficiency of LLM-generated code.

In this paper, we introduce EFFICODER, aimed at fine-
tuning LLMs to improve both code efficiency and correct-
ness. We begin by aggregating source code from existing
open-source datasets. This is followed by a rigorous prepro-
cessing and cleaning process, coupled with the generation
of test cases for each task to evaluate code efficiency. We
leverage multiple LLMs to generate diverse candidate code
solutions for various tasks across different programming
languages. We then evaluate these solutions by directly
measuring their execution time and memory usage through
local execution. Code solutions with the lowest execution
time and memory consumption are selected as the final
output. The resulting optimized code, along with its asso-
ciated metadata, forms EFFIINSTRUCT, which serves as a
high-quality resource for training LLMs.

Extensive experiments demonstrate that fine-tuning LLMs
with EFFIINSTRUCT improves both correctness and effi-
ciency. For example, the fine-tuned Qwen2.5-Coder-7B-
Instruct (Hui et al., 2024) increases the pass@1 from 44.8%
and 76.2% to 57.7% and 78.0% on EffiBench and Hu-
manEvalPlus, while also reducing the average execution
time from 0.31 seconds to 0.16 seconds — representing a
48.4% reduction in execution time overhead on EffiBench.
Compared to PIE (Shypula et al., 2024), which increases
the pass@1 from 12.2% to 19.5% on HumanEvalPlus, the
pass@1 of CodeLlama-7B (Rozière et al., 2023) fine-tuned
with EFFIINSTRUCT further increases to 31.1%. In addi-
tion, EFFICODER decreases the execution time by 46.2%
while PIE decreases it by 23.1%. We will fully open-source
EFFICODER and the source code to facilitate research. To
conclude, this paper makes the contributions:

• We propose a versatile framework for constructing
code generation datasets with efficient solutions, adapt-
able to various programming languages and sources.

• We construct EFFIINSTRUCT, to the best of our knowl-
edge, it is the first instruction-tuning dataset designed
to improve the efficiency of LLM-generated code, facil-
itating fine-tuning for more efficient code generation.

• We introduce EFFICODER by fine-tuning various
widely used LLMs using EFFIINSTRUCT, demonstrat-
ing improvements in both correctness and efficiency.

2. Related Works
2.1. LLMs for Code

The increasing popularity of LLMs for code generation
has coincided with the growing availability of open-source

code repositories and the need to boost developer produc-
tivity (Sun et al., 2024). Initial efforts focused on training
models specifically for coding tasks, such as CodeT5 (Wang
et al., 2021), AlphaCode (Li et al., 2022), CodeGen (Ni-
jkamp et al., 2023), InCoder (Fried et al., 2023), Star-
Coder (Li et al., 2023a), SantaCoder (Allal et al., 2023), and
DeepSeek-Coder (DeepSeekAI, 2023). Contrastingly, mod-
els such as Codex (Chen et al., 2021) and CodeLlama (Roz-
ière et al., 2023) represent a subsequent stride, being fine-
tuned from foundation models (Brown et al., 2020; Touvron
et al., 2023). These code LLMs have been applied to vari-
ous tasks, including code generation (Chen et al., 2021; Dai
et al., 2024), program repair (Haque et al., 2022; Jiang et al.,
2023), automated testing (Lemieux et al., 2023; Deng et al.,
2023), code translation (Rozière et al., 2020; Ahmad et al.,
2023), type prediction (Mir et al., 2022; Wei et al., 2023),
and code summarization (Hasan et al., 2021; Ahmed & De-
vanbu, 2022). While LLMs have achieved impressive results
in code generation tasks like HumanEval (Chen et al., 2021)
and MHPP (Dai et al., 2024), their efficiency has received
less attention. Recent studies (Shi et al., 2024; Huang et al.,
2024b; Niu et al., 2024) have shown that LLM-generated
code exhibits lower efficiency in terms of execution time
and memory usage compared to canonical solutions. These
findings highlight the need for further research and devel-
opment to improve the efficiency of LLM-generated code.
In this work, we propose the first fine-tuning method that
significantly improves both the efficiency and correctness
of code generated by various LLMs.

2.2. Instruction Tuning for Code

Instruction tuning has proven effective in enhancing the
usability and overall performance of LLMs across various
language tasks (Ouyang et al., 2022; Wei et al., 2022; Zhao
et al., 2024). This approach has been extended to the do-
main of code generation. The core challenge is the ac-
quisition of high-quality instructional data, which is often
labor-intensive. To address this, recent research has focused
on developing methods to generate synthetic instruction
data. Studies have shown that textbook-quality synthetic
data alone can improve a model’s coding and reasoning
capabilities (Gunasekar et al., 2023; Li et al., 2023b). One
early effort was Self-Instruct (Wang et al., 2023), which
utilized LLMs to generate synthetic instruction-response
pairs using carefully crafted prompts. The same LLM was
then instruction-tuned on this synthetic data. Code Al-
paca (Chaudhary, 2023) applied the Self-Instruct approach
with GPT models, tailoring it specifically for code gener-
ation, editing, and optimization tasks. Building upon this,
WizardCoder (Luo et al., 2024) adapted the Evol-Instruct
technique (Xu et al., 2024) to the coding domain by design-
ing heuristic prompts to create more complex and diverse
synthetic data. OSS-Instruct (Wei et al., 2024b) took a

2



EFFICODER: Enhancing Code Generation in Large Language Models through Efficiency-Aware Fine-tuning

Code
Corpus

LLMs

Sampling
Response

Response

Response

Candidate Solutions

Overhead

Execute
Time: 0.008s
Mem: 200Mb

Time: 0.3s
Mem: 2000Mb

Time: 0.06s
Mem: 300Mb

Profiles

Select

Solutions

Effi-Instruct

Mining

Candidate
Tasks

Description

Task Solution

Task Cases 
(Augmented)

Code Tasks

Figure 1. Overview of the construction pipeline for EFFIINSTRUCT: We begin by collecting the initial EFFIINSTRUCT from different
open-source datasets. Starting with the original code, we require multiple LLMs to generate candidate solutions, using test cases to profile
execution overhead, and use the most efficient solution generated by LLMs as the solution for each task. We then have our final fine-tuning
dataset, EFFIINSTRUCT, which consists of optimized code and rich metadata, designed to train models for generating efficient code.

def singleNumber(num):
for i in range(len(num)):

if num.count(num[i]) == 1:
return num[i]

def singleNumber(num):
a = b = 0
for c in num:

aa = (~a & b & ~c) | (a & ~b & ~c)
bb = ~a & (b ^ c)
a, b = aa, bb

return b

def singleNumber(num):
return reduce(operator.xor, num)

Slow
Execution

High
Memory

Fast
Execution

Low
Memory

Slow
Execution

Low
Memory

Figure 2. Examples of code with varying efficiency levels: The first solution has high memory usage and long execution time. The second
reduces memory usage but still has a long execution time. The third is optimized for low memory usage and fast execution.

different approach by leveraging LLMs to automatically
generate new coding problems inspired by random code
snippets from open-source repositories. In contrast, Oc-
topack (Muennighoff et al., 2024) focused on collecting and
filtering high-quality Git commit messages that resemble
natural language instructions. While these existing methods
primarily emphasize generating correct code, EFFICODER
explores the use of fine-tuning to improve code efficiency.
Our method is orthogonal to existing synthetic techniques,
offering the potential for combination to further enhance the
coding capabilities of LLMs.

3. EFFICODER: Fine-Tuning For Efficiency
3.1. Preliminary Study

We begin by investigating how the efficiency of training data
influences the efficiency of code generated by LLMs. Fol-
lowing prior works (Huang et al., 2024b), we evaluate code
efficiency using three metrics: Execution Time (ET), Max
Memory Usage (MU), and Total Memory Usage (TMU).
We hypothesize that training LLMs on efficient code will
lead to the generation of more efficient code. To test this
hypothesis, we synthesized multiple training datasets with
varying levels of efficiency and used them to train differ-
ent LLMs. The efficiency of the generated code was then
measured in a controlled environment using ET, MU, and
TMU. The training datasets included both efficient and in-
efficient code samples to ensure a comprehensive range of

efficiencies. The results, presented in Figure 3, reveal strong
positive correlations between the efficiency of the training
data and the efficiency of the generated code. Specifically,
the correlation for ET is 0.972, for MU it is 0.950, and for
TMU it is 0.986. These high correlation coefficients indicate
that as the efficiency of the training data increases, so does
the efficiency of the generated code. This study demon-
strates that training LLMs on efficient code significantly
enhances the efficiency of the generated code. The strong
correlations across all three metrics support the hypothesis
that the efficiency of the training data is a critical factor in
improving the performance of LLM-generated code. These
findings inspire further exploration of specific techniques
for optimizing training datasets to maximize code efficiency.

3.2. Dataset Construction

Curation Process Figure 1 illustrates an overview of the
process for constructing the EFFIINSTRUCT dataset for fine-
tuning. The first step involves collecting candidate code
generation tasks from nine open-source datasets available
on the HuggingFace platform1. For each task, we aim to
construct a more efficient solution compared to the initial
solutions provided by the open-source datasets. Our ap-
proach shares similarities with existing works (Du et al.,
2024; Huang et al., 2024a), where researchers execute LLM-
generated code locally and analyze the execution time and

1https://huggingface.co/docs/datasets

3

https://huggingface.co/docs/datasets


EFFICODER: Enhancing Code Generation in Large Language Models through Efficiency-Aware Fine-tuning

0.64 0.66 0.68 0.70 0.72 0.74
ET EffiBench

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

ET
 E

ffi
-C

od
e

ET: Corr = 0.972
ET
Fit Line

80.0 82.5 85.0 87.5 90.0 92.5 95.0 97.5
MU EffiBench

21

22

23

24

25

M
U 

Ef
fi-

Co
de

MU: Corr = 0.950
MU
Fit Line

55 60 65 70 75 80 85 90
TMU EffiBench

10

20

30

40

TM
U 

Ef
fi-

Co
de

TMU: Corr = 0.986
TMU
Fit Line

Figure 3. Correlation of the efficiency of the automatically generated code and the LLM code train set.

memory usage. However, our construction pipeline differs
in that it utilizes multiple LLMs (e.g., DeepSeek-Coder
and GPT-4o) to generate multiple candidate code solutions
for each task in our candidate task set. We then directly
calculate the execution time and memory usage for each
generated code solution by executing them in local envi-
ronments. The code with the lowest execution time and
memory usage is selected as the final code for each task.
For example, as shown in Figure 2, we directly select the
code on the right as the final code.

Data Sources We collect the candidate tasks from
the open-source code LLM training sets, which in-
clude SelfCodeAlign (SelfCodeAlign; Wei et al. 2024a),
CodeFeedback-Filtered-Instruction (CodeFeed; MAP 2023),
Tested-143k-Python-Alpaca (Alpaca; Vezora 2023), Glaive-
Code-Assistant (Glaive; Computer 2023), Magicoder-Evol-
Instruct-110K (Evol-Ins; UIUC 2023a), Dolphin-Coder
(Dolphin; Computations 2023), Magicoder-OSS-Instruct-
75K (Oss-Ins; UIUC 2023b), Self-OSS-Instruct-SC2-Exec-
Filter-50K (Self-Oss; BigCode 2023), and Apps (Hendrycks
et al., 2021). To collect the candidate tasks, all Python, C++,
Java, Rust, and Go functions are extracted from the afore-
mentioned open-source datasets. Following the filtering
instructions of SelfCodeAlign (Wei et al., 2024a), a series
of filtering rules are applied to ensure the code quality of the
candidate tasks. After applying the filtering process, a total
of 65k tasks were collected from an initial pool of about
790k candidate tasks2.

3.3. Dataset Statistics

As shown in Table 1, coding problems in EFFIINSTRUCT
have been collected from nine datasets, resulting in a total
of 65,710 tasks across five programming languages: Python,
C++, Java, Rust, and Go. The dataset encompasses a di-

2Analysis shows no exact duplicates between training and eval-
uation sets, with only 0.20% of evaluation samples having minimal
vocabulary overlap (5-10%).

verse range of coding challenges, ensuring a comprehensive
coverage of various programming concepts and problem-
solving techniques. Python has the highest representation
in EFFIINSTRUCT, with 33,489 tasks sourced from all nine
datasets. This extensive collection of Python tasks allows
for effective fine-tuning of LLMs to generate efficient and
optimized Python code. C++ and Java also have significant
contributions, with 11,547 and 14,726 tasks, respectively.
These tasks are primarily sourced from CodeFeed, Glaive,
Evol-Ins, Dolphin, and Oss-Ins datasets, providing a robust
foundation for fine-tuning LLMs in these popular program-
ming languages. Rust and Go, although having relatively
fewer tasks compared to Python, C++, and Java, still have
a substantial presence in EFFIINSTRUCT. With 4,270 Rust
tasks and 1,678 Go tasks, the dataset enables fine-tuning of
LLMs to generate efficient code in these modern and rapidly
growing programming languages.

Figure 4 illustrates the efficiency distribution of the dataset
for three key metrics: execution time, memory usage, and
max memory peak, which compares the distribution of these
metrics for both inefficient (canonical solutions provided
by the nine datasets) and efficient solutions in the EFFIIN-
STRUCT. For execution time, the inefficient solutions have
a mean value of 1.14s, while the efficient solutions have a
significantly lower mean of 0.31s, which indicates that the
optimization process has successfully reduced the execu-
tion time of the code, resulting in more efficient solutions.
Similarly, the memory usage and max memory peak also
show a notable difference between inefficient and efficient
solutions. For example, inefficient solutions have a mean
memory usage of 26.50 MBs, while efficient solutions have
a much lower mean of 6.03 MBs.

The efficiency distribution visualization highlights the ef-
fectiveness of the optimization process in creating more
efficient solutions across all three metrics. By carefully
curating tasks through the multi-step cleaning process and
applying SOAP optimization, we have created a dataset
that is valuable for training models to generate efficient

4



EFFICODER: Enhancing Code Generation in Large Language Models through Efficiency-Aware Fine-tuning

Table 1. Distribution of tasks in the constructed EFFIINSTRUCT for different programming languages.
Dataset APPS Alpaca CodeFeed Glaive Evol-Ins Dolphin Oss-Ins Self-Oss SelfCodeAlign Total

Python 1001 2920 1387 32 1250 1958 76 827 24038 33489
CPP - 3 1257 2675 3439 1186 2985 2 - 11547
Java - 1 2082 3278 4692 1746 2927 - - 14726
Rust - - 26 187 467 500 3090 - - 4270
Go - 1 47 277 776 549 28 - - 1678

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Execution Time (s)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

De
ns

ity

Execution Time
Inefficient Mean: 1.14s
Efficient Mean: 0.27s

0 10 20 30 40 50
Memory Usage (MB*s)

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

De
ns

ity

Memory Usage
Inefficient Mean: 26.24MB * s
Efficient Mean: 5.13MB * s

20 25 30 35 40
Max Memory Peak (MB)

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

De
ns

ity

Max Memory Peak
Inefficient Mean: 26.09MB
Efficient Mean: 21.76MB

Figure 4. Efficiency distribution of the Python subset collected from Hugging Face. The figure shows the distribution of execution time,
memory usage, and max memory peak for both inefficient (task-provided solution) and efficient solutions in the EFFIINSTRUCT. The
inefficient solutions have higher overheads for all three metrics than the efficient ones.

code. EFFIINSTRUCT provides a diverse range of optimized
coding problems, enabling researchers and practitioners to
advance the field of code optimization using LLMs.

4. Experiment
Datasets and Models We evaluate the efficiency and
correctness of LLM-generated code on five code gener-
ation benchmarks, i.e., EffiBench (Huang et al., 2024b),
EvalPlus (HumanEvalPlus and MBPPPlus) (Liu et al.,
2024a), DS-1000 (Lai et al., 2023), EvoEval (Xia et al.,
2024), and HumanEval-X (Zheng et al., 2023). We finetune
eight open-source LLMs with EFFIINSTRUCT, including
CodeLlama-7b-bf, DeepSeek-Coder-6.7B base and instruct
model (DeepSeekAI, 2023), Qwen2.5-Coder-7B base and
instruct model (Hui et al., 2024), and Qwen2.5-Coder (1.5B,
3B, and 14B).

Fine-tuning Setup We use Llama-factory (Zheng et al.,
2024) to fine-tune LLMs with fully supervised fine-tuning
with the same setup and train the models using EFFIIN-
STRUCT. The maximum sequence length is set to 2048
tokens. We use a batch size of 128 and set the learning rate
to 5e-6 with a cosine learning rate scheduler and a warmup
ratio of 0.03. We fine-tune all LLMs for 4 epochs under the
bf16 data type.

4.1. Evaluation of Python Code

To comprehensively demonstrate the efficiency and correct-
ness of automatically generated code by LLMs with the
SFT of EFFIINSTRUCT, we first provide the evaluation of
the LLMs in generating Python code, where LLMs are asked
to create Python code based on natural language or function
signatures with docstrings.

EffiBench is a benchmark used to measure the efficiency
and correctness of LLM-generated code in LeetCode tasks.
To ensure that the efficiency of LLM-generated code can
be measured, the authors construct 100 tests for each task
to provide enough testing time. As shown in Table 2, we
can observe that for all LLMs, the efficiency of the LLM-
generated code has been improved after fine-tuning with
EFFIINSTRUCT. For example, the average execution time
(ET) for the correct code generated by Qwen2.5-Coder-7B-
Instruct and its EFFIINSTRUCT fine-tuned version decreases
from 0.31 (s) to 0.16 (s), a reduction of 48.4%. Similarly,
the total memory usage (TMU) of LLM-generated code
also shows significant decreases. For instance, the TMU
of DeepSeek-Coder-6.7B-Instruct decreases from 30.05
(Mb*s) to 9.48 (Mb*s), a larger reduction than the decrease
in average execution time for the correct code generated
by the same model, which only reduces by 35.3% from

5



EFFICODER: Enhancing Code Generation in Large Language Models through Efficiency-Aware Fine-tuning

Table 2. Code efficiency and pass@1 of LLMs trained with EFFIINSTRUCT on EffiBench using greedy decoding. The percentage in the
brackets indicates the extent of the reduction for each respective item. Overlap means the percentage of correct tasks addressed by both
EFFIINSTRUCT finetuned LLM and original LLM in total tasks of the dataset.

Model ET (s) ↓ NET ↓ MU (Mb) ↓ NMU ↓ TMU (Mb*s) ↓ NTMU ↓ Overlap (%) ↑ Pass@1 (%) ↑
CodeLlama-7b-hf 0.24 1.48 141.91 4.78 149.23 73.82 8.2 15.0
+ EFFIINSTRUCT 0.20 (16.7%) 1.27 (14.2%) 80.86 (43.0%) 2.26 (52.7%) 87.09 (41.6%) 42.66 (42.2%) 8.2 17.6
deepseek-coder-6.7b-base 0.37 2.62 36.94 1.04 17.26 2.74 47.1 54.4
+ EFFIINSTRUCT 0.21 (43.2%) 1.42 (45.8%) 37.11 (-0.5%) 1.04 (0.0%) 11.97 (30.6%) 2.10 (23.4%) 47.1 59.3
deepseek-coder-6.7b-instruct 0.34 2.56 47.26 1.45 30.05 9.97 36.0 44.4
+ EFFIINSTRUCT 0.22 (35.3%) 1.71 (33.2%) 36.31 (23.2%) 1.00 (31.0%) 9.48 (68.5%) 2.11 (78.8%) 36.0 51.7
Qwen2.5-Coder-7B-Instruct 0.31 2.35 31.66 1.00 11.00 2.15 37.2 44.8
+ EFFIINSTRUCT 0.16 (48.4%) 1.12 (52.3%) 31.67 (-0.0%) 1.00 (0.0%) 8.28 (24.7%) 1.18 (45.1%) 37.2 57.7
Qwen2.5-Coder-1.5B 0.40 2.95 35.34 1.03 15.68 3.51 27.1 39.6
+ EFFIINSTRUCT 0.22 (45.0%) 1.60 (45.8%) 34.58 (2.2%) 1.00 (2.9%) 9.09 (42.0%) 1.98 (43.6%) 27.1 41.7
Qwen2.5-Coder-3B 0.43 2.73 48.73 1.00 33.88 2.59 16.9 31.2
+ EFFIINSTRUCT 0.23 (46.5%) 1.60 (41.4%) 49.18 (-0.9%) 1.00 (0.0%) 18.31 (46.0%) 1.98 (23.6%) 16.9 34.2
Qwen2.5-Coder-7B 0.26 1.81 38.88 1.01 18.63 3.01 41.4 50.1
+ EFFIINSTRUCT 0.17 (34.6%) 1.23 (32.0%) 38.61 (0.7%) 1.00 (1.0%) 10.82 (41.9%) 1.32 (56.1%) 41.4 57.3
Qwen2.5-Coder-14B 0.36 2.73 32.41 1.00 12.59 2.57 50.1 57.5
+ EFFIINSTRUCT 0.15 (58.3%) 1.14 (58.2%) 32.41 (0.0%) 1.00 (0.0%) 6.80 (46.0%) 1.23 (52.1%) 50.1 63.6

Table 3. Code efficiency and pass@1 of LLMs trained with EFFIINSTRUCT on HumanEvalPlus and MBPPPlus.
Model ET (s) ↓ NET ↓ MU (Mb) ↓ NMU ↓ TMU (Mb*s) ↓ NTMU ↓ Overlap (%) ↑ Pass@1 (%) ↑

HumanEvalPlus

deepseek-coder-6.7b-base 0.43 1.04 67.45 1.00 28.23 1.02 7.3 7.3
+ EFFIINSTRUCT 0.42 (2.3%) 1.00 (3.8%) 67.37 (0.1%) 1.00 (0.0%) 27.90 (1.2%) 1.02 (0.0%) 7.3 64.6
deepseek-coder-6.7b-instruct 0.54 2.27 61.64 0.98 20.18 2.30 42.1 47.6
+ EFFIINSTRUCT 0.37 (31.5%) 1.45 (36.1%) 61.58 (0.1%) 0.98 (0.0%) 16.48 (18.3%) 1.78 (22.6%) 42.1 72.6
Qwen2.5-Coder-7B 0.35 1.23 61.77 0.98 15.25 1.39 36.6 40.2
+ EFFIINSTRUCT 0.29 (17.1%) 0.96 (22.0%) 61.70 (0.1%) 0.98 (0.0%) 12.18 (20.1%) 0.96 (30.9%) 36.6 78.7
Qwen2.5-Coder-7B-Instruct 0.52 2.05 63.38 0.99 20.17 1.96 67.7 76.2
+ EFFIINSTRUCT 0.32 (38.5%) 1.08 (47.3%) 63.35 (0.0%) 0.99 (0.0%) 15.15 (24.9%) 1.16 (40.8%) 67.7 78.0

MBPPPlus

deepseek-coder-6.7b-base 0.49 1.64 58.90 1.00 17.27 1.62 55.3 63.2
+ EFFIINSTRUCT 0.31 (36.7%) 0.97 (40.9%) 58.99 (-0.2%) 1.00 (0.0%) 10.27 (40.5%) 0.96 (40.7%) 55.3 65.9
deepseek-coder-6.7b-instruct 0.43 1.65 59.03 1.00 14.39 1.65 59.0 65.3
+ EFFIINSTRUCT 0.31 (27.9%) 1.01 (38.8%) 58.97 (0.1%) 1.00 (0.0%) 10.35 (28.1%) 1.02 (38.2%) 59.0 67.5
Qwen2.5-Coder-7B 0.48 1.70 58.89 0.99 17.00 1.79 59.5 60.1
+ EFFIINSTRUCT 0.31 (35.4%) 0.96 (43.5%) 58.98 (-0.2%) 0.99 (0.0%) 10.33 (39.2%) 0.94 (47.5%) 59.5 63.2
Qwen2.5-Coder-7B-Instruct 0.46 1.68 64.90 1.00 23.99 1.66 63.2 68.0
+ EFFIINSTRUCT 0.30 (34.8%) 0.96 (42.9%) 68.31 (-5.3%) 1.00 (0.0%) 16.91 (32.4%) 0.95 (42.8%) 63.2 70.6

0.34 (s) to 0.22 (s). This indicates that during code gen-
eration, both the execution time and memory usage of the
fine-tuned-LLM-generated code have been improved com-
pared to the code generated by the original models. Further-
more, the memory usage/peak (MU) of DeepSeek-Coder-
6.7B-Instruct generated code decreases from 47.26 (Mb) to
36.31 (Mb), a reduction of 23.2%, ensuring that the LLM-
generated code can be deployed in memory-constrained
scenarios such as embedded systems or edge devices.

Interestingly, we observe that compared to the MU, ET is
more widely optimized across all models. This suggests that
EFFIINSTRUCT fine-tuning has a more significant impact on
reducing the execution time of the generated code than on
reducing its memory footprint. Nevertheless, the improve-
ments in execution time and memory usage demonstrate the
effectiveness of EFFIINSTRUCT in enhancing the efficiency
of LLM-generated code.

HumanEvalPlus and MBPPPlus As shown in Table 3, we
observe that almost all LLMs achieve better efficiency and

higher correctness after being fine-tuned with . Take Hu-
manEvalPlus as an example, the average execution time (ET)
for correct code generated by Qwen2.5-Coder-7B-Instruct
and its fine-tuned version decreases from 0.52 (s) to 0.32
(s), a reduction of 38.5%. These improvements demon-
strate the effectiveness of in optimizing the efficiency of
LLM-generated code. Moreover, the pass@1 of Qwen2.5-
Coder-7B increases from 40.2% to 78.7%, an improvement
of 38.5% after fine-tuning with . This indicates that the
fine-tuned models not only generate more efficient code but
also produce correct code more frequently. Similar to the
results in HumanEvalPlus, the efficiency and correctness
of fine-tuned LLMs also improve in the MBPPPlus dataset.
For instance, the average execution time for correct code
generated by deepseek-coder-6.7b-base decreases by 36.7%,
and the total memory usage (TMU) decreases by 40.5%
after fine-tuning.

EvoEval includes 828 programming problems created by
prompting GPT-4 to evolve original HumanEval tasks across

6



EFFICODER: Enhancing Code Generation in Large Language Models through Efficiency-Aware Fine-tuning

Table 4. Code efficiency and pass@1 of Qwen2.5-Coder-7B-Instruct and deepseek-coder-6.7b-instruct fine-tuned using SFT with the
EFFIINSTRUCT for the EvoEval dataset.

Model ET (s) ↓ NET ↓ MU (Mb) ↓ NMU ↓ TMU (Mb*s) ↓ NTMU ↓ Overlap (%) ↑ Pass@1 (%) ↑

EvoEval_tool_use

Qwen2.5-Coder-7B-Instruct 0.35 1.80 59.11 1.00 11.22 1.74 33.0 43.0
+ EFFIINSTRUCT 0.20 (42.9%) 0.98 (45.6%) 59.08 (0.1%) 1.00 (0.0%) 6.55 (41.6%) 0.99 (43.1%) 33.0 53.0
deepseek-coder-6.7b-instruct 0.41 1.83 74.88 1.00 31.51 1.74 44.0 54.0
+ EFFIINSTRUCT 0.24 (41.5%) 0.99 (45.9%) 74.77 (0.1%) 1.00 (0.0%) 26.50 (15.9%) 1.00 (42.5%) 44.0 55.0

EvoEval_subtle

Qwen2.5-Coder-7B-Instruct 0.40 1.49 70.46 1.00 29.15 1.46 48.0 55.0
+ EFFIINSTRUCT 0.33 (17.5%) 1.11 (25.5%) 70.47 (-0.0%) 1.00 (0.0%) 28.30 (2.9%) 1.17 (19.9%) 48.0 72.0
deepseek-coder-6.7b-instruct 0.45 1.97 59.06 0.99 17.01 2.00 50.0 56.0
+ EFFIINSTRUCT 0.30 (33.3%) 1.32 (33.0%) 58.93 (0.2%) 0.99 (0.0%) 11.19 (34.2%) 1.31 (34.5%) 50.0 69.0

EvoEval_creative

Qwen2.5-Coder-7B-Instruct 0.51 2.16 62.71 1.00 24.21 2.39 32.0 44.0
+ EFFIINSTRUCT 0.37 (27.5%) 1.45 (32.9%) 62.69 (0.0%) 1.00 (0.0%) 21.10 (12.8%) 1.82 (23.8%) 32.0 44.0
deepseek-coder-6.7b-instruct 0.42 1.71 61.88 1.00 15.91 1.62 27.0 31.0
+ EFFIINSTRUCT 0.26 (38.1%) 0.99 (42.1%) 61.75 (0.2%) 1.00 (0.0%) 10.86 (31.7%) 0.98 (39.5%) 27.0 41.0

Table 5. Code efficiency and pass@1 of Qwen2.5-Coder-7B-Instruct and deepseek-coder-6.7b-instruct fine-tuned using SFT with the
EFFIINSTRUCT for the DS-1000 dataset.

Model ET (s) ↓ NET ↓ MU (Mb) ↓ NMU ↓ TMU (Mb*s) ↓ NTMU ↓ Overlap (%) ↑ Pass@1 (%) ↑

Qwen2.5-Coder-7B-Instruct 1.2668 1.0102 447.7101 1.0148 6.831366 1.0175 9.30 17.00
+ EFFIINSTRUCT 1.2593 (0.8%) 1.0041 (1.0%) 447.0711 (0.1%) 1.0134 (0.0%) 6.7694 (0.9%) 1.0081 (1.0%) 9.30 35.70
deepseek-coder-6.7b-instruct 1.3154 1.0536 450.2792 1.0206 7.204722 1.0731 29.10 37.50
+ EFFIINSTRUCT 1.2587 (4.5%) 1.0082 (3.8%) 441.7553 (1.9%) 1.0013 (2.0%) 6.8022 (5.6%) 1.0132 (5.6%) 29.10 37.50

5 semantic-altering and 2 semantic-preserving benchmarks,
each of which has 100 problems. We conduct experiments
on the Tool_Use, Subtle, and Creative benchmarks to eval-
uate the performance of Qwen2.5-Coder-7B-Instruct and
deepseek-coder-6.7b-instruct fine-tuned with . As shown in
Table 4, both models demonstrate significant improvements
in code efficiency after fine-tuning with . For the Tool_Use
benchmark, the average execution time (ET) for correct
code generated by Qwen2.5-Coder-7B-Instruct decreases
by 42.9%, and the total memory usage (TMU) decreases
by 41.6% after fine-tuning. Similarly, deepseek-coder-6.7b-
instruct achieves a 41.5% reduction in ET and a 15.9%
reduction in TMU. In the Subtle benchmark, after fine-
tuning, Qwen2.5-Coder-7B-Instruct and deepseek-coder-
6.7b-instruct exhibit 17.5% and 33.3% reductions in ET,
respectively, after fine-tuning. The normalized total mem-
ory usage (NTMU) also decreases by 19.9% and 34.5%
for the two models. Moreover, the pass@1 rate improves
significantly, with Qwen2.5-Coder-7B-Instruct increasing
from 55.0% to 72.0% and deepseek-coder-6.7b-instruct in-
creasing from 56.0% to 69.0%. For the Creative bench-
mark, Qwen2.5-coder-7B-instruct and deepseek-coder-6.7b-
instruct achieve 27.5% and 38.1% reductions in ET, re-
spectively, after fine-tuning. The NTMU also decreases by
23.8% and 39.5% for the two models. The pass@1 rate
remains the same for Qwen2.5-Coder-7B-Instruct at 44.0%
but improves from 31.0% to 41.0% for deepseek-coder-6.7b-
instruct.

4.2. Data Science Programming

DS-1000 is a data science benchmark consisting of 1000
realistic challenges across 7 popular Python data science
libraries. We evaluate the efficiency and pass@1 of LLM-
generated code for the DS-1000 tasks using Qwen2.5-Coder-
7B-Instruct and deepseek-coder-6.7b-instruct, both in their
original form and fine-tuned with . As shown in Table 5,
fine-tuning with leads to modest improvements in code ef-
ficiency for both models. For Qwen2.5-Coder-7B-Instruct,
the average execution time (ET) decreases by 0.8%, and
the total memory usage (TMU) decreases by 0.9% after
fine-tuning, while the pass@1 rate improves significantly
from 17.00% to 35.70%. For deepseek-coder-6.7b-instruct,
fine-tuning results in a 4.5% reduction in ET and a 5.6%
reduction in TMU, with the memory usage (MU) and nor-
malized memory usage (NMU) also decreasing by 1.9% and
2.0%, respectively, although the pass@1 rate remains the
same at 37.50%. While the improvements in code efficiency
for the DS-1000 benchmark are less pronounced compared
to other benchmarks, the results still demonstrate that fine-
tuning with can enhance the efficiency of LLM-generated
code for data science tasks.

4.3. Different Programming Language

In addition to evaluating the efficiency and pass@1 of LLM-
generated code for Python tasks, we also conduct exper-
iments on the HumanEval-X dataset, where we focus on
the C++ and Java subsets, to measure the performance of

7



EFFICODER: Enhancing Code Generation in Large Language Models through Efficiency-Aware Fine-tuning

Table 6. Code efficiency and pass@1 of Qwen2.5-Coder-7B-Instruct and deepseek-coder-6.7b-instruct fine-tuned using SFT with the
EFFIINSTRUCT for the HumanEval-X (CPP and Java) dataset.

Model ET (s) ↓ NET ↓ MU (Mb) ↓ NMU ↓ TMU (Mb*s) ↓ NTMU ↓ Overlap (%) ↑ Pass@1 (%) ↑

CPP

Qwen2.5-Coder-7B-Instruct 0.0015 1.3973 1.5223 1.9489 0.000013 5.195024 4.27 7.32
+ EFFIINSTRUCT 0.0009 (37.1%) 1.0138 (27.4%) 0.8739 (42.6%) 1.0585 (45.7%) 0.000006 (53.8%) 2.784936 (46.4%) 4.27 48.17
deepseek-coder-6.7b-instruct 0.0015 1.2417 1.2991 1.0731 0.000010 2.078790 4.27 14.63
+ EFFIINSTRUCT 0.0008 (45.2%) 0.5312 (57.2%) 0.6496 (50.0%) 0.4289 (60.0%) 0.000006 (40.0%) 0.543047 (73.9%) 4.27 40.24

Java

Qwen2.5-Coder-7B-Instruct - - - - - - - -
+ EFFIINSTRUCT 0.0082 0.2037 8.5926 0.1918 0.002996 0.1859 - 57.93
deepseek-coder-6.7b-instruct 0.0076 0.1921 8.1062 0.1789 0.002731 0.180034 6.71 14.63
+ EFFIINSTRUCT 0.0048 (36.5%) 0.1231 (35.9%) 4.0142 (50.5%) 0.0908 (49.2%) 0.001900 (30.4%) 0.118972 (33.9%) 6.71 57.93

Table 7. Efficiency comparison of different methods on the HumanEvalPlus dataset. We use the fine-tuned CodeLlama-7b-hf by PIE and
Mercury as the baselines to measure the improvement of EFFIINSTRUCT fine-tuned version.

Method ET NET MU NMU TMU NTMU overlapped pass@1

CodeLlama-7b-hf 0.39 1.94 61.68 1.00 12.78 1.83 9.8 12.2
+ PIE (All) 0.30 (23.1%) 1.47 (24.2%) 61.39 (0.5%) 1.00 (0.0%) 11.28 (11.7%) 1.68 (8.2%) 9.8 19.5
+ EFFIINSTRUCT 0.21 (46.2%) 1.03 (46.9%) 61.33 (0.6%) 1.00 (0.0%) 7.17 (43.9%) 1.04 (43.2%) 9.8 31.1

CodeLlama-7b-hf 0.39 1.94 61.69 1.00 12.78 1.83 4.3 12.2
+ Mercury 0.31 (20.5%) 1.51 (22.2%) 61.94 (-0.4%) 1.00 (0.0%) 10.24 (19.9%) 1.47 (19.7%) 4.3 9.1
+ EFFIINSTRUCT 0.21 (46.2%) 1.01 (47.9%) 61.73 (-0.1%) 1.00 (0.0%) 6.95 (45.6%) 0.98 (46.4%) 4.3 31.1

fine-tuned LLMs in a different-language setting. As shown
in Table 6, both Qwen2.5-Coder-7B-Instruct and deepseek-
coder-6.7b-instruct demonstrate significant improvements in
code efficiency and pass@1 rates after fine-tuning with for
C++ tasks. Qwen2.5-Coder-7B-Instruct achieves a 37.1%
reduction in average execution time (ET), a 42.6% reduc-
tion in memory usage (MU), and a 53.8% reduction in total
memory usage (TMU), with the pass@1 rate improving
from 7.32% to 48.17%. Similarly, deepseek-coder-6.7b-
instruct exhibits a 45.2% reduction in ET, a 50.0% reduction
in MU, and a 40.0% reduction in TMU, with the pass@1
rate increasing from 14.63% to 40.24%. For Java tasks,
deepseek-coder-6.7b-instruct achieves a 36.5% reduction
in ET, a 50.5% reduction in MU, and a 30.4% reduction
in TMU after fine-tuning, with the pass@1 rate improv-
ing from 14.63% to 57.93%, matching the performance
of the fine-tuned Qwen2.5-Coder-7B-Instruct. These re-
sults demonstrate that fine-tuning with can significantly
enhance the efficiency and correctness of LLM-generated
code across multiple programming languages.

4.4. Comparison with Baselines

To further demonstrate the efficiency of the code gener-
ated by fine-tuned LLMs, we compare the performance of
CodeLlama-7b-hf fine-tuned with two baselines: PIE (Shy-
pula et al., 2024) and Mercury (Du et al., 2024). Similar with
EFFICODER, PIE and Mercury are fine-tuned to improve the
efficiency of LLM-generated code. The evaluation results on
the HumanEvalPlus dataset are presented in Table 7. We can
observe that for the correct tasks addressed by both PIE and

PIE required 0.30 (s) on average to address each task, which
is a 23.1% reduction in average execution time compared
to the original CodeLlama-7b-hf generated code. However,
the fine-tuned CodeLlama-7b-hf reduces the average execu-
tion time by 46.2%, requiring only 0.21 (s) on average to
address each correct task. Moreover, the fine-tuned model
achieves a 46.9% reduction in NET, a 43.9% reduction in
TMU, and a 43.2% reduction in NTMU compared to PIE.
The pass@1 also improves from 19.5% for PIE to 31.1%
for the fine-tuned model. Similarly, when compared to Mer-
cury, the fine-tuned CodeLlama-7b-hf demonstrates a 46.2%
reduction in average execution time, a 47.9% reduction in
NET, a 45.6% reduction in TMU, and a 46.4% reduction
in NTMU. The pass@1 rate improves significantly from
9.1% for Mercury to 31.1% for the fine-tuned model, with
both methods having an overlapped percentage of 4.3%.
The substantial improvements in efficiency and correctness
achieved by the fine-tuned model demonstrate the effective-
ness of this approach in optimizing LLM-generated code
for practical applications.

EFFICODER’s exceptional performance can be attributed
to several key factors. First, EFFICODER was designed
with multilingual programming support in mind, covering
a diverse range of programming languages in its training
process. This comprehensive language coverage enables the
model to perform consistently well across various language-
specific test sets, demonstrating its versatility and broad
applicability in real-world programming scenarios. Second,
EFFICODER’s superior efficiency stems from our meticu-
lous data processing method. During the data preparation

8



EFFICODER: Enhancing Code Generation in Large Language Models through Efficiency-Aware Fine-tuning

phase, we implemented rigorous filtering operations that
specifically retained only tasks demonstrating measurable
improvements in code efficiency (as illustrated in our moti-
vation figure). This efficiency-focused data curation strategy
directly aligns with our core objective of optimizing com-
putational performance. Third, the scale of our training
dataset significantly outperforms previous approaches, with
over 70,000 training examples compared to Mercury’s mere
1,800 samples. This substantial difference in training data
volume allows our fine-tuned language models to develop
more robust patterns for generating efficient code across
diverse contexts. The combination of these factors, multi-
lingual support, efficiency-oriented data filtering, and large-
scale training data, collectively contribute to EFFICODER’s
ability to consistently outperform baseline methods in both
code correctness and execution efficiency metrics.

5. Conclusion
In this paper, our research addresses a critical gap in the effi-
ciency of code generated by LLMs by introducing the EFFI-
INSTRUCT dataset, designed to enhance both the correctness
and execution efficiency of LLM-generated code via fine-
tuning. Through meticulous aggregation, preprocessing,
and iterative optimization, we provide a robust resource
that significantly boosts the performance of open-source
LLMs like DeepSeek-Coder and Qwen. Our experiments
reveal substantial improvements, with notable increases in
pass rates and decreases in execution time, underscoring
the potential of EFFICODER to advance the state of code
generation in resource-constrained environments. By open-
sourcing our model weights, training data, and source code,
we aim to foster further research and innovation in this vital
area of AI development tools.

Impact Statement
This paper presents work aimed at advancing the field of
Machine Learning by improving the efficiency and correct-
ness of code generated by LLMs. The societal benefits of
this research include:

• Sustainability: By reducing computational resource
consumption (e.g., energy and memory usage), our
work aligns with global efforts to mitigate the environ-
mental impact of large-scale computing. Efficient code
generation could lower operational costs and energy
demands in industries reliant on software development.

• Resource-Constrained Environments: Enhanced effi-
ciency enables broader adoption of LLM-generated
code in mobile, embedded, or edge computing systems,
where energy and processing power are limited.

• Research Advancement: Open-sourcing our dataset

and models fosters transparency and accelerates re-
search into sustainable AI systems, encouraging further
innovations in code optimization.

Ethical Considerations:

• Data Provenance: The dataset is aggregated from pub-
licly available open-source repositories on Hugging
Face, ensuring compliance with licensing terms. How-
ever, future work should continue to prioritize respon-
sible data curation practices.

• Bias and Generalization: While our framework sup-
ports multilingual adaptability, biases in the source
code (e.g., language-specific optimizations or cultural
coding norms) may inadvertently propagate. Mitigat-
ing such biases requires careful dataset design and
validation.

• Developer Dependency: Widespread adoption of op-
timized LLM-generated code could influence coding
practices. Ensuring human developers retain critical
problem-solving skills remains important.

Overall, this work aims to address a critical gap in LLM-
generated code efficiency while maintaining correctness.
We encourage future research to explore trade-offs between
efficiency, maintainability, and fairness in automated code
generation.

Acknowledgment
The work is supported in part by National Key R&D Pro-
gram of China (2022ZD0160201), HK RGC RIF (R7030-
22), HK RGC GRF (ref No.: 17208223 & 17204424), a
Huawei flagship research grant in 2023, SupernetAI, and the
HKU-CAS Joint Laboratory for Intelligent System Software.
This work is also supported by the National Research Foun-
dation, Singapore under its AI Singapore Programme (AISG
Award No: AISG2-PhD-2021-08-007) and ITEA Genius
and ITEA GreenCode projects, funded by InnovateUK.

References
Ahmad, W. U., Tushar, M. G. R., Chakraborty, S., and

Chang, K. AVATAR: A parallel corpus for java-python
program translation. In Rogers, A., Boyd-Graber, J. L.,
and Okazaki, N. (eds.), Findings of the Association for
Computational Linguistics: ACL 2023, Toronto, Canada,
July 9-14, 2023, pp. 2268–2281. Association for Com-
putational Linguistics, 2023. doi: 10.18653/V1/2023.
FINDINGS-ACL.143. URL https://doi.org/10.
18653/v1/2023.findings-acl.143.

Ahmed, T. and Devanbu, P. T. Few-shot training llms for
project-specific code-summarization. In 37th IEEE/ACM

9

https://doi.org/10.18653/v1/2023.findings-acl.143
https://doi.org/10.18653/v1/2023.findings-acl.143


EFFICODER: Enhancing Code Generation in Large Language Models through Efficiency-Aware Fine-tuning

International Conference on Automated Software En-
gineering, ASE 2022, Rochester, MI, USA, October
10-14, 2022, pp. 177:1–177:5. ACM, 2022. doi: 10.
1145/3551349.3559555. URL https://doi.org/
10.1145/3551349.3559555.

Allal, L. B., Li, R., Kocetkov, D., Mou, C., Akiki, C., Ferran-
dis, C. M., Muennighoff, N., Mishra, M., Gu, A., Dey, M.,
Umapathi, L. K., Anderson, C. J., Zi, Y., Lamy-Poirier, J.,
Schoelkopf, H., Troshin, S., Abulkhanov, D., Romero, M.,
Lappert, M., Toni, F. D., del Río, B. G., Liu, Q., Bose, S.,
Bhattacharyya, U., Zhuo, T. Y., Yu, I., Villegas, P., Zocca,
M., Mangrulkar, S., Lansky, D., Nguyen, H., Contractor,
D., Villa, L., Li, J., Bahdanau, D., Jernite, Y., Hughes, S.,
Fried, D., Guha, A., de Vries, H., and von Werra, L. San-
tacoder: don’t reach for the stars! CoRR, abs/2301.03988,
2023. doi: 10.48550/ARXIV.2301.03988. URL https:
//doi.org/10.48550/arXiv.2301.03988.

Anthropic. Introducing the next generation of claude,
2024. URL https://www.anthropic.com/
news/claude-3-family.

Austin, J., Odena, A., Nye, M. I., Bosma, M., Michalewski,
H., Dohan, D., Jiang, E., Cai, C. J., Terry, M., Le, Q. V.,
and Sutton, C. Program synthesis with large language
models. CoRR, abs/2108.07732, 2021. URL https:
//arxiv.org/abs/2108.07732.

BigCode. Self-oss-instruct-sc2-exec-filter-50k. https:
//huggingface.co/datasets/bigcode/
self-oss-instruct-sc2-exec-filter-50k,
2023.

Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan,
J., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G.,
Askell, A., Agarwal, S., Herbert-Voss, A., Krueger, G.,
Henighan, T., Child, R., Ramesh, A., Ziegler, D. M., Wu,
J., Winter, C., Hesse, C., Chen, M., Sigler, E., Litwin, M.,
Gray, S., Chess, B., Clark, J., Berner, C., McCandlish,
S., Radford, A., Sutskever, I., and Amodei, D. Language
models are few-shot learners. In Larochelle, H., Ranzato,
M., Hadsell, R., Balcan, M., and Lin, H. (eds.), Advances
in Neural Information Processing Systems 33: Annual
Conference on Neural Information Processing Systems
2020, NeurIPS 2020, December 6-12, 2020, virtual, 2020.

Chaudhary, S. Code alpaca: An instruction-following llama
model for code generation. https://github.com/
sahil280114/codealpaca, 2023.

Chen, M., Tworek, J., Jun, H., Yuan, Q., de Oliveira Pinto,
H. P., Kaplan, J., Edwards, H., Burda, Y., Joseph, N.,
Brockman, G., Ray, A., Puri, R., Krueger, G., Petrov,
M., Khlaaf, H., Sastry, G., Mishkin, P., Chan, B., Gray,
S., Ryder, N., Pavlov, M., Power, A., Kaiser, L., Bavar-
ian, M., Winter, C., Tillet, P., Such, F. P., Cummings,

D., Plappert, M., Chantzis, F., Barnes, E., Herbert-
Voss, A., Guss, W. H., Nichol, A., Paino, A., Tezak,
N., Tang, J., Babuschkin, I., Balaji, S., Jain, S., Saun-
ders, W., Hesse, C., Carr, A. N., Leike, J., Achiam,
J., Misra, V., Morikawa, E., Radford, A., Knight, M.,
Brundage, M., Murati, M., Mayer, K., Welinder, P., Mc-
Grew, B., Amodei, D., McCandlish, S., Sutskever, I.,
and Zaremba, W. Evaluating large language models
trained on code. CoRR, abs/2107.03374, 2021. URL
https://arxiv.org/abs/2107.03374.

Chen, X., Lin, M., Schärli, N., and Zhou, D. Teaching large
language models to self-debug. CoRR, abs/2304.05128,
2023. doi: 10.48550/ARXIV.2304.05128. URL https:
//doi.org/10.48550/arXiv.2304.05128.

Computations, C. Dolphin coder. https:
//huggingface.co/datasets/
cognitivecomputations/dolphin-coder,
2023.

Computer, T. Glaive-code-assistant. https:
//huggingface.co/datasets/Together/
Glaive-Code-Assistant, 2023.

Dai, J., Lu, J., Feng, Y., Ruan, R., Cheng, M., Tan, H., and
Guo, Z. MHPP: exploring the capabilities and limita-
tions of language models beyond basic code generation.
CoRR, abs/2405.11430, 2024. doi: 10.48550/ARXIV.
2405.11430. URL https://doi.org/10.48550/
arXiv.2405.11430.

DeepSeekAI. Deepseek coder: Let the code write itself,
2023. URL https://deepseekcoder.github.
io/.

Deng, Y., Xia, C. S., Yang, C., Zhang, S. D., Yang, S.,
and Zhang, L. Large language models are edge-case
fuzzers: Testing deep learning libraries via fuzzgpt.
CoRR, abs/2304.02014, 2023. doi: 10.48550/ARXIV.
2304.02014. URL https://doi.org/10.48550/
arXiv.2304.02014.

Du, M., Luu, A. T., Ji, B., and Ng, S. Mercury:
An efficiency benchmark for LLM code synthesis.
CoRR, abs/2402.07844, 2024. doi: 10.48550/ARXIV.
2402.07844. URL https://doi.org/10.48550/
arXiv.2402.07844.

Fried, D., Aghajanyan, A., Lin, J., Wang, S., Wallace, E.,
Shi, F., Zhong, R., Yih, S., Zettlemoyer, L., and Lewis,
M. Incoder: A generative model for code infilling and
synthesis. In The Eleventh International Conference on
Learning Representations, ICLR 2023, Kigali, Rwanda,
May 1-5, 2023. OpenReview.net, 2023. URL https:
//openreview.net/pdf?id=hQwb-lbM6EL.

10

https://doi.org/10.1145/3551349.3559555
https://doi.org/10.1145/3551349.3559555
https://doi.org/10.48550/arXiv.2301.03988
https://doi.org/10.48550/arXiv.2301.03988
https://www.anthropic.com/news/claude-3-family
https://www.anthropic.com/news/claude-3-family
https://arxiv.org/abs/2108.07732
https://arxiv.org/abs/2108.07732
https://huggingface.co/datasets/bigcode/self-oss-instruct-sc2-exec-filter-50k
https://huggingface.co/datasets/bigcode/self-oss-instruct-sc2-exec-filter-50k
https://huggingface.co/datasets/bigcode/self-oss-instruct-sc2-exec-filter-50k
https://github.com/sahil280114/codealpaca
https://github.com/sahil280114/codealpaca
https://arxiv.org/abs/2107.03374
https://doi.org/10.48550/arXiv.2304.05128
https://doi.org/10.48550/arXiv.2304.05128
https://huggingface.co/datasets/cognitivecomputations/dolphin-coder
https://huggingface.co/datasets/cognitivecomputations/dolphin-coder
https://huggingface.co/datasets/cognitivecomputations/dolphin-coder
https://huggingface.co/datasets/Together/Glaive-Code-Assistant
https://huggingface.co/datasets/Together/Glaive-Code-Assistant
https://huggingface.co/datasets/Together/Glaive-Code-Assistant
https://doi.org/10.48550/arXiv.2405.11430
https://doi.org/10.48550/arXiv.2405.11430
https://deepseekcoder.github.io/
https://deepseekcoder.github.io/
https://doi.org/10.48550/arXiv.2304.02014
https://doi.org/10.48550/arXiv.2304.02014
https://doi.org/10.48550/arXiv.2402.07844
https://doi.org/10.48550/arXiv.2402.07844
https://openreview.net/pdf?id=hQwb-lbM6EL
https://openreview.net/pdf?id=hQwb-lbM6EL


EFFICODER: Enhancing Code Generation in Large Language Models through Efficiency-Aware Fine-tuning

Gunasekar, S., Zhang, Y., Aneja, J., Mendes, C. C. T.,
Giorno, A. D., Gopi, S., Javaheripi, M., Kauffmann, P.,
de Rosa, G., Saarikivi, O., Salim, A., Shah, S., Behl,
H. S., Wang, X., Bubeck, S., Eldan, R., Kalai, A. T.,
Lee, Y. T., and Li, Y. Textbooks are all you need.
CoRR, abs/2306.11644, 2023. doi: 10.48550/ARXIV.
2306.11644. URL https://doi.org/10.48550/
arXiv.2306.11644.

Haque, M. M. A., Ahmad, W. U., Lourentzou, I., and
Brown, C. Fixeval: Execution-based evaluation of
program fixes for competitive programming problems.
CoRR, abs/2206.07796, 2022. doi: 10.48550/ARXIV.
2206.07796. URL https://doi.org/10.48550/
arXiv.2206.07796.

Hasan, M., Muttaqueen, T., Ishtiaq, A. A., Mehrab, K. S.,
Haque, M. M. A., Hasan, T., Ahmad, W. U., Iqbal, A.,
and Shahriyar, R. Codesc: A large code-description
parallel dataset. In Zong, C., Xia, F., Li, W., and Nav-
igli, R. (eds.), Findings of the Association for Compu-
tational Linguistics: ACL/IJCNLP 2021, Online Event,
August 1-6, 2021, volume ACL/IJCNLP 2021 of Find-
ings of ACL, pp. 210–218. Association for Compu-
tational Linguistics, 2021. doi: 10.18653/V1/2021.
FINDINGS-ACL.18. URL https://doi.org/10.
18653/v1/2021.findings-acl.18.

Hendrycks, D., Basart, S., Kadavath, S., Mazeika, M., Arora,
A., Guo, E., Burns, C., Puranik, S., He, H., Song, D., and
Steinhardt, J. Measuring coding challenge competence
with apps. NeurIPS, 2021.

Huang, D., Dai, J., Weng, H., Wu, P., Qing, Y., Zhang, J. M.,
Cui, H., and Guo, Z. SOAP: enhancing efficiency of gen-
erated code via self-optimization. CoRR, abs/2405.15189,
2024a. doi: 10.48550/ARXIV.2405.15189. URL https:
//doi.org/10.48550/arXiv.2405.15189.

Huang, D., Qing, Y., Shang, W., Cui, H., and Zhang, J. M.
Effibench: Benchmarking the efficiency of automatically
generated code. arXiv preprint arXiv:2402.02037, 2024b.

Hui, B., Yang, J., Cui, Z., Yang, J., Liu, D., Zhang,
L., Liu, T., Zhang, J., Yu, B., Dang, K., Yang,
A., Men, R., Huang, F., Ren, X., Ren, X., Zhou,
J., and Lin, J. Qwen2.5-coder technical report.
2024. URL https://api.semanticscholar.
org/CorpusID:272707390.

Jiang, N., Liu, K., Lutellier, T., and Tan, L. Impact of
code language models on automated program repair. In
45th IEEE/ACM International Conference on Software
Engineering, ICSE 2023, Melbourne, Australia, May 14-
20, 2023, pp. 1430–1442. IEEE, 2023. doi: 10.1109/
ICSE48619.2023.00125. URL https://doi.org/
10.1109/ICSE48619.2023.00125.

Lai, Y., Li, C., Wang, Y., Zhang, T., Zhong, R., Zettle-
moyer, L., Yih, W.-t., Fried, D., Wang, S., and Yu, T.
Ds-1000: A natural and reliable benchmark for data sci-
ence code generation. In International Conference on
Machine Learning, pp. 18319–18345. PMLR, 2023.

Lemieux, C., Inala, J. P., Lahiri, S. K., and Sen, S. Co-
damosa: Escaping coverage plateaus in test genera-
tion with pre-trained large language models. In 45th
IEEE/ACM International Conference on Software En-
gineering, ICSE 2023, Melbourne, Australia, May 14-
20, 2023, pp. 919–931. IEEE, 2023. doi: 10.1109/
ICSE48619.2023.00085. URL https://doi.org/
10.1109/ICSE48619.2023.00085.

Li, R., Allal, L. B., Zi, Y., Muennighoff, N., Kocetkov,
D., Mou, C., Marone, M., Akiki, C., Li, J., Chim, J.,
Liu, Q., Zheltonozhskii, E., Zhuo, T. Y., Wang, T.,
Dehaene, O., Davaadorj, M., Lamy-Poirier, J., Mon-
teiro, J., Shliazhko, O., Gontier, N., Meade, N., Ze-
baze, A., Yee, M., Umapathi, L. K., Zhu, J., Lipkin,
B., Oblokulov, M., Wang, Z., V, R. M., Stillerman,
J., Patel, S. S., Abulkhanov, D., Zocca, M., Dey, M.,
Zhang, Z., Moustafa-Fahmy, N., Bhattacharyya, U., Yu,
W., Singh, S., Luccioni, S., Villegas, P., Kunakov, M.,
Zhdanov, F., Romero, M., Lee, T., Timor, N., Ding,
J., Schlesinger, C., Schoelkopf, H., Ebert, J., Dao, T.,
Mishra, M., Gu, A., Robinson, J., Anderson, C. J., Dolan-
Gavitt, B., Contractor, D., Reddy, S., Fried, D., Bahdanau,
D., Jernite, Y., Ferrandis, C. M., Hughes, S., Wolf, T.,
Guha, A., von Werra, L., and de Vries, H. Starcoder:
may the source be with you! CoRR, abs/2305.06161,
2023a. doi: 10.48550/ARXIV.2305.06161. URL https:
//doi.org/10.48550/arXiv.2305.06161.

Li, Y., Choi, D. H., Chung, J., Kushman, N., Schrit-
twieser, J., Leblond, R., Eccles, T., Keeling, J., Gi-
meno, F., Lago, A. D., Hubert, T., Choy, P., de Mas-
son d’Autume, C., Babuschkin, I., Chen, X., Huang,
P., Welbl, J., Gowal, S., Cherepanov, A., Molloy, J.,
Mankowitz, D. J., Robson, E. S., Kohli, P., de Freitas,
N., Kavukcuoglu, K., and Vinyals, O. Competition-level
code generation with alphacode. CoRR, abs/2203.07814,
2022. doi: 10.48550/ARXIV.2203.07814. URL https:
//doi.org/10.48550/arXiv.2203.07814.

Li, Y., Bubeck, S., Eldan, R., Giorno, A. D., Gunasekar,
S., and Lee, Y. T. Textbooks are all you need II: phi-1.5
technical report. CoRR, abs/2309.05463, 2023b. doi:
10.48550/ARXIV.2309.05463. URL https://doi.
org/10.48550/arXiv.2309.05463.

Liu, J., Xia, C. S., Wang, Y., and Zhang, L. Is your code
generated by chatgpt really correct? rigorous evaluation
of large language models for code generation. Advances
in Neural Information Processing Systems, 36, 2024a.

11

https://doi.org/10.48550/arXiv.2306.11644
https://doi.org/10.48550/arXiv.2306.11644
https://doi.org/10.48550/arXiv.2206.07796
https://doi.org/10.48550/arXiv.2206.07796
https://doi.org/10.18653/v1/2021.findings-acl.18
https://doi.org/10.18653/v1/2021.findings-acl.18
https://doi.org/10.48550/arXiv.2405.15189
https://doi.org/10.48550/arXiv.2405.15189
https://api.semanticscholar.org/CorpusID:272707390
https://api.semanticscholar.org/CorpusID:272707390
https://doi.org/10.1109/ICSE48619.2023.00125
https://doi.org/10.1109/ICSE48619.2023.00125
https://doi.org/10.1109/ICSE48619.2023.00085
https://doi.org/10.1109/ICSE48619.2023.00085
https://doi.org/10.48550/arXiv.2305.06161
https://doi.org/10.48550/arXiv.2305.06161
https://doi.org/10.48550/arXiv.2203.07814
https://doi.org/10.48550/arXiv.2203.07814
https://doi.org/10.48550/arXiv.2309.05463
https://doi.org/10.48550/arXiv.2309.05463


EFFICODER: Enhancing Code Generation in Large Language Models through Efficiency-Aware Fine-tuning

Liu, J., Xie, S., Wang, J., Wei, Y., Ding, Y., and Zhang, L.
Evaluating language models for efficient code generation.
arXiv preprint arXiv:2408.06450, 2024b.

Luo, Z., Xu, C., Zhao, P., Sun, Q., Geng, X., Hu, W.,
Tao, C., Ma, J., Lin, Q., and Jiang, D. Wizardcoder:
Empowering code large language models with evol-
instruct. In The Twelfth International Conference on
Learning Representations, ICLR 2024, Vienna, Austria,
May 7-11, 2024. OpenReview.net, 2024. URL https:
//openreview.net/forum?id=UnUwSIgK5W.

MAP. Codefeedback-filtered-instruction. https:
//huggingface.co/datasets/m-a-p/
CodeFeedback-Filtered-Instruction,
2023.

Meta. Introducing meta llama 3: The most capable openly
available llm to date, 2024. URL https://ai.meta.
com/blog/meta-llama-3/.

Mir, A. M., Latoskinas, E., Proksch, S., and Gousios, G.
Type4py: Practical deep similarity learning-based type in-
ference for python. In 44th IEEE/ACM 44th International
Conference on Software Engineering, ICSE 2022, Pitts-
burgh, PA, USA, May 25-27, 2022, pp. 2241–2252. ACM,
2022. doi: 10.1145/3510003.3510124. URL https:
//doi.org/10.1145/3510003.3510124.

Muennighoff, N., Liu, Q., Zebaze, A. R., Zheng, Q., Hui,
B., Zhuo, T. Y., Singh, S., Tang, X., von Werra, L., and
Longpre, S. Octopack: Instruction tuning code large lan-
guage models. In The Twelfth International Conference
on Learning Representations, ICLR 2024, Vienna, Austria,
May 7-11, 2024. OpenReview.net, 2024. URL https:
//openreview.net/forum?id=mw1PWNSWZP.

Nijkamp, E., Pang, B., Hayashi, H., Tu, L., Wang, H.,
Zhou, Y., Savarese, S., and Xiong, C. Codegen: An open
large language model for code with multi-turn program
synthesis. In The Eleventh International Conference on
Learning Representations, ICLR 2023, Kigali, Rwanda,
May 1-5, 2023. OpenReview.net, 2023. URL https:
//openreview.net/pdf?id=iaYcJKpY2B_.

Niu, C., Zhang, T., Li, C., Luo, B., and Ng, V. On evaluating
the efficiency of source code generated by llms. arXiv
preprint arXiv:2404.06041, 2024.

OpenAI. GPT-4 Technical Report. CoRR, abs/2303.08774,
2023. doi: 10.48550/arXiv.2303.08774. URL https:
//doi.org/10.48550/arXiv.2303.08774.

Ouyang, L., Wu, J., Jiang, X., Almeida, D., Wainwright,
C. L., Mishkin, P., Zhang, C., Agarwal, S., Slama, K.,
Ray, A., Schulman, J., Hilton, J., Kelton, F., Miller, L.,
Simens, M., Askell, A., Welinder, P., Christiano, P. F.,

Leike, J., and Lowe, R. Training language models to
follow instructions with human feedback. In Koyejo, S.,
Mohamed, S., Agarwal, A., Belgrave, D., Cho, K., and
Oh, A. (eds.), Advances in Neural Information Processing
Systems 35: Annual Conference on Neural Information
Processing Systems 2022, NeurIPS 2022, New Orleans,
LA, USA, November 28 - December 9, 2022, 2022.

Rozière, B., Lachaux, M., Chanussot, L., and Lample, G.
Unsupervised translation of programming languages. In
Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M., and
Lin, H. (eds.), Advances in Neural Information Process-
ing Systems 33: Annual Conference on Neural Informa-
tion Processing Systems 2020, NeurIPS 2020, December
6-12, 2020, virtual, 2020.

Rozière, B., Gehring, J., Gloeckle, F., Sootla, S., Gat, I., Tan,
X. E., Adi, Y., Liu, J., Remez, T., Rapin, J., Kozhevnikov,
A., Evtimov, I., Bitton, J., Bhatt, M., Canton-Ferrer, C.,
Grattafiori, A., Xiong, W., Défossez, A., Copet, J., Azhar,
F., Touvron, H., Martin, L., Usunier, N., Scialom, T.,
and Synnaeve, G. Code llama: Open foundation models
for code. CoRR, abs/2308.12950, 2023. doi: 10.48550/
ARXIV.2308.12950. URL https://doi.org/10.
48550/arXiv.2308.12950.

Shi, J., Yang, Z., and Lo, D. Efficient and green large
language models for software engineering: Vision and
the road ahead. arXiv preprint arXiv:2404.04566, 2024.

Shypula, A., Madaan, A., Zeng, Y., Alon, U., Gardner, J.,
Hashemi, M., Neubig, G., Ranganathan, P., Bastani, O.,
and Yazdanbakhsh, A. Learning Performance-Improving
Code Edits. In The Twelfth International Conference on
Learning Representations (ICLR), 2024.

Sun, Q., Chen, Z., Xu, F., Cheng, K., Ma, C., Yin, Z.,
Wang, J., Han, C., Zhu, R., Yuan, S., et al. A survey
of neural code intelligence: Paradigms, advances and
beyond. arXiv preprint arXiv:2403.14734, 2024.

Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi,
A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P.,
Bhosale, S., Bikel, D., Blecher, L., Canton-Ferrer, C.,
Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu,
J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N.,
Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas,
M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A.,
Koura, P. S., Lachaux, M., Lavril, T., Lee, J., Liskovich,
D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P.,
Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta,
R., Saladi, K., Schelten, A., Silva, R., Smith, E. M., Sub-
ramanian, R., Tan, X. E., Tang, B., Taylor, R., Williams,
A., Kuan, J. X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan,
A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic,
R., Edunov, S., and Scialom, T. Llama 2: Open founda-
tion and fine-tuned chat models. CoRR, abs/2307.09288,

12

https://openreview.net/forum?id=UnUwSIgK5W
https://openreview.net/forum?id=UnUwSIgK5W
https://huggingface.co/datasets/m-a-p/CodeFeedback-Filtered-Instruction
https://huggingface.co/datasets/m-a-p/CodeFeedback-Filtered-Instruction
https://huggingface.co/datasets/m-a-p/CodeFeedback-Filtered-Instruction
https://ai.meta.com/blog/meta-llama-3/
https://ai.meta.com/blog/meta-llama-3/
https://doi.org/10.1145/3510003.3510124
https://doi.org/10.1145/3510003.3510124
https://openreview.net/forum?id=mw1PWNSWZP
https://openreview.net/forum?id=mw1PWNSWZP
https://openreview.net/pdf?id=iaYcJKpY2B_
https://openreview.net/pdf?id=iaYcJKpY2B_
https://doi.org/10.48550/arXiv.2303.08774
https://doi.org/10.48550/arXiv.2303.08774
https://doi.org/10.48550/arXiv.2308.12950
https://doi.org/10.48550/arXiv.2308.12950
https://openreview.net/pdf?id=ix7rLVHXyY
https://openreview.net/pdf?id=ix7rLVHXyY


EFFICODER: Enhancing Code Generation in Large Language Models through Efficiency-Aware Fine-tuning

2023. doi: 10.48550/ARXIV.2307.09288. URL https:
//doi.org/10.48550/arXiv.2307.09288.

UIUC, I. Magicoder-evol-instruct-110k. https:
//huggingface.co/datasets/ise-uiuc/
Magicoder-Evol-Instruct-110K, 2023a.

UIUC, I. Magicoder-oss-instruct-75k. https:
//huggingface.co/datasets/ise-uiuc/
Magicoder-OSS-Instruct-75K, 2023b.

Vezora. Tested-143k-python-alpaca. https:
//huggingface.co/datasets/Vezora/
Tested-143k-Python-Alpaca, 2023.

Wang, Y., Wang, W., Joty, S. R., and Hoi, S. C. H. Codet5:
Identifier-aware unified pre-trained encoder-decoder mod-
els for code understanding and generation. In Moens,
M., Huang, X., Specia, L., and Yih, S. W. (eds.), Pro-
ceedings of the 2021 Conference on Empirical Methods
in Natural Language Processing, EMNLP 2021, Vir-
tual Event / Punta Cana, Dominican Republic, 7-11
November, 2021, pp. 8696–8708. Association for Com-
putational Linguistics, 2021. doi: 10.18653/V1/2021.
EMNLP-MAIN.685. URL https://doi.org/10.
18653/v1/2021.emnlp-main.685.

Wang, Y., Kordi, Y., Mishra, S., Liu, A., Smith, N. A.,
Khashabi, D., and Hajishirzi, H. Self-instruct: Align-
ing language models with self-generated instructions. In
Rogers, A., Boyd-Graber, J. L., and Okazaki, N. (eds.),
Proceedings of the 61st Annual Meeting of the Associ-
ation for Computational Linguistics (Volume 1: Long
Papers), ACL 2023, Toronto, Canada, July 9-14, 2023,
pp. 13484–13508. Association for Computational Lin-
guistics, 2023. doi: 10.18653/V1/2023.ACL-LONG.
754. URL https://doi.org/10.18653/v1/
2023.acl-long.754.

Wei, J., Bosma, M., Zhao, V. Y., Guu, K., Yu, A. W., Lester,
B., Du, N., Dai, A. M., and Le, Q. V. Finetuned language
models are zero-shot learners. In The Tenth Interna-
tional Conference on Learning Representations, ICLR
2022, Virtual Event, April 25-29, 2022. OpenReview.net,
2022. URL https://openreview.net/forum?
id=gEZrGCozdqR.

Wei, J., Durrett, G., and Dillig, I. Typet5: Seq2seq
type inference using static analysis. In The Eleventh
International Conference on Learning Representations,
ICLR 2023, Kigali, Rwanda, May 1-5, 2023. OpenRe-
view.net, 2023. URL https://openreview.net/
pdf?id=4TyNEhI2GdN.

Wei, Y., Cassano, F., Liu, J., Ding, Y., Jain, N., Mueller,
Z., de Vries, H., Von Werra, L., Guha, A., and Zhang, L.
Selfcodealign: Self-alignment for code generation. arXiv
preprint arXiv:2410.24198, 2024a.

Wei, Y., Wang, Z., Liu, J., Ding, Y., and Zhang, L. Magi-
coder: Empowering code generation with oss-instruct. In
Forty-first International Conference on Machine Learn-
ing, ICML 2024, Vienna, Austria, July 21-27, 2024. Open-
Review.net, 2024b. URL https://openreview.
net/forum?id=XUeoOBid3x.

Xia, C. S., Deng, Y., and Zhang, L. Top leaderboard
ranking= top coding proficiency, always? evoeval:
Evolving coding benchmarks via llm. arXiv preprint
arXiv:2403.19114, 2024.

Xu, C., Sun, Q., Zheng, K., Geng, X., Zhao, P., Feng, J.,
Tao, C., Lin, Q., and Jiang, D. Wizardlm: Empowering
large pre-trained language models to follow complex in-
structions. In The Twelfth International Conference on
Learning Representations, ICLR 2024, Vienna, Austria,
May 7-11, 2024. OpenReview.net, 2024. URL https:
//openreview.net/forum?id=CfXh93NDgH.

Zhao, C., Jia, X., Viswanathan, V., Wu, T., and Neu-
big, G. Self-guide: Better task-specific instruction fol-
lowing via self-synthetic finetuning. arXiv preprint
arXiv:2407.12874, 2024.

Zheng, Q., Xia, X., Zou, X., Dong, Y., Wang, S., Xue, Y.,
Shen, L., Wang, Z., Wang, A., Li, Y., et al. Codegeex: A
pre-trained model for code generation with multilingual
benchmarking on humaneval-x. In Proceedings of the
29th ACM SIGKDD Conference on Knowledge Discovery
and Data Mining, pp. 5673–5684, 2023.

Zheng, Y., Zhang, R., Zhang, J., Ye, Y., Luo, Z., Feng,
Z., and Ma, Y. Llamafactory: Unified efficient fine-
tuning of 100+ language models. In Proceedings of the
62nd Annual Meeting of the Association for Computa-
tional Linguistics (Volume 3: System Demonstrations),
Bangkok, Thailand, 2024. Association for Computational
Linguistics. URL http://arxiv.org/abs/2403.
13372.

13

https://doi.org/10.48550/arXiv.2307.09288
https://doi.org/10.48550/arXiv.2307.09288
https://huggingface.co/datasets/ise-uiuc/Magicoder-Evol-Instruct-110K
https://huggingface.co/datasets/ise-uiuc/Magicoder-Evol-Instruct-110K
https://huggingface.co/datasets/ise-uiuc/Magicoder-Evol-Instruct-110K
https://huggingface.co/datasets/ise-uiuc/Magicoder-OSS-Instruct-75K
https://huggingface.co/datasets/ise-uiuc/Magicoder-OSS-Instruct-75K
https://huggingface.co/datasets/ise-uiuc/Magicoder-OSS-Instruct-75K
https://huggingface.co/datasets/Vezora/Tested-143k-Python-Alpaca
https://huggingface.co/datasets/Vezora/Tested-143k-Python-Alpaca
https://huggingface.co/datasets/Vezora/Tested-143k-Python-Alpaca
https://doi.org/10.18653/v1/2021.emnlp-main.685
https://doi.org/10.18653/v1/2021.emnlp-main.685
https://doi.org/10.18653/v1/2023.acl-long.754
https://doi.org/10.18653/v1/2023.acl-long.754
https://openreview.net/forum?id=gEZrGCozdqR
https://openreview.net/forum?id=gEZrGCozdqR
https://openreview.net/pdf?id=4TyNEhI2GdN
https://openreview.net/pdf?id=4TyNEhI2GdN
https://openreview.net/forum?id=XUeoOBid3x
https://openreview.net/forum?id=XUeoOBid3x
https://openreview.net/forum?id=CfXh93NDgH
https://openreview.net/forum?id=CfXh93NDgH
http://arxiv.org/abs/2403.13372
http://arxiv.org/abs/2403.13372


EFFICODER: Enhancing Code Generation in Large Language Models through Efficiency-Aware Fine-tuning

A. Appendix
A.1. Prompt Template

Please continue to complete the function. You are not allowed to modify the given code and do the completion only.
Please return all completed functions in a code block. Here is the given code to complete:
‘‘‘python
{{Prompt}}
‘‘‘

A.2. Efficiency Metrics

Execution Time (ET) Execution time (ET) measures the average time taken for code execution. Mathematically, ET is
defined as:

ET =
1

N

N∑
Tcode

where ET is the execution time metric, Tcode is the execution time of the code (with all the test cases), and N is the number
of codes generated by code generation models used for evaluation.

Normalized Execution Time (NET) Normalized Execution Time (NET) measures the execution time required by
generated code relative to that of a canonical solution. We define NET as:

NET =
1

N

N∑ Tcode

Tcanonical

where Tcode is the execution time of the generated code and Tcanonical is the execution time of the canonical solution. A NET
value greater than 1 indicates that the generated code is slower than the canonical solution, while a value less than 1 suggests
the generated code is faster.

Max Memory Usage (MU) Max Memory Usage (MU) measures the average max memory consumption during code
execution. Mathematically, MU is defined as:

MU =
1

N

N∑
Mcode

where MU is the memory usage metric, Mcode is the max memory consumption of the generated code among all the test
cases, and N is the number of code instances generated by code generation models used for evaluation. This metric is
critical to assess the resource efficiency of generated code, particularly in environments with limited maximum memory
capacity.

Normalized Max Memory Usage (NMU) Normalized Max Memory Usage (NMU) quantifies how the max memory
efficiency of the generated code compares to the canonical solution. We define NMU as:

NMU =
1

N

N∑ Mcode

Mcanonical

where NMU is the normalized max memory usage metric, Mcode is the max memory usage of the generated code, and
Mcanonical is the max memory usage of the canonical solution. An NMU value less than 1 indicates that the generated code is
more memory-efficient than the canonical solution, whereas a value greater than 1 suggests it is less efficient in terms of
memory usage. This metric provides a relative measure of the memory optimization in the generated code in comparison to
a standard baseline.

Total Memory Usage (TMU) Total Memory Usage (TMU) assesses the efficiency of memory usage throughout the
execution of code, taking into account both the magnitude and duration of memory utilization. To calculate TMU, first,
monitor and record the memory usage at discrete time intervals during the execution, resulting in a memory usage profile

14



EFFICODER: Enhancing Code Generation in Large Language Models through Efficiency-Aware Fine-tuning

M(t), where t represents time. Then, compute the area under the curve of M(t) over the total execution time, Ttotal, using
numerical integration methods such as the trapezoidal rule:

TMU =
1

N

N∑∫ Ttotal

0

M(t) dt

A lower TMU value indicates higher memory efficiency, reflecting an optimized balance between the amount of memory
used and the duration of its usage.

Normalized Total Memory Usage (NTMU) The Normalized Total Memory Usage (NTMU) offers a comparison of the
dynamic memory efficiency between the generated code and the canonical solution. To determine NTMU, calculate the
TMU for both the generated code and the canonical solution. Normalize the TMU of the generated code by dividing it by
the TMU of the canonical solution:

NTMU =
1

N

N∑ TMUcode

TMUcanonical

where TMUcode is the TMU of the generated code and TMUcanonical is the TMU of the canonical solution. An NTMU value
less than 1 signifies that the generated code manages dynamic memory more efficiently compared to the canonical solution,
while a value greater than 1 indicates less efficient management of dynamic memory. This metric provides insight into the
relative use of dynamic memory of generated code compared to an established benchmark.

A.3. Robustness of Overhead Results

The overhead results would be affected by the local environments, which causes that the results of Effi-Code fine-tuned
LLMs may not able to represent the results of the efficiency profiling in different environments. To address this issue, we
have conducted additional experiments and provided more robust evaluation results.

Firstly, we have evaluated the effectiveness of Effi-Code on seven different software-hardware setups, as shown in Rebuttal
Table 2. The results demonstrate that Effi-Code fine-tuned LLMs achieve higher efficiency than the original LLMs across
all setups. For example, in the environment of Python 3.11.10 - Intel(R) Xeon(R) Platinum 8336C CPU @ 2.30GHz, the
average execution time decreases from 0.59s to 0.40s when using Effi-Code to fine-tune Qwen2.5-Coder-7B, reducing the
average execution time by 32%.

Secondly, we clarify that for the same setup, where we evaluate the efficiency of LLM-generated code several times, the
efficiency results are consistent. As shown in Paper Table 8, where we execute the LLM-generated code five times, the
standard deviation of execution time (ET) is 0.00548 (s), indicating that the evaluation results are consistent and reliable for
a given setup.

Finally, our evaluation setup follows the practices established in recent works on benchmarking the efficiency of automatically
generated code, such as Mercury (Du et al., 2024), Effibench (Huang et al., 2024b), and SOAP (Huang et al., 2024a). By
adhering to these benchmarks, we ensure that our evaluation is in line with the current standards in the field.

A.4. Test case augmentation

Some of the candidate tasks we collected do not have test cases. To address this, we use GPT-3.5-turbo to construct test cases
by feeding the task description and source code into the model and requiring it to generate test cases for our experiments.
After that, we analyze whether each test case generated by GPT-3.5-turbo is correct and then filter out incorrect test cases
and tasks that do not have the correct test cases. To determine the correctness of the test cases generated by GPT-3.5-turbo,
we execute each test case individually with the initial solution for each task in our collected candidate tasks. We check
whether any errors are raised during the execution of each test case with the initial solution. In other words, we verify if the
test case passes the initial solution. We treat the test cases that pass the initial solution as correct. On the other hand, test
cases that do not pass the initial solution are filtered out. By using the initial solution as a reference, we can effectively
assess the correctness of the generated test cases and ensure that only valid test cases are retained for further analysis.

A.5. Comparison with PIE strategies

In Table 7, we compared against the best-performing PIE model, which was the “All” strategy fine-tuned CodeLlama-7B in
our evaluation. Now, we included comparisons with other PIE fine-tuning strategies in Table 9. EFFIINSTRUCT outperforms

15



EFFICODER: Enhancing Code Generation in Large Language Models through Efficiency-Aware Fine-tuning

Setup ET NET MU NMU TMU NTMU

Python 3.11.10 - Intel(R) Xeon(R) Platinum 8336C CPU @ 2.30GHz

Qwen2.5-Coder-7B 0.59 1.95 61.95 0.99 24.29 1.83
+ EFFIINSTRUCT 0.40 1.01 61.96 0.99 18.74 1.02

Python 3.11.10 - Intel(R) Xeon(R) Silver 4216 CPU @ 2.10GHz

Qwen2.5-Coder-7B 0.28 1.63 36.15 1.00 20.01 1.88
+ EFFIINSTRUCT 0.25 1.38 36.52 1.01 19.85 1.56

Python 3.11.10 - Intel(R) Xeon(R) Silver 4116 CPU @ 2.10GHz

Qwen2.5-Coder-7B 0.35 1.45 36.14 1.00 24.28 1.63
+ EFFIINSTRUCT 0.22 1.01 36.51 1.01 15.26 1.09

Python 3.11.4 - Intel(R) Xeon(R) Silver 4216 CPU @ 2.10GHz

Qwen2.5-Coder-7B 0.67 1.16 61.43 1.00 40.01 1.22
+Effi-Code 0.58 1.02 60.77 0.97 32.50 1.03

Python 3.11.0 - Intel(R) Xeon(R) Silver 4216 CPU @ 2.10GHz

Qwen2.5-Coder-7B 0.28 1.64 34.55 1.00 19.39 1.87
+ EFFIINSTRUCT 0.25 1.39 34.90 1.02 20.03 1.59

Python 3.9.0 - Intel(R) Xeon(R) Silver 4216 CPU @ 2.10GHz

Qwen2.5-Coder-7B 0.30 1.60 34.26 1.01 21.02 2.10
+Effi-Code 0.24 1.20 34.52 1.02 19.84 1.32

Python 3.10.0 - Intel(R) Xeon(R) Silver 4216 CPU @ 2.10GHz

Qwen2.5-Coder-7B 0.29 1.63 33.26 1.01 20.32 2.16
+ EFFIINSTRUCT 0.26 1.43 33.50 1.02 19.53 1.61

Table 8. Evaluation results of EFFICODER effectiveness on different software-hardware setups.

16



EFFICODER: Enhancing Code Generation in Large Language Models through Efficiency-Aware Fine-tuning

Table 9. Performance comparison of different model variants on efficiency metrics.

Model ET NET MU NMU TMU NTMU

CodeLlama-7b-hf 1.02 0.85 42.33 1.00 23.97 0.82
+ All 0.82 (19.6%) 0.72 (15.3%) 8.87 (79.0%) 0.18 (82.0%) 6.64 (72.3%) 0.24 (70.7%)
+ HQ 1.14 (-11.8%) 0.98 (-15.3%) 10.55 (75.1%) 0.23 (77.0%) 7.06 (70.5%) 0.26 (68.3%)
+ All w/Perf-Cond 0.92 (9.8%) 0.81 (4.7%) 8.91 (79.0%) 0.19 (81.0%) 6.99 (70.8%) 0.25 (69.5%)
+ HQ + Self-Play 0.92 (9.8%) 0.80 (5.9%) 12.46 (70.6%) 0.27 (73.0%) 7.80 (67.5%) 0.28 (65.9%)
+ EFFIINSTRUCT 0.79 (22.5%) 0.70 (17.6%) 11.06 (73.9%) 0.24 (76.0%) 5.77 (75.9%) 0.21 (74.4%)

Table 10. Comparison between EffiLearner and EFFIINSTRUCT on the EffiBench dataset, showing efficiency metrics with percentage
improvements relative to the baseline model.

Model ET NET MU NMU TMU NTMU

deepseek-coder-6.7b-instruct 0.56 1.20 40.17 4.09 96.78 13.79
+ EffiLearner 0.46 (17.9%) 0.98 (18.3%) 40.14 (65.2%) 1.00 (75.6%) 15.50 (84.0%) 1.04 (92.5%)
+ EFFIINSTRUCT 0.39 (30.4%) 0.83 (30.8%) 40.16 (65.1%) 1.00 (75.6%) 15.03 (84.5%) 0.90 (93.5%)

all PIE variants on ET and TMU metrics. It achieves a 22.5% reduction in execution time compared to the base model,
which is better than even PIE’s best “All” strategy (19.6%) in EffiBench. For total memory usage, EFFIINSTRUCT achieves
a 75.9% reduction, outperforming all PIE variants.

A.6. Comparison with EffiLearner

We provide the comparison for EffiLearner and EFFIINSTRUCT fine-tuned DeepSeek-Coder-6.7B-Instruct in Table 10,
where we can observe that both EffiLearner and EFFIINSTRUCT improve the efficiency of LLM-generated code. For tasks
addressed by all models, average ET decreased from 0.56 (s) to 0.46 (s) with EffiLearner and to 0.39 (s) with EFFIINSTRUCT.
For DeepSeek-Coder-6.7B-Instruct, EffiLearner reduced average execution time by 17.9%, while EFFIINSTRUCT achieved a
30.4% reduction.

A.7. Evaluation results on ENAMEL

The efficiency results between baseline LLMs and EFFIINSTRUCT fine-tuned models on ENAMEL are shown in Table 11,
where our results show meaningful improvements in both efficiency and correctness metrics, with effi@1 increasing from
0.373 to 0.458 and pass@1 improving from 0.589 to 0.739 for Qwen2.5-Coder-Instruct-7B.

A.8. Further discussion with baselines

Compared to existing works (Du et al., 2024; Shypula et al., 2024), EFFIINSTRUCT introduces a fully automated code
optimization framework that transforms initial task descriptions into efficient solutions without human intervention. Unlike
PIE, which relies on human programmers to write efficient solutions, or Mercury, which selects the most efficient solution
from pre-existing human-written code, EFFIINSTRUCT can optimize code starting from just a task description. This
automation enables researchers and developers to enhance their existing code generation datasets with minimal manual
effort, making efficiency optimization more accessible and scalable. In addition, EFFIINSTRUCT offers broader language

Table 11. Performance comparison between baseline LLMs and EFFIINSTRUCT fine-tuned LLMs on the ENAMEL benchmark.

Model eff@1 pass@1 eff@10 pass@10 eff@100 pass@100

Qwen2.5-Coder-Instruct-7B 0.373 0.589 0.628 0.866 0.732 0.951
+ EFFIINSTRUCT 0.458 0.739 0.653 0.905 0.763 0.972

DeepSeek-Coder-6.7B-Instruct 0.179 0.299 0.549 0.822 0.727 0.922
+ EFFIINSTRUCT 0.393 0.654 0.633 0.887 0.752 0.937

17



EFFICODER: Enhancing Code Generation in Large Language Models through Efficiency-Aware Fine-tuning

coverage and greater generalizability by including optimized tasks across multiple programming languages (C++, Python,
Java, Rust, and Go). This multilingual approach contrasts with PIE’s focus on C++ and Mercury’s focus on Python,
allowing models fine-tuned on EFFIINSTRUCT to perform effectively across diverse language environments. Additionally,
EFFIINSTRUCT’s significantly larger scale, comprising 65,710 unique tasks compared to Mercury’s 1,889 and PIE’s 1,474,
provides more comprehensive training data, resulting in models demonstrating superior pass@1 rates and efficiency metrics
as evidenced in Table 7.

A.9. Case Study

To illustrate how the source code generated by EFFIINSTRUCT fine-tuned LLM is more efficient than the source code
generated by the LLM without fine-tuning on EFFIINSTRUCT, we provide an example in Figure 5. We can observe that the
code generated by Qwen2.5-Coder-7B requires 9.89 (s) to execute all unit tests, while the code generated by EFFIINSTRUCT
fine-tuned Qwen2.5-Coder-7B with SFT only requires 0.14 (s) to execute. The key reason is that the code generated by
Qwen2.5-Coder-7B requires significantly more recursive calls, as it lacks optimized pruning strategies such as breaking
early in redundant paths. This inefficiency leads to a much larger number of computations, ultimately resulting in the
observed longer execution time. The code generated by EFFIINSTRUCT fine-tuned Qwen2.5-Coder-7B, on the other hand,
incorporates smart optimizations, such as terminating recursion early when certain conditions are met, thereby reducing the
overall time complexity.

Task Description

Problem: You are given an integer array cookies, where cookies[i] denotes the number of cookies in the ith
bag. You are also given an integer k that denotes the number of children to distribute all the bags of cookies to. All
the cookies in the same bag must go to the same child and cannot be split up. The unfairness of a distribution is
defined as the maximum total cookies obtained by a single child in the distribution. Return the minimum
unfairness of all distributions.
solution = Solution() assert solution.distributeCookies([8, 15, 10, 20, 8], 2) == 31 assert solution.distributeCookies([6,
1, 3, 2, 2, 4, 1, 2], 3) == 7

solution = Solution()
assert solution.distributeCookies([8, 15, 10, 20, 8], 2) == 31
assert solution.distributeCookies([6, 1, 3, 2, 2, 4, 1, 2], 3) == 7

Qwen2.5-Coder-7B

Execution Time: 9.89 (s)
Max Memory Peak: 24.39 (MB)
Memory Usage: 240.47 (MB*s)
class Solution:

def distributeCookies(self, cookies, k):
min_unfairness = float('inf')
distribution = [0] * k
def distribute(i):

nonlocal min_unfairness
if i == len(cookies):

min_unfairness = min(min_unfairness,\
max(distribution))
return

for j in range(k):
distribution[j] += cookies[i]
distribute(i + 1)
distribution[j] -= cookies[i]

distribute(0)
return min_unfairness

Qwen2.5-Coder-7B SFT with EFFIINSTRUCT

Execution Time: 0.14 (s)
Max Memory Peak: 24.39 (MB)
Memory Usage: 2.47 (MB*s)
class Solution:

def distributeCookies(self, cookies, k):
def backtrack(i):

nonlocal ans
if i == len(cookies):

ans = min(ans, max(children))
return

for j in range(k):
children[j] += cookies[i]
backtrack(i + 1)
children[j] -= cookies[i]
if children[j] == 0:

break
children = [0] * k
ans = float('inf')
backtrack(0)
return ans

Figure 5. A case illustration for the task with code generated by Qwen2.5-Coder-7B and EFFIINSTRUCT fine-tuned Qwen2.5-Coder-7B in
EffiBench problem_idx=2305.

18



EFFICODER: Enhancing Code Generation in Large Language Models through Efficiency-Aware Fine-tuning

Table 12. Code efficiency and pass@1 of Qwen2.5-Coder-7B with EFFIINSTRUCT with the five times execution on EffiBench.
Model ET (s) ↓ NET ↓ MU (Mb) ↓ NMU ↓ TMU (Mb*s) ↓ NTMU ↓

Random Execution 1 0.17 1.30 32.71 1.03 8.31 2.23
Random Execution 2 0.17 1.31 32.93 1.04 8.35 2.28
Random Execution 3 0.17 1.30 32.71 1.03 8.23 2.22
Random Execution 4 0.17 1.30 32.84 1.04 8.30 2.25
Random Execution 5 0.17 1.30 32.88 1.04 8.28 2.27

mean 0.17 1.302 32.814 1.037 8.293 2.249
std 0.0 0.003 0.09 0.003 0.038 0.023

A.10. Randomness

To ensure reliable model performance, we also account for variability in system conditions. Metrics like Execution Time
(ET), Max Memory Usage (MU), and Total Memory Usage (TMU) might fluctuate due to factors like server workload
and hardware availability, introducing noise that affects performance measurements. To demonstrate whether our results
are affected by such randomness, we provide five results at different times with the mean and std for Qwen2.5-Coder-7B
fine-tuned with EFFIINSTRUCT in Table 12. We can observe that the results are robust as the std of the five execution times
is very low for all metrics. For example, the std of ET for the five executions is 0.00.

19


