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Abstract001

This paper investigates the code-switching002
problem between English and Thai languages003
in large language models (LLMs), especially004
those encountered the continual pre-training005
process (CPT) and those initially trained with006
multilingual data, called multilingual LLMs007
(MLLMs). We change the language in the task008
instruction, context, and output language of009
the prompt to examine the effects of the lan-010
guage variation settings on the code-switched011
language in the responses for different model012
types. Our findings show that mismatches be-013
tween context and output languages result in014
significant performance degradation in all the015
model types and they achieve similar perfor-016
mance for monolingual settings, while MLLMs017
show improvements on the cross-lingual set-018
tings. It suggests that given high cost of multi-019
lingual training from scratch, we might still020
need MLLMs for downstream tasks in lan-021
guages other than English due to their mul-022
tilingual capability which is better than CPT023
models and models trained without any multi-024
lingual interventions.025

1 Introduction026

A code-switched language has been a topic to dis-027

cussed and studied in natural language generation028

for decades. It is a situation when a sentence in029

a model’s response contains multiple languages030

(Poplack, 1980; Khanuja et al., 2020) or models031

are so confused that they fail to generate a con-032

sistent response in a particular language (Marchi-033

sio et al., 2024). This phenomenon has become034

ubiquitous since the rise of LLMs (Brown et al.,035

2020) because most of them are still predominantly036

English-centric, with limited capabilities when it037

comes to other languages (Asai et al., 2024; Bang038

et al., 2023), while a significant number of people039

across the world use languages that LLMs have040

difficulty understanding or processing.041

Figure 1: Example of language variation settings. The
languages in task instruction (pink), context (blue), and
output (gray) can be varied from English to Thai, and
the whole prompt is fed to an LLM for N times to mea-
sure multilingual performance in terms of ROUGE-1
for long-form generation task, and accuracy for short-
form generation task, as well as uncertainty, instruction-
following hallucination rate (IFHR), and word-level en-
tropy (WLE).

Several techniques have been proposed to local- 042

ize those English-centric LLMs to work better in 043

target languages including parameter-tuning align- 044

ment and parameter-frozen alignment (Qin et al., 045

2024). However, all adaptation strategies still give 046

rise to the code-switching issue as some researchers 047

investigate the code-switched language or language 048

confusion over 15 languages with monolingual 049

and cross-lingual generation and measure model’s 050

responses in word-level and line-level confusion. 051

They find that LLMs are susceptible to language 052

confusion when the number of tokens in the sam- 053

1



pling nucleus is high, while the distribution is flat054

(Marchisio et al., 2024).055

In this study, we follow a similar study of the056

language confusion by pushing further to vary the057

language in different parts of the prompt, namely058

task instruction, context, and output language, as059

visualized in Fig 1, with an extensive focus on060

Thai language as a case study to investigate the061

generalization of LLMs beyond English through062

different pre-training strategies because this lan-063

guage is considered one of the low-resource lan-064

guages with complex orthography (Pipatanakul065

et al., 2023). We also explore and compare the066

language confusion with regard to different confu-067

sion aspects, such as uncertainty (Farquhar et al.,068

2024), instruction-following hallucination (IFHR),069

and word-level entropy (WLE). Besides, we mea-070

sure the response quality through performance met-071

rics, such as accuracy and ROUGE-1 across differ-072

ent tasks, including both short-form and long-form073

generation tasks.074

2 Background and Problem Setting075

Our work relates to code-switching or language076

confusion, specifically for Thai and English, in077

different types of LLMs. We describe the relevant078

background and present our research question on079

the language confusion in LLMs.080

Multilinguality adaptation strategy There are081

two main approaches to enhance capability in the082

target languages which are parameter-tuning align-083

ment and parameter-frozen alignment (Qin et al.,084

2024). For the parameter-tuning alignment, it refers085

to fine-tuning process with target language data dur-086

ing from-scratch pre-training (Brown et al., 2020),087

continual pre-training (CPT) (Luukkonen et al.,088

2023), supervised fine-tuning (SFT) (Chung et al.,089

2022), reinforcement learning with human feed-090

back (RLHF) (Lai et al., 2023), and downstream091

fine-tuning (Lepikhin et al., 2020) with additional092

language-specific data to the original LLMs, while093

the parameter-frozen alignment requires prompt en-094

gineering without updating model parameters to ac-095

quire multilingual performance (Yang et al., 2023).096

In this study, we focus on the first approach. How-097

ever, due to the expensive resources required for the098

fine-tuning process, the practical approach for Thai099

adaptation is limited to the CPT approach, such100

as Typhoon1.5 (Pipatanakul et al., 2023), Sailor101

(Dou et al., 2024) and OpenThaiGPT1.5 (Yueny-102

ong et al., 2024).103

Language confusion We define language confu- 104

sion as a situation in which a model experiences dif- 105

ficulty processing the information from the prompt, 106

resulting in the generation of a response that in- 107

corporates unintended languages (Khanuja et al., 108

2020; Marchisio et al., 2024) or does not follow 109

the provided instruction. This occurs because the 110

prompt itself varies between Thai and English as 111

displayed in Fig 2. 112

Figure 2: Prompt examples for a summarization task.

Problem statement We frame the problem as 113

a research question: how does changing the lan- 114

guage in the prompt, which we separate into task 115

instruction, context, and output language, affect 116

the model’s performance? The study investigates 117

the phenomenon of language confusion in LLMs 118

that underwent CPT with Thai language data, com- 119

paring their results to the base models as well as to 120

MLLMs. 121

3 Language Confusion Experiments 122

We examine the language confusion in LLMs 123

through two main tasks: short-form (multiple- 124

choice) and long-form generation (long-context 125

question answering and summarization) tasks. 126

Models The scope of models studied here in- 127

cludes 8B-Llama3 (Grattafiori et al., 2024) and its 128

CPT with Thai data, 8B-Typhoon1.5 (Pipatanakul 129

et al., 2023), 7B-Qwen1.5 (Bai et al., 2023) with 130

its CPT, 7B-Sailor1 (Dou et al., 2024), and 7B- 131

Qwen2.5 (Yang et al., 2025) with its CPT, 7B- 132

OpenThaiGPT1.5 (Yuenyong et al., 2024). We also 133

include 9B-Gemma2 (Riviere et al., 2024) and 8B- 134

Llama3.1 (Grattafiori et al., 2024) for comparison 135

to MLLMs. 136
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Benchmarks We use a high-quality dataset137

curated for instruction-following fine-tuning,138

WangchanThaiInstruct (Vistec, 2024). We select139

three tasks from this dataset for multiple-choice140

task, as well as closed QA and summarization for141

long-form generation tasks.142

Additionally, we incorporate a popular bench-143

mark within Thai LLMs community, ThaiExam144

(Pipatanakul et al., 2023), and include a universal145

benchmark, MMLU (Hendrycks et al., 2021), to serve146

as a baseline dataset for benchmarking model per-147

formance in the experiments. Both tasks discussed148

are in a multiple-choice format.149

For WangchanThaiInstruct and ThaiExam,150

they are originally in Thai and are translated into151

English, while MMLU is in English initially and is152

translataed into Thai. The translations are car-153

ried out using GPT-4 (Achiam et al., 2024), and154

some are sampled to manually check and revise, if155

needed, by authors.156

Experiment settings In each question of each157

benchmark, the languages in the instruction158

and context vary. Additionally, the output159

language can vary for long-form generation160

tasks, which is labeled in the following format:161

{task_instruction}_{context}_{output} as162

shown in Fig 2. However, for short-form generation163

task, the format of each experiment will exclude164

the output part because it will be limited to one of165

the options from A to E. We generate N = 10 re-166

sponses for each experiment to reduce the influence167

of randomness of the generated responses.168

Evaluation metrics We measure language confu-169

sion from three perspectives: (i) Uncertainty (Far-170

quhar et al., 2024) – to assess the consistency of171

the N responses, (ii) Instruction-following hallu-172

cination rate (IFHR) – to evaluate how well the173

model understands the task instructions. For short-174

form generation tasks, this focuses on whether the175

response matches one of the options in the multiple-176

choice set. For long-form generation tasks, the fo-177

cus is on whether the response is in the specified178

language. The language identification in this exper-179

iment will use the FastText (Grave et al., 2018),180

a language identification model, to determine the181

language of the generated response, and (iii) Word-182

level entropy (WLE) - to determine the uncertainty183

at the word level of each response by using the184

PyThai tokenizer (Phatthiyaphaibun et al., 2024)185

to tokenize a response into words and input them to186

the same language identification model to identify187

their language. The resulting values are used to 188

compute entropy, and it should be noted that this 189

metric is only available for long-form generation 190

tasks. 191

In addition to the three language confusion met- 192

rics, we also measure performance to evaluate 193

model proficiency in each task. Accuracy is used 194

for short-form generation tasks, while ROUGE-1 195

(Lin, 2004) is used for long-form generation tasks. 196

4 Results 197

We evaluate the responses of each experiment and 198

model individually and aggregate them based on 199

their model type, which is either base, CPT, or 200

MLLM, and experiment type, which is either pure 201

English (all components in the prompt are in En- 202

glish), pure Thai (all in Thai), or mixed, as shown 203

in Fig 3. 204

Short-form generation tasks Fig 3(a) shows 205

that all performances, ranging from uncertainty, 206

IFHR, and accuracy, of each model type remain 207

similar when we vary the language in the task in- 208

struction and context of the prompt. This is because 209

the expected response is just one single character 210

between A to E, so the language variations may not 211

have much influence on the short-form generation 212

tasks. 213

However, we observe that the base and CPT mod- 214

els behave similarly in terms of uncertainty and 215

IFHR, while MLLMs provide unique pattern in 216

the language variation settings. The base and CPT 217

models provide inconsistent responses, as their un- 218

certainty is very high (see Fig 3(a)-left) and they 219

do not follow the instruction well although there is 220

a slight decrease of IFHR for the base models in 221

Pure English setting (see Fig 3(a)-mid). Unlikely 222

to MLLMs, they can better generate consistent re- 223

sposne as well as understand the instruction to gen- 224

erate valid responses due to almost-zero IFHR. 225

For the accuracy as plotted in Fig 3(a)-right, We 226

notice a greater distinction between the base and 227

CPT models due to the higher accuracy contributed 228

by the CPT models. However, their performance is 229

still lower than that of MLLMs, which achieve the 230

best performance in terms of the highest accuracy 231

across all experiment types. 232

Long-form generation tasks The impact of lan- 233

guage confusion becomes more prominent when 234

the models generate longer responses. All model 235

types provide their best performance at Pure 236
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(a) Short-form generation.

(b) Long-form generation.

Figure 3: Performance of base, CPT, and MLLM models for (a) short-form and (b) long-form generation tasks
breakdown by experiment types.

Figure 4: Word-level entropy (WLE) for long-form
generation tasks of different model types.

English, followed by Pure Thai, and their per-237

formance deteriorates when the prompt contains238

mixed languages as illustrated in Fig 3(b).239

Surprisingly, the base models show language240

confusion even in Pure English experiment, and241

they fail to generate a response in the target lan-242

guage once we introduce Thai language in the243

prompt, while the CPT and MLLMs are more likely244

to handle Thai language better. However, IFHR245

skyrockets when there are language mismatches246

between the context and output as presented in Fig247

3(b)-mid. Since the models do not often follow248

instructions, they generate inconsistent responses,249

leading to an increase in uncertainty as shown in250

Fig 3.(b)-left.251

Moreover, WLE of all model types increases sig- 252

nificantly, but the base’s WLE rises the most, while 253

MLLMs are able to maintain the best WLE as visu- 254

alized in Fig 4. However, once the prompt language 255

is mixed, the WLE of CPT is at the same level as 256

MLLMs. This pattern also persists from the perfor- 257

mance perspective in Fig 3(b)-right, where the base 258

models are good only at English language and their 259

ROUGE-1 decreases for Pure Thai and Mixed set- 260

tings. On the other hand, CPT and MLLMs can 261

maintain their ROUGE-1 as we vary the prompt 262

languages. However, MLLM achieve the best per- 263

formance according to the highest ROUGE-1 for 264

each experiment settings. 265

5 Conclusion 266

Models with continual pre-training strategy show 267

improvements for both language confusion and 268

performance metrics in a target language or cross- 269

lingual settings when compared to their base mod- 270

els. However, their performance is still inferior to 271

MLLMs because they do not fully acquire multilin- 272

gual capabilities and struggle for the mismatched 273

language settings. It is essential to incorporate mul- 274

tilingual training strategy to derive more robust 275

multilingual skills and to enhance model general- 276

ization in cross-lingual downstream tasks. 277
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Limitations278

This study focuses on the Thai language as a case279

study to explore the generalization of large lan-280

guage models (LLMs) to languages beyond En-281

glish. Due to computational constraints and the282

limited availability of multilingual performance283

benchmarks, the analysis incorporates a small sam-284

ple of model pairs with model size around 7B pa-285

rameters, which may affect the comprehensiveness286

of the comparison.287
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