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Abstract

This paper studies how to achieve variance-aware regrets for online decision-making in
the presence of heavy-tailed rewards with only finite variances. For linear stochastic ban-
dits, we address the issue of heavy-tailed rewards by modifying the adaptive Huber re-
gression and proposing AdaOFUL. AdaOFUL achieves a state-of-the-art regret bound of

(5(d( Zthl uf) 12 + d) ! as if the rewards were uniformly bounded, where v2 is the conditional
variance of the reward at round ¢, d is the feature dimension, and 7' is number of online
rounds. Building upon AdaOFUL, we propose VARA for linear MDPs, which achieves a
variance-aware regret bound of O(dvHG*K). Here, H is the length of episodes, K is the
number of episodes, and G* is a smaller instance-dependent quantity that can be bounded by
other instance-dependent quantities when additional structural conditions on the MDP are
satisfied. Overall, our modified adaptive Huber regression algorithm may serve as a useful
building block in the design of algorithms for online problems with heavy-tailed rewards.

1 Introduction

In many real-world scenarios, data exhibit heavy-tailed behaviors, which deviate significantly from classical
assumptions in statistical analyses. Examples include stock returns in financial markets (Cont, 2001; Hull,
2012), microarray data analysis (Posekany et al., 2011), and advertiser values in online advertising (Arnosti
et al., 2016). Such heavy-tailed distributions pose challenges to conventional algorithmic designs that often
hinge upon uniformly bounded or sub-Gaussian reward assumptions.

Many works studying decision-making under uncertainty focus on the multi-arm bandit problem and its
extension, the linear bandits. Regret analysis in this domain seeks to understand the suboptimality of
algorithmic choices. However, traditional analyses often limit their applicability by assuming uniformly
bounded or sub-Gaussian rewards. Some recent approaches address heavy-tailed behaviors by truncating
rewards to achieve sub-linear worst-case regret bounds (Bubeck et al., 2013; Medina & Yang, 2016; Shao et al.,
2018; Xue et al., 2021). Nevertheless, these truncation-based methods encounter estimation errors dependent
on absolute moments of observations, not their central moments, suggesting suboptimality, especially in
noiseless situations.

While linear bandits offer a general enough setting for understanding decision-making with heavy-tailed
data, reinforcement learning (RL) elevates this understanding to long-horizon decision-making processes. In
RL, agents not only make decisions but also navigate through potentially infinite state and action spaces

1O hides constant factors and logarithmic dependence on T'.
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over a given horizon (Sutton & Barto, 2018). RL demonstrates remarkable empirical successes in various
applications, including robotics (Lillicrap et al., 2015), dialogue systems (Li et al., 2016), and Go play (Silver
et al., 2016). Recent theoretical advances have expanded RL’s applicability, especially with linear function
approximation in the context of linear Markov decision processes (MDPs) (Yang & Wang, 2020; Jin et al.,
2020b;a; Wagenmaker et al., 2022b; Zanette et al., 2020; Ayoub et al., 2020; Zhou et al., 2021). More recently,
the shift from worst-case regret analysis to variance-aware regret analysis in RL offers more nuanced insights
into agent performance (Pananjady & Wainwright, 2020; Khamaru et al., 2021; Li et al., 2023; Yin & Wang,
2021; Min et al., 2021). More specifically, variance-aware regrets depend on the variances of rewards and
value functions and provide finer guarantees than worst-case bounds by characterizing problem-dependent
performances across different problem instances. Yet, the challenge posed by heavy-tailed rewards remains.

This paper explores the intersection of decision-making under heavy-tailed rewards, ranging from linear
bandits to RL applications. We use the term heavy-tailed rewards throughout the paper to refer to the rewards
that have only finite variances. We aim to achieve the variance-awareness and address the heavy-tailed issue
simultaneously. A desirable algorithm should have the following two properties. First, it should possess
the flexibility to function as a module, enhancing algorithms originally designed for bounded rewards to
accommodate heavy-tailed rewards. Second, it should attain tight variance-aware regret bounds based on
central moments, rather than absolute moments.

1.1 Our contributions

We provide a particular algorithm satisfying the mentioned characteristics. Our solution is motivated by
adaptive Huber regression (Sun et al., 2020; Sun, 2021), which was originally proposed for analyzing offline
independently and identically distributed (i.i.d.) data. It uses the (pseudo-) Huber loss to estimate the
unknown coefficient with a universal robustification parameter. We adapt this method for online bandits and
carefully choose different robustification parameters to handle non-i.i.d. data. The resulting algorithm, called
AdaOFUL, short for Adaptive Huber regression based OFUL, achieves the state-of-the-art regret bound

@] (d4 /ZtE[T] vZ + d) for linear bandits with heavy-tailed rewards, where 12 is the observed conditional

variance of the random reward at step ¢ and d is the feature dimension. Here (5() hides constant factors and
logarithmic dependence on T.Such a variance-aware regret bound has only been obtained in the literature of
linear bandits with sub-Gaussian or uniformly bounded rewards (Kirschner & Krause, 2018; Zhou & Gu,
2022). In contrast, truncation-based methods are suboptimal due to their estimation errors that depend on
absolute moments instead of central moments. For example, the truncation-based algorithms from (Shao
et al., 2018; Xue et al., 2021) yield regret in the form of O (vdv/T) where v? is the bound for the second
moment of random rewards. Our regret bound depends on the central moment instead and is thus tighter.

Using AdaOFUL as a building block, we then propose the Variance-Aware Regret via the Adatptive Huber
regression (VARA) algorithm for linear MDPs with heavy-tailed rewards. In essence, VARA integrates
AdaOFUL with the state-of-the-art worst-case algorithm LSVI-UCB++ from (He et al., 2022), enhancing
regret performance through more careful analysis and resulting in a regret bound of (7)(d\/H G*K). Here
H is the horizon length and G* is a variance-aware quantity bounded by the sum of weighted per-step
conditional variances. Our regret bound is superior to the current state-of-the-art bounds in three ways. First,
it depends on a tighter instance-dependent quantity G* without knowing the value of G* in advance and
has optimal dependence on d and H. Second, assuming additional structural conditions on the underlying
MDP, we can obtain further instance-dependent bounds of G*, including range-dependent, first-order, and
concentrability-dependent bounds. Third, our regret bound O(dvHG*K) is valid even when rewards have
only finite variances, which achieves a level of generality that is unmatched by previous works.

Our findings indicate that heavy-tailed rewards do not pose a limitation for developing online decision-making
with linear function approximations. Our proposed modified adaptive Huber regression algorithm can be
used as a general approach to adapt existing online algorithms designed for light-tailed rewards to handle
heavy-tailed ones while maintaining tight dependence on variance for regret bounds.
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Overview The rest of the paper proceeds as follows. We state our main results for heavy-tailed linear
bandits in Section 2 and for linear MDPs in Section 3. We review related work in Section 4 and conclude in
Section 5. Most proofs are collected in the appendix.

Notation We use | - | to denote the fo-norm in RY, and Bally(B) the fo-norm ball in R? with radius
B > 0. For a positive definite matrix H € R4*? |z g = V& Hz for a vector = € R%. For two semidefinite
positive matrices Hy, Hy, we denote H; > H, if Hy — H; is semidefinite positive. For an integer K € NV,
let [K]:={1,2,---,K}. For a set A, |A| denotes its cardinality. For real numbers a < b and = € R, we use
T[qp] = max{a, min{xz, b}} to denote the projection of = onto the closed interval [a, b].

2 Variance-aware Regret for Heavy-tailed Linear Bandits

In this section, we first introduce the heavy-tailed linear bandit and then present the AdaOFUL algorithm,
showing it achieves state-of-the-art variance-aware regret even when faced with heavy-tailed rewards.

2.1 Heavy-tailed Stochastic Linear Bandit

Definition 2.1 (Heavy-tailed stochastic linear bandit). Let {D;};>1 denote a fixed sequence of decision sets
and {F;};>1 a filtration. At round ¢, the agent chooses ¢; € D; and then observes the reward y; and its
conditional variance v2. We assume y; = (¢, 0%) + &; where 8* € R? is a vector unknown to the agent and
g; € R is a martingale difference random noise such that E[e;|F;—1] = 0 and E[e?|F;_1] = v/2. Both v; and
¢, are Fi_i-measurable and |¢|| < L. We assume [|6*|| < B with B known a priori. The agent aims to
minimize the regret, formally defined as

T
Reg(T) := £§£<¢,9*>—<¢t,9*> : (2.1)

In heavy-tailed stochastic linear bandits, the mean-zero random noises ; have only bounded variances. We
emphasize that in linear bandits, data are collected adaptively, and therefore, the distribution of €; depends

on ¢;. Moreover, the choice of ¢; depends on all past observations (¢, ys, Vs) ;-

2.2 Algorithm Description

This section presents the AdaOFUL algorithm for heavy-tailed linear bandits. The AdaOFUL algorithm is
given in Algorithm 1. AdaOFUL follows the principle of Optimism in the Face of Uncertainty (OFU) (Abbasi-
Yadkori et al., 2011) to solve the heavy-tailed heterogeneous linear bandit problem. At each round ¢, it
maintains a confidence set defined in equation 2.2 such that 8* € C; uniformly for all ¢ > 1 with high
probability when the exploration radius §;_; is properly chosen. Unlike the standard OFUL algorithm
(Abbasi-Yadkori et al., 2011) which directly selects the most optimistic estimator ét to make an arm selection
¢+, AdaOFUL uses adaptive Huber regression to compute a new estimator 8; that takes into account the
heavy-tailed rewards. The agent then selects the arm ¢; that maximizes the inner product (¢, 8) over
0 € C;_1. After playing the selected arm, the agent observes the reward y; and its conditional variance v;.
The last step of round t updates the exploration radius §; and the shape matrix H; for the confidence set
construction.

Adaptive pseudo-Huber regression The pseudo-Huber loss (Hastie et al., 2009; Sun, 2021) is defined as

lr(z) =7(VT2+ 22 —71), (2.5)

which is a smooth approximation to the well-known Huber loss (Huber, 1964). Similar to the Huber loss, the
pseudo-Huber loss resembles a quadratic function for small values of |z| and is approximately linear when z
is large in magnitude, making the loss strongly convex when close to the origin and less sensitive to changes
in the tails. The parameter 7 controls the balance between the quadratic and linear regions and is referred
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Algorithm 1 Adaptive Huber regression based OFUL (AdaOFUL)
Initialization: Hy = \I,0p = 0,3y = VAB,co = —2— ¢c1 = —L —  Oppin = —

6\/310g 222" " 42log 22 VT

fort=1toT do

Construct the confidence set C;_1 as in
thl = {0 € Balld(B) : HB — 0t71HH171 < ﬁtfl} . (22)
Solve (¢¢,) = argmax¢ept79€ct71<¢, 0).
Play ¢; and observe (y;, v¢).
Set o1, wy and 7 according to the following equation and record {os, ws,7s : 1 < s < t}.
1
|pell gy VLBl 1+ w?
0y = mMax { V¢, Omin, L T LY w = ﬁ , Ty = Toﬁ. (2.3)
« cidi Tela, we
Compute 6; by minimizing the following convex problem
)\ : s ER) 0
0, := argmin L.(0) with L,(8) := =|6]° + Z lr, <y<¢>> . (2.4)
0cBally(B) 2 =1 Is
Define the confidence set radius §; as in equation 2.6 and set H; = H; 1 + %‘i—{
end

to as the robustification parameter by Sun et al. (2020) in the case of the Huber loss. Since the value of
the robustification parameter needs to be adaptive to the data for an optimal tradeoff between robustness
and unbiasedness, we shall also refer to the pseudo-Huber regression with a data-adaptive 7 as adaptive
pseudo-Huber regression or simply adaptive Huber regression, in line with Sun et al. (2020).

To compute the pseudo-Huber estimator 6; for 8, given the history {(¢s, ys, Vs)}ses) up to time ¢, we solve
the the convex optimization problem in equation 2.4 (Sun, 2021). Recall that o,’s are surrogate conditional
variances, and 7;’s are the robustification parameters, given by equation 2.3, in which oy, is a small positive
constant to avoid singularity, 7y is a hyper-parameter, w;’s are importance measures, ¢y and c¢; are specified
in Algorithm 1, and L and B are constants defined in Definition 2.1.

Robustification parameter As shown in equation 2.3, the robustification parameter 7 is set differently
for each data point (¢, yi,v4) in the pseudo-Huber regression. This is a significant departure from the case
of i.i.d. data, where all robustification parameters are typically set to the same value 7, as i.i.d. data are
naturally weighted equally (Sun et al., 2020). In linear bandits, the data are generated adaptively, where
the choice of ¢; can depend on all past observations. Since observations collected in later rounds are less
important as they are based on previous observations and contribute less to the estimation accuracy, we
assign greater weight to earlier observations. To measure the importance of the ¢-th observation, we use
wy = \|¢tHH:11 /ot as the importance measure for the t-th observation and set 7, = 194/1 + w?/w; as the

corresponding robustification parameter.

When taking 79 = o0, the optimization problem in equation 2.4 reduces to weighted regularized least-squares,
which has been proven to achieve worst-case optimality for linear bandits with uniformly bounded or sub-
Gaussian rewards (Kirschner & Krause, 2018; Zhou & Gu, 2022). However, an appropriate value of 7y is
necessary to balance robustness against heavy-tailed rewards and asymptotic unbiasedness. In Corollary 2.1,
we will demonstrate that setting 7o = O(+v/d) is sufficient to achieve the state-of-the-art regret bound.
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Variance estimates We choose o; > \/LBH(,z_’)tH2 1 /(cfdzz)7 which implies ¢1d > L?B?w?/(0?). This
condition is used to lower bound the Hessian matrix V2LT(0)‘ For any 6 € Bally(B), we expect V2L (0) ~
Hp up to universal constant factors to proceed with theoretical analysis. A direct computation yields
V2L (6) < Hy, while for the other direction we show VL1 (0) > (c — Supyepry e, 0% — 0>/(Tt0't)|2) Hy

for some universal constant ¢ > 0 with high probability. With the last condition on oy, for any feasible
solution @ € Bally(B), the following quantity

(0,05 — O _ | ¢:?|0* — 0]> _ 4w?L>B> _ 4eid
< 2 2 < 2.2 \
TtO¢ Ttat TOUt 7'0

can be sufficiently small provided that 73>c - d for a sufficiently large constant ¢ > 0.

2.3 Regret Analysis

We first validate that the optimism holds with high probability in Theorem 2.1 and then establish a high

probability bound for the regret in Theorem 2.2.

Theorem 2.1. Let k = d-log (1 + TL?*/(d\o2,)). For the heavy-tailed linear bandit in Definition 2.1, if
log(272/8) = max{+/2x,2v/dLB}, then with probability at least 1 — 4, it holds that, for all 0 < ¢ < T,

16; — 0% | rz, < s,

/Bt—32< = +4/klog ; + 70 log 5)—1—5\/»3 (2.6)

Theorem 2.1 establishes that 8* is contained in the set C; := {0 € Bally(B) : |6 — 0| m, < ;) for allt >0
with high probability. It is proved by using Bernstein-type concentration inequality for self-normalized
vector-valued martingales with additional care paid to deal with heavy-tailed rewards. See the next subsection
for a proof sketch.

Theorem 2.2. Let oy, = 1/ v/T. Then with probability at least 1 — 4§, we have

where

2Lk QLBH
Reg(T) < 267 - | V2 + 1+
eg( ) /BT Z Vt \/‘ @

where (B is defined in equation 2.6, and cg,c; = (7)(1) are positive constants given in Algorithm 1.

Theorem 2.2 provides a regret bound in a general form that depends on fp. As shown in equation 2.6, 3;
is a hyperbolic function of the robustification parameter 7y. Increasing 7, decreases the bias term O (x/70)
while increasing the range term O (To log(2t2/ 6)) Therefore, choosing 7 carefully is essential to achieve the

optimal trade-off between unbiasedness and robustness. Setting 79 = (5(\/&) minimizes the right-hand side
of equation 2.6. This, combined with Theorem 2.2, yields the simplified regret bound equation 2.7 in the
following corollary.

Corollary 2.1. Let 79 = max{+v2k,2Vd}/\/log(2T2/5) and A = d/B? then Br <
64 (2\//1 log(272/6) + /d 1og(2T2/5)) + 5+/d. Consequently, the regret bound in Theorem 2.2 becomes

Reg(T) =0 |d | > v? +d max{LB,1} |, (2.7)
te[T]

where O(-) hides constant factors and logarithmic dependence on T.
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Corollary 2.1 demonstrates that AdaOFUL achieves state-of-the-art regret bound under heavy-tailed rewards,
comparable to the case where rewards are uniformly bounded or sub-Gaussian. The regret upper bound in

the noiseless case reduces to (5( d), and in the noisy case, it reduces to (Q(d4 /ZtE[T v?). In the worst case

scenario where v, = ©(1) for all t > 1, the regret bound reduces to O(dy/T), which matches the worst-case
minimax lower bound (Dani et al., 2008). Hence, our variance-aware regret bound equation 2.7 is tighter
than the pessimistic worst-case bound @(dﬁ) when ZtT=1 v2 « T. To the best of our knowledge, such a
variance-aware regret bound has only been obtained in the literature for sub-Gaussian rewards (Kirschner &
Krause, 2018) or uniformly bounded rewards (Zhou & Gu, 2022). We are the first to provide a variance-aware
regret bound for heavy-tailed stochastic linear bandits.

2.4 Proof Sketch of Theorem 2.1

Step one: Hessian approximation Let z:(0) := w and k := dlog (1 + dA L ) for simplicity.

min

Lemma 2 1. Assume there exists a constant b > 0 such that E[z2(0%)|F,_1] < b for all t > 1. If
log 222 > max{+/2kb, 2v/d}, then with probability at least 1 — 2§, for all T > 0 and any |6 < B

iHT < V?Lr(0) < Hy.

Lemma 2.1 shows that with high probability and up to constant factors, V2L (0) approximates Hr well
uniformly for all T > 1 and ||@| < B. By contrast, in standard ridge regressions, V2Lr(6) equals to Hrp
because the corresponding loss L is quadratic. The proof is deferred to Section C.2.

Step two: High probability gradient bound In the following, we provide a high-probability bound for
HVLT(O*)HH; in Lemma 2.2.

Lemma 2.2. Assume there exists a constant b > 0 such that E[22(6%)|F;_1] < b? for all t > 1. With
probability at least 1 — 24, for all T > 1, it follows that

2 27T T2
|VLT(0*)|HT1<8[ ? m—l—mlog 5 ]—i— VB

bias term variance term range term ridge term

We explain briefly about each term in Lemma 2.2. Following Zhou et al. (2021), a decomposition follows

that HVLt(G*)HH_1 ZtT:1(Xt +Y}:) for two sequences of random variables X;,Y; € F;. To illustrate the

proof idea, we explain how to bound ZtT:1 X, since ZtT:l Y; can be bounded similarly. For the adaptive
Huber regression, {X;}e[r] is not a martingale difference sequence but {X; — E[X¢|F;_1]}sepr) is. We apply
a Bernstein inequality to upper bound ZtT:1(Xt — E[X¢|F;—1]) which contributes to the variance and range
terms. Thanks to the different robustification parameters 7;, we can control 311 E[X;|F;_] deterministically

within O (/{2 /702), resulting in the bias term. Finally, the last ridge term v/ AB exists because we use ridge
regularization to ensure that the Hessian is always invertible. The detailed proof is in Appendix C.3.

Step three: Combination through stationary condition Notice that the gradient is given by

VLT — i TtZt 9 d’t
AT+ 2(0)? o

and our estimator Or is the minimizer of a constrained problem in equation 2.4. By Proposition 1.3 in (Bubeck
et al., 2015), the first-order stationary condition of the constrained convex optimization equation 2.4 implies
that (VLr(6r),0r — 0) < 0 for all § € Bally(B). More specifically, due to |0*| < B, we have

(VLy(07),07 — 0> < 0. (2.8)
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Figure 1: Regret and convergence results across three noise types: Case (a) ¢, ~ N(0,1) on the left, Case (b)
gt ~ t(df) with df ~ ¢(2,3) in the middle, and Case (c) ; ~ t(df) with df ~ 2/(1,2) on the right.

By the mean value theorem for vector-valued functions, we have
VLr(0r)—VLr(0*) = Ll V2Lr((1 = n)8* +n6r)dn - (07 — 6%).
Using Lemma 2.1 and the fact that |(1 — 7)0* + n0r)| < B for all n € [0, 1], we have
1160 — 613, < 6r — 67 VLr(67) ~ VLr(6%)). (2.9)

By equation 2.9 and equation 2.8, we have

|07 — 0%, < 4[VLr(6%)] - (2.10)

Combining equation 2.10, Lemma 2.1 and Lemma 2.2, we know that if 794 /log % = max{v/2kb, 24/d}, with

probability at least 1 — 24, we have that ||@; — 0*| g, < B; for all 1 <t < T where f; is given in equation 2.6.
It implies that 8* indeed locals in all constructed confidence regimes, i.e., for all 1 <t < T, 6* € C;. Notice
that by the choice of Sy and Hy, we still have 8* € Cy. Finally, b = 1 in our case completes the proof.

2.5 A Numerical Study

Considered methods In this subsection, we conduct a numerical comparison between AdaOFUL and two
baseline algorithms: original OFUL (Abbasi-Yadkori et al., 2011) and TOFU (Shao et al., 2018). TOFU is a
truncation-based variant of OFUL, designed to address the heavy-tail issue. Because these algorithms do not
consider the variance information, for a fair comparison, we abstain from the variance weights and set each
o+ = 1. Hyperparameters were chosen based on observations from the initial couple of steps so that 79 = Vd
and ¢y = ¢ = 1.

Experiment setup We experiment with the following configuration. We set d = 10 and |D;| = 20. The
optimal * is generated by randomly sampling each coordinate from a uniform distribution /(0,1) and
normalizing the resultant vector to unit length so that B = 1. To simulate varying action sets, we generate
20 distinct basic action sets, {Ai}ie[m], and assign D; = A; if t = ¢ mod 20. For each A;, each arm vector
¢ € A; is formed in the same way as 0* so that L = 1. Rewards are generated by y; = (¢, 0*) + &; with &,
being an independent zero-mean noise. We investigate three noise types: Case (a) is Gaussian distribution
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et ~ N(0,1), while Cases (b) and (c) correspond to Student ¢-distributions ; ~ t(df) with df, the degree
of freedom, varying. Note that if a random variable X follows a Student’s t-distribution with a degree of
freedom df, its mean is well defined for df > 1, its variance exists for df > 2, and its variance becomes infinite
for 2 = df > 1. Case (b) sets df ~ U(2,3), while Case (c) uses df ~ U(1,2). As we move from Case (a) to
Case (c), the noise becomes increasingly heavy-tailed. To ensure a fair comparison, most parameters are
shared, e.g., By = 1 and A = 1. The experiment runs for 7' = 1000 steps and is replicated 10 times, with the
outcomes averaged. The shadowed area depicts the area within one standard deviation, calculated over ten
repetitions.

Experiment results Figure 1 shows the regret and convergence results across three noise cases. It is clear
that for all considered algorithms, the regrets continue to grow and the Lo convergence errors |[0; — 60| tend
to diminish. The continuous growth in regrets is also observed in previous heavy-tailed experiments (Shao
et al., 2018). A key message is that AdaOFUL consistently achieves the lowest regret, smallest convergence
errors, and least variability. In the context of light-tailed noise (in the left column), OFUL has a slightly
smaller regret than TOFU. The result implies that the truncation technique might hurt the performance
under light-tailed noises. As we transition to heavy-tailed noise with finite variance (in the middle column),
TOFU outperforms OFUL instead in terms of regret and convergence, implying truncation works better
in this case. However, both remain suboptimal compared to AdaOFUL. In the case where the noise is
predominantly heavy-tailed with only a bounded expectation (in the right column), TOFU and OFUL’s
convergence errors and regrets deteriorate, contrasting with the steadfast performance of AdaOFUL. These
findings show AdaOFUL’s empirical robustness even in the infinite variance noise regime.

3 An Extension to Linear MDPs

Ridge regression estimators are widely used in RL to provide confidence guarantees for bounded rewards.
However, when dealing with heavy-tailed rewards, these estimators tend to degrade or even fail (as shown in
Figure 1). In response, we advocate for the use of the adaptive Huber regression, or AdaOFUL, as a robust
alternative to ridge regression. AdaOFUL can seamlessly enhance the original algorithm to accommodate
heavy-tailed scenarios with minimal disruption to its core. In this section, we demonstrate this by integrating
AdaOFUL as a foundational element to solve linear MDPs and provide variance-aware regrets. This approach
can also be extended to other linear problems such as linear mixture MDPs (Zhou & Gu, 2022).

3.1 Linear MDPs with Heavy-tailed Rewards

Preliminaries about linear MDPs An episodic finite horizon MDP is denoted by a tuple M =
(S, A, H, {rn }herr)> {Phre[ry) where S is the state space with a possibly infinite number of states, A the
action space, H € Z™" the length of each episode, P;, : S x A — A(S) the transition probability function, and
rn : S X A — R the expected reward function. A linear MDP assumes that both the transition probability
and the expected reward are linear in a known state-action feature map ¢(-, ) € R? (Bradtke & Barto, 1996;
Melo & Ribeiro, 2007; Yang & Wang, 2019; Jin et al., 2020b).

Definition 3.1 (Linear MDP). M is called a time-inhomogeneous linear MDP, if there exist some known
feature map ¢(s,a) : S x A — Ballg(1), unknown signed measures {p}; }ne(n] S R¥ISI and unknown
coefficients {6} } () S Ballg(W) such that 7,(s,a) = {¢(s,a), 0} ) and Pp,(:|s,a) = {¢(s,a), u}(-)) for any
(s,a) € S x A, he[H], where |pf(S)| := | Ycs i (s)| < Vd for all h e [H].

For a time-inhomogeneous MDP, we denote its deterministic and time-dependent policy by 7 = {m} he[H]-
Let {(8n,an)}ne[r) be state-action pairs such that ap, = 74 (sn) and spy1 ~ Pp(-|sk, an). Define the occupancy
measure for the policy 7 at the h-th round by df (s,a) = P™(s) = s, ap, = a|s1) where (a1, S2, a2, , Sp,ap) is
a trajectory starting from s; and following the policy . The state-action function Q7 (-, -) and value function
V7 (-) at the h-th round are defined as QJ (-,-) = ]E[ZzH:h ri(si,a;)|(Sn,an) = (+,-)] and V;7(-) = Q5 (-, ma(-))
respectively. The optimal policy is denoted by 7* and its value function is denoted by V;*. One can show
that V*(s) = sup, V{"(s) for any s € S. For any value function V, write [P,V](s,a) = Ey . p, (|s,a)V (s") and
[ViV](s,a) = [PLV?](s,a) — [PV ]?(s,a). With a slight abuse of notation, let [P, R1](s,a) and [V, Rp](s, a)
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denote the expectation and variance of the random reward Rj,(s,a) at the h-th round given state-action pair

(s,a).

Linear MDPs with heavy-tailed rewards We consider linear MDPs with heavy-tailed random rewards
that satisfy the following assumptions.

Assumption 3.1 (Realizable reward). We assume that the following holds.

1. For all (s,a) € S x A and h € [H], the random reward Rj(s,a) is independent of sp41(s,a), where
Sht1(s,a) ~ Pp(-|s,a) represents the next state transitioned from (s, a) at the h-th round.

2. There exists known feature maps ¢(s,a) : S x A — Bally(1) and unknown coefficients {0 Y hea <
Bally(W) so that [P, RZ](s,a) = ((s, a), ;) for all (s,a) € S x Aand h e [H].

Assumption 3.2 (Bounded variance). We assume that the following holds.

1. There exist known constants or,opz2 > 0 such that [V,R,](s,a) < 0% and [V,R}](s,a) < 0%, for
all (s,a,h) €S x Aand h e [H].

2. There exist known upper bounds H,)V > 0 such that for any policy m, we have 0 < ER,; < H and
Var(R,) < V? where R, = ZhH=1 Ry (sh,an) denotes the sum of random rewards along the trajectory
following 7.

Rationale behind the assumptions Assumption 3.1 assumes that the random reward at each round is
independent of future states and its second moment can be realized using a known feature map. Under this
assumption, linear MDPs can recover tabular MDPs by setting the size of the state-action space as d = |S||.A|
and using the canonical basis ¢(s,a) = ¢~>(s, a) = €(sq) in R?. Assumption 3.2 places upper bounds on the
means and variances of every random reward and the cumulative rewards. These upper bounds are available
under the classic uniformly bounded reward assumption that 0 < sup(, q)esx.4 SUPhe[] Ry (s,a) <1 so that
or =0r2 =1 and H =V = H. We emphasize that almost all previous works use these "1" and "H" upper
bounds implicitly in their algorithm design and regret analysis. In this way, they can’t tell the effect of the
expectation of cumulative rewards on the final regret from their variance. We are the first to distinguish them
by separate H and V. Since only upper bounds for H and V are required, in practice one can guess them
using the doubling trick.? As we will observe, very large guessing values for 7 and V will not affect the order
of the dominant (or variance-aware) term in our regret as long as 7' is sufficiently large. As far as we know,
Assumption 3.2 is the weakest moment condition on random rewards in the variance-aware RL literature.

Learning protocol Let Fj, ;. denote the o-field generated by all random variables up to, and including, the
h-th round and k-th episode. At the beginning of each episode k, the environment selects the initial state s .
The agent proposes a policy 7 = {WZ}hE[H] based on the history up to the end of episode k — 1, and then
executes T to g‘enerate a new trajectory {(Sh,ka Qh ks Th,k)}he[H} Here Qp .k = W}li(Sh,k)yrh,k ~ Rh(sh,k, ah,k.)
and spy1.k ~ P(:|Shk,ank). Here Ry (s,a) denotes the distribution of the random reward conditioned on the
state-action pair (s,a) at horizon h, with its expected value being rp,(s,a). The agent aims to minimize the
cumulative regret over K episodes, given by

K
Reg(K) := Y (Vi* = Vi™)(s1.0).
k=1

3.2 High-level Algorithm Description

In this subsection, we introduce VARA, an algorithm present in Algorithm 2, that extends AdaOFUL
to solve linear MDPs with heavy-tailed rewards. At a high level, the VARA algorithm is built on LSVI-
UCB++ (He et al., 2022), an algorithm proposed recently to achieve minimax optimality for linear MDPs.

2For example, we can guess H as 2,4,6,--. After a logarithmic number of guessing, we can find a true upper bound for
sup, ERx. One can run a similar procedure for other quantities.
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Algorithm 2 The VARA algorithm (informal)
Require : KLHH,V,W,op,0R2.
for episode k =1 to K do

for horizon h = H to 1 do
Based on all {0 i/, ¥n 1 }ir<k, estimate an optimistic @Z and a pessimistic Q-value Q’; by LSVI-
UCB++.
V() = max, @y (- a), VE() = max, QF (-, a), 7k () € argmax, @y (-, a).
end
for horizon h =1 to H do
Play ap. | = W}]f(sh,k) and observe Thk ~ Rh(Sh,k, ah,k), Sh+1,k ~ P('|Sh7k, ah,k).
Observe feature vectors ¢y, x = ¢(sp k, ap k) and th,k = (E(S;L,k, ank)-
Update the estimated variance oy, using observed data and estimated values @Z and QZ
Update the parameters wp, ., Th k, Wh,k, Th,k following the spirit of AdaOFUL.
Using {@n i }er<k and {(on 1, Wh s Tk )} <k, AdaOFUL produces 6, as the estimate for 65
Using {(zh7k/}k/<k and {(on,x, Wh,k', Thk') ' <k, AdaOFUL produces 4y, 1, as the estimate for apj.
end
end

LSVI-UCB++ (He et al., 2022) uses weighted ridge regression, where the weights depend on some proper
variance estimators oy, 1’s. The variance estimation techniques in LSVI-UCB++ are important to obtain
variance-aware regrets. These techniques include (i) separate variance estimation, (ii) monotonicity of value
functions, and (iii) rare-switching value function update.

Due to limited space, we present the detailed and formal algorithm description in Appendix A and focus on the
differences between VARA and LSVI-UCB++ (He et al., 2022) here. To obtain variance-aware regrets under
heavy-tailed rewards, we made two improvements to LSVI-UCB++. First, while LSVI-UCB++ assumes a
deterministic, uniformly bounded, and known reward function, we use AdaOFUL to estimate the parameters
0 and 1} for both the expected reward functions and their second-order moments. This complicates the
construction of the variance estimators oy, ; and requires a more detailed analysis of their impacts on the
final regrets (see Lemma D.10). Second, previous works use the Azuma-Hoeffding inequality to analyze
the concentration effect in the suboptimality gap, which leads to the regret of (’3(\/? ). Instead, we use a

variance-aware Bernstein inequality and produce a much tighter upper bound of (5(1) for the concentration
effect (see Lemma D.8). We explain the analytical novelty in detail in Appendix D.2.

3.3 Regret Analysis

This section presents the statistical, space, and computational complexities of Algorithm 3.

Theorem 3.1. Consider a linear MDP satisfying Asumption 3.1 and 3.2. For any § € (0, 1), with probability
at least 1 — 216, Algorithm 3 achieves the following regret
H?%d5H? + Hd?0 e

Omin

Reg(K) = O (d\/HKg* + HdVEKomim + + H3d°H + Hdog + Hd2> , (3.1)

where oy is a manually set arbitrary lower bound for all variance estimators oy, 1’s,
H
. 2
g* = min { Z E(S,(L)'vdmff [Vth + thh*+1](s,a), % } 5 (32)
h=1

and c?hK(s, a) = - Zszl dy*(s,a) with dp*(s,a) = P™ (s, = s,ap = a|sop = s1,1) the probability of reaching
(Sh,k»an,ix) = (8,a) at the h-th step when the agent starts from s; 5, and follows the policy 7.

Trade-off by onin  Theorem 3.1 reveals a trade-off arising from the choice of oy, The second term
in equation 3.1, stemming from the imposed lower bound on variance estimates for stability purposes, is

10
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positively dependent on o,;,. Consequently, if o, = 0, this term vanishes. The third term is negatively
dependent on o, due to its effect on Hp. Consider an extreme case. If oy = 00, Hyp is reduced to A,
implying the shape of the confidence region C; changes. This, then, would slightly decrease the confidence radii
Br and the regret. The choice of op,;, must balance these opposing effects. Corollary 3.1 implies that choosing

the optimal 0¥, = \/H"5d5H? + dog=-K % yields a regret barrier of O (Hd “A/d°H? + doge - \4/?) When
K is sufficiently large, the regret bound in equation 3.3 can be further simplified to O (d\/Hg*K). To the

best of our knowledge, Theorem 3.1 is the first to derive the variance-aware regret for linear MDPs, especially
with heavy-tailed rewards.

Corollary 3.1. Under the same setting of Theorem 3.1, if we set opin = \/H1-5d5’H2 +doge - K‘i, the
regret of VARA is bounded by

Reg(K) = O (d\/Hg*K + Hd/dH? + dope - VK + H3H + Hdor, + Hd2) . (3.3)

Instance-dependent quantity G* The quantity G* is given by equation 3.2. Firstly, it is bounded above
by V? in Assumption 3.2, which sets an upper bound on the variance of the cumulative random rewards
received when following any policy. Other upper bounds such as H,or and g2 don’t involve in G* and
thus the regret when K is sufficiently large. Secondly, even V is set to be extremely large, G* is no greater
than the sum of per-round conditional variances [V Ry, + V, V¥ ](s, a), weighted by an averaged occupancy
measure JhK(s, a) =+ Zle d;*(s,a). The function Jf(, -) introduces a probability measure on S x A for
any fixed h € [H], by the definition of d}, which records the history of the policies taken.

Our variance-aware regret has two key features. Firstly, we do not require any prior knowledge of G* to
achieve variance awareness, which is the same as (Zanette & Brunskill, 2019). Secondly, the additional
conditions imposed on the MDP structure lead to other instance-dependent regrets. In the following, we also
impose Assumption 3.3 for a fair comparison with related work. However, we would like to emphasize that
all of our results are obtained in the presence of heavy-tailed rewards.

Assumption 3.3. We assume that 0 < Rj(s,a) < 1for all he [H] and (s,a) € S x A.

3.4 Other Instance-dependent Regrets

Worst-case regret Under Assumption 3.3, V? = H? according to the law of total variance (Azar et al., 2013).
Consequently, we can infer that G* < H2, and the regret reduces to the minimax optimal O(dHvHK) (He
et al., 2022). The authors achieved this regret by directly setting oy, = 1/H, without taking into account
the trade-off introduced by opi,. Although this was sufficient for their worst-case scenario, it was not suitable
for our goal of achieving variance awareness. If we also set omin = 1/H, the second term in equation 3.1
becomes dv' K , and we cannot determine the dominant term between d\N/ HKG* and dv K. Once we balance
the trade-off of oy, the second term becomes much smaller, making O(dv HG*K) the dominant term.

Range-dependent regret Let S, , be the set of immediate successor states after one transition from state
s upon taking action a, which is also the support set of P(+|s, a). Define ®g,¢c as the maximum value function
range when restricted to the immediate successor states:

(I)succ ‘= Sup Sup[ sSup Vh*+1(s/)_ inf Vh*+1(8/)]'
he[H] (s,a) 8’€Ss.a 8'€Ss.a

Since the variance is upper bounded by one-fourth of the square range of a random variable, we have
SUPpe[H] SUP(s,0) [VR Vi 11(s,a) < 1®2 . and thus G* < H(o% + ®2,.). Therefore, our regret reduces to

succ

succ
tabular MDPs with bounded rewards (Bartlett & Tewari, 2009; Fruit et al., 2018; Zanette & Brunskill, 2019),
but to the best of our knowledge, we obtain the first such result for linear MDPs with heavy-tailed rewards.

O (dH (0% + P2, K ) It is worth noting that similar range-dependent regrets have been derived for

First-order regret The first-order regret that scales proportionally to Vi*, where V}* := V{*(s1) is the
value of the optimal value policy at the initial state s1, has been studied for tabular MDPs (Jin et al.,

11
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2020a) and linear MDPs (Wagenmaker et al., 2022a).3 However, under Assumption 3.3, the corresponding
instance-dependent quantity H2V;* can be much larger than G*. This is because

@ X y (©)
G*< H E(s,a)~c7hK [rn + PpViE o ](s,a) < H Z E(s,a)NJhKVh*(Sva) < HZV{",
h=1

h=1

—~

where (a) uses 0 < R < 1and 0 < V¥, < H — 1 under Assumption 3.3, (b) uses the optimality condition
ViE(s) = [rn + PRV} 11(s, a) for any (s,a) € S x A, and (c) uses V¥, ,(s) < V}*(s) for any h e [H] and s € S
and >, s chL(sl, a) = 1 since each episode starts at a fixed state s;. Moreover, even replacing G* with the
coarse upper bound H2V}¥, our regret bound becomes @(«/dQH 3V*K), which has a better dependence on d
than O(/d*H3V*K) in (Wagenmaker et al., 2022a).

Concentrability-dependent regret Let R+ denote the sum of random rewards collected in a trajectory
following the optimal policy 7*. It is straightforward to see that Var(R,x) = Zthl ]E(S ) ~dr* [ViRp +
) h

ViV 11(s,a). Since G* < sup,, S E(s,a)~ar [VuBRr + Vi Vi 11(s, ), we can show that G* < Ct-Var(Ryx+)
where C1 is a data coverage measure defined as

ot = sup St Egs,y~az [VaRi + ViVi¥, 1(s, a)

= 7 .

T Zh:l E(s,a)~d;1'* [Vth + Vth*+1](s, a)

Therefore, our regret reduces to (5(d\/C”r Var(R,+)HK) given CT < o0. The CT is a counterpart of the
generalized concentrability coefficient which quantifies the effect of the distribution shift in offline RL (Chen
& Jiang, 2019; Xie et al., 2021; Cheng et al., 2022).

3.5 Space and Computational Complexities

Theorem 3.2 (Space and computational complexity). Assume the Nesterov accelerated method is used as a
solver to solve the adaptive Huber regression. Solving a H-horizon finite MDP in K episodes, VARA takes
O(d®H? + d|A|HK) space and has a running time of O(d*|A|H?>K + HK (d + H3/*d—32K3/%)).

On one hand, VARA achieves the same space complexity as LSVI-UCB++ but is slightly worse than the
original LSVI-UCB (Jin et al., 2020b) that needs O(d>H + d|A|HK) space. This is because the technique
of monotone value function update requires remembering at most (5(dH ) latest value functions, incurring
a slightly worse dependence on d and H. On the other hand, the computational complexity of VARA
O(d*A|H?K + HK (d + H=3/*d=3/2K?3/%)) is slightly worse than LSVI-UCB+4+’s O(d*|A|H?K) in terms of
the dependence on K. This is because the adaptive Huber regression estimator does not have a closed-form
solution. Even though the Nesterov accelerated method is used, a slightly larger computational complexity is
still incurred due to the possibly large conditional number. However, VARA’s computational complexity is
better than LSVI-UCB’s O(d?|.A|H K?) thanks to the rare-switching mechanism in LSVI-UCB++.

4 Related Work

Heavy-tailed rewards in online decision making The standard heavy-tailed setting assumes rewards
with (1 + £)-moments where € > 0. There exists a large body of work considering this setting in multi-arm
bandits, including deterministic (Vakili et al., 2013) and non-deterministic settings (Bubeck et al., 2013;
Carpentier & Valko, 2014; Lattimore, 2017; Bhatt et al., 2022). To handle heavy-tailed rewards, robust
mean estimation methods such as median of means and truncation have been applied to linear bandits
(Medina & Yang, 2016; Shao et al., 2018; Lu et al., 2019; Xue et al., 2021). Given that our objective is to
provide variance-aware regrets for general linear bandits, the minimal requirement is to have bounded second
moments, which is the primary focus of this study. Under the assumption of rewards with bounded second

3They assume all episodes start from the same initial state so that s1,, = s1. However, our regret can be easily extended to
the setting where initial states are different. In this case one should replace Vl*K with Zle Vl* (s1,r) in the regret bound.
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moments, the minimax optimal regret is (5(d\/T ). Recently, Kang & Kim (2023) introduced the use of Huber
regression to address heavy-tailed linear contextual bandits where the action set is fixed (such that D, = D)
and the arm ¢; is independently and identically distributed, sampled from a fixed distribution over D. In
contrast, our proposed AdaOFUL is simpler and more versatile, capable of being applied to more complex
scenarios where the arm ¢; is selected adaptively based on historical observations.

On the other hand, there are a few RL algorithms designed to handle heavy-tailed rewards for MDPs. One
is (Zhuang & Sui, 2021), which modifies UCRL2 and Q-Learning by using truncated rewards and achieves
minimax optimal regret in tabular MDPs. However, none of these methods for linear bandits or MDPs
provide variance-aware regrets, even if variance information is available. Moreover, simple truncation methods
are not optimal in the noiseless setting. Recently, Huang et al. (2023) extends the Huber regression to the
more general (1 + ¢)-moment setting and provides instance-dependent regret bounds for both linear bandits
and linear MDPs.

Variance-aware regrets for linear bandits A weighted ridge regression-based algorithm proposed by
Kirschner & Krause (2018) achieves the same regret in equation 2.7 by assuming each ¢; is vi-sub-Gaussian.
More recently, Zhou & Gu (2022) obtained the same regret assuming each e; is uniformly bounded and has
finite conditional variance v2. In the case where the information of conditional variances {v;};>0 is unknown,
Zhang et al. (2021) and Kim et al. (2021) achieved regret bounds that involve sub-optimal dependence on d.
The currently tightest variance-aware regret is achieved by Zhao et al. (2023) with an optimal dependence
on d. Recently, Dai et al. (2022) explored variance-aware regrets in the context of high-dimensional and
sparse linear bandits, a topic that extends beyond the scope of our paper. All of the above works consider
light-tailed noises, which are either sub-Gaussian or uniformly bounded.

Robust approach to instance-dependent bounds Recent research explores the robust mean estimation
approach to obtain instance-dependent regrets, leveraging the observation that robust estimators can achieve
estimation errors that only depend on the noise scale. Such estimators often have better theoretical guarantees
than non-robust ones, whose estimation errors additionally depend on the range of the problem noise. For
instance, Pananjady & Wainwright (2020) use the median-of-means technique (Lecué & Lerasle, 2020) to
achieve local minimax optimality that depends on the standard deviations of the optimal value function and
random rewards for synchronous tabular MDPs. In linear bandits, Wagenmaker et al. (2022a) use Catoni’s
estimator (Catoni, 2012) to estimate the mean of v Hy. "¢y, /0? for a fixed unit-norm vector v. In contrast,
we modify the adaptive Huber regression to estimate 6* directly. This difference makes their bounds depend
on the second moments of y;’s, while ours only relies on their variances. Moreover, all of these works, except
ours, still assume light-tailed rewards.

Variance-aware regrets for tabular and linear MDPs In the context of online episodic MDPs,
Zanette & Brunskill (2019) first derived a variance-aware regret bound in the tabular setting with uniformly
bounded rewards. Their model-based algorithm, Euler, achieves a regret that can be bounded by either
O(WQ3AHK) or O(VG2SAK), where Q* = max (s o ) (Vi Ry + Vi, V}5, 1) (s, a) is the maximum per-round
conditional variance and G is a deterministic upper bound on the maximum attainable reward on a single
trajectory for any policy 7, such that Zthl Ry (sp,m(sp)) < G. One can show that our instance-dependent
quantity G* is smaller than min{ HQ*, G?} therein. Later, Jin et al. (2020a) adopted a modified analysis
of Euler to obtain the regret bound O(y/SAH3VFK) with V;* = Vi*(s1).* In linear MDPs, there are
several recent works on obtaining regret bounds for model-free algorithms. For example, Wagenmaker et al.
(2022a) proposed an optimistic algorithm with a regret bound that scales as O(,/d3H3V*K). However,
this algorithm is computationally inefficient. A computationally efficient alternative suffers from a slightly
worse regret O(,/d*H3V*K). All of these works utilize the instance-dependent quantity H2V;* (assuming
H = H). However, as we argued, our proposed quantity G* is smaller than H2V}*, which implies that
our algorithm may achieve better performance than these previous works. Another research direction

4Unlike our setting, they assume all initial states are the same, denoted as si. Furthermore, the original regret
(5( SAH - Vi*K) by Jin et al. (2020a) was derived for an MDP where the reward function equals to one deterministi-

cally only at a single (h, s) pair. In this way, they have 0 < Vf’< < 1. To convert it in the considered setting where 0 < Vl”< < H,
an additional factor of H should be multiplied to their regret.
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explores variance-adaptive algorithms for linear mixture MDPs, as initially explored by (Zhou et al., 2021).
Subsequent developments in this area were made by (Zhang et al., 2021; Zhou & Gu, 2022), culminating in
the state-of-the-art advancements by (Zhao et al., 2023). While our study does not consider this particular
setting, it is straightforward to extend our techniques and analysis to it, as linear mixture MDPs are generally
considered simpler than linear MDPs.

Other instance-dependent bounds In the infinite-horizon setting, Pananjady & Wainwright (2020);
Khamaru et al. (2021); Li et al. (2023) provided variance-aware sample complexities for Q-Learning and
its variants in tabular MDPs, given a generative model that produces independent samples for all state-
action pairs in every round. Variance-aware performance guarantees have also been established for offline
RL optimization (Yin & Wang, 2021; Nguyen-Tang et al., 2023), off-policy evaluation (Min et al., 2021),
stochastic approximation (Mou et al., 2020; 2022). Another approach to instance-dependence bounds focuses
on the minimum suboptimality gap, which is the minimum gap between the best and second-best actions
over all states (He et al., 2021; Wagenmaker et al., 2022¢; Wagenmaker & Jamieson, 2022; Dong & Ma, 2022).
However, due to the differences in the settings, we cannot make a meaningful comparison between these
bounds and ours.

5 Conclusion

This paper introduces two new algorithms, AdaOFUL for linear bandits and VARA for linear MDPs, both
of which use modifications of the original adaptive Huber regression and are designed to handle online
sequential decision-making. With only the assumption of bounded reward variances, our algorithms achieve
either state-of-the-art or finer variance-aware regrets. Additionally, in linear MDPs, the instance-dependent
quantity G* can be bounded by other instance-dependent quantities when additional structure assumptions
are available. Our modified adaptive Huber regression can be a useful building block for algorithm design in
online problems with heavy-tailed rewards.
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Appendix

Overview

We describe VARA detailedly in Appendix A and explain the rationale behind its variance estimator in
Appendix B. Appendix C contains proofs for Theorem 2.2 and related lemmas specifically for linear bandits.
The theoretical analysis for VARA is presented in Appendix D, where we offer a proof sketch for Theorem 3.1,
while all related technical lemmas are deferred to Appendices F and G. We also highlight the differences
between our analysis and previous work. In Appendix E, we provide a proof for Theorem 3.2 that analyzes
the space and computational complexity of VARA.
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A Detailed Algorithm Description for VARA

For each episode k, we perform optimistic value iterations (Lines 3-11), compute the greedy policy 7§ with

—k
respective to the pessimistic value function @, (Line 12), and then execute it to collect a new trajectory
of data (Lines 16-17). The rest of Algorithm 3 updates maintained estimators, including the conditional
variances ai & (Line 19), the transition parameters py,  (Line 20), the reward parameters 6}, j, ¥y 5 (Lines

21-22), and the Hessian matrices Hy, i, H h.i (Line 23). In what follows, we discuss in detail the key steps of
Algorithm 3 in more detail.

Reward estimation Since rewards are collected adaptively and have only finite second moments, we use
the same strategy adopted in AdaOFUL to estimate 6}:

0, ;= argmin { 2Rk)( 0) = H0H2 + Z lry (M‘W)} (A1)

6eBally (W) Oh,j

Following the spirit of Theorem 2.1, we set 19 = (5(\/3) with its detailed expression provided in equation D.5
of the online supplement.

Transition estimation Let d(s) € RISl be a one-hot vector that is zero everywhere except for the entry
corresponding to the state s, which is one. We define e, = Py (|sh ks i) — 0(Sht+1.k). As Elen k| Fri] =0,
d(sh+1,x) is an unbiased estimator of Py (+|sp x, ank) = ) @(shk,an k) = 1) dn k. Thus, we can learn py, by
regressing 0(Sp4+1.6) o0 @k = G(Shk, Cnk):

2
P Prk — O(shi1,
iy 1= argmin {Li,jw il e Slms)| } (A2)
pERAX|S| Oh,j
where || - | denotes the Frobenius norm. This problem admits a closed-form solution given by

Hhi = H;,lc Z?Zl 0;7§¢h7j6(5;1+17j)T. We emphasize that VARA doesn’t need to compute pp,; ex-
actly out. VARA relies on only the matrix product of pj; and a vectoerzied value function V' that
is pp iV = Hh_i Z§:1 Ua?¢h7jV(8h+1,k) for any value function V(). As Theorem 3.2 shows, both the
computation and space complexity do not depend on the finite value of |S|.

Variance estimation for rewards In linear MDPs, estimating the variance of the reward Ry (s, a) is
straightforward. Since PR3 (s,a) = (p(s,a), ¥} ), we estimate 9} by

2 _yx
Wy = argmin {L“”( ) = ||¢\|2+2em,j (M)} (A.3)

PeBally (W) Oh,j

where 7, = To4/1 + Wi , /Wp,k is the corresponding robustification parameter and @p = ||@p )l g-1 s
, ’ hok—1

the importance weight. We then estimate [V, Rp](sph,an) by
~ ~ 2
(Vi Rul(shks ange) = {Phj» Yho—1) — [{Pnis Onk—1)10,47] - (A4)

Variance estimation Inspired by Hu et al. (2022), we set the variance estimator oy, to be

w
kY4 Cld

where oy is a small positive constant to avoid singularity, by, = max{||¢n il z-1 H%h,k‘Hﬁ—l } is the
h,k—1 h,k—1

Onk = max{ 02ins @PH - En g, Jnge, 5 bp g ( + ’Hd2-5H) bh,k} (A.5)

bonus term, Ej, , and Jj,  are defined as

~ o~ —k
Ink = [VarBRy + Vi e Vi1 (Shoks ang) + Bug + Uni, (A.6)
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Algorithm 3 The VARA algorithm (formal)
Require : K,H,H,V,W,0R,0Rz2,T0, T0-

Initialization: H, o = H,o = M, ¢o = L = L A\ =
h,0 h,0 » €0 6\/310g 2H6K2 » C1 42-1og 2H6K2 )

klast = 1.

1
H2+W2)

for episode k =1 to K do

V};H(-) =V .1()=0 for round h=H to 1 do
if there exists a stage W' € [H] such that det(Hp p—1) = 2det(Hp ,,,,—1) then
Compute the products uh,k,lv’,jﬂ and uhyk,lzﬁﬂ with pep, i given in equation A.2.
~ —k
Qi) = <P() Onemr + B Vi) + BldC Mgt -
QR () = (@) Onpr + k1 Vi) = BloC ) g -
—k . (A —k—1 ~ _
Q) =min {QF (), Qn (), 1}, Qo) = max {Gh (), Q57 (,-), 0}
Record the last updating episode ki.sy = k.
else
—k —k—1 k k—
‘ Qh('v') :Qh (.’.)’Qh("') :Qh 1('7')'
end
—k —k k k
Vi (1) = maxq Q4 (-, a), Vi (1) = max, @) (- a).
—k
WZ() € argmax, Q, (-, a).
end
Receive the initial state sy j.
for round h =1 to H do
Play apn i = 7F(sp.1) and observe rp, x ~ Ry(Shky @k )s She1k ~ PC|Shk, ank)-
Observe feature vectors ¢p k = ¢(snk, an k) and ¢nk = G(Shk, ank)-
h = _ brrl= )
Set the bonus as by, = max{|¢nk \thlk_l, lén.kl Hhi_l}
Set the estimated variance oy, ;; as in equation A.5.
Compute 0y, , via equation A.1 with 77, ) = 794 /1 + w% o/ Wh i and wy = a;}v lnkllgg—1 -
’ ’ k—1
Compute 1y, , via equation A.3 with 7p, = To4 /1 + ﬁiik/@h,k and Wy, = O’;}C H(Zh’kHﬁfl
h,k—1
Update Hy, 1, = Hp, 1 + U;:,%(ﬁh,kﬁb;—l;k and Hp ,, = Hp -1 + U;Zi(lsh,k(ﬁ;’k-
end
end
) ~ g
Bnge = min {H%, 2000 - |bn il pry |+ M [Bra(Visn = VED) | (e ana) } (A7)

in which 8y = O (ar:liln’H\/d?’H) is an initial exploration radius, ]?"h’k(-|s,a) = u;k_1¢>(s,a) is the empir-

ical transition kernel at the h-th round and k-the episode, @h() the empirical variance operator defined
in equation A.4, and Ry i, U, are defined as

Ry i = Bre Hq;h,k

. ~ =k
Un = min { V2, 1180 - |bnel g+ 4H - Bap(Viey = VE ) (snksan) (A.9)

e, T 2RI Gkl s (A.8)

1

with g = (5(\/3),61%2 =0 (\/E—I— Ve ) being two initial exploration radiuses. In Appendix B, we

Omin

explain in detail why o}, 1’s are taken in the above way.

B Variance Estimation for Value Functions

To achieve worst-case optimality, He et al. (2022) proposes two important techniques we adopt in Algorithm 3.
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The first is the monotonicity of value functions. Specifically, we aim to enforce a decrease in k for the actual
optimistic value function @:( -,-) and an increase in k for the actual pessimistic value function Qi(-, -). This
concept is explained in detail below. In linear MDPs, we have [P,V,11](s,a) = (¢(s,a), p} Vy11) for any
value function V' = {Vj, }perp) and [P, Rp](s,a) = (¢(s,a), 0f) for all h e [H]. One crucial aspect of typical
analysis (including ours) is demonstrating the high probability of the following event outlined in Appendix D.1.
Specifically, for all h € [H] and k € [ K], we need to establish that the following equations hold simultaneously
with high probability:

O
(
(

Conditional on the event that all inequalities in equation B.1 hold, we can easily verify that
(). On k1) — [BuRal(- )] < Brlb( gt -
() it Viesn) — [PViea 16| < B[ ) s

~

160n.1. — 04| mr,, . < Br

Il

e
SIS

E

~—

g

—k
(k-1 = )V il Hy oy < B
5

\%4
k
| (b1 = ) Vi |y < By

Il
Qe

1

—k
for both Vj,41 € {VF +1> V1) Therefore, we define the temporary optimistic value function by

QE () = (D). Bt + o1 Vs 1) + Bl (- et

1

and the temporary pessimistic value function by

~

Qﬁ(? ) = <¢(7 ')a eh,k—l + Hh,k—lv:+1> - ﬂ“¢(, )”H;lk—l

~ —k
where 3 := g + By = O(v/d). The actual optimistic value function Q}(-,-) is the minimum function of
history temporary optimistic value functions Q’g(, -), and the actual pessimistic value function QZ(, -) is the

maximum function of history temporary pessimistic value functions éﬁ(, -) (Line 7 in Algorithm 3). In this
—k
way, @, (-, ) is always non-increasing in k and Qi(, -) is always non-decreasing in k.

The second is the rare-switching value function update, which updates the value function only when the
determinant of the covariance matrix significantly exceeds the previous value (Line 6 in Algorithm 3). This

approach allows the complexity, as measured by the metric entropy, of the function class to which V:()
or Kﬁ() belongs to be independent of K. Notably, the metric entropy is linearly dependent on O(dH).
Moreover, on the event equation B.1, we can establish optimism and pessimism in Lemma D.4, i.e., for all
ke [K] and h e [H],
—k
Vi () S VELO) < Vi (0. (B.2)

Directly estimating the variance of the optimistic value function V7, ;(-) will encounter the dependence issue,

which is discussed in (Jin et al., 2020b) and will introduce an additional v/d factor in the regret due to the
covering-based decoupling argument. To eliminate this factor, after noting the inequality

VAV (o) < 2VAViE Gy ) + 20Va (T — Vil DIG, ),

Hu et al. (2022) decompose the optimistic value function V: +1(+) into the optimal value function V}*_,(-) and

Y/ * *

the sub-optimality gap [V:H — V¥ 1](-) and estimate their variances [V, V¥ {](-, ) and [Vh(VfLH =VE DG )

separately. The key insight is that: (i) as V)’ ; is deterministic, there is no additional V/d dependence in

1(-,-), and (ii) as Vﬁﬂ gradually converges to V;*, ,,

*
141

used, the incurred +/d factor in the estimation of [V, (V). — Vi
We now describe the way we estimate these two variances.

estimating [V, V; though a uniform argument is still

)] has ignorable effects on the final regret.
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o For [V, V¥ ](-, ), since V}*, | is unknown, a natural choice is to estimate it by the optimistic value function

—k . .
Vi41- Hence, we estimate [V, V" |(snk, ank) via

~ o —k Ak Ak 2
Vi Vi1l (Shms ank) == [Pre (Vi 1)? 15k an)jo,22) — [[Ph,kvh+1](3h,kvah,k)[O,’Hz]] : (B.3)

To measure estimation accuracy, we introduce an error term Uy, ;, to guarantee that with high probability,

‘[@h7k72+1](5;L7k,a;L7k) — ViV 1 1(shk, an k)| < Up,x holds uniformly over all h, k where

: ~ ok
Un,k = min {VQ, UHBo - [ @nnler s +4H - Fup(Vig — Vi) (Shotes ah,k)} (A.9)

and [y = O ( H_\/d3BH ) is an exploration radius.

Omin

—k
o For [V (Vi1 =V 1)]1(,+), to meet the measurability condition of a concentration inequality (Lemma G.3),
we require

U}%,k >d°H - sup [Vh(vﬁwl = Vi DSk, ank)- (B.4)
k<j<K
Note that o,k is Fp, p-measurable while V:H() is Fy x—1-measurable. The condition equation B.4

essentially requires a J}, y-measurable upper bound for [Vh(Vim = ViE OI(8hks ank) even if j > k.
Fortunately, we have for any k < j < K,

[Va(Viir = Vire )1 noms ani) < [Pa(Vigy — Vi) (st ank)
(a) —

< HIPL (Vi — Vi) (S ank)

(O] _— .

< HIPL (Vi — Vi )1 (Shks ank)

(c) —k
< HPL(Vigr — Vi )] (Shes ang) (B.5)

where (a) uses |V, — Vit 11() < H and the optimism of Vii1(), (b) follows from the pessimism
in equation B.2, and (c) uses the monotonicity of value functions. The RHS of equation B.5 is Fj, k-
measurable but intractable due to the population expectation P, (-). By replacing Py (-) with the tractable
]@h’k(-), we introduce E}, i, to overestimate the RHS of equation B.5 where

Ep 1, = min {’HQ, 2HSBo - ||Pn k|

~ Kk
it A [PV = V)| Gnsani) | (A7)

Hence, equation B.4 is guaranteed by o} , = d*H - E}, .. The extra d*H factor is introduced to offset the
error caused by the covering number argument.

C Proof for Section 2.3

C.1 Proof of Theorem 2.2

Now, we turn to the regret equation 2.1. Recall that at iteration ¢, we set

(¢r,*) = argmax (¢,0).

¢$eD;,0eCt_y

Due to supge( ) _ p, [{¢,0%)] < R := LB, it follows that
T
Reg(T) := Y, | sup (¢, 0%) — (¢, 6%)
t=1 | P€D:
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A

l sup <¢7 0> - <¢tv 0*>]

@»€D;,0€Ct—1

Mﬂ M=

l sup <¢t’ 0> <¢t7 9*>]

0eCi—1

-+
Il
_

||Mﬂ

Hd)tHH [(00) " SUP 10— 6%|m,_,

0eCy—1
Notice that with probability 1 — §, 8% € C; for all t > 1, i.e., |6; — 0% |, < ;. Hence,
sup [0 — 6% g, < sup [0 — 6|, + 60 — 6% m, <28
0eCy 0eCy
Notice that §; is increasing in ¢ and w; = % _, - Therefore,
—1
T T T
Reg(T) < 2B Z’i |l g1 = 267 Zl oywy = 2Br 21 oy min{1, we}. (C.1)
= t= =

The last equality uses wy; < 1 (which is due to oy > ||| -1 /co and ¢y < 1). Notice that |¢;]/oy <
t—1

|+ /0min < L/0min. Then by Lemma G.5,

T
2 min {1,
t=1

2

Recall that
ol VLB,

Co d4

= Inax 4§ V¢, Omin,

According to what value oy takes, we decompose [T'] into three sets [T']

J1={te|T]: o€ {v,omin}}

”¢tHH;11
Jo=<te[T]:0p = ——},
Co

1
H¢t HI2'I;711

Js=1te[l]:0=VLB—F—
cid=

First, it follows that

r ) TL?
= in41 < 2d1 1+ —— ] =2k. 2
- t; min {1, w} } og < + D2 ) K (C.2)

min

< J)_, Ji where

Z oymin {1, w;} < Z max{Vs, Omin } min {1, w;}

teJ1 teJ1

< Z max{Vs, Omin } min {1, w}

te[T]

Z (VtQ +to mm Z Hlln{l wt}
te[T]

te[T]

2 vi+ 1.
te[T]
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Here (a) holds due to Cauchy-Schwarz inequality and (b) uses equation C.2 and opin = ﬁ

Second, for any t € Jo, we have w; = %‘ , = co < 1. Therefore,
“IH,
. SUP¢e 7, Ot
Z oymin {1, w;} = Z oWy = — Z tht < % Z wf
te2 teT2 0 e, ez
suP;err) [@e] g
< 2 — . Z min{1,w?}
0 teJ2
supsery [Pl g 2Lk
< =L Z min{1,w?} < (C4)
< 2 t5 X
0 te[T] VA

where the last inequality uses ||| H, S f”ﬁth L for all ¢ > 1 and equation C.2.

Finally, for any t € J3, we have L?B?*w? = c1do? due to w? = It implies 0y = LBw;/+/c1d =

ot -1
Hti1

LBmin{l,w;}/y/c1d with the fact that w, < 1. Therefore,

LB 2LB,‘$
2 oymin {1, w;} = — - Z min {1, w;} < . 2 min {1, w;} < . (C.5)
tes ved o2 v Cld te[T]
Plugging equation C.3, equation C.4 and equation C.5 into equation C.1, we have
2Lk 2LB/$
Reg(T) <2 V25 +1+
< | 910  2 20
C.2 Proof of Lemma 2.1
Recall that z,(0) = <¢’t79> Direct computation yields that
3 T
V2Lr(8) = M + 2 i ¢’t¢2’t :
P + 2¢(0) Tt
Clearly, for any 8 € R,
V2Lr(0) < AT + Z ¢’t¢t — Hry.
o
For the other direction, we decompose it into four terms and analyze them respectively.
T 3 T
V2Lr(0) =Hr— > |1- T Ll
7(0) T tzl < Tt2+zt2(0*) o't2
H
N (C.6)
T 3 T
Tt Tt onon
+ Z 2. .2 - 2 L2(Q% 2
=1 i +2£(0) i + 2(0%) T
H:.T

where E;[-] = E[-|F;—1] for simplicity.

Since vy, 0,1 € Fy_1, from Algorithm 1, we have oy, wy, 74 € Fy_1.
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Analysis of H; v Notice that for any unit norm v € R?, it follows that

3 2
1 Tt N >
| —— —.,v
77 + 22(0%) o

2
1 Tt N >
_——_— 771;
2+ 27(0%) | \ ot

T 2
Tt o8 >
l— —————= | -sup ( —,v

Tt2+zt2(0*)i te[T] \ Ot

~+

e
=
)ﬂ
[
I
agl

)
w
Nl

#
Il
—

A
w
1=

t=1 |
T T - T 2
<3 [ S— sup ||— v Hpv
t; i T2 + 22(0%) | telm H'
(@ &
<3 Z 1-— % - sup ¢t v Hrv
=1 ¢+ 2((0%) | te(r) | ot [ E
®) . - T, w?
=3 1l——— |- sup — -v' Hyw,
t; 7 +Z?(9*)1 () 1+ wy
where (a) uses H;' < H; ' for all t € [T] and (b) follows from
—1 ¢ & pp—1
S o (g HARGH oo wl o w?
the— o =ty 4 ﬂH;llﬂ o ol dw? 14w
By the arbitrariness of v, we know that
I 7 w?
H 7 <3 l———2 | sup — - Hy. (C.7)
t:ZI l 7+ 27(0%) ] derry L+ wf
Let X; =1— 77 It is obvious that 0 < X; < 1. We then focus on the concentration of Zt 1 X To

22(6%)"
that end, we need a variance- aware Bernstein’s inequality Lemma G.2 for martingales. Lemma G.2 implies
that with probability at least 1 — T2’ we have

T T T

2KT? 2K T2
DXy < Y EXy + 3, | Y Var[Xy| Fy1] - log + 5log
t=1 t=1 t=1 6 5

where K := 1+ [2log, V] and V2 is an upper bound satisfying Zle E[X2|F1] < V2.

First notice that for any ¢ > 1, we have

2t (9*)
E.X, =1—
«/Tt +zt (6%) \/Tt + 22(0%) \/’Tt + 22(0%) + 1) (C.8)
—E,22(0%) < oY _ui |
S g2t 272 T 2721 + w?

which implies that

v w? 9
ZEt “?Hw QTQme{lwf}

where the last inequality uses Lemma G.5 and thus

T T 2

TL?
Zmin{l,wf} = Zmin 1, e < 2dlog <1+2 = 2K.
t=1 t=1 tlE " AT in

t—1
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Secondly, we have

2
T () 1E22(0%) b2
Var[ X;|F 11 <E[X3F l<E[1- —F | <27 ¢~
ar[ t|ft 1] [ t|]:t 1] t( TE-FZ?(Q*)) 4 7}2 4Tt2

Tt < z?(@*)
2. .2(g%) 21 ,2(9%
\/’rt +22(0%) 27 \/7't +27(0%)

T T T
b? b? w? Kb?
ZV&I‘[Xthfl]g;HgTTgZ % < —5.

t=1

where (x) uses 1 — which is also used in equation C.8. As a result, we have

Once requiring 7 > 2xb?, we have Zthl Var[X;|F;—1] < 1 and thus we can set V = 1 and obtain K = 1.

Putting them together, if 78 > 1 Z‘g , with probability at least 1 — §, we have
T 2 272 2
b 3b |klog =~ 2T
ZXté%—i—f ﬁ—&-k’)log
= 75 T0 2 1)
<1 2T2+31 2T2+51 272
ST TR 5
272 1
<9log — = — C.9
875 T 122 (C-9)

where the last equation is due to the definition of ¢y. Finally, taking a union bound for the last inequality

from T = 1 to oo and using the fact that 35 t~2 < 2, we have 3_, X; < =z for all T > 1 with probability
0

at least 1 — 24.

On the other hand, by the choice of o, we have 67 > 2% - H(;thil_l , which implies
0 t—1

sup 5 < sup w; < c. (C.10)
Plugging equation C.9 and equation C.10 into equation C.7, we have
1
Hl,T < ZHT. (C.ll)

Analysis of Hy 1 We first notice that
Tt

3 3
S S TR (S SRR B P Ti _
7+ 27(0) 7 + 27(60%) T+ 22(0) AT+ 2 (6%)
3 37 22(0) — 27(6%)]
VT 2O+ 2 (0%) /77 + 27 (0) + /77 + 27 (6%)

Notice that z;(0) = z,(0%) + <%, 0 — 0*). Tt then follows that for any ¢ > 0

(C.12)

22(0) < <1 + i) 22(0%) + (1 + ¢ <‘§:,9 — 9*>2 :

2/ p 1Y o fon « ?
z7(0F) < 14+ - )20)+(1+c)( —,0-806 ,
c Ot
By discussing which is larger between 22(6) and 22(0*), we have

|22(0) — 22(0%)| < %min {22(0),27(6%)} + (1 +¢) <it,9 - 0*> . (C.13)
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Plugging equation C.13 into equation C.12, we have that

3 3

- 37 L min {z}(0), 27(6%)} N 3(1+¢c) /o 0 0*>2
= 72 4+ min {27(0), 22 (0%)} 24/72 + min {27(0), 22(0%)} 217 ot
2 (a4 2 R2
gi 3(1+20) (bto 0" (g)i+6(142rc)LQB
2c 27 o 2c T of
1 212B2% (v 1
2c T o 2c 75

% (6] + 11e*) < % due to |¢:| < L and 0,0* € Bally(B) and (b) uses

where (a) uses <%,0 - 0*> <
t
1 1 272p2
the following result. By the definition of o, we have o, > VLB| [ 7,1 /cf di which implies o2 > %.
t—1
As a result of equation C.14, by definition of H3 7, we have

_ (3 L 80+ Cld) Z 5O g, (C.15)
73

2c o O

Putting pieces together Plugging equation C.11 and equation C.15 into equation C.6, with probability
at least 1 — 9, for any 7' > 1 and for all 8 € Bally(B), we have

1 3 6(1+c)ard) w ¢ df
V2Lp(0) = Hy — ~Hyp — | = 4 22 2990 N\ Pt @
O e P
>3AI+< _1_3_6(1“0@)2@@.
2c e o
Notice that Cl:m' If we set ¢ = 6 and Toq/%kmax{\/Qﬁb,Q\/a}, we have
108 =5
3 6(1+c)aid 1
max { —, ———5—— ¢ < —.
2c 75 4

As a result, we have

C.3 Proof of Lemma 2.2

For simplicity, we denote z; = z,(6*) for short. By triangle inequality, we have

[VLr(8*) gz < 1A6¥ gy +

2 Tt Zt th
/ )2
Tt t Ot

H—l

< [A0%| gy + (C.16)

Z tht ¢t
1 \VTE A+ ()2 o

=dr

H_

For the residual term |\0*| -1 Notice that Hy > AI and thus Hy' < A"1I,. Therefore, [|\0* | ;-1 <
T T

VAB.
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.

For the self-normalized term ||dr| ;-1 The fact that Hy = Hp_; + % together with the Woodbury
T T

matrix identity implies that

H-! TH! TH
L s JL W 2R LA 17
of (1 +w?) oz, or gy,
Clearly, wr is Fp_i-measurable and thus is predictable. By definition of dr and equation C.17,
TTZ _ TTZ
ldr|?, - = (dr—1 + QTiT*QiT H;' [droy + 2T7T*27T
r V77 + (27)% or T3+ (27)% o
T —1 2
P p——— L SR
Hp_, 1+ w% or
2rpzy  dp_ Hi'édr  13(z5)? ¢rHp'¢r
7+ (21)° or T+ (27)? of
T -l —
<ldrify. + 2t dra e AGEE éeHidr g
Hroa /13 + (27)2 or T3+ (27)2 0%
b I
For Iy, by equation C.17, we have
2172y L T -1 H511¢T¢;H:F£1
L = v dr | HpZ, — 201 2 ér
77+ (27)? O of(1+w)
. 2TTZT 1 d;_lHj:i1¢T
VARG er
For I, we have
[, - TG0 rH'¢r
F (AP o
-1 -1
_ 7 (21)? iqg H-l _ Hp  ¢répHrl, b1
F+ (P T\ T T 2 )
B (o, wh
N € L R
B _uh
T2+ (2%)2 1 + w2
Using the equations for I, Is and iterating equation C.18, we have
Hd HZ i TtZt 2 d:—lﬂt__llqst n i Tt( *)2 th (C 19)
TH; T )21+ w? oy tth2+(z;")21+wf' '

Recall that

TL?
H—dlog<1 Dol >

mm

Lemma C.1. Assume E[(zf)?|F;—1] < b” for all t > 1. Let A; denotes the event where |[dy |1 < o, for
all n € [t]. With probability at least 1 — §, we have for all T' > 1

T T -1 2 2
Qtht lA, L 1 di_H_ ¢, Kb / 272 27 2T
<4 | — + 0 /klog— + — log — | .
Z 2)1/2 1 + w? o ?el[aT}i at 479 T oyrloe 1) + 3 8 1)

t:1
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Lemma C.2. Assume E[(2})?|F;_1] < b? for all t > 1. For a fixed 7 > 0, with probability at least 1 — 4,
the follow inequality uniformly holds for all T' > 1,

2
2(zF)? w? [ 277
< |V2 log —
Z 23 R+ l kb + 704 | log 5

t=1

Kb? 2772 277
ap =8| — +bA/klog— + 19log — | . (C.20)
T0 ) 0

As a result of Lemma C.1 and Lemma C.2, with probability at least 1 — 24, for all T > 0,

For any T' > 1, we define

T —_
Z 27'zt2t*1At 1 1 dtT—lHt_11¢t<a2T and Z 7 (25)? Wy %7 (C.21)

TR+ 21+ w? ot =2 t:17t2+(zt*)21+wt2\ 2

Let B denote the event that the conditions in equation C.21 hold for 7' > 0. By Lemma C.1 and Lemma C.2,
we know that P(B) = 1 — 26. We now introduce a new event C' that is defined by

C:= {HdTHH;I <ar, forall T > 0} = ﬁAt.

In the following, we will show that B € C' by mathematical induction. As a result, it follows that

P(C) > P(B) = 1— 6.

Finally, we use mathematical induction to show that if B is true, then C' must be true, i.e., all Ay is true for
all ¢ > 0 on the condition that the last inequalities equation C.21 are valid for all T'> 0. When ¢ = 0, Ay is
true by definition. Suppose that at iteration T'— 1, for all 0 <t < T — 1, the event A; is true, then we are
going to show that Ap is also true. By comparing the definition of Ap and A7_;, we only need to show that
ldr| -+ < ar which is equivalent to HdTHi{;1 < a2. It follows due to the following inequality

T T
ldrl3 (C‘<19) Z % 2 dl H 1¢t n Z T2 (2})? w?
-1 X
’ ST+ E)P L+ Ot AP+ (2f)? T+ w?
(@) i Tz la,, 2 d_ H_ ¢ n i 2(z5)? w?
ST+ E)P L+ Ot A+ () 1+ w?
® a2 o?
S5 T oo

where (a) uses the condition that all A, is true for all 0 <t < T —1 and (b) uses the conditions equation C.21.
As a result, we can conclude that all {A};>¢ is true and thus |dr| -1 < ar forall T > 1.
T

C.4 Proof of Lemma C.1

Proof of Lemma C 1. We will make use of the Freedman inequality Lemma G.1 to prove our result. Recall

\/ Tz 2 dI—lHtil1¢’f41At71
- Set th \/‘rt2+(tzzk)2 lert2 ot

simplicity, we denote X; =Y; — E[Y{|Fi—1]. Notice that

that 7 = 79

with the event A;_; defined in the lemma. For

dl \H; '\,

(7

o

Ot

< Qi1 We.
—1
Ht—l

. 1At,1 < ”dt—llAt—luH;_ll :

5Note that it’s easy to verify that the following inequalities are true when t = 0.
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As a result, we have

2w
ARy ﬁswoat,l and thus | X;| < V3] + |E[Y|Fi1]| < dro0u_1.
t

® [ 2 ?
< < wt2) o? 1 b? < min{l,2w;}2a? b* < 4min{l, w?la? b
1+ wj

We also find that

(a) 2wy 2 7-2(2*)2
E[X2|F, 1] < E[Y2|F, 1] = E e ey gy
[XF [ Fe-1] (Y| F-1] 1+w? |de 1HHt31 At’17t2+(z;“)2

where (a) uses E(X — EX)? < EX? for any random variable X and (b) uses E[e?|F;_1] < b?
B[(:)? o] < .
Notice that |@¢]|/ot < ||d¢]/Tmin < L/Omin. Then by Lemma G.5, we have

T

TL?
Z min{1,w?} < 2dlog (1 5 > = 2k,
= dAo

mln

Hence, by equation C.22,

T T T
Z E[X2|Fi1] <4 2 min{1,w?}a? ,b* < 4maxa? - 2 min{1, w?}v?
t=1

t=1 =1 te[T]

< max a? - 8db? log TL? < 8kb? - max a?
X < - max o .
te[T] ° T ez te[1] '

mm

On the other hand, using E[z|F:—1] = 0 we have

o D P | N Y Y R SR
7+ (27)? 7+ (2F)? '

which implies

-

ITECN [ R o e
tlvt-1]| = o1 x 7 (o7 ]
P} = 7',514-wt2 210 A 1+ w?
kb2
< sup oy - Z min{l,w?} < sup o - —.
te[T) te[T 70

By Freedman inequality in Lemma G.1, it follows that for a given T" and 7y, with probability 1 —
T
< | D EYVi|Fioa]

/ 272 2 2772
Z + 4m[aT>§ g - lb klog — 5 + % log 5
kb2 272 27 2772
<4 | — +0\/klog— + — log — | .
ey l4m oy rlog 5 A o

DER

Finally, taking a union bound for the last inequality from 7" = 1 to o0 and using the fact that Z:O:

completes the proof.
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C.5 Proof of Lemma C.2

2
Proof of Lemma C.2. Set Y; = TG _wp and X; =Y; — E[Y;|F;—1]. Recall that 7 = Toi”lwtwt. Clearly,

T2+ (2F)2 1+w?

we have |Y;| < 77 1+{U < 7¢ and thus | X¢| = |Y; — E[Y;|Fi—1]] < max{|Yy|, |[E[Y:|Fi—1]|} < 78. We also find
that
E[XZ|Fi] € EV2IFi] < [ ) . 1
1 + wt zf) 2
2 wi ’ ® 55 wi
ST (1+w§> EIG*1Fia] < b 1+ w?

where (a) uses E(X — EX)? < EX? for any random variable X and (b) uses E[(2§)?|Fi—1] < b? due to
E[e?|F;—1] < b*v2. Hence, by equation C.22, we have

T T 2

Z [X2|Fi1] TngZ lft 2 < ObQZmln{l w?} < 2K73Y?

t=1 t=1

On the other hand,

w2 7_2(2*)2
E[Y)|Fi1] = i [ £ (% ]—‘1]
;1 e t=le+wf2 2+ (z5)2°
T 2
< 2 11+Utw2E[(z;" | Fi—1] Zmln{l w?b? < 2KD°.
t=1 t

By Lemma G.1, it follows that with probability 1 — 2T2,

T T

272 2 2772
Z 2 [Yi|Fi1] +2mb«//ilog—+ﬂl og ——
= = ) 3 8

for a given T and 7. Putting all pieces together, it follows that with probability 1 — %,

& o2 |’
Z Y: < |V2kb+ 19 logT
t=1

Finally, taking a union bound for the last inequality from 7" = 1 to o0 and using the fact that Z:i T <2
completes the proof.

O

D Proof of Theorem 3.1

Measurability Let Fj, , denote the o-field generated by all random variables up to and including the h-th
step and k-th episode. More specifically, let I, , = {(¢,7) : i € [H],j € [k—1] ori € [h],j = k} denote the set of

index pairs up to and including the h-th step and k-th episode and then Fj ;, = o (U@ Deln 180 Qi rm-}) .

We make a convention that Fo ; = Fp x—1. From our algorithm, we know that (i) QF, V¥, 7 € Fy 1 for
any QQ € {@7Q,Q,Q} and V e {V,VJZK}, and (ii)

Bh—1,kOn k> Yhokes Ok, Un ks Ihks Ehokes @hokes Dhokes Whikes Whiks Thik> Thks Hhk, Hp g € Fh-
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D.1 High-Probability Events

Let k = dlog <1 + ) We first introduce the following high-probability events.

_K
d\o?

min

1. We define Bg: as the event that the following inequalities hold for all h € [H] and k € [K]| {0},

Wi € R i= {J] < W [pn — ¥l < Bre

2 [ 2HK?
Bre = 128 <*/UE"R + \/E> log —— + 5VAW.

2. We define By as the event that the following inequalities hold for all h € [H] and k € [K],

where

(phy — Nh,k—l)KZHH } < Po,
Hy 1

—k
max {H(HTL - Nh,kq)VhHH ;
Hy 1

(k — ) Vi, < s,

hok—1

4 2H
Bo = L AJd3H B + logT + 3VdI\H
Omin
SLK 32B%K? K
o =maxilog(1l+ ———— ), log|1l+ ———— ), log|1+ —— . D.1
0 * { 5 ( )\H\/&Ufnin) 5 ( \/g)\37_[20-;4nin> 5 < )‘Urznin> } ( )

Here we choose B > 3(fr+ fyv) and L=W +H %

where

3. We define B as the event that the following inequalities hold for all h € [H] and k € [K] {0},
03 € R := {10] < W : |01 — 0} |1, < Br},

[ViRn — Vi Ry (5., ah,k)‘ < Bpgi= ﬁR?H%h,k”ﬁ’;—kgl +2HPR|nklE (A8)
where
2HK?
Br = 128(v/k + Vd)4/log s+ 5VAW.
4. We define By, as the event such that for all episode k € [K], all stages h < W/ < H,
—k
mw{%@—ﬂmmOWHJ ot = a0V }éﬁw (D2)
Hh’,k—l h! k—1
where
By = O (Vi3 + Vaxn)
4HK? ALVA3H d"HB?
L1 = max {Lo,log T,log (1 + ) ,log (1 + 8)\C) } . (D.3)
Omin O min

For simplicity, we further define By := B;.

Our ultimate goal is to show By holds with high probability, a target used in previous work (Hu et al., 2022;
He et al., 2022). More specifically, we first obtain coarse confidence sets for all parameters in the sense that
the confidence radius (that is g2 and fBy) is loose. In our analysis, Bgz | By serves as the ‘coarse’ event
where the concentration results hold with a larger confidence radius, and Br () By serves as a ‘refined’ event
where the confidence radius (that is 8r and Sy ) is much is tighter. Our first result is that Brz [ By holds
with high probability as shown in Lemma D.1 and D.2. Their proofs are collected in Appendix F.1 and F.2.
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Lemma D.1. If we set

/ , 2
To = max {%UR, 2\/&} A /log QH(SK , (D.4)
Omin

the event Bgz holds with probability at least 1 — 44.
Lemma D.2. The event By holds with probability at least 1 — 3.

These coarse confidence sets are then used to estimate variance for the reward functions and value functions.
A key step is to show the adapted variance oy, x’s are indeed upper bounds of these variances (that is
[VaRR](Shk»ank) + [VaVi¥ 1 1(Shks ank)) for all h e [H]. A frequently used argument is backward induction.
That is given the estimation is optimistic at the stage h + 1, we then show the optimistic estimation is
maintained at the stage h. Induction over the stage h would complete the proof. The following lemma provides
estimation error bounds for [V, Ry](Sh i, an,i) and shows that the event Br holds with high probability. Its
proof is deferred in Appendix F.4.

70 = max{v/2k, 2\/3}/\/10g 2H5K2, (D.5)

the event Bg holds with probability at least 1 — 86.

Lemma D.3. If we set

In Lemma D.4, we show that our constructed value functions V and V are indeed optimistic and pessimistic
estimators of the true value functions under the event defined before. Its proof is deferred in Appendix F.5.

Lemma D.4 (Optimism and pessimism). For any h € [H], if Bg () B, holds, for any k € [K] [ J{0},
Vi) S Vi) < V().

With the established optimism and pessimism, we can establish upper bounds for the estimation errors of the
—k

three t(%I‘HlS7 namely [thh*+1](5h,k7 ahJc), [Vh(vh+1 — Vh*+1)] (Sh,lm ah7k), and [Vh(zlfb+1 — Vh*-f-l):l (Sh,ka ah,k)

in the following lemmas. Their proofs are deferred in Appendix F.6 and F.7.

Lemma D.5. On the event By () Bp11, it follows that for all k € [K]

~ ok
H:thh*+]_ — Vth+1] (Sh,,mah,k)‘ < Up i

where

: P —
Up,k = min {V27 WHBo - [bnpl g +4H - Prp(Vig - KZ+1)(8h,k»ah,k)} (A.9)

with Py (s, a) = p] .1 0(s,a).
Lemma D.6. On the event By (| Br () Bri1, it follows that for all j < k < K

—k
max{[Vh(Vh+1 - Vh*+1)] (Sh.5>anj), [Vh(KIZH - Vh*+1)] (8h.55 ah,j)} < Epj

where

By g = min {H2, 2150 b1

HY +H- [I@h,j (Vi+1 - Kiﬂ)] (8h.45 ah,j)} (A7)
with @h7j(-|s,a) = u;}jflqﬁ(s,a).

With the last four lemmas, one can easily prove oy, indeed serves as an upper bound of the true variance of

Vi¥. . at stage h. Therefore, by the backward induction, we can prove the following lemma whose proof is in

Appendix F.8.
Lemma D.7. On the event By () Bg, the event By holds with probability at least 1 — 2.
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D.2 Regret Analysis

In the previous subsection, we know that with probability at least 1 — 174, the event By (| Br holds. Based
on Lemma D.4, the optimism implies that

K
Reg(K Z )(s1,%) Z )(51,k)-

We then relate the suboptimality gap 3y _ 1( — V™) (s14) to the term Yy, S0 [ pnn in
Lemma D.8. We emphasize that the bound in Lemma D.8 is much finer than previous bounds (e.g.,

Lemma B.1 in (He et al., 2022)) in the sense that the rest term is O(HH) instead of previous O(vHEKH).
This is because

—k
o We first adopt a variance-aware Bernstein’s inequality to relate ZZZI(V1 — V™) (s1,5) with a sum of
martingale differences. In particular, we show that with high probability,

LRTUITNES W9yl i .

where { X}, 1 }nerp) is @ martingale difference sequence define by

Xng i =Pr(Vipr = Vit ) Sk ank) = (Vier = Vi) (Sha1.k)-

The variance-aware Bernstein’s inequality implies that with high probability,

K H N
Z 2 Xnkel < O(].)
k=1h=1

K H
GEDY Z Vst = Vit (s an) + O(H).
k=1h=1

e We then use a recursion argument to simplify the variance term above. More specifically, we show
that with high probability,

>

k=1h

M=

K H
=k s
Pr(Visr = Vit (Shks ang) S O(H) <\ [ H- Y D Py (Vs Viek 1) (Sh,ks n k)
1 k=1h=1

K H -
B) X3 2 Ibnkles -+ OHH).
k=1h=2 '

—k
We decouple the self-dependence on Zszl ZhH:1 Pr(Vie1 — Vit1)(Shks ank) using this inequality
that = < 2(a® + b?) for any z < |a|\/z + b°.

e Combining the two steps, we then complete the proof of Lemma D.8. The detailed proof is deferred
to Appendix F.9.

In contrast previous work directly applies Azuma- Hoeffding inequality to analyze the concentration of
Zk 1(Vl Vi) (s1,) so that ‘Zk 1 Zh 1 Xn k‘ O(VHEKH), which inevitably introduces the additional

O(VK) dependence.
Lemma D.8 (Suboptimality gap). With probability at least 1 — §, on the event Bg[) By, it follows that

K
— 4|log, HK
Z (V' = Vi) (s10) 4+ 38HH log % and
k=1 k=1h=1
K H K H
4[log, HK|
’;1 };1 Pr( Vh+1 Vit ) (Shky ank) g Z=:1 ||¢h,kHthlk_1 + 38H*H log +
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Using a similar argument, we provide a finer bound for the gap between optimistic and pessimistic value
—k
functions Zszl Z}I;I=1 PV — KZH)(S;L);C, api) in Lemma D.9. Its proof is provided in Appendix F.10.

Lemma D.9 (Gap between optimistic and pessimistic value functions). With probability at least 1 — §, on
the event By [ Brg, it follows that

4[log, HK|
5

K H K H
—k
DY P (Vs = Vi) (Snks ane) < 12HB Y Y |¢nillgr-1 -+ 38H*Hlog
k=1h=1 k=1h=1 '

The following issue is to upper bound the term Zszl Zle |énkl - - Since the estimation of reward
h,k—1

. K <H X . .
variance concerns the other term »;;" | >3 | |én k| g-1 , we are motivated to analyze them simultaneously
h,k—1

via ZkK=1 Zthl bni where by, = max {W’h,k |H;1k—1’ HQNSh,Ic lfjglk_l}. Previous works (Hu et al., 2022; He

et al., 2022) mainly use Cauchy—Schwarz inequality to analyze it and obtain

K H

K H K H
Z Z bhe < <Z Z 0,217,@) (Z Z max{w%’k,ﬁ)ak}) =0 | VdH -
k=1h=1 k=1 h=1

k=1h=1

where the last equality uses the elliptical potential lemmas in Lemma G.5. A standard analysis of the law
of total variation would imply 4 /ZkK=1 Z,ILI o7, = O(VH?K). However, this result doesn’t satisfy our
target for two reasons. First, due to the use of adaptive Huber regression, our definition of oy, is more
complicated than previous algorithms. We need a more elaborate analysis to handle the additional terms in
the definition of o, ;’s. Second, the previous result considers the worst-case scenario, while our target is to

provide a finer variance-aware regret. Therefore, it is imperative to provide a finer bound for the sum of
bonuses Z,If:l Zthl bp k. We did it in Lemma D.10.

Lemma D.10 (Sum of bonuses). Set A = W Let Ap denote the intersection event of Lemma D.8
and D.9. With probability at least 1 — 24, on the event B ( By [ Bo () Brz ) Ao, we have

K H
D> b =0 (\/dHKg* + Hd* Ko, +

H> d>5H? + Hd1-5032>
k=1h=1

Omin

+ O (H*d*H + Hd o + Hd™).

where O(-) ignores constant factors and logarithmic dependence.

We emphasize that Lemma D.10 is perhaps the most technical lemma in our paper. To address the difficulty
mentioned earlier, we divide the full index set Z := [H] x [K] into three disjoint subsets Z = J,_; 55 Ji
according to which value oy, i takes (given oy, ) is the maximum value among five quantities). For those
indexes in J; where the bonuses are small enough, we still use the Cauchy—Schwarz inequality to bound
Z(h)k)ejl bn i < O (\/ dH - Z(h,k)eI 0']21’,6>. This sum-of-squared-bonus quantity involves Z(h,k)eI Ej 1, and
Z(h k)eT Jh, which we then pay additional efforts to analyze. For those indexes in J2 or J3 where the
bonuses are relatively large, we directly analyze Z(h’k)e T U Ts by,x. Thanks to the particular structure,
Z(h k)eds U Js b, contributes to the non-leading term in the final bound. Putting pieces together, we
complete the proof. A formal proof can be found in Appendix F.11.

At the end of the subsection, we summarize the proof in a few lines.

—

va

K
Reg(K) = Z (Vl* _ Vvlﬂ'k)(Sl)k) <
k=1 :
K H
4[log, HK |
B ];1 Z ||¢h,kHH;;_l + 38HH log Alog K]

—k -
(Vi = V™) (s1k)
1

—~

b)
<3
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4[log, HK|
0

H2'5d6H2 + Hd20R2

Omin

//\n

h L+ 38HH log

||Mm

K
Do (a < VHKG* + HIK"50, +

+ H3d°H + Hdop + HdQ)

where (a) follows from the optimism result in Lemma D.4, (b) follows from the suboptimality gap result in
Lemma D.8, (¢) uses by, = max{

Lemma D.10 and 8 = Bg + Bv = O(Vd).

- }, and (d) follows from sum-of-bonus result in
—1

E Proof of Theorem 3.2
Proof of Theorem 3.2. We consider the two complexities respectively.

Space Complexity First, to perform AdaOFUL, VARA needs to store all seen rewards and feature vectors
(i-e., @n k, Ph k), which is required by all RL/bandit algorithms robust to heavy-tailed rewards (Shao et al.,
2018; Xue et al., 2021; Zhuang & Sui, 2021). AdaOFUL also keeps all robustification parameters 7, g, Th k. It
then incurs O(H K d) space storage in total.

Second, due to the rare-switching technique, one can show that @, (or Qz) is the minimum (or maximum) of

at most O(dH) temporary optimistic (or pessimistic) functions (see Lemma G.7). It means that we need to
store at most O(dH) different versions of 0y j_1, uhyk_lvhkﬂ, Hy, j._1’s. This incurs O(d®H?) space cost.

Last, for all (h,k) € [H] x [K], we need to trace {¢(snk,a)}sea to evaluate each wp,V =
_ _ —k =k .
Hh,llc Z?=1 Uh,?d’h,jV(Sthl,k) for Ve {Vy i, [Vh+1]27K§+1}7 which takes O(d|A|HK) space.

To sum up, VARA takes O(d*H? + d|A|HK) space.

Computational Complexity First, we use the Nesterov accelerated method to compute each 6, ;.. Since

the loss function in equation A.1 is A-strongly convex and ()\ + K )—smooth, the computational cost for each

min

O is O (d, 1+ W) = O(max{d, H-3/*d=3/2K3/4}) and the total cost is O(H K (d+H ~3/4d—3/23/4)).

We emphasize that we don’t need to compute 6}, exactly. It suffices to terminate at a solution éhk once
its accuracy satisfies [Onx — On k| H, , < V/d. The iteration complexity is proportional to the root of the

conditional number, i.e., O(max{1,d~7/*K3/4}). Since each iteration takes O(d) operation, the computation
complexity is O(max{d,d3/*K%*}).

Second, each time when updating the value function, we take the minimum over at most (7)(dH ) quadratic
functions. Moreover, the Sherman-Morrison formula computes H,_ i and its products with any vectors, which

takes O(d?) operations. As a result, it needs O(d®H) to evaluate the updated Qn k(s,a) for a given pair
(s,a). Hence, computing Qp, 1 (Sn.k, ), choosing ap, = argmax,c 4 Qn k(Sh.k, @), and estimating the variance
onk lead to O(d® H?|A]) computational complexity for each episode.

Last, note pp 1V = H;;k Z’;:l a,ﬁ(ﬁh,jV(shH,k) for any value function V'(+). If V remains unchanged, we
only need to compute the new term o3, % @5 £V (Sp+1,), which has an O(d3H|Al|) complexity each time. If V
changes to V', we need to recalculate py, V', which has an @(d3H|A|K) complexity each time. Combining
the computational complexity for all horizons and noticing that the number of episodes that trigger the
updating criterion is at most O(dH), VARA has a running time of O(d*|A|H*K + HK (d+ H—3/4d=3/2 K?/4)).
In terms of the dependence on K, it is slightly worse than LSVI-UCB++'s O(d*|A|H3K) since the adaptive

Huber regression doesn’t have a closed-form solution, but is better than LSVI-UCB’s O(d2|A|HK?) due to
the rare-switching mechanism. O
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F Omitted lemmas in Section D

F.1 Proof of Lemma D.1

Proof of Lemma D.1. The proof idea of Lemma D.1 is similar to that of Theorem 2.1 except for the following
changes. First, ¢h,k = (b(sh ksank) € RY is instead the feature vector. Second, in the particular setting,
we should respectively replace L, B, T, therein with 1, W, K,0/H defined here and redefine ¢y, ¢ as ¢y =

1 1 2.5
—_— 1= T2 2EET respectively. Third, by the choice of oy, ;;, we have O’h B = ( + Hd H) bk =
6 /310g 2HK2 ’ 42- Ve

—1 , which implies that we have
—1

W2a3? a . —
5k < eyd. Similarly, due to o7, = cg2|bnilio.
Th.k ’ H, ",

Cld

2 /T *
ﬁik < ¢ Last, for simplicity, we define g, = T =Pk ) and G, = 0(Frn—1.6 U {Shk,anr}). Then,

Oh,k

2
we have ey 1, € Fp ki, Elenk|Gnk] = 0 and Var[ep x|Gn k] < (gm ) := b%2. Theorem 2.1 concerns the case

Omin
where b = 1, however, its proof considers the general case where b can be arbitrary. As a result, by a
similar argument in Appendix C (which is doable due to the four conditions mentioned above), once setting

Tor/log % = max {\/2/<;b, 2\/8}, with probability at least 1 — 3J, we have for all h € [H] and k € [K],
[Ynk — ) Hﬁh S Br2, that is the event Bgz holds. O

F.2 Proof of Lemma D.2

We will make use of the following general results frequently. The proof is quite standard (Jin et al., 2020b;
Wagenmaker et al., 2022a; Hu et al., 2022). We provide proof in Appendix F.3 for completeness.

Lemma F.1. Fix any h € [H]. Consider a specific value function f(-) which satisfies

(i) supses |£(s)] < Co;

(ii) f €V where V is a class of functions with N'(V, ¢) the e-covering number of V with respective to the
distance dist(f, f') := sup,cg | f(s) — f(9)|-

We assume there exists a deterministic C, > 0 and Ay, (which is F}, p-measurable) such that Ay, <
{O’h e = (Vi) (shk, an k)/Cz} for all k € [K]. Let pp, 1 be defined equation A.2 and oy, 1, Hp, , be defined in
our algorithm. Under any of the following conditions, with probability at least 1 — §/H, it follows for all

K] U{0},
b e {ms = ) fla,, <8} (F.1)

(i) If f(-) is a deterministic function and ﬂke[K] Ap i is true, equation F.1 holds with

K 4HK? 8C 4HK
8= SCU\/dlog (1 d)\) log + 0 log + VdACy.

1 d?5H

(ii) If f(-) is a random function and ﬂke[K] Ap, 1 is true, equation F.1 holds with

K AHK2N, AHK2N,
B = 800\/d10g (1 dA) log 0, _8C log 9 4 3VdAC,

0 d?5SHH 4]

IIlln

where Ny = [N (V,¢0)| and €9 = min {C’Uomin, )‘CIOQF 2 }

(iii) If f() is a random function, equation F.1 holds with

2C K N
8= 0 dlog |1+ + log RN dX\Cy.
Omin mlnd/\ 5
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where Ny = [IN(V,e1)| and &1 = )‘COI o2

mm

Using the last item suffices to prove Lemma D.2.

Proof of Lemma D.2. Let V1 denote the class of optimistic value functions mapping from S to R with the
parametric form given in equation G.1 and V™ the class of pessimistic value functions with the parametric
form given in equation G.2. By Lemma G.8 and Lemma G.7,

4L 8d'/2 B2
log N(V*,¢) < [dlog <1 + 6) + d?log (1 + o2 >] (F.2)

where B> fpand L =W +H

(i) Let f = V:H. One can find that f € Vf+ with parameter L = W + % To plug in Lemma F.1,

we first specify the parameters defined therein. We have |[f|, < Co = H and &1 = A?;(faﬁlm.

By equation F.2, it follows that

log N(V*,¢e1)

ALK SB2K? K
< |dlog 14+ ————— | +d%1o (1+>]-dHlo ( )
|: & ( A,}_[\/E(-)’riin) ® \/g)‘SHQUﬁlin 5 Ao I2mn

d*Huj < 3d°H.,

= log?2

By the third condition of Lemma F.1, with probability at least 1 —

o= DVE| < o for

2H’ <
(Nh Hh k— 1‘7 )

all k € [K]. Similarly, we can also show that with probability at least 1 —
Bo for all k € [K]. Putting them together finishes the proof.

2H’

(ii) The analysis on KZH is similar to (i).

(iii) The analysis on [V: +1]? is similar to (i) except for the following two changes. First, Cop = H? and
g = AMNdg2 Second, with [V*]2 = {£2: f € V*}, we have [V ,,]? € [V*]? and

IIlln

/

@
log N([V']?,21) < log N (V7 o

Ly <logN (VT 2) < 3dPH.2.

Here (a) uses the fact that the ;—?{[—cover of V¥ is a g1-cover of [V*]? (which is also supported by
Lemma G.9).

F.3 Proof of Lemma F.1

Proof of Lemma F.1. Since the case of k = 0 is trivial, we focus on k € [K]. By definition,

k k
-1 —2 T -1 -2 T T
Bh ke = Hh,k Z 0h,j¢h7j6(5h+1»j) = Hh,k Z Uh,j(ﬁh,j (¢h,ju7§ - Eh,j)

Jj=1 Jj=1

k
* -1, % —1 —2 T
= pi — \H, i — Hy ) Z 3 bh e ;-
j=1
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By the triangle inequality, it follows that

[y = 1) g, < MH o Flr, o+

k
—1 -2 T
Hy ), Z 0 iPni€n; f
j=1

Hp k.

k
—2 T
Z 0 Pnjcn; f

= AHM;kaHH;}C +

-1
Hh,,k

< VdACp +

k
—2 T
D Tngbnsen f
o1

H, )
where the last inequality uses ||u} f|| < VdCy.

o Assume f(-) is a deterministic function. To evoke Lemma G.3, we set G; = Fp j,¢; = U;;¢h7j77’}j =

Zlhjsh Jf la,, and Z = A + Z] ] o*h?@m(ﬁh j = Hj, ;. Here 14 is the indicator function of the event

Clearly x; € G;,E[n;|G;] = 0 and E[n?|G;] < CZ. We also have |z;| < o Inil < 2000,:’}- and

Ha:j lz,_, = wn,;. As a result, |n;|min {1, |z;||z,_, } < 2Co w"? < H(QPCSH where the last inequality uses

o} J= > Hd*°H | HH* (which is equivalent to 224 < (d* 5H’H) D). By Lemma Lemma G.3, it follows
1

that with probability 1 — ﬁ, for all k € [K],

-2 T
,'¢h,j5h’jf1./4h,]’

-1
H,

K AHK?  8C, . AHK?
< 8C, |dlog 1+ log 1 .
\/ °g< mmdA) 5 T HESH s

Finally, on the event ﬂke[ K] Ap k, we will have all the indicator functions equal to one.

—1
Zk

o If f() is a random function, we would use a covering argument to handle the possible correlation between
f(-) and history data, which would, unfortunately, enlarge 3.

Denote the g-net of V by N'(V,&¢) where g = min {C Omin, ’\Co‘f02 } Hence, for any f € V), there

min

exists f € N(V,e0) such that |f — fllo = supses |f(s) — f(s)| < eo. Then,

k k k
—2 T —2 T —2 T 5
Z 04 Phi€n; f Z 04 Pni€n ;i f + Z 0, Pni€n; (f = F)
=t Hy U7 H, H,
(1) (I1)

1 F = Floo < 220, we have

For the term (I7), due to [|¢p ;| <1 and \s;j(f — ) < |enyl

l < 2K <ovina,
H71 (j.l'IllIl\/X
h,k

For the term (I), we define Vj, j, = {f’ €V :4C2a; . = (Vuf’ )(sh7k,ah7k)}. Since the definition of Vj, 4

involves only o, k., Sh.k, Gh,k € Fh k, for any fixed function f € V, 1fcy, , is Fp p-measurable. On the event
Ap i, by definition of &,

(Vaf)(snksane) < 2(Vaf)(snps ang) + 2(Va(f = £))(Snps ank) < 2C207 , + 25 < AC207
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Hence, Ap, 1 © {O—%,k > (Vhf)(shyk,ah,k)/cg} c{3f e N(V,e0) (Vi) for all k € [K].

In the following, we will evoke Lemma G.3 to analyze the term (I). For any fixed f' € V, we set
_ _ k —

gj = .7-"h7j,:cj = ahj.qujmj = O'h7§-€;jf, : lf’EVh,k and Zk =\ + Zj:l Uh,z(ﬁhvj(ﬁz,j = Hh,k~ MOI‘GOVGI‘,

due to the choice of oy, ;, it follows that

bn,; Co

Co
S0 T dSHH

Oh,j

P,

Oh,j

: H, .

By Lemma G.3 and the union bound, it follows that with probability 1 — %, for all k € [K],

k
—2 T g
E Jh,jd)h,jeh,jf Lrev s

sup
f/GN(V,ED) j:]- H71
h,k

K 4HK?Ny 8Cy 4HK?N,

< SCU\/dlog (1 + O'rznindA> log 3 + PPy log 3 .

where Ny = [N(V,e0)|.
is no more than the RHS of the last inequality.

-1
H,L,

As a result, we know that HZle U;?‘i’h,jsz,jflfevh .

On the event ﬂke[K] Apk, we have f e ﬂke[K] Vh, and thus all the indicator functions equal to one,
completing the proof.

o The proof is almost similar to the second item except that we use Lemma G.4 to analyze the term (7).
Noticing we also have |n;| = \a,ﬁ.s;jfﬂ < 2% By Lemma G.4 and the union bound, it follows that with

probability 1 — 2, for all k € [K], o
20, K Ny
< dlog |1+ —— log —.
Umin\/ o8 < " 02 dA) e 0

k
-2 T /

Z O Phi€n F lprevi .

Jj=1

sup
f’E/\/’(Vf,El)

min

—1
Hh,k'

Pay attention that here we don’t utilize the variance information so that we change Ny := |N(V, g0)] to
Ny = |N(V,e1)| and don’t require (,¢[x) An,k is true.

F.4 Proof of Lemma D.3

Proof of Lemma D.3. The proof idea of Lemma D.3 is similar to that of Lemma D.1 except that we pay
more attention to the reward variance.

Given that Bge holds, we have 1} € ﬁh,k for all h e [H] and k € [K](J{0}.

We will prove the lemma by induction over k. When k = 0, we have 8,0 = 0, H, o = M and |0}, 0—6}||x, , =

V|65 < VAW < Bg for all h e [H]. If we suppose 0} € Ry, ; holds for all h € [H] and j € [k — 1], we are
going to prove 8 € Ry, ;, uniformly for h € [H]. The first thing we will show is

O'}Ql)j > [\A/th](sh,j,ah,j) + Ry; forall hel[H]andje [k]. (F.3)
Notice that [V, Rp](Sh.ks ank) = (Pn.k, Py — {n i, 05 )% We then have for all h e [H],j € [k],
ViR, = ViRa](sh: an;)]
< [ @njs Ynj1) — (Bnj, Y| + ’<¢h,j7 05" — (b5 Onj-1f 1)
< Kbnser Yn i1 — Wi + 2HK Bk, O i1 — O}
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<lonila Ini-—¥ila, , , +2H0nilms 1001~ Oilm, -

< Bre||Pn,;

o T 2HORIOn = Bhg

where the last inequality uses the hypothesis and the condition that Bgz holds. As a result, we establish equa-
tion F.3.

Let G j = 0(Fn-1,; U {5nj,an;}). One can show that both Ry, ; and o, ; are Gy, j-measurable. As a result,
the event &, ; 1= {U%J > [ViRp](sn j, ah,j)} is also G, j-measurable. On the event Bp2, it is obvious that

(Mierr Njepr) En. 18 true since equation F.3 is true.

Th‘j7<¢h,j-,9;l;>1g
n,

On the other hand, we set ¢, ; = o
s

, as the standardized reward. We then have ¢; ; € Fp j,

Elen,;|Gn,;] = 0 and Var[es ;|G ;] < 1. We define éh,k as the solution of adaptive Huber regression to

the response {rp jle, ,}jerr) and the feature {¢s jle, ;}jer). We also define fI\h,k,l as the counterpart
matrix of Hy ; obtained by replacing ¢p , with ¢y xle, ,. We then apply Theorem 2.1 to analyze the

concentration of BAhk With probability at least 1 — 36, it follows that Héh,k =055, , , <PBrforall he[H]

and k € [K] . Because Bg2 is true, all indicator functions are equal to one. Therefore, we have HAh,k = Ohi
and Hj, ,—1 = Hp, j,—1, implying 6} € Rj, ;, uniformly for h e [H]. O

F.5 Proof of Lemma D.4

Proof of Lemma D.4. By symmetry, we only prove the RHS inequality, or say, the optimism inequality. We
prove it by induction. The statement is true for h = H + 1 since both Vi () = VIZ,H(-) =0 for all k € [K].

Assume the statement is also true for h 4 1, implying V;* (-) < VZ+1(~) for all k € [K]. We assume there

exists a sequence of updating episodes 1 < k; < -+ < ky, < K such that

Q) = min {D(), Ok + e Vile) + Bl MK (F.4)

iE[Nk]

Using Qj (s,a) = (@(s,a),0; + u;V;' ), we have for any (s,a) € S x A and k € [K],

(D) Ont + et Vi) + Bl ) s — Qi)

={@(),0n -1 — 05 ) +<{&(-,), uh,quZH —pp Vit D+ Blo(, )| g1

hok—1

(@) —k

= {@(, ), Ong—1 — 05) +<(D(, ), (k-1 — B3,) Vi1 + Blo(, ')”H;lkil

®) . R ©
> 0N ar |10kt = O lat s = N nior = ) Vil + 8] > 0

where (a) uses (¢(s,a), pj; (V:H V5L =Py (VZH —Vi¥.1)(s,a) = 0 from the hypothesis, (b) follows from

. . —k
Cauchy-Schwarz inequality and (c) uses |0nx—1 — 05| m, 0, + |(a—1 — 5)V i1 |Hy oo < Br+Bv =8
on the event Bg () Bp,.

As a result, by the last inequality and equation F.4, it follows that for all k € [K], Qi(, ) —=QF(-,-) = 0.

Taking maximum over actions, we have V:() > V)*(-) for all k € [K], which implies the case of h is also
true. O

F.6 Proof of Lemma D.5

Proof of Lemma D.5. The proof technique has been used in Lemma C.13 in (Hu et al., 2022) and Lemma 7.2
in (He et al., 2022). We include the proof for completeness. By definition,

(VaViE 1 (hos ang) = il ViEa . dne) — (i Vi, dni)?
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~ —k —k —k
ViVl (shms ani) = (i1 V1] dnr—p0.22) = k-1 Vit Gnkdfo -
Therefore, it follows that

‘[Vth*H - @hvlzﬂ] (5h7k7ah,k)‘
< ’[thi+1 - @hviﬂ] (Sh.k, ah,k)’ + ‘[thh*-&-l - thfm] (Sh,k»ah,k)‘ :
We then bound the two terms in the RHS of the last inequality as follows.
’[VhV’;H — @’hV:H] (Sh,k» ah,k)‘
< [tV P by = e 1 (Vi1 1% bnidosee)
+ ‘<HZVZ+17 bnr)’ — <Nh,k717:+17 ¢h,k>%0,?—[]‘
< [(py — Mh,k—l)[VZ+1]27 ¢h,k>‘ +2H - ’<M?§vﬁ+17 Pn.k) — <Il'h,k—1V:+1a ¢h,k>[0,7—[]‘

~k
o (| A I
W, k—1

—k
R v P (VS ) o B

where the second inequality uses the fact that both <u;‘;V:+1, én.i) and <uh¢k,17§+1, ®n.k)[0,#] lie between
0 and H. Similarly, it follows that

’[thh*ﬂ _ VhVZH] (Shoks (lh,k)’
< ‘Ph[[vh*+1]2 - [V:+1]2](Sh,k7ah,k)’ + ’[Pth*+1]2(8h,k7ah,k) — [PAV a1 1 (s an )
< ‘]P’h[(V:H VD) iy + Vh*ﬂ)](Sh,k»ah,k)‘

+ [PV = PAVEAIPAV by + PuViaT) s )|

—k
4H - Ph[vh+1 - Vh*+1](3h,k7 ah,k)
—k

<AH -Pu[Vier — Vil Sk, ank)
4

~ ok
<AH - PrplVier = Vil (Sne, ank)

+ 4H| dn k|

—k
H [)(uh,kl - M?Z)VhHH + H(Nh,k—l - HZ)KZHHH ]
vk h,k—1

1 Hy

where for the third and fourth inequalities we use the optimism and pessimism in Lemma D.4 and the last
inequality uses the following result.

—k P— —k
[PrV i1 = PriVial(snk, ah,k)’ = ‘<(M?§ — Phk-1)Vii1s ¢h,k>‘

—k
= Hgbfhk”thcil ”(Nh’k 1 Nh) h+1 Hyp -1

A similar inequality can be derived for ’[thlflﬂ — ]?”h’kzﬁﬂ](sh,k, ahyk)‘. Finally, we have

~ —k
’l:Vth*+1 - thh+1:| (Sh,k7 a’h,k)‘

- A~ —k
< i =DV Mbnilps |+ AHB (Vi = V) (shs an)
h,k—1 iR

—k
+ 7'l||<25h,1cHH;§c : [6 H(Mh,k—1 — MZ)VhJ,-lH +4 H(Mh,k—1 - MZ)KQHH ] -
v, k—1 Hh,kfl Hh,kfl

We complete the proof by noting that on the event By, we have

—k
max { H(NZ - I'Lh,kfl)vh+1H (i — ,uh,kq)K]fLHHH

Hy 1

}<BO7

hok—1
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H(N?’i - uh,k_l)[VLl]?Hm < Hpo.

F.7 Proof of Lemma D.6

Proof of Lemma D.6. For any j < k, we have

—k (a) —k
[Vh(vh+1 - Vh*+1)] (Sh,jsan,j) < [Ph(vh+l - Vh*+1) ] Sh,js Qh,j)

(
(b) —k
< H [Ph(vhﬂ Vh+1 ] ShojsQh,j)

© — :
<H [Ph(viﬂ - K?LH)] (Sh.js an.;)
where (a) uses the fact that Var(X) < EX? for any random variable X, (b) uses 0 < V(1) < Vi¥,,(*)

<
V:H(-) < H on the event Bg () Bp41 from Lemma D.4, and (c) uses that Viﬂ() > V:H( -) and Vh+1( ) <
v +1(-) by definition. On the other hand, in the event By, we have

max {H(l‘: - Nh’jfl)V?HlH ) (N;‘: - Hh,jfl)ng_lH } < Bo.

Hh’]'fl Hh)j71

As a result,

[(]P’h - Iﬁ’h,j) Wm] (Shyjs ang) = {Bnj, (U — Bij—1) Vi)

< lbnilers Motk = gVl s < Boll bl
Similarily, we have [(Ph Phﬁj) h+1] (Shjsan,;) < Poldn,; |H;’;71. Therefore,
[Vh Vh+1 Vh+1)] (sh.4, an.;)
<H [250 [ﬁ’w (Vhir — KLJ] (8h,5 @h,j)] =: Ep ;
Repeating the above argument, we have a similar inequality for V; 41 due to symmetry. O

F.8 Proof of Lemma D.7

Proof of Lemma D.7. Due to the backward recursion structure, we will use induction (over horizon h) to

prove this lemma. First, equation D.2 is true for h = H since V];Hl(-) =V () =0 for all k e [K].
Therefore, we have By holds. Assume equation D.2 holds for horizons no smaller than h + 1, i.e., By41 holds
with h +1 < H. In the following, we will show, once B, 1 [ Bo holds, By, holds with probability at least than

1 — 22, Repeating the argument, we have, given By () By holds, with probability at least 1 — 28, By [ Bo
holds Hence P(Bo(B1) =1 —54.
Note that

’ * _ Vk H < * _ V*
Hoos H(Hh nk—1)Viiq oo (e = 1) h+1HHM71

—k
max {H(H: - /th,kfl)Vthl‘

+ max {‘ (my — uh,k_l)(v’,jﬂ - Vh*+1)H (k= ) (Vi — Vh*+1)Hh,k_1} .

Hp k-1

we would analyze the two terms in the RHS separately to proceed with the proof.
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For the first term Since V}', | is a deterministic function, we apply the first item in Lemma F.1 to
bound it. In the following, we specify the parameters defined therein. First, we have Cy = H and

Ang = {O'hk (VR Ve )(sh,k,ah’k)} is Fj, p-measurable. By Lemma D.5, on the event By () Bpn+1, we
have for all k € [K],
O’h L= [VthJrl](Sh ks Qh, k) + Uh k= [V}LVh+1](Sh ks Qh, k) for all k£ € [ ] implying mke[K] Ah,k holds under

Bo(Brs1 and C, = 1. By Lemma F.1, with probability at least 1 — H, H(uz — uh,k,l)Vh*H”H’ S 51
for all k € [K] with 8y defined in the following. Finally, we simplify 3, as 7

K 4HK? 3 4HK?
= 1 1+ 1 1
B1 8\/d og( mlnd)\> 08—t Jaglos—; + Vd\H

[Vth*H — @hvﬁﬂ] (Sh.ks an k)‘ < U with Uy i defined in equation A.9. Hence,

<8V + o d2 5H + VANH < 16Vduy + V.

—k
For the second term Since both V', ; — Vh":r1 and KZ 1= Vh*+1 are Fp —1-measurable random functions,
we apply the second item in Lemma F.1 to analyze the second term. In the following, we specify the

parameters defined therein. First, Cyp = H and Ay = {Ji,k > d3H-Eh’k} is Fp p-measurable. By
Lemma D.6, on the event By (| Br()Br+1, we have simultaneously [Vh(V,;H — Vh*+1)] (Sh,jsan,j) < Enj

and [Vh(KZH — Vh*+1)] (Sh,jsan,;) < Epj for all j < k < K with Ej, ; defined in equation A.7. As a result,
for all j <k,

—k
on; = d’H-Ey;>d°H - max{[Vh(VhH - Vh*+1)] (Sh,j» @n,j), [Vh(Vthl Vh*+1)] (sh,j,ah,j)}.

It implies C, = \/‘113;11 and for any j € [k],

Ay € {075 2 €2 max { [ ViV = Vi) | (s ang). |VaWhs = Vil | (sngnan) -

Finally, with by Lemma G.8 and G.7, the covering entropy for €9 = min {\‘/’;—‘3‘7;1, )‘g{ﬂafﬂin} and the function

class to which V:H — V¥, and KZH — Vj¥,, belong is
4L 8 K
dlog(1+)+d210g<1+ Vb )1-dHlog2( 5 )
€o )‘E() Ao O min

By Lemma F.1, with probability at least 1 — %7

log No = N (V*,e0)| <

= O(d*H.3)

—k
maoc {2 = i) Vs = Vi), k-0 - V)|, e
Hh,kfl Hh,kfl
for all k € [K] with 33 defined in the following. Finally, we simplify 35 as
8 K ANyHK? 8 AN HK?
= ———4/dl 1 1 1 dA
e x/7d3H\/ on (10 g ) o8 M g s VK

8
< 8\/d2H (11 + O(d3H2)) + B (11 + O(d*HiY)) + VdNH

= O (V™ + 11 + Vi + Vanr) = 0 (Vi + Vi)
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Putting pieces together we have shown that given By 1[ | Bo is true, with probability at least 1 — 24,
for all h e [H] and k € [K],

—
max {‘(“Z - “’%k*l)vhHH (ke = Hh,k—l)KZHHHh . 1} <PL+p=0 (\/&% + \/57{) .

Hy 1

Therefore, By := B; holds. O

F.9 Proof of Lemma D.8

Proof of Lemma D.8. For a given k, let kj.s denote the latest update episode before episode k, that is
Klast < k < kiast + 1. By Lemma G.6, due to Hh,kfl > Hh,klastfl and det(Hh’kfl) < 2det(Hh’k]ast71)’ it
follows that for any = € R,

ol <2l - (F.5)

.- —=k T7K1ast T
By deﬁnltlon7 Qh('a ) < <¢(7 ')a 0h7k71ast_l + l'l’h;klast_lvh14>1> + ﬁ“d)(? ) HH’*IIC . and Qhk (8, CL) =
v Rlast —

(B(s,a),0F + piVrE . Using ap e = ) (sp,k) = argmax,e 4 @i(sh’k,a), we then have

—k - —k .
(Vi = Vi) (snr) < (Qp — QpF ) (Shk, ank)
<Pk O bt + ki1 Vst — (05 + HEVED)) + Bl (sn ks an, Wl

(a) ~5Klast

< (Dhks Ot — OF) + (b1 — VD + (Bres i (V1T — Vi)

L aBlbnils  + Dr b (Vhs — Vi)

4Bl n ikl g1+ Pr (Vs = Vi) (nes ane)

4Bl il + Vs = Vi) (o) + X
Here (a) uses equation F.5, (b) uses

T7Flas
[ bh ks O braee—1 = 05) + (h ka1 — 175) V351
k as’
. ||(0hgklast71 - 0;:) + (H’h,klastfl N’h)VhIJr{ HHh,klast—l

< Blnnles < 2Blénnlpy

as T ~FKlast T ~k -
on B (V By, (¢) uses (n . (V51 = Vi) = Pa(V sy = Vi) (sns ane) = Pu(Vi oy — Vi) (sn s an i),
and (d) uses the notation

—k - —k T
Xnk = Ph(vh+1 - Vh-ﬁl)(sh,kv ah,k) - (Vh+1 - Vhfl)(shﬂ,k)-

The last inequality implies
—k x —k -
Vi = Vi) (snp) < Vier = Vi) (sniw) + Xng + 481Gkl gt

Iterating the above inequality over h and using V’;{ 1) = Vg4, () =0, we have

(Vi = Vi) (sn.8) Z[

7171] : (F.6)

Therefore, setting h = 1 and summing equation F.6 over k € [K], we have

K —k K H
DVY = V) (s1a) < D) D [ Xk + 481l - (F.7)

k=1 k=1h=1
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. . —k .
We then need to analyze Zszl 25:1Xh,k~ Since spy1,k i8 Fpi1,p-measurable, m = {WZ}hG[H],Vthl is
Fu x—1-measurable, we have X}, . is Fj,41 -measurable. We also have E[X}, x| Fp k] = 0, | Xp k| < 2H and

ﬂ (@) h ﬂ
E[X}, 1| Fnr] < E[(Vh+1 VI (S| Fal < HE[V i1 — Vit 1(She1) | Fiok]
®) . —k .
© g [(Vh+1 = Vit D) Snr 1) [ Frk] = HPL(Viiqr — Vi) (Shoks an k)

—k
where (a) uses [V}, — Vf1|(-) < H and (b) uses the optimism in Lemma D.4. By the variance-aware

Freedman inequality in Lemma G.2, with probability at least 1 — g, it follows that

K H
H Z Z Vh+1 Vit ) (8hk, ang) + 10H -0 (F.8)
k=1h=1

||MN

where ¢ = log w. On the other hand, it follows that

K H - K H K K H
> P (Vi — Vi) (smani) = 2, 23 (Vi = Vi) (o) + 3, D, X

k=1h=1 k=1h= k=1h=1

" K H
> I:XiJc + 4ﬁ”¢i7k“H;;71] DIDIR

i=h k=1h=1

[ V)

NE
D1

>

L=

el
I
—

B

H
2 Xk

1h=1

I
M=
M=
D=

(H = h+1) [ Xnp +4Blonilg |+

K H
Z > Xnwbn
k=1h=1

where (a) uses equation F.6 and (b) uses the notation b, = 1 if h = 1; otherwise = H —h+ 2 for 2< h < H.
Clearly, we have |by| < H for all h € [H]. By the variance-aware Freedman inequality in Lemma G.2, with
probability at least 1 — g, it follows that

k

k=1h

Il
)

H

—~

b) K
< 4Hp Z

k=1

>

:2

K H
<3HVE |7 S Bu(Viiy — Vik) (shs an) + 10HH - 0.
k=1h=1

H
Z Xh,kbn

As a result, we have

HMN

K H H
7k Tk
Z Z HJDh(vh.‘.l - Vh_::]_)(sh,kv Qp, k 3H\[ \J Z Vh+1 Vh+1)(5h ks Qh, k)
B

K
k=1h=1 k=1
K H
+4H Z Z +10HH..
Using the inequality that < 2(a? + b?) for any z < |a|/z + b2, we have

K H K H

> Z (Visr = Virts) (Snks an ) Z > |nilprr -+ 38H*He. (F.9)

k=1h=1 k=1h=1 .

Putting pieces together, we have

K equatwn F.7 K A
Z )(s1.k) Z Z [Xh,k + 4BH¢h,k”H;j€_1]

k=1 k=1h=1

47



Published in Transactions on Machine Learning Research (April/2024)

equation F.8

< 48

D=
M=

K H
| én sl +3ve \ He Y 2 Pu(Vigr = Vitt) (snks ange) + 10 -0

k=1h=1

e
Il
—
>
Il
—

equatwn F.9 i

||Mm

K H
|¢hv’“”H;;_1 + 3/ \ Ho(SHB Y D [bnnlprs | +38H?Hu| +10H -«

k=1h=1

K H
65 >, D Iénsly 1  +38HM
k=1h=1 a

where the last inequality uses va + b < y/a + Vb and 2v/ab < a + b for non-negative numbers a,b>0. O
F.10 Proof of Lemma D.9

Proof of Lemma D.9. The proof main idea is similar to that in Lemma D.8. For a glven k, let kst denote the

latest update episode before episode k, that is kjast < k < kiast +1. By definition, Qh( ) <L), On ke —1 +
Klast Klast

ke —1 V51 ) + Bl ')HH;LI o and Qh( ) Z{P()s Onbrai—1 + B koo —1 V355 — Blo(, ')HH};lkl .

Using

—k
api = ﬂ]ﬁ(shvk) = argmax @, (Spk, @),

acA
we then have
—k —k
(Vi = Vi) (snx) < (@), — QZ)(Sh oy Qh k)
T7Flas
< Lnes M1 (VST = V357) S
last =

(a) T7Klast " Y7 Fast t
< (Bnis (-1 — 1) (VT = V) + (b i (V3507 — Vi)

(b) Klast ¢
< 681 @nrlgrt | +<bnp i (Vi1 — Vi)

Lt Pa(Vier = Vi) (Shk, 0 k)
(@) > k
= 681bnklpr  + Vier = Vi) (she1e) + Xk
Here (a) uses equation F.5, (b) uses
—hlast .
[ n ks (B a1 — 15) (Vs = V55)))]

Kias Elas
- H(I’thklast71 - lj’h)<‘/vhl+1t Vh+1t)HHh,k1aStf1

< 280nnlpr  <2Bldnilp;

k ast k ast —k
on By (Br, (¢) uses (pnr, i (Ve —V3i25)) = Pr(V33T =V (snes ane) = Pa(Vi—Vi1) (n,ks an),s
and (d) uses the notation

—k —k
Xk = Pa(Vir1 = Vi) (snps ang) = (Vi = Vi) (snen,)- (F.10)
The last inequality implies
—k —k
(Vi = Vi) (sn) < (Vigr = Vi) (shran) + Xng + 65||¢h,kHH;;_l
Iterating the above inequality over h and using V’; 1) =V%.1(-) =0, we have

k

(V Vh Sh, k Z [ ikt Gﬂ”(bl’kHH;;q] . (F.ll)
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Using the last inequality, it follows that

K H .k . K H . . K H
D 2B (Vi = Vi) npsane) = D3 2 (Vi = Vi) (snw) + D5 Y Xk
k=1h=1

k=1h=2 1h=1

I K H
Z [ ik +85H¢i,kHH;;_l] + Z Z Xk

2i=h k=1h=1

b
I

//\?
1=
M=

ke
Il
-
>
Il

K H
(H—h+1) [Xh,k + 65H¢h7k”H;j€71] SIPIP N

k=1h=1

[
D=
M=

k

(b) K H K H
<6HB Y, D Ibnalpr  + D3 D) Xngb (F.12)
' k=1h=1

k=1h=2

1h

Il
N

where (a) uses equation F.6 and (b) uses the notation by, = 1 if h = 1; otherwise = H —h+ 2 for 2< h < H.
Clearly, we have |b,| < H for all h € [H].

We then need to analyze Zszl Zthl Xpkbn with X 1’s defined in equation F.10. Since spyi is

7k: N )
Fn1,p-measurable, Vi1, Vi, is Fp - 1-measurable, we have Xpx is Fi1,5-measurable. We also have
E[Xh k| Fn k] =0, [Xn k| < 2H and

—k
E[X7 1 Fn ] < E[(Vir = Vi) (Sne1x) | Foe]
(a) —k —k
< HE[ Vi1 — Vi1l (Sne1,6) | Fre) = HPL(Viyy — Viiir) (Sh, ank)

where (a) uses |VZ w1 = V5 1) < H. By the variance-aware Freedman inequality in Lemma G.2, with
probability at least 1 — 4, it follows that

K H
<3H+/i- HZZ (Vhit = VE ) (hans) + 10HH - (F.13)
k=1h=1

K H
Z Z Xn.ibn
k=1h=1

4[log, HK|
)

where ¢ = log . As a result, plugging equation F.13 into equation F.12, we have

K H
—k .
D 2 BV = Vi) (shs ang) < 3HVG- | H -

H
2] ‘/h+1 Vi 1) (S k)
k=1h=1 o

_|_

D

=

=
||MN

||¢h,kHH;;_l + 10HH..

Using the inequality that < 2(a? + b?) for any z < |a|/z + b2, we have

K H
2 2 (Vs = VE ) (s ane) < 12HB Y)Y |nilgg  +38H*Hu.
Palae] ,

k=1h=1
O
F.11 Proof of Lemma D.10
Proof of Lemma D.10. Recall that by = 1}, wp, and
—1
Wh ok = U;Hg’h,kHﬁ—l . As a result, we have U;}Cbmk = max {wp, k, Wn k- On the other hand,
’ h,k—1 s s
o}, = max APH - Ep o, Tk, ¢ b i als + Hd* H ) by ¢ - (A.5)
s Omin \/017 >
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Based on what value oy, i takes, we compose the full index set Z := [H] x [K] into three disjoint sets with
ties broken arbitrarily:

Ji={(hk) < [H] x [K]: 0}, € {02, d°H - By, Up )},
Jo = {(h,k) < [H] x [K] : 0 j, = 5 °b7 1.} »

o= { k) < U)X KT o = (o + P Y}

For simplicity, we denote zj, j := g’;—”; = max{wp, k, Wp,k}. Therefore,
K H 3
Z Z bh,k = 2 Oh,kZh,k = 2 Z Oh,kZh, k- (F14)
k=1h=1 (h,k)eZ i=1 (h,k)eJ;

Recall that k = dlog (1 + #), we have >, 17 2ji ), < 4Hrk. This is because

K H
D S D (Wi + @) )@ Z Z min {1 wf} + 2, D, min {1, 87 ¢}
k=1h=1

(h,k)eT (h,k)eT k=1h=1

b) K
< 4Hd1 1+ =4Hk.
og (14 gy ) = 4tk

mm

where (a) uses zp < co < 1 duetoopy = ¢y Ly, %, ¢o < 1 and (b) uses Lemma G.5. We will frequently use
the above inequality.

Now, we are ready to analyze the three terms in the RHS of equation F.14 respectively.

e For the first term, it follows that

Z ThkZhk S Z Z

(h,k)eJ1 (h,k)eT1 (h,k)eJ1
Z mm+d3H Ehk""Jhk: Z
(h,k)eTn (h,k)edn
Z m1n+d3H Ehk+Jhk Z
(h,k)eT (h,k)eT

< [HKoZ, + ) (dBH: By + Jug) - VAHE.
(h,k)eT

We provide a upper bound for 2211 Zthl E} i in Lemma F.2 whose proof is deferred in Appendix F.11.1.
Lemma F.2 (Sum of E}, ;). On the event By (). Ao,

3 B - (ﬂo +HoH ; Z Ibnlagy , + HEHE IOgW)‘

k=1h=1

where O(+) hides universal positive constants.

We also provide a upper bound for Zszl Z,Ij:l Jhk in Lemma F.3 whose proof is deferred in Ap-
pendix F.11.2.

Lemma F.3 (Sum of Jp, ;). Recall that Jp, = [@th +§A7hv:+1](shyk, ank) + Rk + Up i with Ry, i, Up
defined in equation A.8 and equation A.9 respectively. On the event Bg () By [ Bo (). Ao, with probability
at least 1 — 26,

SRS K& , 4[log, HK] 1
DD Ik =0 G K + [(Bo+ HBYH + Bre] Y, D bnk + H H%ogf +H0ilog5 :
=1 k=1h=1
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where G* is defined in equation 3.2 and O(-) hides universal positive constants.

Putting pieces together and using v/a + b + ¢ < v/a + Vb + /¢, we have

Z bk = Z on kg = O (VHH' K (HoZ, + g*)>

(h,k)eT (h,k)ed1

4[log, HK| 1
+(9<\/H/£-\/H3d37-[210g5—&-Ha]z%logé. (F.15)

+ 0O |VHk- \/[(ﬂo + HB)HAH + Br2] D bni

(h,k)eT

 For the second term, due to op, 1 = ¢ s &, we have zp, i = by x/onk = co <1 for all (h, k) € Jo. Hence,

1 sup Oh,k
2 (h,k)eZ Y h, 2
S b= N onemem D) onpsy < ALERE 51

(h,k)ETs (h,k)ET: €0 (4 e co (h,k)ETs
N I P, _4H
< sup = Bab— J Z 2 < r (F.16)
(h.k)eT “ (h,k)eT gVA
where the last inequality uses \% for any
(h,k)eT.
e For the third term, cr,%’k = (% + HdZ'E’H) b i, and thus oy, = <% + 7-Ld2'5H) zn,x- Hence,
w 2.5 2
Z bh,k = Z OhkZhik = | —/— + Hd*>H 2 Zh k
Ved ’
(h,k)eTs (h,k)eTs (h,k)eTs
W W
< +Hd*5H 27 . < 4Hk - ( + %d2~5H> . F.17
(o ) T i (F.17)

(h,k)eZ

Combing equation F.15, equation F.16 and equation F.17, we have

> bk =0 0+@\/[(60+H5)Hd3H+ﬁRz- S b

(h,k)eT (h,k)eT
where
C=vVHk /K (H +G*) + Hr - (W ! +7—Ld2“H>
mln F \/>
4|log, HK 1
+VH/@-\/H3d3’H210g[Og3] -I—Ha}?%logg.

Using the inequality that < 2(a? + b?) for any x < |a|\/z + b%, we have

> buk =0 (C+ H*MHrd® (By + HB) + Hrfpe) .
(h,k)eZ

In the following, we are going to 51mphfy the last inequality. For simplicity, we will use (9() to hide
logarithmic factors. Notice that x = O(d). By setting A = +W2, we have Bz = By = O(Vd) and

o1
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thus 8 = By + Br = O(Vd). Moreover, fr> = (5(\/E+\/E%+\f)\w) — @(ﬁJr\/E%) and
Bo =0 (‘/dTH +\ﬁ7-[) (WH +\f) Therefore,

D1 bug =0 (C+ H*Hrd® (By + HB) + HrBr2)
(h,k)eT
H23d55H? + Hd'Po e

Umln

—0(C)+0 ( + H3dYH + Hd1'5) .

We then analyze C. Using v/a + b < y/a + /b for non-negative numbers a,b > 0, we have
C = O (VAHKG + Hd" K %0y, + HAd W + Hd*H + Hd" o + Hd) .

Putting the results together, we have

H2'5d5'57'[2 + Hd1'50R2

Omin

D obpr=0 (x/dHKg* + Hd*® K% g +

+ H3d*"H + Hd*oR + Hd1'5> )
(h,k)eZ

O

F.11.1 Proof of Lemma F.2

Proof of Lemma F.2. By the definition of E}, j, in equation A.7, it follows that

sk
ff{ifl4_?{'[Ph%i‘/h+1“liﬁ+1)](Smk7ah¢)]

k=1h=1
@ K H .
< Z Z [47{50 M [Ph(vﬁ+1 —K’ZH)] (sh,kaah,k)]
k=1h=1

b) K H Ao H K
< (4o + 16HB)H - > ), 1+ 38H*H?log %

k=1h=1 Bt

K H

4[log, HK|
<(5O 7 1;1 ;1 - 8 0

~ —k —k
where (a) uses ’[(]P’h,k = Pr)Vi11(sn ks ah,k)‘ = K&nk: (np—1 = 15)V i)l < Bolldn il g1 on By and (b)
follows from Lemma D.9. ' O

F.11.2 Proof of Lemma F.3
Proof of Lemma F.3. By Lemma D.3, on the event B, we have ‘[@'hﬁfh — ViRi](Sh ks ah7k)‘ < Ry, forallh e

[H] and k € [K]. By Lemma D.5, on the event By () By, [@hvlzﬂ](sh’bah,k) < [VaViE)(Shks ank) + Uk
for all h € [H] and k € [K]. Therefore,

K H

K H
Z Z Z Z Vth + thh+1](5h ks Qh, k
=1

k=1h=1
I)+ (1) + (I11).

||MN

H K H
Z hk+2ZZUhk
he1 k=1h=1

kol

>

—~

For the term (III), we have

>

k=1h

K H
S~k
Unk =, ), [11%60 Apnple |+ 4 Prs(Vin *K]ZH)(Sh.,kaah,k)]

1 k=1h=1

M=
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sk —1

K H

a —k

< 2 > [19%/30~||¢h,kuH;1 +AH PV fz,’i+1><5h,k7ah,k)]
k=1h=1

®) 5T 4Mlog, HK
< (1980 + 64HB)H Z D I bnnlg 1 +152HH log %, (F.18)
k=1h=1 !

1 on By; and
-1

~ —k —k
where () uses |[(Ba = Pu) Vi1 1(n )| = Kbns (s = Vi)l < B
(b) follows from Lemma D.9.

For the term (IT), we have

K H K H
Z Z Ry 1 = Bre Z Z
—1 k=1h=1

K H
ey +2’HBR];”; |bnrlpzr - (F.19)

We provide two ways to analyze the term (I).

e On one hand, we denote X}, = Zthl[Vth + Vi Vi 1(Sh.k, ank) for simplicity. Let Gy := Fp i be the
o-field generated by all the random variables over the first k£ episodes. Then 7 is Gy_i-measurable,
X) = 0 is Gy-measurable, and | X;| < H(0% + H?). Therefore, | Xy — E[Xy|Gr—1]| < H(c% + H?) and
Var[Xy|Gr—1] < H(0% + H?) - E[Xk|Gr—1]. By the variance-aware Freedman inequality in Lemma G.2,
with probability at least 1 — §, we have

N S S 2[log, K|
> Xk E[Xi|Fr1] + 3, | H(o% + H2) ZIEXHgkllogT
=1 k=1 k=1
2[1 K
+ 5H (0% + H?)log 7[ 0%52 I
K
2[1 K
Z [Xp|Fro1] + TH(0% + H?) o 7[0%52 ].
Notice that
H
E[X|Fr—1] Z [VihRy + ViR Vi (kg ank) gk—l]
h=1

H
Z sy~ [VaRa + ViV (s, )

where d*(s,a) = P™ (sp, = s,an = a|sg = s1,x) is the probability reaching (sp k,ank) = (s,a) at the h-th
step when the agent starts from s; ; and follows the policy 7. Therefore, we have

Sho 2 [logy K1
§ § sy (VB + VAViE 1(s5,0) + TH(0% + H2) log fji
201
<3GEK + TH(o% + H2) log [Og; K]

where

K H
1
K 2 Z (s.a)~d7* [ViRn + VaViTt | (s, ).

k=1h=1

e On the other hand, we have

K H K H
1) = Z Z [ViViiir = ViVt ] (shoks ank) + Z Z[Vth + ViVt 1(sh ks ank)
k=1h=1 k=1h=1
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equation F. 20

K H K H
< Z Z Vh+1 Vit 1) (Sh,ks Qi) Z Z [VaRy + ViV (shk, an k)
k=1h=1 k=1h=1

K H

. 1

H- 3N Pu(Vigr — Vi) (snws an) + 2V2K + 2H (0% + H) log 5
k=1h=1

. 4[log, HK|

K H
2 21742
<V?’K +2H (0% + H )log + 16HBH g ; |fnill gz +T6HH 1o 5

4[logy, HK|

1

K H
<2V’K + 16HBH Y| ). L+ T8H?*H?log
-1
k=1h=1

where the first inequality uses equation F.20, the second inequality uses Lemma F.4, and the third
inequality uses Lemma D.8.

[VRViE s = VaViiE ] (shks ang) = Pr[ViE 1 1P (Shoks ang) — [PaViE 1 (Shoks ang)]?
— (Pu[V 1P (shokes ane) — [Pa Vi (S ane)]?)

(a)
PulViE ) sk ang) — Pr[Vire 1P (s, an )

®) B
< 2H - Pr(Viy — Vi) (Shoks an k)

(o) —k =

< 2H - Pr(Vigs — Vi) (Snk, angk) (F.20)

where (a) uses V¥ (-) = V7 (¢), (b) uses V¥ () < V¥, (-) < H, and (c) uses Lemma D 4.

Finally, we are going to put the pieces together. In order to simplicity notation, we use by =
max{|@nrllg-—1 ,|Pnilg- }and = By + Br. From the first bullet point, we have
’ hok—1 hk—1

SRS K& 4log, HK] 1
ZZJh,k:O G5 - K+ [(Bo+ HB)H + Bre] - ZEbh,k+H2'H2logf+H0?{10g5 .

k=1h=1 k=1h=1

From the second bullet point, we have

SR 5 & 4flog, HK 1
DD Ik = O [ V2K + [(Bo + HBYH + Br2] Z Dbk + H*H?log =——2—— + Hoplog < | .
=1 k=1h=1

Taking minimum of the last two inequalities and using min {96", VQ} < G* complete the proof. O

F.11.3 Proof of Lemma F.4

Lemma F.4 (Total variance lemma). With probability at least 1 — §, we have

K H

. 1
D VR, + VaViE U(snns an) < 2V2K + 2H (0% + H?) log 5
=1h=1

Proof of Lemma F.4. The proof uses a similar argument as Lemma C.5 in (Jin et al., 2018). Notice that the
first state sqx is fixed and aj, = 7F(spk). Therefore, (sak, - ,Smx) is a sequence generated by following
policy 7 starting at s; ;. Let Gy be the o-field generated by all the random variables over the first k
episodes. X}, = Zle[Vth + Vi V¥ 1(Sh,ks an). We have the following properties about X. Clearly 7y is
Gr—1-measurable, Xy > 0 is Gy-measurable, and | Xy | < H(c% + H?).

Let Ey(-) := E[-|Gk] for simplicity.

V2>FE Z Ri(shksank) — Vi (s1k)
h=1

o4
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s
&
&=
o

H
Z (Rn (85> an k) + Viiky (snr1m) = Vi (sn))
h=1

—

—1 [Ru(snks ang) + Vit (snee) — Vit (Sh,k)]2

1=
M=
=

>
Il
—

T T 2
Er_1 [[Rh —rn)?(Snes ange) + [ra(Sn, ane) + Vit (she1ne) — Vi (sne) ] ]

1=
M=

>
Il
—

H&

bi4
2 ViR + ViV 1 (shoks ang) = B[ Xk Fr_1]

where (a) uses V5% (-) = 0, (b) uses the independence due to the Markov property, (c) holds since
Ry (Sh,k, n,i) is independent with sj, 41, conditioning on (sp k, an,k), and (d) uses V"™ (sp) = 7 (Sh,ks Ghk) +
ESh+1,k~Ph(-|sh,k,ah,k)[V}fjl(Sthl,k)]' USing Var[Xk|gk71] < H(O’}zzi + H2) . IE[.X’]Jgkfl]7 we have

N

K
Z Var[Xy|Gr_1] < H(o%, + H?) - Z [Xk|Gr1] < (0F + H)V?HK.
k=1 k=1

By the Freedman inequality in Lemma G.1, with probability at least 1 — §, we have
K H
D 2 ViR + ViVt 1 (ks an k)
k=1h=1

g g 1 2 1
= Z Z [ X5 | Fr—1] \/2(012% + H2)V2HK log — + = H(0% + H?)log 3
-1 k=1

>

o 3

< VK + 2\/1/21( - H(o% + H?) log% + ;H(a% +H?) log%

1
< 2V?°K + 2H (0% + H?) log 5

G Auxiliary Lemmas

G.1 Concentration Inequalities

Lemma G.1 (Freedman inequality (Freedman, 1975)). Let {X},c[r] be a stochastic process that adapts to

the filtration F; so that X is Fi;-measurable, E[X;|F;—1] = 0, | X¢| < M and ZtT=1 E[X?|Fi—1] <V where
M > 0 and V > 0 are positive constants. Then with probability at least 1 — §, we have

T
oM 1
<yf2vins+ 2l
L Xesq[2Ving+Sming

Lemma G.2 (Variance-aware Freedman inequality). Let {X;},c[7] be a stochastic process that adapts to

the filtration F; so that X; is Fi-measurable, E[X;|F;—1] = 0, | X;| < M and Zthl E[X?|F;—1] < V? where
M > 0 and V > 0 are positive constants. Then with probability at least 1 — §, we have

T
2K 2K
<3y | D E[X?|Fi4] log7+5Mlog 5

t=1

T
Z X,
t=1

where K =1+ [2log, 15]-
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Proof of Lemma G.2. By Theorem 5 in (Li et al., 2021), we have for any positive integer K > 1,

P >1-4.

T
2, X
t=1

T
V2 2K 4AM . 2K
< SmaX{ZE[Xf}}_l],%}lné-&-31115
t=1

By setting K = 1 + [2log, 17|, we have ;/—; < M?. Using max{a,b} < a + b, vVa + b < y/a + /b for any
a,b>0and In % > 1, we complete the proof. O

The following two lemmas are the counterpart lemmas of Theorem 2.1 under the light-tail assumption.

Lemma G.3 (Bernstein’s inequality for self-normalized martingales, Lemma F.4 in (Hu et al., 2022)).

Let {G:}i=0 be a filtration and {x;,7;:}¢+=0 be a stochastic process so that x; € R? is G;-measurable and

n € R is Gypi-measurable.. If x| < L and {n;};>1 satisfies that E[n|G:] = 0, E[n?|G:] < o2 and

|n; min {1, |2e] ;- } | < M for all t = 1. Then, for any § € (0, 1), with probability at least 1 — d, we have for
t—1

allt > 1,

¢
tL? 442 442
Z T;n; < 80\/dlog (1 + d>\> log 5 +4M log 5
Jj=1 Zt_l

where Z, = \I + Z;:l :cjij for t > 1 and Zy = M.

Lemma G.4 (Hoeffding inequality for self-normalized martingales, Theorem 1 in (Abbasi-Yadkori et al.,
2011)). Let {G;}¢=0 be a filtration and {z;,n;}+=0 be a stochastic process so that x; € R? is G;-measurable
and n; € R is Gy1-measurable.. If |z < L and {n;};>1 satisfies that E[n;|G;] = 0 and |n;| < M for all ¢t > 1.
Then, for any ¢ € (0, 1), with probability at least 1 — §, we have for all ¢ > 1,

t
tL? 1
ijnj éM\/dlog (1+d)\>+10g5
Jj=1 Z;l

where Zy = AT + Y., @;a] for t > 1 and Z, = AL

G.2 Elliptical Lemmas

Lemma G.5 (Lemma 11 in (Abbasi-Yadkori et al., 2011)). Let {x;};>1 = R? and assume |z;| < L for all
t>1. Set Zy = 3, xx; + . Then it follows that

T
d\ + TL?
inq{1 2 < 2d1 —_— .
$: it} < i (2472

Lemma G.6 (Lemma 12 in (Abbasi-Yadkori et al., 2011)). Suppose A, B € R4*? are two positive definite
matrices satisfying that A > B, then for any = € R?,

det(A)
det(B)’

lz|p-1 < [®]a-

G.3 Function Class and Covering Number

This subsection collects important lemmas in (He et al., 2022). Let K = {k1, k2, - - - } denote the set of episodes
where the algorithm updates the value function in Algorithm 3. For a given total number of episodes K, it
follows that || < K. Furthermore, due to the mechanism of rare-switching value function updates, |K| is
much smaller than K.

)

min .

Lemma G.7.

|K] < dH log, (1 352
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Proof of Lemma G.7. The proof is almost identical to Lemma E.1 in (He et al., 2022) except that we maintain
the dependence on oyn,in. According to the determinant-based criterion, for each episode k;, there exists a
stage h' € [H] such that det(Hp k,—1) = 2det(Hp , ,—1). Since we always have Hj, ,—1 > Hp , ,—1 for
all h € [H], it then follows that

[] det(Hng, 1) =2 [ det(Hnr,_, 1)
he[H] he[H]
By induction, it follows that

n det(Hh,k“C_l) > 2“q n dEt(Hh,klfl) > 2|K:| H det()\I) _ 2\K|>\dH
he[H] he[H] he[H]

On the other hand, due to thkmfl < Hj, i the determinant det(Hh’km,l is upper bounded by

K dH
[ det(Hppp—1) < [] det(Hnx) < ()\+ ) :

he[H] he[H] Uml

Combining the last two inequalities, we have

K
|IC<dHlog2< o >

min

—k —k; .
The optimistic value function V' (-) = ming, < max, @} (-, a) belong to the function class V't

= {f|f<-> — max min min {w] ¢ (., a) + Blo(,a)| 1 H |, B € [0, Bl |wil < L, H; > u} SEN(ER)

aeA i<|K|

while the pessimistic value function V() = maxy, <} max, Q:(, a) belong to the function class V™,

_—{ff() maxmaxmax{w o(,a) — ﬂ|¢(-7a)|Hi_1,7-l},ﬂe[07B],||wi<L,Hiz)\I}. (G.2)

acA i<|K|

Here B upper bounds f and L = W + H is a uniformly bound for 8y 1 + pp k- 1V,L+1 because

K —k dK
10nk—1 + Ba g1 Vi | < 10ns—1ll + lpnn—1 Vil < Wt Hy\[ ==

2K (whose

where the last inequality uses the boundedness of 8}, ;.—1’s and the inequality ||uh,k,1vl;+1 | <H
proof can be found in Lemma E.2 of He et al. (2022)).

Lemma G.8 (Covering number of value functions). Let V* denote the class of optimistic or pessimistic value
functions with definition in equation G.1 and equation G.2 respectively. Assume |¢(s,a)| < 1 for all (s, a) pairs,
and let N'(V, ) be the e-covering number of V with respective to the distance dist(f, f’) := sup,es | f(s)—f'(s)].

Then,
4L d'?B?
log N(V*,¢) < [dlog( )+d2log <1+ 8A82)] K.

Proof of Lemma G.8. The result about V}’ follows from Lemma E.6 in (He et al., 2022). The result about
V; follows from Lemma E.7 in (He et al., 2022). O

Lemma G.9 (Covering number of squared functions, Lemma E.8 in (He et al., 2022)). For the squared
function class [VT]? := {f2|f € VT}, let N([V*]?,¢) be the e-covering number of [V*]? with respective to
the distance dlst(f, f ) i=Sup.es |f(s) — ( )|- Then

32dY2H?B?
e )] 1K

log N ([VT]%¢) < [dlog (1 + 8H€L) + d?log <1 +

o7
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