
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

QUALITY MEASURES FOR
DYNAMIC GRAPH GENERATIVE MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

Deep generative models have recently achieved significant success in modeling
graph data, including dynamic graphs, where topology and features evolve over
time. However, unlike in vision and language domains, evaluating generative
models for dynamic graphs is challenging due to the difficulty of visualizing their
output, making quantitative metrics essential. In this work, we develop a new
quality metric specifically for evaluating generative models of dynamic graphs.
Current metrics for dynamic graphs typically involve discretizing the continuous-
evolution of graphs into static snapshots and then applying conventional graph
similarity measures. This approach has several limitations: (a) it models tempo-
rally related events as i.i.d. samples, failing to capture the non-uniform evolution
of dynamic graphs; (b) it lacks a unified measure that is sensitive to both features
and topology; (c) it fails to provide a scalar metric, requiring multiple metrics
without clear superiority; and (d) it requires explicitly instantiating each static
snapshot, leading to impractical runtime demands that hinder evaluation at scale.
We propose a novel metric based on the Johnson-Lindenstrauss lemma, applying
random projections directly to dynamic graph data. This results in an expressive,
scalar, and application-agnostic measure of dynamic graph similarity that over-
comes the limitations of traditional methods. We also provide a comprehensive
empirical evaluation of metrics for continuous-time dynamic graphs, demonstrat-
ing the effectiveness of our approach compared to existing methods.

1 INTRODUCTION

Recent research in the generative graph domain has increasingly focused on dynamic graphs, or
graphs whose topologies and features change over time. Dynamic graph generation has applications
in diverse areas, including social network analysis (Patel et al., 2018; Aldhaheri & Lee, 2017),
biology (Mathur & Chakka, 2020; Choudhury & Chowdhury, 2018), and financial fraud detection
(Rajput & Singh, 2022; Wang et al., 2021). Unlike image or natural language data, graph data can be
challenging to visualize, making subjective evaluation of generative samples difficult. Consequently,
quality metrics for assessing these generative models are vitally important.

Current metrics for dynamic graph generative models (DGGMs) generally rely on computing (static)
graph statistics, such as node degree, number of connected components, or edge entropy, and aggre-
gating them in a way that facilitates scalar comparison between synthetically generated and ground
truth graphs. These metrics can be can be categorized into discrete and continuous. Discrete metrics
treat a dynamic graph as a series of static graph snapshots, first calculating static graph statistics for
each snapshot and then aggregating these values using a summary statistic, such as mean, or, more
rigorously, a distance metric for high-dimensional distributions such as Maximum Mean Discrep-
ancy (MMD) (Gretton et al., 2006). Such a method treats each snapshot of the evolving graph as
independently and identically distributed (i.i.d.) and thus fails to capture the temporal dependen-
cies often present in real world graphs (Sizemore & Bassett, 2018). Despite this limitation, we find
that discrete metrics are commonly used in DGGM literature (See Section 2.2). Continuous graph
metrics attempt to remedy this issue by directly incorporating temporal dependencies into the eval-
uation process, such as by measuring the rate of change of graph attributes over time (Sizemore &
Bassett, 2018; Nicosia et al., 2013). However, both discrete and continuous approaches suffer from
limitations: First, these metrics focus exclusively on the topological properties of graphs, neglecting
the equally important evolution of node and edge features. While standard statistical methods such

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

as Jensen-Shannon Divergence (Fuglede & Topsoe, 2004) can measure the fidelity of generated fea-
tures to the ground truth, capturing dependencies—both between individual features and between
feature evolution and topology—remains non-trivial, yet essential because these dependencies are
precisely what make dynamic graphs interesting and important. Second, these topological metrics
depend on a variety of graph statistics, making the evaluation of DGGMs challenging: The rank-
ing of generative models can vary depending on the specific statistic used, and there is no clear,
application-domain-agnostic method for determining which metric should take precedence. Finally,
since most of these metrics require explicit construction of graph snapshots at each interaction time,
their memory and runtime demands can quickly become impractical at scale.

To remedy similar issues in other domains, untrained neural networks have recently been used in
image generative model evaluation (Xu et al., 2018; Naeem et al., 2020) and static graph information
extraction (Kipf & Welling, 2016b; Morris et al., 2019). Building on these advancements, Thompson
et al., 2022 introduces the use of such a random network as a viable approach for generative model
evaluation in the static graph domain. They demonstrate that a random graph neural network can be
used as a feature extractor to embed synthetic and ground truth graphs. These embeddings are then
compared using standard distance metrics such as Fréchet Distance (Heusel et al., 2017b) or MMD in
order to produce a scalar metric. Though this work stops short of theorizing why such a method may
be reasonable, they show empirically that these neural network-based metrics effectively capture
both graph topology and features, yielding a unified scalar score. However, because this approach is
designed for static graphs, it does not account for the temporal evolution crucial to dynamic graphs.

Inspired by this work in the image and static graph domain, we develop a similar approach for contin-
uous time dynamic graphs (CTDGs). Specifically, we first argue that the success of random networks
as feature extractors may be due to the famed Johnson-Lindenstrauss lemma (Johnson & Linden-
strauss, 1984; Dasgupta & Gupta, 2003), which proves that data transformation via random linear
maps approximately preserves similarity with high probability. Leveraging this insight, we intro-
duce a novel DGGM metric by combining random feature extraction via the Johnson-Lindenstrauss
lemma with standard vector similarity measures. Another major contribution of this work is the
first comprehensive empirical evaluation of DGGM metrics. Through extensive experiments, we
assess the metrics’ ability to meet key properties well-established in the literature as essential for
generative metrics (Thompson et al., 2022; Xu et al., 2018): fidelity, diversity, sample efficiency,
and computational efficiency. Finally, we show that our proposed metric addresses many limitations
of existing methods, providing a more robust solution for evaluating DGGMs.

2 BACKGROUND AND RELATED WORK

The evaluation of generative models in terms of their alignment to the training distribution can be
classified into two categories: likelihood-based methods (Heusel et al., 2017b) and sample-based
methods (Theis et al., 2015). Likelihood-based methods are often intractable (Theis et al., 2015),
including for autoregressive graph generative models (Chen et al., 2021; Thompson et al., 2022).
Therefore, we follow recent analogous work in the static graph domain by Thompson et al., 2022 and
focus on sample-based methods. Specifically, sample-based metrics estimate a distance ρ between
real and synthetic distributions Pr and Pg using empirical samples Sr = {xr

1, ...,x
r
m} ∼ Pr and

Sg = {xg
1, ...,x

g
n} ∼ Pg

1. Thus, we have the distance estimator ρ̂(Sg,Sr) ≈ ρ(Pg, Pr). Here,
function descriptor xi is a feature vector that characterizes a single sample. Next, we turn to graph
representation and demonstrate how such sample-based measures can be applied to dynamic graphs.

2.1 CONTINUOUS TIME DYNAMIC GRAPHS

Early work in dynamic graph generation focused on learning distributions over discrete-time dy-
namic graphs (DTDGs). A DTDG consists of a sequence static graphs which are equally spaced
in time. While DTDGs are useful in applications where data is captured at regular time intervals
(Kazemi, 2022), continuous-time dynamic graphs (CTDGs) generalize DTDGs, offering greater
flexibility and efficiency. The literature has thus progressively shifted towards CTDG generation due
to their ability to capture temporal dependencies more accurately and to handle data with irregular
time intervals. This work concentrates on metrics for evaluating CTDGs. A CTDG is represented

1For ease of comparison, we adopt notation consistent with Thompson et al. (2022) wherever possible.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

as a sequence of timestamped events2, where each event is a change in graph topology (e.g., node
or edge creation or deletion) or change in features. Formally, given initial graph state G0, a set of
nodes V = {1, ..., z}, and sequence length k, our CTDG sequence is:

G = {c(t1), c(t2), ..., c(tk)},where c(ti) = (src, dst, ti, esrc,dst(ti)) (1)

Each event c ∈ G parameterized by timestamp ti is characterized by source and destination nodes
of the event src, dst ∈ V and esrc,dst(ti), a directed edge between src and dst at time ti and that
is represented by its feature vector. Thus, unlike DTDGs, an evolving graph with k events can be
compactly represented with sequence length Θ(|k|). An induced static graph, or static snapshot, Gτ

at t = τ can be explicitly computed by sequentially updating G0 with events up to time τ . Thus,
given temporal resolution ϕ we can discretize Gτ as Gdiscrete = {G(0),G(ϕ),G(2ϕ), . . . ,G(⌊τ/ϕ⌋/ϕ)}.

Most generative models for CTDGs, including the aforementioned baselines, are trained on a single
ground-truth graph consisting of many events. Implicitly, these methods assume that the covariance
between events decays rapidly as the time interval between them increases and their joint probability
distribution does not change when all the events are shifted in time, akin to the properties of a wide-
sense stationary process. This assumption allows models to treat different temporal segments of
the CTDG as approximately independent, enabling pattern extraction and generalization from a
single graph. For consistency with existing literature, our empirical evaluation focuses on a model’s
ability to measure similarity between a generated and ground-truth CTDG in this single graph,
many interactions setting. However, our methodology is sufficiently general to extend to settings
involving multiple CTDGs. In such cases, we assume the different CTDGs are i.i.d., allowing for
straightforward aggregation of the scalar metric across graphs using simple distance measures like
MMD. This flexibility ensures that our metric is not only applicable to individual CTDGs but can
also be used to compare sets of dynamic graphs efficiently.

When using sample-based metrics, the goal is to create a function descriptor xi for each event or
snapshot in the CTDG, forming an empirical sample S = {x1, ...,xk}. Individual events c(t) ∈ G
or induced static graphs Gt/ϕ ∈ Gdiscrete are analogous to graphs in the static graph domain. Unlike
static graphs, where each graph (and thus each xi) is assumed i.i.d., our function descriptor xi or
distance estimator ρ̂ must account for temporal dependencies between events or snapshots.

2.2 CURRENT METRICS FOR DGMMS

We now overview common choices for function descriptor xi and distance estimator ρ̂. To do so, we
summarize metrics used for four common CTDG generative models: TagGen (Zhou et al., 2020),
TIGGER (Gupta et al., 2022), Dymond (Zeno et al., 2021), and TG-GAN (Zhang et al., 2021).

The most common choice of function descriptor xi is based on static graph topology. Specifically,
the ground truth graph Gr and the synthetic graph Gs are discretized into a set of induced static
graphs, Gdiscrete

r and Gdiscrete
s , using the method described in Section 2.1. For each graph snapshot

Gi ∈ Gdiscrete, scalar metrics such as average node degree, number of connected components, and
edge entropy are calculated. Thus, Sr and Sg are sets of scalar values representing a specific static
graph statistic. All aforementioned baselines evaluate using such static approaches. Such function
descriptor choices may lack the expressiveness needed to capture continuous dynamic behavior
(Sizemore & Bassett, 2018). To address this, Dymond and TG-GAN incorporate additional metrics
that attempt to capture temporal dependencies and finer-grained dynamics in the evolution of graph
structures. Specifically, they develop so-called node behavior metrics wherein function descriptor
xi is based on nodes V = {1, ..., z} rather than induced static graphs. These function descriptors
are calculated using classical statistical measures such as activity rate and degree distribution. A
comprehensive summary and discussion of all graph statistics reviewed is provided in Appendix A.

As discussed above, given real and generated function descriptor sequences Sr = {xr
1, ...,x

r
m} ∼

Pr and Sg = {xg
1, ...,x

g
n} ∼ Pg , we require distance estimator ρ̂(Sg,Sr) ≈ ρ(Pg, Pr). TagGen

and TIGGER limit evaluation to graphs with the same number of snapshots and use mean and me-
dian absolute error between Sr and Sg . Dymond and TG-GAN use Kolmogorov-Smirnov (KS-test)
(Massey Jr, 1951) and Maximum Mean Discrepancy (MMD) (Gretton et al., 2006), respectively.

2Events are also referred to observations or contacts in the literature.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Critically, these choices of ρ̂ assume an i.i.d. relationship between the function descriptors in Sr and
Sg . However, for the function descriptors described, this assumption is unlikely to hold, as temporal
dependencies between snapshots are often present, challenging the validity of these estimators.

Additionally, the function descriptors found in the literature are limited to graph topology and fail
to incorporate node or edge features. As discussed in Section 1, a wide range of distance measures,
such as Jensen-Shannon divergence (Fuglede & Topsoe, 2004), can be used to evaluate the fidelity
of generated features. However, these measures are unable to capture dependencies between the
topology and the evolution of features. Thus, current metrics are not expressive enough to model
temporal dependencies, topological-feature interactions, and the intricate dynamics observed in real-
world graphs. Without a method that can capture these complex relationships, existing approaches
remain insufficient for fully assessing the sample quality of DGGMs.

2.3 UNTRAINED NEURAL NETWORKS AS FEATURE EXTRACTORS

Recent work in the vision and static graph domains has sought to address similar issues in develop-
ing metrics for evaluating generative models. Drawing inspiration from the use of pretrained con-
volutional neural networks (CNNs) to derive function descriptors xi for sample-based metrics (e.g.,
Bińkowski et al. (2018); Heusel et al. (2017a)), recent work (Xu et al., 2018; Naeem et al., 2020)
explores applying untrained neural networks, or random networks, for the same task. They find
that function descriptors derived from forward-propagating data through a random CNN yield met-
rics of comparable quality to those obtained from a trained CNN across several choices of distance
estimator ρ̂. Similarly, Thompson et al. (2022) explores the use of random graph neural networks
(GNNs) to produce metrics for static graph data, showing that this method provides more expressive
and computationally efficient metrics than those based on classical graph descriptors. In this work,
we first investigate why these approaches work, hypothesizing a connection to orthogonal random
projections, and then propose a new method for evaluating dynamic graphs based on these insights.

2.4 SCORING GENERATIVE METRICS

A major contribution of our work is an empirical study of the quality of various sample-based metrics
for CTDGs. Here, we enumerate the established attributes of a good quality metric and detail how
such attributes are measured for metrics in the vision and static graph domain. In Section 4, we
propose an approach for measuring these attributes for CTDGs.

An expressive metric should capture the fidelity of generated samples, meaning it can distinguish
between empirical samples Sr and Sg drawn from different distributions, with the empirical distance
measure ρ̂ changing monotonically with the dissimilarity between the two data sets. Xu et al. (2018);
O’Bray et al. (2021); Thompson et al. (2022) empirically study this property for images and static
graphs using sensitivity analysis. In these studies, a reference sample Sr and a generated sample
Sg are initially calculated from identical real-world datasets Dr and Dg . Then, samples in Dg

are gradually replaced with data from a different distribution (e.g., random data or data from a
generative model) and Sg is re-calculated, parameterizing Sg as Sg(p) and Dg as Dg(p), where
p is the probability of real data replacement in Dg . Thompson et al. (2022) also explores edge
perturbation in static graphs, where edges are rewired with probability p. The metric response is
then studied. Xu et al. (2018) does so subjectively. O’Bray et al. (2021) quantifies the response by
reporting the Pearson correlation coefficient between p and ρ̂(Sr,Sg(p)). Recognizing that Pearson
correlation favors linear relationships, Thompson et al. (2022) instead reports the Spearman rank
correlation coefficient. We adopt this approach and report Spearman rank correlation in our analysis.

An expressive metric should also capture the diversity of generated samples, ensuring that dataset Dg

contains samples from different regions of the probability mass of reference distribution Pr, rather
than being confined to a limited subset of it. This is particularly crucial in real-world scenarios
where the underlying distribution is multi-modal. In generative models, Xu et al. (2018) identifies
two common failure points: (1) mode dropping, where some modes of Pr are underrepresented or
ignored by the generative model, and (2) mode collapse, where there is insufficient diversity within
the modes. Thus, a quality metric should be sensitive to such phenomena. To detect such issues, Xu
et al. (2018) and Thompson et al. (2022) again employ sensitivity analysis. Data is first clustered into
k modes using k-means or affinity propagation Frey & Dueck (2007). Starting with identical Dr and
Dg , samples in Dg are progressively replaced with their cluster centers to measure mode collapse.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Thus, we can again calculate Sr and Sg(p) from Dr and Dg(p), where p indicates the probability of
replaced data in Dg . To simulate mode dropping, modes are gradually removed from Dg(p) and data
from other modes is duplicated to keep |Dg(p)| and thus |Sg(p)|, constant. The metric’s response is
again quantified using the Spearman rank correlation between p and ρ̂(Sr,Sg(p)).

A quality metric should also be sample efficient. That is, it should be able to discriminate be-
tween distinct distributions Pr and Pg even when λ = min(|Dr|, |Dg|) is small. Thompson
et al. (2022) evaluates the sample efficiency of a metric by creating two disjoint subsets D′

r and
D′′

r from real-world data Dr, and one subset D′
g from random static graph distribution Pg , with

|D′
r| = |D′′

r | = |D′
g| = λ and therefore corresponding function descriptors |S′r| = |S′′r | = |S′g|.

The sample efficiency is measured as the smallest λ for which the metric ρ̂(S′r,S′′r) < ρ̂(S′r,S′g),
indicating the number of samples needed for the metric to discrimate between Pr and Pg .

Finally, a quality metric must be computationally efficient to allow for repeated use during tasks like
model training and hyperparameter optimization. Computational efficiency is typically assessed by
measuring runtime performance on standard computing hardware.

3 A JOHNSON-LINDENSTRAUSS APPROACH TO VALIDATING DGGMS

Though the random network-based metrics described in Section 2.3 have found widespread use in
the image and static graph domains, these works stop short of explaining why such methods may be
effective. We argue that their success may be partially attributed to the famed Johnson-Lindenstrauss
lemma (Johnson & Lindenstrauss, 1984; Dasgupta & Gupta, 2003), which posits that random or-
thogonal linear projections approximately preserve data similarity. Notably, a randomly initialized
fully connected neural network (FCNN) layer with identity activation can be viewed as a direct
instance of a Johnson-Lindenstrauss projection (Nachum et al., 2021). Moreover, recent studies
on neural network initialization have shown that FCNNs with ReLU activation and convolutional
neural networks (CNNs) modify the Johnson-Lindenstrauss result in a predictable way, where data
similarity is preserved but scaled by a derivable contraction factor (Daniely et al., 2016; Giryes et al.,
2016; Nachum et al., 2021). This theoretical foundation may explain the success of random CNN
networks as feature extractors in the image domain. While no formal theoretical extension of the
Johnson-Lindenstrauss lemma to the static graph domain has been established, several classes of
graph neural networks (GNNs) (e.g., Defferrard et al. (2016); Kipf & Welling (2016a); Wu et al.
(2019)) have been rigorously shown to generalize the convolution operation to non-Euclidean struc-
tures. Given that the core principle of the Johnson-Lindenstrauss lemma applies to preserving dis-
tances under random projection, we posit that random GNN layers can preserve graph topology and
features in a manner analogous to how CNNs preserve data similarity in Euclidean space. This sug-
gests a plausible extension of the lemma’s applicability to the graph domain, where the effectiveness
of random GNNs as feature extractors may stem from the same underlying principles.

Notably, the distance preservation property, and thefore embedding quality, of the Johnson-
Lindenstrauss lemma does not depend on the dimensionality of the original data, leading to
widespread use in dimensionality reduction tasks (Bingham & Mannila, 2001; Choromanski et al.,
2017), wherein data in RN is embedded into a lower-dimensional space Rn, n < N . Namely, the
lemma states that given error 0 < ϵ < 1, dataset X = {a1, a2, . . . , aq}, ai ∈ RN , and embedding
dimensionality n > 8(ln q)/ϵ2, there is a linear map f : RN → Rn such that:

(1− ϵ)∥a− b∥2 ≤ ∥f(a)− f(b)∥2 ≤ (1 + ϵ)∥a− b∥2 (2)

for all a, b ∈ X , where early proofs of the lemma show that linear map f : RN → Rn can be a
random orthogonal projection from RN to subspace Rn.

We argue that this lack of dependence of embedding quality on N is a crucial characteristic that
makes Johnson-Lindenstrauss embeddings an effective method for transforming the variable-length
node interactions in a CTDG (Equation 1) into a fixed-dimensional vector space. Unlike traditional
applications of the JL lemma, where the goal is to reduce dimensionality, a key insight in our work
is to use it to transform data of varying dimensionality into a consistent dimensional representation.
We now turn our attention to creating a Johnson-Linedenstrauss based metric for CTDGs.

Starting from our CTDG representation in Equation 1, we construct an alternative representation
G̃ at time τ as a sequence of nodes V = {v1, . . . ,vz}, where each node is characterized by the

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

time-ordered concatenation of events it participated in:

vj = {c̃(t1)∥c̃(t2)∥ . . . ∥c̃(tmj
)},

where mj is the number of events involving node j up to time τ . Since each vj ∈ V only contains
events involving node j, the node identifier (either src or dst) is redundant, and we simplify the
event representation c(ti) from Equation 1 to c̃(ti), dropping the node identifier and capturing only
the timestamp and the associated event features:3

c̃(ti) = (ti, esrc,dst(ti)),

As nodes generally participate in different numbers of interactions, the resulting vectors vj will have
variable lengths, |vj | = mj · |c̃(ti)|.
However, since the JL embedding quality is agnostic to vector length, we can apply random pro-
jections to map each vj into a consistent-dimensional space Rn. To achieve this, we instantiate a
random projection matrix WM×n

1 , where M = maxj(|vj |). We then apply WM×n
1 to each vec-

tor vj , adjusting for variable lengths by ignoring unused rows of the matrix where necessary. This
process yields fixed-dimensional function descriptors for each node, {x̃1, . . . , x̃z}, where each xj

characterizes a node vj and together they provide a representation for G.

Finally, we note that different CTDGs will generally have different numbers of nodes, resulting in
a varying number of function descriptors. To facilitate comparison between CTDGs, we apply an
additional transformation that maps the set of node embeddings into a consistent dimensional space.
Specifically, for a set of CTDGs G1, . . . ,Gk, each with zi nodes, we instantiate a second random
projection matrix WZ×o

2 , where Z = max(z1, . . . , zk) is the maximum number of nodes across the
CTDGs, and o is the desired number of function descriptors for each Gi. This transformation yields
a consistent representation of each G as G̃ = {x1, . . . ,xo}, where each xi ∈ Rn. This represen-
tation now has consistent dimensionality G̃i ∈ Rn×o for all G1, . . . ,Gk. Unlike the sequences of
function descriptors discussed in Section 2 which each represents individual graph snapshots, G̃i is a
matrix representation of the entirety of Gi. Thus, G1, . . . ,Gk can be compared directly using familiar
notions of similarity such as cosine distance, i.e. given any pair Gr ∼ Pr and Gg ∼ Pg , we have:

ρ(Pr, Pg) ≈ ρ̂(G̃g, G̃r) = 1− ⟨G̃g, G̃r⟩F
∥G̃g∥F ∥G̃r∥F

,

where ∥·∥F is the Frobenius norm and ⟨·, ·⟩F is the Frobenious inner product. Due to the implicit
assumption that the correlation between events decreases rapidly with the time between the events
(Section 2.1), this estimate of the distance between distributions can be accurate even with a single
sample from each distribution, as is common in the CTDG literature.

While early works using Johnson-Lindenstrauss transforms employed random orthogonal projec-
tion matrices, our approach uses a structured random matrix (SRM) discussed by Choromanski
et al. (2017), which combines a normalized Hadamard matrix with a random Rademacher diagonal
matrix (Appendix B for details). This method has been shown to outperform standard orthogonal
projection matrices in dimensionality reduction tasks. By using such SRMs for WM×n

1 and WZ×o
2 ,

we also achieve significant computational and memory benefits: we avoid explicitly instantiating the
matrices, reducing storage requirements to O(M) and O(Z) for W1 and W2, respectively. More-
over, matrix-vector multiplication can be performed in O(M logM) and O(Z logZ) time, without
additional memory overhead. This improved complexity is particularly advantageous when dealing
with data of varying dimensionality, such as cases where max(|vj |) ≫ mean(|vj |).
This new JL-metric addresses the shortcomings of classical CTDG metrics described in Section 2.2:

Assumption of i.i.d. relationships: Many classical metrics assume an i.i.d. relationship between
graph snapshots, which we have demonstrated is not true in practice. In contrast, our method makes
no such assumption. The transformation WM×n

1 linearly combines the events that constitute vi,
effectively capturing dependencies between events and ensuring that interactions within each node
are not treated as independent. A similar effect is achieved by the transformation WN×o

2 , which
combines node-level descriptors to produce the final metric, preserving dependencies across nodes.

3In practice, we also normalize the time stamps and event features using standard techniques such as min-
max. See Appendix B.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Joint modeling of topology and features: Current metrics typically fail to jointly model topological
and feature properties of the graph. In contrast, the metric produced by our method is sensitive to
both topological and feature changes, as is discussed above and demonstrated in our experiments.

Unified metric: Classical metrics often sensitive to only specific graph properties, resulting in mul-
tiple metrics with no clear hierarchy for choosing the best model when conflicts arise. Conversely,
our method provides a single scalar metric, offering a more comprehensive and unbiased assessment.

Efficiency in memory and runtime: Many classical metrics require explicit instantiation of discrete
graph snapshots, resulting in impractical memory and runtime demands for large graphs. In contrast,
our method requires only O(M + Z) memory and O(max(M,Z) logmax(M,Z)) runtime.

4 EXPERIMENTS

We now turn to an empirical evaluation of CTDG metrics, comparing several existing metrics with
our proposed Johnson-Lindenstrauss-based metric (JL-Metric). The comparison focuses on com-
mon desiderata of generative metrics outlined in Section 2.4: fidelity, diversity, sample efficiency,
and computational efficiency. We follow the experimental framework of studies for metrics in the
image (Xu et al., 2018) and static graph (Thompson et al., 2022) domains, adapting them for CTDGs.

Metric Baselines: In addition to the JL-Metric introduced in Section 3, we evaluate the following
topological commonly used function descriptors xi from Section 2.2: average node degree, largest
connected component (LCC), number of components (NC), power law exponent (PLE) (static met-
rics), and average node activity rate (node behavior metric). These metrics are computed using
standard definitions, which are also provided in Appendix A. A more comprehensive review of
function descriptors and motivation for selecting these descriptors can also be found in Appendix
A. As described in Section 2.2, static metrics are evaluated for a specific temporal resolution. We
evaluate each static metric at the Nyquist rate, the minimum temporal resolution required to create
snapshots without information loss. In practice, these metrics can be evaluated at a lower resolution,
but this often comes at the cost of reduced accuracy and loss of important temporal details.

For choice of distance estimator ρ̂, we use Maximum Mean Discrepancy (MMD) (Gretton et al.,
2006) and Kolmogorov-Smirnov (KS) (Massey Jr, 1951) for all metric baselines. Cosine distance is
used for our JL-Metric, as motivated in Section 3. Lastly, we evaluate feature-based metrics, where
features are compared independently of topology, using Kullback-Leibler divergence (Kullback,
1951), Jensen-Shannon divergence (Fuglede & Topsoe, 2004), as well as KS and MMD.

Datasets: We evaluate each metric on four real-world datasets and one synthetic dataset. The real-
world datasets are adapted from user interactions on online platforms: Reddit, Wikipedia, LastFM,
and MOOC. We use a subset of these data (details in Appendix C), which were originally introduced
by Jodie (Kumar et al., 2019) and have become standard CTDG benchmarks. We note that the
LastFM dataset does not include event features. The synthetic dataset, Ggrid, is a grid-like graph
where each node is connected to its neighboring nodes at regular time intervals t = {t1, . . . , tn}.
The event feature esrc,dst(ti) is heuristically generated as a function of the timestamp and the source
and destination node IDs, i.e., esrc,dst(ti) = h(src, dst, ti), with h detailed in Appendix C. This
design explicitly introduces temporal and topological dependencies to the event features. Detailed
descriptions of each dataset can be found in Appendix C.

Experimental Setup: Building on analogous work from the image and static graph domains (see
Section 2.4), we evaluate each metric’s ability to capture fidelity (Section 4.1) and diversity (Section
4.2) using sensitivity analysis. In each experiment, we compare a real CTDG Gr ∼ Pr with a
perturbed CTDG Gg ∼ Pg , the latter serving as a proxy for a DGGM-generated graph. Initially,
Gr = Gg , so Pr = Pg , meaning two identical copies of the real CTDG are instantiated. The
events in Gg are then subjected to increasing perturbation probability p ∈ [0, 1], quantifying the
dissimilarity between Pg and Pr. We compare Gr and Gg(p) for several p, computing descriptors
Sr and Sg(p) for each graph and assessing each metric’s response by calculating the Spearman rank
correlation between metric score ρ̂(Sr,Sg(p)) and perturbation probability p.

The experiments for fidelity and diversity follow this common setup, differing only in the types
of perturbation applied. Each metric is evaluated across 10 random seeds, which affect both the
weights W1 and W2 in the JL-based metrics and the applied perturbations. We report the average

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

No
de

 D
eg

re
e

(K
S)

No
de

 D
eg

re
e

(M
M

D)

LC
C

(K
S)

LC
C

(M
M

D)

NC
 (K

S)

NC
 (M

M
D)

PL
E

(K
S)

PL
E

(M
M

D)

Ac
tiv

ity
 R

at
e

(K
S)

Ac
tiv

ity
 R

at
e

(M
M

D)

Fe
at

. D
ist

an
ce

 (J
S)

Fe
at

. D
ist

an
ce

 (K
L-

Di
v.)

Fe
at

. D
ist

an
ce

 (K
S)

Fe
at

. D
ist

an
ce

 (M
M

D)

JL
 M

et
ric

 (O
ur

s)

Edge Rewiring0.50
0.25
0.00
0.25
0.50
0.75
1.00

Co
rre

la
tio

n

Time Perturbation0.50
0.25
0.00
0.25
0.50
0.75
1.00

Co
rre

la
tio

n

Event Permutation0.50
0.25
0.00
0.25
0.50
0.75
1.00

Co
rre

la
tio

n

Mode Dropping0.50
0.25
0.00
0.25
0.50
0.75
1.00

Co
rre

la
tio

n

Mode Collapse0.50
0.25
0.00
0.25
0.50
0.75
1.00

Co
rre

la
tio

n

Figure 1: Distributions of Spearman rank correlations across all datasets and random seeds. Cor-
relation is measured between metric response ρ̂(Gr,Gg(p)) and perturbation probability p. Each
subplot corresponds to a distinct perturbation scheme, as outlined in Sections 4.1 and 4.2. White
lines represent median values, and thick black bars indicate the interquartile range. For classical
metrics, colors are mapped based on the function descriptor, independent of the distance estimator.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

rank correlation across all 10 seeds and 5 datasets, with dataset-specific results provided in Appendix
E. Additionally, the hyperparameters n and o for the JL-based metric are selected via grid search, as
detailed in Appendix D. The experiments on sample and computational efficiency (Section 4.3) are
not evaluated via sensitivity analysis; their setup is detailed in the respective section.

4.1 MEASURING FIDELITY

The primary goal of a metric is to assess fidelity, or how closely a generated Gg resembles the ground
truth Gr. To evaluate a metric’s fidelity, we apply three perturbations: edge rewiring, where edges are
rewired to a new destination node with probability p, altering the topology; time perturbation, where,
with probability p, a timestamp ti is replaced by a uniformly selected one trand ∼ Unif(ti−1, ti+1),
altering temporal relationships while preserving event order; and event permutation, where event
feature esrc,dst(ti) is replaced by that of another randomly selected event with probability p, modify-
ing the feature-topology relationship but preserving the features themselves.

Results: Figure 1 (top 3 rows) presents violin plots showing the distributions of correlations across
all datasets and random seeds, for all tested metrics. Median values summarized in Table 1. These re-
sults show that commonly used topology-based metrics are comparatively sensitive to edge rewiring,
which only alters graph topology. However, they are less sensitive to time perturbation, and show
no sensitivity to feature perturbation.

In the edge rewiring task, the quality of classical metrics vary significantly depending on the function
descriptor and distance measure. For example, using activity rate with KS distance outperforms
MMD, as KS is more sensitive to large deviations in cumulative distributions. In contrast, MMD
smooths out these localized shifts, reducing sensitivity. The NC descriptor performs comparatively
poorly across all measures, as the statistic often remains unchanged when edges are rewired.

In the time perturbation task, the JL-Metric outperforms all baseline metrics. Many traditional
metrics assume i.i.d. relationships between function descriptors, limiting their ability to capture
temporal changes unless these are indirectly reflected through topological shifts. The JL-Metric, by
contrast, is more expressive, capturing both temporal and topological changes directly.

In the event perturbation task, the JL-Metric is the only metric sensitive to the perturbation. This
is expected: Event permutation preserves topology, rendering classical metrics ineffective. Addi-
tionally, because the perturbation alters feature-topology relationships while keeping the features
themselves unchanged, feature-based baselines fail to detect differences, as they are insensitive to
feature order. In contrast, the JL-Metric captures dependencies between features and topology.

It is important to note that feature-based metrics are inherently insensitive to changes in topology,
just as topological metrics are insensitive to changes in features. However, the JL-Metric shows
robust sensitivity to both types of perturbation. Unlike traditional methods, our approach is agnostic
to specific topological details and consistently performs well across all three types of perturbations.

4.2 MEASURING DIVERSITY

We assess each metric’s ability to capture the diversity of generated data by focusing on the failure
modes outlined in Section 2.4: (1) mode dropping, where some modes in Pr are underrepresented or
absent from Pg , and (2) mode collapse, where there is insufficient diversity within individual modes.

To simulate these phenomena, we first train a Temporal Graph Network (TGN) (Rossi et al., 2020),
a widely used discriminative model for CTDGs, on each dataset Gr (see Appendix D for training
details). The trained TGN includes a memory bank that contains learned embeddings for each node.
We apply affinity propagation (Frey & Dueck, 2007) to cluster these node embeddings into k modes.

For mode dropping, we generate perturbed graph Gg(p) by removing modes with probability p
from Gr and replacing events c(ti) involving those modes with randomly selected events from the
remaining modes. Specifically, for each event c(ti) = (src, dst, ti, esrc,dst(ti)) (Equation 1), if either
the source node (src) or the destination node (dst) belongs to a mode that is being removed, the event
is replaced with a randomly selected event from nodes in modes that are not dropped.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Table 1: Summary of metric performance across experiments. Values represent median ± standard
error, with error bars omitted from first five columns in favor of distributional details in Figure 1.

Metric Perturbation Correlation (Median Spearman Score) Sample
Efficiency

(min. events)

Comp.
Efficiency

(s/100 events)
Edge Time Event Mode Mode

Rewiring Perturbation Permutation Dropping Collapse

Topological Metrics
Node Degree (KS) 0.976 0.903 — 0.794 0.963 3± 1 8.41± 0.51
Node Degree (MMD) 1.000 0.927 — 0.733 1.000 3± 0 8.56± 0.35
LCC (KS) 0.976 0.830 — 0.818 0.976 5± 1 11.99± 0.68
LCC (MMD) 0.952 0.842 — 0.806 0.770 4± 0 10.08± 0.74
NC (KS) 0.915 0.830 — 0.718 0.927 3± 1 10.25± 0.08
NC (MMD) 0.988 0.685 — 0.552 0.976 3± 1 10.77± 0.15
PLE (KS) 0.964 0.915 — 0.745 0.963 7± 1 9.68± 0.10
PLE (MMD) 0.976 0.830 — 0.685 0.976 8± 1 10.03± 0.21
Activity Rate (KS) 0.985 — — 0.903 1.000 3± 0 0.12± 0.01
Activity Rate (MMD) 0.645 — — 0.176 0.522 3± 1 0.21± 0.01

Feature Metrics
Kullback-Leibler Div. — — — 0.103 0.649 — 0.72± 0.02
Jensen-Shannon Div. — — — 0.685 0.842 — 0.69± 0.04
KS — — — 0.488 0.713 — 0.54± 0.04
MMD — — — 0.286 0.494 — 0.82± 0.05

JL-Metric (Ours) 0.976 0.944 0.988 0.915 0.988 3± 1 1.05± 0.09

For mode collapse, we construct Gg(p) by replacing a randomly selected event c(ti) with the cluster
centroid’s event with probability p. In this process, nodes of c(ti) are rewired to those of the nearest
mode centroid, and feature esrc,dst(ti) is replaced by the mean feature of all events in that mode.

Results: Figure 1 (bottom two rows) visualizes the distributions of correlations across all datasets
and random seeds, with median correlations shown in Table 1. In the mode dropping experiment,
many classical metrics show suboptimal performance, with median correlations often below 0.75.
However, certain metrics, such as activity rate (KS) and LCC, perform better, likely due to their
ability to capture long-term temporal dependencies and global topological structure, respectively.
These global perspectives are important for detecting subtle perturbations like mode dropping. The
JL-Metric consistently achieves high correlations across both experiments.

4.3 SAMPLE AND COMPUTATIONAL EFFICIENCY

To evaluate sample efficiency, we follow the approach described in Section 2.4. Specifically, we let
G′

r and G′′
r be subsets of each real-world dataset and G′

g be a subset of the Grid dataset. The sample
efficiency results are summarized in Table 1. Overall, all tested metrics demonstrate strong sample
efficiency, consistent with results seen in the static graph domain (Thompson et al., 2022). However,
topological metrics that rely on global features, such as LCC and PLE, exhibit comparatively lower
sample efficiency. This outcome is intuitive, as these global structures typically require a larger
number of events to manifest in the induced static graph.

The final property we examine is computational efficiency. The runtime of classical metrics varies
significantly based on graph topology and temporal distribution. To provide practical comparisons,
we benchmark each metric’s runtime across the entirety of each dataset, reporting results in seconds
per 100 events. Metrics are evaluated on an AMD EPYC 7713 64-Core Processor, with further de-
tails in Appendix D. Results, summarized in Table 1, show that classical snapshot-based metrics are
slower due to the need for explicit snapshot instantiation, which becomes costly as graph sizes grow.
In contrast, the activity rate and JL-Metric are much faster, as they avoid snapshot instantiation.

5 CONCLUSION

In this work, we introduced a novel approach for evaluating generative models of dynamic graphs by
applying Johnson-Lindenstrauss (JL) transformations directly to dynamic graph data. Our method
addresses key limitations of traditional metrics, providing an efficient, unified, and scalar measure
that is sensitive to changes in both graph topology and features. Through comprehensive empirical
evaluation, we demonstrated its effectiveness in capturing the essential properties of dynamic graphs.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REPRODUCIBILITY STATEMENT

We take several steps to ensure that our work is fully reproducible. The JL-metric algorithm is
clearly defined in Section 3, with additional details in Appendix B. Baseline methods are fully
described, with mathematical definitions provided in Appendix A. Experimental details, including
hyperparameter search and the software and hardware used, are discussed in Appendix D. We use
open source datasets with detailed descriptions in Appendix C. Additionally, the supplementary
material includes an anonymized version of the code used for our experiments.

REFERENCES

Abdulrahman Aldhaheri and Jeongkyu Lee. Event detection on large social media using temporal
analysis. In 2017 IEEE 7th Annual Computing and Communication Workshop and Conference
(CCWC), pp. 1–6. IEEE, 2017.

Ella Bingham and Heikki Mannila. Random projection in dimensionality reduction: applications to
image and text data. In Proceedings of the seventh ACM SIGKDD international conference on
Knowledge discovery and data mining, pp. 245–250, 2001.

Mikołaj Bińkowski, Danica J Sutherland, Michael Arbel, and Arthur Gretton. Demystifying mmd
gans. arXiv preprint arXiv:1801.01401, 2018.

Xiaohui Chen, Xu Han, Jiajing Hu, Francisco JR Ruiz, and Liping Liu. Order matters: Probabilistic
modeling of node sequence for graph generation. arXiv preprint arXiv:2106.06189, 2021.

Krzysztof M Choromanski, Mark Rowland, and Adrian Weller. The unreasonable effectiveness of
structured random orthogonal embeddings. Advances in neural information processing systems,
30, 2017.

Anirban Dutta Choudhury and Ananda S Chowdhury. Change: Cardiac health analysis using graph
eigenvalues. In 2018 40th Annual International Conference of the IEEE Engineering in Medicine
and Biology Society (EMBC), pp. 4025–4029. IEEE, 2018.

Amit Daniely, Roy Frostig, and Yoram Singer. Toward deeper understanding of neural networks:
The power of initialization and a dual view on expressivity. Advances in neural information
processing systems, 29, 2016.

Sanjoy Dasgupta and Anupam Gupta. An elementary proof of a theorem of johnson and linden-
strauss. Random Structures & Algorithms, 22(1):60–65, 2003.

Michael Defferrard, Xavier Bresson, and Pierre Vandergheynst. Convolutional neural networks on
graphs with fast localized spectral filtering. Advances in neural information processing systems,
29, 2016.

Matthias Fey and Jan Eric Lenssen. Fast graph representation learning with pytorch geometric.
arXiv preprint arXiv:1903.02428, 2019.

Brendan J Frey and Delbert Dueck. Clustering by passing messages between data points. science,
315(5814):972–976, 2007.

Bent Fuglede and Flemming Topsoe. Jensen-shannon divergence and hilbert space embedding. In
International symposium onInformation theory, 2004. ISIT 2004. Proceedings., pp. 31. IEEE,
2004.

Raja Giryes, Guillermo Sapiro, and Alex M Bronstein. Deep neural networks with random gaussian
weights: A universal classification strategy? IEEE Transactions on Signal Processing, 64(13):
3444–3457, 2016.

Arthur Gretton, Karsten Borgwardt, Malte Rasch, Bernhard Schölkopf, and Alex Smola. A kernel
method for the two-sample-problem. Advances in neural information processing systems, 19,
2006.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Shubham Gupta, Sahil Manchanda, Srikanta Bedathur, and Sayan Ranu. Tigger: Scalable generative
modelling for temporal interaction graphs. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 36, pp. 6819–6828, 2022.

Aric Hagberg, Pieter J Swart, and Daniel A Schult. Exploring network structure, dynamics, and
function using networkx. Technical report, Los Alamos National Laboratory (LANL), Los
Alamos, NM (United States), 2008.

Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter.
Gans trained by a two time-scale update rule converge to a local nash equilibrium. Advances in
neural information processing systems, 30, 2017a.

Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter.
Gans trained by a two time-scale update rule converge to a local nash equilibrium. Advances in
neural information processing systems, 30, 2017b.

William B Johnson and Joram Lindenstrauss. Extensions of lipschitz mapping into hilbert space.
Contemporary mathematics, 26(189-206):323, 1984.

Seyed Mehran Kazemi. Dynamic graph neural networks. Graph Neural Networks: Foundations,
Frontiers, and Applications, pp. 323–349, 2022.

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional net-
works. arXiv preprint arXiv:1609.02907, 2016a.

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional net-
works. arXiv preprint arXiv:1609.02907, 2016b.

Solomon Kullback. Kullback-leibler divergence, 1951.

Srijan Kumar, Xikun Zhang, and Jure Leskovec. Predicting dynamic embedding trajectory in tem-
poral interaction networks. In Proceedings of the 25th ACM SIGKDD international conference
on knowledge discovery & data mining, pp. 1269–1278, 2019.

Frank J Massey Jr. The kolmogorov-smirnov test for goodness of fit. Journal of the American
statistical Association, 46(253):68–78, 1951.

Priyanka Mathur and Vijay Kumar Chakka. Graph signal processing of eeg signals for detection of
epilepsy. In 2020 7th International Conference on Signal Processing and Integrated Networks
(SPIN), pp. 839–843. IEEE, 2020.

Christopher Morris, Martin Ritzert, Matthias Fey, William L Hamilton, Jan Eric Lenssen, Gaurav
Rattan, and Martin Grohe. Weisfeiler and leman go neural: Higher-order graph neural networks.
In Proceedings of the AAAI conference on artificial intelligence, volume 33, pp. 4602–4609, 2019.

Ido Nachum, Jan Hazla, Michael Gastpar, and Anatoly Khina. A johnson–lindenstrauss framework
for randomly initialized cnns. arXiv preprint arXiv:2111.02155, 2021.

Muhammad Ferjad Naeem, Seong Joon Oh, Youngjung Uh, Yunjey Choi, and Jaejun Yoo. Reliable
fidelity and diversity metrics for generative models. In International Conference on Machine
Learning, pp. 7176–7185. PMLR, 2020.

Vincenzo Nicosia, John Tang, Cecilia Mascolo, Mirco Musolesi, Giovanni Russo, and Vito Latora.
Graph metrics for temporal networks. Temporal networks, pp. 15–40, 2013.

Leslie O’Bray, Max Horn, Bastian Rieck, and Karsten Borgwardt. Evaluation metrics for graph
generative models: Problems, pitfalls, and practical solutions. arXiv preprint arXiv:2106.01098,
2021.

Hardik Patel, Pavlos Paraskevopoulos, and Matthias Renz. Geotegra: A system for the creation of
knowledge graph based on social network data with geographical and temporal information. In
2018 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining
(ASONAM), pp. 617–620. IEEE, 2018.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

S Patro. Normalization: A preprocessing stage. arXiv preprint arXiv:1503.06462, 2015.

Nitendra Rajput and Karamjit Singh. Temporal graph learning for financial world: Algorithms,
scalability, explainability & fairness. In Proceedings of the 28th ACM SIGKDD Conference on
Knowledge Discovery and Data Mining, pp. 4818–4819, 2022.

Emanuele Rossi, Ben Chamberlain, Fabrizio Frasca, Davide Eynard, Federico Monti, and Michael
Bronstein. Temporal graph networks for deep learning on dynamic graphs. arXiv preprint
arXiv:2006.10637, 2020.

Ryoma Sato. A survey on the expressive power of graph neural networks. arXiv preprint
arXiv:2003.04078, 2020.

Ann E Sizemore and Danielle S Bassett. Dynamic graph metrics: Tutorial, toolbox, and tale. Neu-
roImage, 180:417–427, 2018.

Lucas Theis, Aäron van den Oord, and Matthias Bethge. A note on the evaluation of generative
models. arXiv preprint arXiv:1511.01844, 2015.

Rylee Thompson, Boris Knyazev, Elahe Ghalebi, Jungtaek Kim, and Graham W Taylor. On evalua-
tion metrics for graph generative models. arXiv preprint arXiv:2201.09871, 2022.

Daixin Wang, Zhiqiang Zhang, Jun Zhou, Peng Cui, Jingli Fang, Quanhui Jia, Yanming Fang, and
Yuan Qi. Temporal-aware graph neural network for credit risk prediction. In Proceedings of the
2021 SIAM International Conference on Data Mining (SDM), pp. 702–710. SIAM, 2021.

Felix Wu, Amauri Souza, Tianyi Zhang, Christopher Fifty, Tao Yu, and Kilian Weinberger. Sim-
plifying graph convolutional networks. In International conference on machine learning, pp.
6861–6871. PMLR, 2019.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? In International Conference on Learning Representations, 2019. URL https:
//openreview.net/forum?id=ryGs6iA5Km.

Qiantong Xu, Gao Huang, Yang Yuan, Chuan Guo, Yu Sun, Felix Wu, and Kilian Weinberger.
An empirical study on evaluation metrics of generative adversarial networks. arXiv preprint
arXiv:1806.07755, 2018.

Giselle Zeno, Timothy La Fond, and Jennifer Neville. Dymond: Dynamic motif-nodes network
generative model. In Proceedings of the Web Conference 2021, pp. 718–729, 2021.

Liming Zhang, Liang Zhao, Shan Qin, Dieter Pfoser, and Chen Ling. Tg-gan: Continuous-time
temporal graph deep generative models with time-validity constraints. In Proceedings of the Web
Conference 2021, pp. 2104–2116, 2021.

Dawei Zhou, Lecheng Zheng, Jiawei Han, and Jingrui He. A data-driven graph generative model
for temporal interaction networks. In Proceedings of the 26th ACM SIGKDD International Con-
ference on Knowledge Discovery & Data Mining, pp. 401–411, 2020.

13

https://openreview.net/forum?id=ryGs6iA5Km
https://openreview.net/forum?id=ryGs6iA5Km

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A ADDITIONAL DETAILS ON CLASSICAL DGGM METRICS

Here, we overview the statistics used to compute function descriptor xi for the baseline generative
models discussed in Section 2.2 of the main text: TagGen (Zhou et al., 2020), TIGGER (Gupta
et al., 2022), Dymond (Zeno et al., 2021), and TG-GAN (Zhang et al., 2021). As discussed in Sec-
tion 2.2, TagGen and TIGGER use only snapshot-based metrics while Dymond and TG-GAN use
both snapshot-based and node behavior metrics. TagGen uses mean node degree, claw count, wedge
count, power law exponent of degree distribution (PLE), largest connected component (LCC), and
number of components (NC). TIGGER uses mean node degree, wedge count, triangle count, relative
edge distribution entropy, global clustering coefficient, mean betweenness centrality, mean closeness
centrality, PLE, LCC, and NC. Dymond uses the following snapshot-based statistics: density, aver-
age local clustering coefficient, s-metric, and LCC. Additionally, Dymond uses the following node
behavior metrics: node activity rate, node temporal degree distribution, node clustering coefficient,
node closeness centrality, node connected component size. TG-GAN uses the following snapshot-
based metrics: mean node degree, average group size, average group number, and mean coordination
number. TG-GAN additionally uses the following node behavior metrics: group size, average group
size, mean coordination number, mean group number, mean group notation. It is important to that
Dymond additionally uses a two-dimensional KS distance calculation on the first and third quartile
of the node behavior statistics, in order to attempt to align the node distributions of the generated
and ground-truth graph. Additional details are included in their work.

In our work, we choose representative baselines that are both used commonly and capture different
attributes of the graph. We select average node degree as a way of capturing local topology. In
contrast, we select LCC and NC to capture more global features of the graph. We select PLE in
order to explicitly capture edge behavior of the graphs. We select the node behavior metric node
activity rate due to ease of calculation and its demonstrated high sensitivity in prior work.

Next, we provide formal definitions for each of the baseline metrics used in our main work. These
definitions are standard in the literature but are repeated here for convenience.

Mean Degree: The mean node degree for all nodes in the graph is defined as:

µ =
1

|V |
∑
v∈V

d(v),

where d(v) is the degree of node v, and |V | is the number of nodes in the graph.

Largest Connected Component (LCC): The LCC represents the size of the largest connected
component in the graph, defined as:

max
f∈F

∥f∥,

where F is the set of all connected components in the graph, and ∥f∥ represents the size of a
connected component f .

Number of Connected Components (NC): The number of connected components is simply the
cardinality of the set F , where F is the set of all connected components in the graph:

|F |.

Power-Law Exponent (PLE): The power-law exponent quantifies the scale of the power-law dis-
tribution in the degree sequence of the graph, computed as:

1 + z

(∑
v∈V

log

(
d(v)

dmin

))−1

,

where d(v) is the degree of node v, dmin is the minimum degree, and z is the number of nodes in
the graph.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Node Activity Rate: The node activity rate is defined as the number of events involving each
node in the graph. Formally, for a given node v ∈ V , the activity rate α(v) is the total count of
occurrences where v participates as either the source or destination in an event. For all nodes, this is
computed as:

α(v) =

k∑
i=1

1(v = srci or v = dsti),

where k is the total number of events in the temporal graph, srci is the source node of event i, dsti
is the destination node of event i, and 1 is the indicator function. The activity rate for all nodes can
be represented as a 1D tensor where the i-th entry is the number of events involving node i.

B ADDITIONAL IMPLEMENTATION DETAILS FOR JL-METRIC

Here, we describe how normalization may be applied to the JL-Metric algorithm presented in Section
3 of the main work and provide more information regarding the structured random matrix (SRM)
class used in our experiments.

In practice, we can normalize the event features and time stamps of the CTDG. Thus, the event
representation c̃(ti) introduced in Section 3 and reproduced below for convenience:

c̃(ti) = (ti, esrc,dst(ti))

can be modified by normalization function ζ:

c̃ζ(ti) = (ζ(ti), ζ(esrc,dst(ti))),

Here, the normalization function is applied separately to the time stamp and each feature channel in
feature vector esrc,dst(ti). Relevant statistics for the normalization can be collected from the original
CTDG representation (Equation 1). For our experiments, we apply min-max normalization (Patro,
2015) and thus collect min and max values from the timestamp and each feature channel.

We find normalization improves performance as it aides balancing the importance of each feature
and the timestamps, decoupling the absolute value of an attribute from its performance.

As discussed in Section 3, while orthogonal random matrices may be used for W1 and W2 in our JL-
metric calculation, in practice we prefer to use a structured random matrix (SRM). We specifically
experiment with using the SR-product matrices introduced by Choromanski et al. (2017). These
matrices take the form W = HD, where H ∈ Rl×l is a normalized Hadamard matrix and D is a
diagonal matrix with Rademacher random variables on the diagonal.

The normalized Hadamard matrix Hl is defined recursively as:

H1 = (1), Hl =
1√
2

(
Hl/2 Hl/2

Hl/2 −Hl/2

)
The diagonal matrix D is populated with i.i.d. Rademacher random variables, i.e., Dii ∼
Unif({−1, 1}). Note that this definition produces a square matrix. However, rows or columns can
be removed as needed to achieve the desired dimensions. Together, the product of these matrices
W = HD forms the structured random matrix we use in place of fully random orthogonal matrices.
Choromanski et al. (2017) demonstrates that such a matrix has performance similar to or better than
orthogonal random baselines. We find empirically that for the JL-metric, choice of random matrix
has a negligible effect on metric sensitivity. Thus, as described in our main work, we recommend
the use of SRMs due their computational advantages.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

C DATASET DETAILS

The Reddit, Wikipedia, LastFM, and MOOC datasets are bipartite temporal interaction graphs pub-
licly released by Kumar et al., 2019.

In the Reddit dataset, the two node types are users and subreddits (communities within Reddit).
An interaction (edge) is formed when a user engages with a subreddit, such as by posting. The
Wikipedia dataset similarly contains users and pages as node types, with edges representing user
edits to pages. For both datasets, interactions are timestamped, and event features are derived from
text data.

The LastFM dataset captures user interactions with songs and thus has two node types: users and
songs. Unlike the others, this dataset does not include specific feature attributes for interactions.

In the MOOC dataset, nodes represent users (students) taking a “massive open online course” and
actions (interactions with course material). Edges form when a user interacts with a course, such as
by clicking on videos or interactive content.

We make two major changes to the JODIE datasets: First, we shorten all datasets to 10,000 inter-
actions using a temporal split, as calculating many classical graph metrics at the Nyquist rate is
impractical otherwise. Second, we augment the LastFM dataset, which lacks features, by assigning
a feature value of 1 to each event. This allows us to compute the JL-Metric (Section 3) without
modifying the algorithm. Table 2 contains statistics regarding these datasets after our preprocessing
described above.

Dataset # Nodes # Interactions Snapshots (Nyquist) |esrc,dst|
Reddit 4166 10,000 55,476 172
Wikipedia 1852 10,000 232,505 172
MOOC 872 10,000 105,138 4
LastFM 692 10,000 7,543,997 1
Grid 5125 10,000 10,000 2

Table 2: Statistics of Dynamic Graph Datasets

The Grid dataset, described in Section 4, is a grid-like CTDG where each node connects to its
neighbors at regular time intervals t = {t1, ..., tn}. The event features esrc, dst(ti) = h(src, dst, ti)
introduce explicit dependencies on both the temporal and topological aspects of the graph. Specif-
ically, for our experiments, we define h(src, dst, ti) to produce two features based on the temporal
and node information: h(src, dst, ti) = (src · ti, dst + ti).

D EXPERIMENTAL DETAILS

Here, we detail our hyperparameter search for the JL-Metric, training and hyperparameters for the
Temporal Graph Network (TGN) (Rossi et al., 2020) used in the diversity experiments (Section 4.2),
and provide information on the hardware and software used.

D.1 JL-METRIC HYPERPARAMETER SEARCH

As discussed in Section 3, the JL-metric has two tunable hyperparameters: node event embedding
size n and descriptor size o. In our experiments, we conduct a progressive search for reasonable
values of n and o by gradually increasing both until performance gains begin to stagnate (< 1%
change). Starting with n, o = 25, we incrementally test values up to 200 in steps of 25. For
each pair, we monitor the median Spearman score across all perturbation experiments (Sections
4.1 and 4.2). Once the performance improvements plateau—indicating diminishing returns with
higher values—we select the smallest n and o that yield near-optimal results. In our case, we select
n = 100 and o = 100. As anticipated from the Johnson-Lindenstrauss lemma (Section 3), we
expect the required n to grow with the number of nodes z, and required o to grow with the number
of graphs being compared. Future work should empirically verify these scaling relationships.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

D.2 TEMPORAL GRAPH NETWORK TRAINING DETAILS

As detailed in the main work, in order to cluster nodes into modes for the diversity experiments in
Section 4.2, we train a Temporal graph network (TGN) (Rossi et al., 2020). To do so, we train on the
supervised task of link prediction, as detailed in the original work. We additionally keep all training
details the same: We use the Adam optimizer, binary cross entropy loss, and a 70% − 15% − 15%
chronological train-validation-test split. Given that Rossi et al. (2020) experiments with the same
datasets we use (Jodie (Kumar et al., 2019)), we forgo hyperparameter search and use the reported
values from that work. These are repeated here for convenience: memory dimension = 172, node
embedding dimension = 100, time embedding dimension = 100, number of attention heads = 2,
and dropout = 0.1. We select the model with the best validation loss.

D.3 SOFTWARE AND HARDWARE TOOLS

We primarily rely on the Pytorch geometric (Fey & Lenssen, 2019) and NetworkX (Hagberg et al.,
2008) open-source Python libraries for static graph representations. Given its importance to runtime
benchmarking and overall reproducability, we provide a full list of software libraries used in our
experiments, as well as their respective versions, in the Supplementary material. We additionally
provide an anonymized version of our code in the Supplementary material. All metrics are tested on
a AMD EPYC 7713 64-Core Processor and the Red Hat Enterprise Linux 9.3 operating system.

D.4 POTENTIAL LIMITATIONS

Throughout our experiments, we identified potential limitations to our approach, which we summa-
rize here.

While our metric is designed to be domain-agnostic, providing a unified assessment of dynamic
graphs across application domains, it may not replace specialized metrics that are important for
capturing specific graph properties in certain applications. For instance, in molecular and protein
studies, metrics such as ring counts and other specialized structural features may be of particular
importance. In such cases, classical domain-specific metrics remain important for thorough analysis.
Our method is intended to complement these specialized metrics by offering a general framework
for evaluating dynamic graphs, rather than to replace them.

Our method relies on ordering nodes based on the timestamp of their first appearance to create a
consistent representation of the dynamic graph. In rare situations where multiple nodes first appear
at the exact same timestamp, this could introduce ordering ambiguity, similar to the graph isomor-
phism problem encountered in static graph analysis (Sato, 2020; Xu et al., 2019). However, CTDGs
typically have continuous timestamps with high precision, making such instances uncommon. If
nodes do share the same initial timestamp, secondary attributes such as node feature values could be
used to establish a consistent ordering. Addressing this scenario is beyond the scope of our current
work but represents an area for potential future exploration.

Our approach involves two hyperparameters related to the dimensions of the node and graph descrip-
tors used in the random projections. Similar to prior random network-based methods (Thompson
et al., 2022; Xu et al., 2018), there is no universally optimal choice for these hyperparameters. In
our work, we perform a grid search to select reasonable values for our experiments as described in
Appendix D.1. However, practitioners should be aware that the choice of descriptor dimensions can
affect metric performance and ensure consistent dimensions when comparing metric performance.
Future work could focus on developing automatic methods for hyperparameter selection.

E DATASET SPECIFIC RESULTS

The results presented in Figure 1 and Table 1 in the main work are aggregated across all tested
datasets. Here, we include results of the sensitivity analysis (measuring fidelity and diversity) for
individual datasets. Tables 3, 4, 5, 6, 7 present the results for the Grid, Reddit, Wikipedia, MOOC,
and LastFM datasets, respectively. As noted in the main work, the LastFM dataset does not contain
features and thus the Event Permutation values are left as N/A in Table 7.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Table 3: Perturbation Correlation results for the Grid dataset.

Metric Perturbation Correlation (Median Spearman Score)
Edge Rewiring Event Permutation Time Perturbation Mode Collapse Mode Dropping

Grid Dataset
Node Degree (KS) 0.988 — 0.988 0.879 0.755
Node Degree (MMD) 0.988 — 0.988 1.000 0.782
LCC (KS) 0.988 — 0.903 1.000 0.915
LCC (MMD) 0.867 — 0.927 1.000 0.952
NC (KS) 0.927 — 0.877 0.514 0.623
NC (MMD) 0.976 — 0.886 0.830 0.527
PLE (KS) 0.976 — 0.988 0.891 0.298
PLE (MMD) 0.976 — 0.976 1.000 0.879
Activity Rate (KS) 0.988 — — 1.000 0.297
Activity Rate (MMD) 0.603 — — 0.522 0.378

Feature Metrics
Kullback-Leibler Div. — — — — —
Jensen-Shannon Div. — — — 0.796 0.522
KS — — — 0.960 0.123
MMD — — — — —

JL-Metric (Ours) 1.000 0.988 0.979 1.000 0.503

Table 4: Perturbation Correlation results for the Reddit dataset.

Metric Perturbation Correlation (Median Spearman Score)
Edge Rewiring Event Permutation Time Perturbation Mode Collapse Mode Dropping

Grid Dataset
Node Degree (KS) 0.988 — 0.527 0.964 0.855
Node Degree (MMD) 1.000 — 0.491 0.976 0.806
LCC (KS) 0.988 — 0.729 0.231 0.815
LCC (MMD) 0.988 — 0.782 — 0.782
NC (KS) 0.891 — 0.370 0.985 0.988
NC (MMD) 0.988 — 0.455 0.988 0.976
PLE (KS) 0.988 — 0.539 0.963 0.745
PLE (MMD) 0.758 — 0.539 0.976 0.248
Activity Rate (KS) 0.952 — — 1.000 1.000
Activity Rate (MMD) 0.748 — — 0.498 0.097

Feature Metrics
Kullback-Leibler Div. — — — 0.915 0.782
Jensen-Shannon Div. — — — 0.927 0.903
KS — — — 0.742 0.488
MMD — — — 0.781 0.535

JL-Metric (Ours) 0.903 1.000 0.960 0.976 0.988

Table 5: Perturbation Correlation results for the Wikipedia dataset.

Metric Perturbation Correlation (Median Spearman Score)
Edge Rewiring Event Permutation Time Perturbation Mode Collapse Mode Dropping

Grid Dataset
Node Degree (KS) 0.924 — 0.830 0.902 0.648
Node Degree (MMD) 1.000 — 0.782 0.988 0.491
LCC (KS) 0.939 — 0.794 0.172 0.782
LCC (MMD) 0.794 — 0.733 — 0.733
NC (KS) 0.952 — 0.717 0.988 0.939
NC (MMD) 0.988 — 0.600 0.988 0.830
PLE (KS) 0.867 — 0.879 0.957 0.806
PLE (MMD) 1.000 — 0.806 0.988 0.661
Activity Rate (KS) 0.976 — — 1.000 0.988
Activity Rate (MMD) 0.733 — — 0.793 —

Feature Metrics
Kullback-Leibler Div. — — — 0.830 0.273
Jensen-Shannon Div. — — — 0.879 0.879
KS — — — 0.778 0.711
MMD — — — 0.637 0.661

JL-Metric (Ours) 0.867 0.988 0.944 0.952 0.952

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Table 6: Perturbation Correlation results for the MOOC dataset.

Metric Perturbation Correlation (Median Spearman Score)
Edge Rewiring Event Permutation Time Perturbation Mode Collapse Mode Dropping

Grid Dataset
Node Degree (KS) 0.939 — 0.891 0.964 0.721
Node Degree (MMD) 0.867 — 0.939 1.000 0.685
LCC (KS) 0.720 — 0.709 0.976 0.815
LCC (MMD) 0.964 — 0.745 0.770 0.600
NC (KS) 0.333 — 0.719 0.921 0.588
NC (MMD) 0.418 — 0.603 0.906 0.406
PLE (KS) 0.879 — 0.842 0.842 0.673
PLE (MMD) 0.842 — 0.782 0.915 0.648
Activity Rate (KS) 0.967 — — 1.000 0.624
Activity Rate (MMD) 0.348 — — 0.522 0.350

Feature Metrics
Kullback-Leibler Div. — — — 0.648 0.697
Jensen-Shannon Div. — — — 0.830 0.806
KS — — — 0.569 0.731
MMD — — — 0.541 0.695

JL-Metric (Ours) 0.952 0.988 0.527 0.964 0.661

Table 7: Perturbation Correlation results for the LastFM dataset.

Metric Perturbation Correlation (Median Spearman Score)
Edge Rewiring Event Permutation Time Perturbation Mode Collapse Mode Dropping

Grid Dataset
Node Degree (KS) 0.988 N/A 0.964 1.000 0.888
Node Degree (MMD) 1.000 N/A 0.939 1.000 0.818
LCC (KS) 1.000 N/A 0.976 1.000 0.952
LCC (MMD) 0.988 N/A 0.964 1.000 0.939
NC (KS) 0.952 N/A 0.891 0.915 0.612
NC (MMD) 0.939 N/A 0.891 0.939 0.491
PLE (KS) 0.988 N/A 0.927 0.988 0.842
PLE (MMD) 1.000 N/A 0.867 0.964 0.903
Activity Rate (KS) 1.000 N/A — 1.000 0.952
Activity Rate (MMD) 0.603 N/A — 0.711 —

Feature Metrics
Kullback-Leibler Div. — N/A — — —
Jensen-Shannon Div. — N/A — — —
KS — N/A — — —
MMD — N/A — — —

JL Embedding (Ours) 1.000 N/A 0.985 0.988 0.927

19

	Introduction
	Background and Related Work
	Continuous Time Dynamic Graphs
	Current Metrics for DGMMs
	Untrained Neural Networks as Feature Extractors
	Scoring Generative Metrics

	A Johnson-Lindenstrauss Approach to Validating DGGMs
	Experiments
	Measuring Fidelity
	Measuring Diversity
	Sample and Computational Efficiency

	Conclusion
	Additional Details on Classical DGGM Metrics
	Additional Implementation Details for JL-Metric
	Dataset Details
	Experimental Details
	JL-Metric Hyperparameter Search
	Temporal Graph Network Training Details
	Software and Hardware Tools
	Potential Limitations

	Dataset Specific Results

