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Abstract

This paper studies how to achieve variance-aware regrets for online decision-making in
the presence of heavy-tailed rewards with only finite variances. For linear stochastic ban-
dits, we address the issue of heavy-tailed rewards by modifying the adaptive Huber re-
gression and proposing AdaOFUL. AdaOFUL achieves a state-of-the-art regret bound of
rO
`

d
`
řT

t“1 ν2
t

˘1{2
`d

˘1 as if the rewards were uniformly bounded, where ν2
t is the conditional

variance of the reward at round t, d is the feature dimension, and T is number of online
rounds. Building upon AdaOFUL, we propose VARA for linear MDPs, which achieves a
variance-aware regret bound of rOpd

?
HG˚Kq. Here, H is the length of episodes, K is the

number of episodes, and G˚ is a smaller instance-dependent quantity that can be bounded by
other instance-dependent quantities when additional structural conditions on the MDP are
satisfied. Overall, our modified adaptive Huber regression algorithm may serve as a useful
building block in the design of algorithms for online problems with heavy-tailed rewards.

1 Introduction

In many real-world scenarios, data exhibit heavy-tailed behaviors, which deviate significantly from classical
assumptions in statistical analyses. Examples include stock returns in financial markets (Cont, 2001; Hull,
2012), microarray data analysis (Posekany et al., 2011), and advertiser values in online advertising (Arnosti
et al., 2016). Such heavy-tailed distributions pose challenges to conventional algorithmic designs that often
hinge upon uniformly bounded or sub-Gaussian reward assumptions.

Many works studying decision-making under uncertainty focus on the multi-arm bandit problem and its
extension, the linear bandits. Regret analysis in this domain seeks to understand the suboptimality of
algorithmic choices. However, traditional analyses often limit their applicability by assuming uniformly
bounded or sub-Gaussian rewards. Some recent approaches address heavy-tailed behaviors by truncating
rewards to achieve sub-linear worst-case regret bounds (Bubeck et al., 2013; Medina & Yang, 2016; Shao et al.,
2018; Xue et al., 2021). Nevertheless, these truncation-based methods encounter estimation errors dependent
on absolute moments of observations, not their central moments, suggesting suboptimality, especially in
noiseless situations.

While linear bandits offer a general enough setting for understanding decision-making with heavy-tailed
data, reinforcement learning (RL) elevates this understanding to long-horizon decision-making processes. In
RL, agents not only make decisions but also navigate through potentially infinite state and action spaces

1
rO hides constant factors and logarithmic dependence on T .
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over a given horizon (Sutton & Barto, 2018). RL demonstrates remarkable empirical successes in various
applications, including robotics (Lillicrap et al., 2015), dialogue systems (Li et al., 2016), and Go play (Silver
et al., 2016). Recent theoretical advances have expanded RL’s applicability, especially with linear function
approximation in the context of linear Markov decision processes (MDPs) (Yang & Wang, 2020; Jin et al.,
2020b;a; Wagenmaker et al., 2022b; Zanette et al., 2020; Ayoub et al., 2020; Zhou et al., 2021). More recently,
the shift from worst-case regret analysis to variance-aware regret analysis in RL offers more nuanced insights
into agent performance (Pananjady & Wainwright, 2020; Khamaru et al., 2021; Li et al., 2023; Yin & Wang,
2021; Min et al., 2021). More specifically, variance-aware regrets depend on the variances of rewards and
value functions and provide finer guarantees than worst-case bounds by characterizing problem-dependent
performances across different problem instances. Yet, the challenge posed by heavy-tailed rewards remains.

This paper explores the intersection of decision-making under heavy-tailed rewards, ranging from linear
bandits to RL applications. We use the term heavy-tailed rewards throughout the paper to refer to the rewards
that have only finite variances. We aim to achieve the variance-awareness and address the heavy-tailed issue
simultaneously. A desirable algorithm should have the following two properties. First, it should possess
the flexibility to function as a module, enhancing algorithms originally designed for bounded rewards to
accommodate heavy-tailed rewards. Second, it should attain tight variance-aware regret bounds based on
central moments, rather than absolute moments.

1.1 Our contributions

We provide a particular algorithm satisfying the mentioned characteristics. Our solution is motivated by
adaptive Huber regression (Sun et al., 2020; Sun, 2021), which was originally proposed for analyzing offline
independently and identically distributed (i.i.d.) data. It uses the (pseudo-) Huber loss to estimate the
unknown coefficient with a universal robustification parameter. We adapt this method for online bandits and
carefully choose different robustification parameters to handle non-i.i.d. data. The resulting algorithm, called
AdaOFUL, short for Adaptive Huber regression based OFUL, achieves the state-of-the-art regret bound
rO
´

d
b

ř

tPrT s ν2
t ` d

¯

for linear bandits with heavy-tailed rewards, where ν2
t is the observed conditional

variance of the random reward at step t and d is the feature dimension. Here rOp¨q hides constant factors and
logarithmic dependence on T .Such a variance-aware regret bound has only been obtained in the literature of
linear bandits with sub-Gaussian or uniformly bounded rewards (Kirschner & Krause, 2018; Zhou & Gu,
2022). In contrast, truncation-based methods are suboptimal due to their estimation errors that depend on
absolute moments instead of central moments. For example, the truncation-based algorithms from (Shao
et al., 2018; Xue et al., 2021) yield regret in the form of rO

`

vd
?

T
˘

where v2 is the bound for the second
moment of random rewards. Our regret bound depends on the central moment instead and is thus tighter.

Using AdaOFUL as a building block, we then propose the Variance-Aware Regret via the Adatptive Huber
regression (VARA) algorithm for linear MDPs with heavy-tailed rewards. In essence, VARA integrates
AdaOFUL with the state-of-the-art worst-case algorithm LSVI-UCB++ from (He et al., 2022), enhancing
regret performance through more careful analysis and resulting in a regret bound of rOpd

?
HG˚Kq. Here

H is the horizon length and G˚ is a variance-aware quantity bounded by the sum of weighted per-step
conditional variances. Our regret bound is superior to the current state-of-the-art bounds in three ways. First,
it depends on a tighter instance-dependent quantity G˚ without knowing the value of G˚ in advance and
has optimal dependence on d and H. Second, assuming additional structural conditions on the underlying
MDP, we can obtain further instance-dependent bounds of G˚, including range-dependent, first-order, and
concentrability-dependent bounds. Third, our regret bound rOpd

?
HG˚Kq is valid even when rewards have

only finite variances, which achieves a level of generality that is unmatched by previous works.

Our findings indicate that heavy-tailed rewards do not pose a limitation for developing online decision-making
with linear function approximations. Our proposed modified adaptive Huber regression algorithm can be
used as a general approach to adapt existing online algorithms designed for light-tailed rewards to handle
heavy-tailed ones while maintaining tight dependence on variance for regret bounds.
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Overview The rest of the paper proceeds as follows. We state our main results for heavy-tailed linear
bandits in Section 2 and for linear MDPs in Section 3. We review related work in Section 4 and conclude in
Section 5. Most proofs are collected in the appendix.

Notation We use } ¨ } to denote the ℓ2-norm in Rd, and BalldpBq the ℓ2-norm ball in Rd with radius
B ą 0. For a positive definite matrix H P Rdˆd, }x}H “

?
xJHx for a vector x P Rd. For two semidefinite

positive matrices H1,H2, we denote H1 ľ H2 if H2 ´H1 is semidefinite positive. For an integer K P N`,
let rKs :“ t1, 2, ¨ ¨ ¨ , Ku. For a set A, |A| denotes its cardinality. For real numbers a ď b and x P R, we use
xra,bs :“ maxta, mintx, buu to denote the projection of x onto the closed interval ra, bs.

2 Variance-aware Regret for Heavy-tailed Linear Bandits

In this section, we first introduce the heavy-tailed linear bandit and then present the AdaOFUL algorithm,
showing it achieves state-of-the-art variance-aware regret even when faced with heavy-tailed rewards.

2.1 Heavy-tailed Stochastic Linear Bandit

Definition 2.1 (Heavy-tailed stochastic linear bandit). Let tDtutě1 denote a fixed sequence of decision sets
and tFtutě1 a filtration. At round t, the agent chooses ϕt P Dt and then observes the reward yt and its
conditional variance ν2

t . We assume yt “ xϕt,θ
˚y ` εt where θ˚ P Rd is a vector unknown to the agent and

εt P R is a martingale difference random noise such that Erεt|Ft´1s “ 0 and Erε2
t |Ft´1s “ ν2

t . Both νt and
ϕt are Ft´1-measurable and }ϕt} ď L. We assume }θ˚} ď B with B known a priori. The agent aims to
minimize the regret, formally defined as

RegpT q :“
T
ÿ

t“1

«

sup
ϕPDt

xϕ,θ˚y ´ xϕt,θ
˚y

ff

. (2.1)

In heavy-tailed stochastic linear bandits, the mean-zero random noises εt have only bounded variances. We
emphasize that in linear bandits, data are collected adaptively, and therefore, the distribution of εt depends
on ϕt. Moreover, the choice of ϕt depends on all past observations pϕs, ys, νsqsăt.

2.2 Algorithm Description

This section presents the AdaOFUL algorithm for heavy-tailed linear bandits. The AdaOFUL algorithm is
given in Algorithm 1. AdaOFUL follows the principle of Optimism in the Face of Uncertainty (OFU) (Abbasi-
Yadkori et al., 2011) to solve the heavy-tailed heterogeneous linear bandit problem. At each round t, it
maintains a confidence set defined in equation 2.2 such that θ˚ P Ct uniformly for all t ě 1 with high
probability when the exploration radius βt´1 is properly chosen. Unlike the standard OFUL algorithm
(Abbasi-Yadkori et al., 2011) which directly selects the most optimistic estimator rθt to make an arm selection
ϕt, AdaOFUL uses adaptive Huber regression to compute a new estimator θt that takes into account the
heavy-tailed rewards. The agent then selects the arm ϕt that maximizes the inner product xϕ,θy over
θ P Ct´1. After playing the selected arm, the agent observes the reward yt and its conditional variance νt.
The last step of round t updates the exploration radius βt and the shape matrix Ht for the confidence set
construction.

Adaptive pseudo-Huber regression The pseudo-Huber loss (Hastie et al., 2009; Sun, 2021) is defined as

ℓτ pxq “ τp
a

τ2 ` x2 ´ τq, (2.5)

which is a smooth approximation to the well-known Huber loss (Huber, 1964). Similar to the Huber loss, the
pseudo-Huber loss resembles a quadratic function for small values of |x| and is approximately linear when x
is large in magnitude, making the loss strongly convex when close to the origin and less sensitive to changes
in the tails. The parameter τ controls the balance between the quadratic and linear regions and is referred
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Algorithm 1 Adaptive Huber regression based OFUL (AdaOFUL)
Initialization :H0 “ λI,θ0 “ 0, β0 “

?
λB, c0 “ 1

6
b

3 log 2T 2
δ

, c1 “ 1
42¨log 2T 2

δ

, σmin “ 1?
T

.

1 for t “ 1 to T do
2 Construct the confidence set Ct´1 as in

Ct´1 :“
␣

θ P BalldpBq : }θ ´ θt´1}Ht´1 ď βt´1
(

. (2.2)

3 Solve pϕt, ¨q “ argmaxϕPDt,θPCt´1 xϕ,θy.
4 Play ϕt and observe pyt, νtq.
5 Set σt, wt and τt according to the following equation and record tσs, ws, τs : 1 ď s ď tu.

σt “ max

$

’

&

’

%

νt, σmin,
}ϕt}H´1

t´1

c0
,

?
LB}ϕt}

1
2
H´1

t´1

c
1
4
1 d

1
4

,

/

.

/

-

, wt “

›

›

›

›

ϕt

σt

›

›

›

›

H´1
t´1

, τt “ τ0

a

1 ` w2
t

wt
. (2.3)

6 Compute θt by minimizing the following convex problem

θt :“ argmin
θPBalldpBq

Ltpθq with Ltpθq :“ λ

2 }θ}2 `

t
ÿ

s“1
ℓτs

ˆ

ys ´ xϕs,θy

σs

˙

. (2.4)

7 Define the confidence set radius βt as in equation 2.6 and set Ht “ Ht´1 `
ϕt

σt

ϕJ
t

σt
.

8 end

to as the robustification parameter by Sun et al. (2020) in the case of the Huber loss. Since the value of
the robustification parameter needs to be adaptive to the data for an optimal tradeoff between robustness
and unbiasedness, we shall also refer to the pseudo-Huber regression with a data-adaptive τ as adaptive
pseudo-Huber regression or simply adaptive Huber regression, in line with Sun et al. (2020).

To compute the pseudo-Huber estimator θt for θ˚, given the history tpϕs, ys, νsqusPrts up to time t, we solve
the the convex optimization problem in equation 2.4 (Sun, 2021). Recall that σt’s are surrogate conditional
variances, and τt’s are the robustification parameters, given by equation 2.3, in which σmin is a small positive
constant to avoid singularity, τ0 is a hyper-parameter, wt’s are importance measures, c0 and c1 are specified
in Algorithm 1, and L and B are constants defined in Definition 2.1.

Robustification parameter As shown in equation 2.3, the robustification parameter τt is set differently
for each data point pϕt, yt, νtq in the pseudo-Huber regression. This is a significant departure from the case
of i.i.d. data, where all robustification parameters are typically set to the same value τ , as i.i.d. data are
naturally weighted equally (Sun et al., 2020). In linear bandits, the data are generated adaptively, where
the choice of ϕt can depend on all past observations. Since observations collected in later rounds are less
important as they are based on previous observations and contribute less to the estimation accuracy, we
assign greater weight to earlier observations. To measure the importance of the t-th observation, we use
wt “ }ϕt}H´1

t´1
{σt as the importance measure for the t-th observation and set τt “ τ0

a

1 ` w2
t {wt as the

corresponding robustification parameter.

When taking τ0 “ 8, the optimization problem in equation 2.4 reduces to weighted regularized least-squares,
which has been proven to achieve worst-case optimality for linear bandits with uniformly bounded or sub-
Gaussian rewards (Kirschner & Krause, 2018; Zhou & Gu, 2022). However, an appropriate value of τ0 is
necessary to balance robustness against heavy-tailed rewards and asymptotic unbiasedness. In Corollary 2.1,
we will demonstrate that setting τ0 “ rOp

?
dq is sufficient to achieve the state-of-the-art regret bound.
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Variance estimates We choose σt ě
?

LB}ϕt}
1
2
H´1

t´1
{pc

1
4
1 d

1
4 q, which implies c1d ě L2B2w2

t {pσ2
t q. This

condition is used to lower bound the Hessian matrix ∇2LT pθq. For any θ P BalldpBq, we expect ∇2LT pθq «

HT up to universal constant factors to proceed with theoretical analysis. A direct computation yields
∇2LT pθq ĺ HT , while for the other direction we show ∇2LT pθq ľ

´

c ´ suptPrT s |xϕt,θ
˚ ´ θy{pτtσtq|

2
¯

HT

for some universal constant c ą 0 with high probability. With the last condition on σt, for any feasible
solution θ P BalldpBq, the following quantity

ˇ

ˇ

ˇ

ˇ

xϕt,θ
˚ ´ θy

τtσt

ˇ

ˇ

ˇ

ˇ

2
ď

}ϕt}
2}θ˚ ´ θ}2

τ2
t σ2

t

ď
4w2

t L2B2

τ2
0 σ2

t

ď
4c1d

τ2
0

can be sufficiently small provided that τ2
0 ěc ¨ d for a sufficiently large constant c ą 0.

2.3 Regret Analysis

We first validate that the optimism holds with high probability in Theorem 2.1 and then establish a high
probability bound for the regret in Theorem 2.2.
Theorem 2.1. Let κ “ d ¨ log

`

1 ` TL2{pdλσ2
minq

˘

. For the heavy-tailed linear bandit in Definition 2.1, if
τ0
a

logp2T 2{δq ě maxt
?

2κ, 2
?

dLBu, then with probability at least 1 ´ 4δ, it holds that, for all 0 ď t ď T ,

}θt ´ θ˚}Ht
ď βt,

where

βt “ 32
ˆ

κ

τ0
`

c

κ log 2t2

δ
` τ0 log 2t2

δ

˙

` 5
?

λB. (2.6)

Theorem 2.1 establishes that θ˚ is contained in the set Ct :“ tθ P BalldpBq : }θ ´ θt}Ht
ď βtu for all t ě 0

with high probability. It is proved by using Bernstein-type concentration inequality for self-normalized
vector-valued martingales with additional care paid to deal with heavy-tailed rewards. See the next subsection
for a proof sketch.
Theorem 2.2. Let σmin “ 1{

?
T . Then with probability at least 1 ´ 4δ, we have

RegpT q ď 2βT ¨

»

–

?
2κ ¨

g

f

f

e

T
ÿ

t“1
ν2

t ` 1 `
2Lκ

c2
0
?

λ
`

2LBκ
?

c1d

fi

fl

where βT is defined in equation 2.6, and c0, c1 “ rOp1q are positive constants given in Algorithm 1.

Theorem 2.2 provides a regret bound in a general form that depends on βT . As shown in equation 2.6, βt

is a hyperbolic function of the robustification parameter τ0. Increasing τ0 decreases the bias term O pκ{τ0q

while increasing the range term O
`

τ0 logp2t2{δq
˘

. Therefore, choosing τ0 carefully is essential to achieve the
optimal trade-off between unbiasedness and robustness. Setting τ0 “ rOp

?
dq minimizes the right-hand side

of equation 2.6. This, combined with Theorem 2.2, yields the simplified regret bound equation 2.7 in the
following corollary.
Corollary 2.1. Let τ0 “ max

␣?
2κ, 2

?
d
(

{
a

logp2T 2{δq and λ “ d{B2, then βT ď

64
´

2
a

κ logp2T 2{δq `
a

d logp2T 2{δq

¯

` 5
?

d. Consequently, the regret bound in Theorem 2.2 becomes

RegpT q “ rO

¨

˝d

d

ÿ

tPrT s

ν2
t ` d ¨ maxtLB, 1u

˛

‚, (2.7)

where rOp¨q hides constant factors and logarithmic dependence on T .
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Corollary 2.1 demonstrates that AdaOFUL achieves state-of-the-art regret bound under heavy-tailed rewards,
comparable to the case where rewards are uniformly bounded or sub-Gaussian. The regret upper bound in
the noiseless case reduces to rOpdq, and in the noisy case, it reduces to rOpd

b

ř

tPrT s ν2
t q. In the worst case

scenario where νt “ Θp1q for all t ě 1, the regret bound reduces to rOpd
?

T q, which matches the worst-case
minimax lower bound (Dani et al., 2008). Hence, our variance-aware regret bound equation 2.7 is tighter
than the pessimistic worst-case bound rOpd

?
T q when

řT
t“1 ν2

t ! T . To the best of our knowledge, such a
variance-aware regret bound has only been obtained in the literature for sub-Gaussian rewards (Kirschner &
Krause, 2018) or uniformly bounded rewards (Zhou & Gu, 2022). We are the first to provide a variance-aware
regret bound for heavy-tailed stochastic linear bandits.

2.4 Proof Sketch of Theorem 2.1

Step one: Hessian approximation Let ztpθq :“ yt´xϕt,θy

σt
and κ :“ d log

´

1 ` T L2

dλσ2
min

¯

for simplicity.

Lemma 2.1. Assume there exists a constant b ą 0 such that Erz2
t pθ˚q|Ft´1s ď b2 for all t ě 1. If

τ0

b

log 2T 2

δ ě maxt
?

2κb, 2
?

du, then with probability at least 1 ´ 2δ, for all T ě 0 and any }θ} ď B,

1
4HT ĺ ∇2LT pθq ĺ HT .

Lemma 2.1 shows that with high probability and up to constant factors, ∇2LT pθq approximates HT well
uniformly for all T ě 1 and }θ} ď B. By contrast, in standard ridge regressions, ∇2LT pθq equals to HT

because the corresponding loss LT is quadratic. The proof is deferred to Section C.2.

Step two: High probability gradient bound In the following, we provide a high-probability bound for
}∇Lτ pθ˚q}H´1

T
in Lemma 2.2.

Lemma 2.2. Assume there exists a constant b ą 0 such that Erz2
t pθ˚q|Ft´1s ď b2 for all t ě 1. With

probability at least 1 ´ 2δ, for all T ě 1, it follows that

}∇LT pθ˚q}H´1
T

ď 8
„

κb2

τ0
loomoon

bias term

`

c

κb2 log 2T 2

δ
looooooomooooooon

variance term

` τ0 log 2T 2

δ
loooomoooon

range term

ȷ

`
?

λB
loomoon

ridge term

.

We explain briefly about each term in Lemma 2.2. Following Zhou et al. (2021), a decomposition follows
that }∇Ltpθ

˚q}2
H´1

t

“
řT

t“1pXt ` Ytq for two sequences of random variables Xt, Yt P Ft. To illustrate the
proof idea, we explain how to bound

řT
t“1 Xt, since

řT
t“1 Yt can be bounded similarly. For the adaptive

Huber regression, tXtutPrT s is not a martingale difference sequence but tXt ´ ErXt|Ft´1sutPrT s is. We apply
a Bernstein inequality to upper bound

řT
t“1pXt ´ ErXt|Ft´1sq which contributes to the variance and range

terms. Thanks to the different robustification parameters τt, we can control
řT

t“1 ErXt|Ft´1s deterministically
within O

`

κ2{τ2
0
˘

, resulting in the bias term. Finally, the last ridge term
?

λB exists because we use ridge
regularization to ensure that the Hessian is always invertible. The detailed proof is in Appendix C.3.

Step three: Combination through stationary condition Notice that the gradient is given by

∇LT pθq :“ λθ ´

T
ÿ

t“1

τtztpθq
a

τ2
t ` ztpθq2

ϕt

σt
,

and our estimator θT is the minimizer of a constrained problem in equation 2.4. By Proposition 1.3 in (Bubeck
et al., 2015), the first-order stationary condition of the constrained convex optimization equation 2.4 implies
that x∇LT pθT q,θT ´ θy ď 0 for all θ P BalldpBq. More specifically, due to }θ˚} ď B, we have

x∇LT pθT q,θT ´ θ˚y ď 0. (2.8)
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Figure 1: Regret and convergence results across three noise types: Case (a) εt „ N p0, 1q on the left, Case (b)
εt „ tpdfq with df „ Up2, 3q in the middle, and Case (c) εt „ tpdfq with df „ Up1, 2q on the right.

By the mean value theorem for vector-valued functions, we have

∇LT pθT q ´ ∇LT pθ˚q “

ż 1

0
∇2LT pp1 ´ ηqθ˚ ` ηθT qdη ¨ pθT ´ θ˚q.

Using Lemma 2.1 and the fact that }p1 ´ ηqθ˚ ` ηθT q} ď B for all η P r0, 1s, we have

1
4}θT ´ θ˚}2

HT
ď xθT ´ θ˚, ∇LT pθT q ´ ∇LT pθ˚qy. (2.9)

By equation 2.9 and equation 2.8, we have

}θT ´ θ˚}HT
ď 4}∇LT pθ˚q}H´1

T
. (2.10)

Combining equation 2.10, Lemma 2.1 and Lemma 2.2, we know that if τ0

b

log 2T 2

δ “ maxt
?

2κb, 2
?

du, with
probability at least 1 ´ 2δ, we have that }θt ´ θ˚}Ht

ă βt for all 1 ď t ď T where βt is given in equation 2.6.
It implies that θ˚ indeed locals in all constructed confidence regimes, i.e., for all 1 ď t ď T , θ˚ P Ct. Notice
that by the choice of β0 and H0, we still have θ˚ P C0. Finally, b “ 1 in our case completes the proof.

2.5 A Numerical Study

Considered methods In this subsection, we conduct a numerical comparison between AdaOFUL and two
baseline algorithms: original OFUL (Abbasi-Yadkori et al., 2011) and TOFU (Shao et al., 2018). TOFU is a
truncation-based variant of OFUL, designed to address the heavy-tail issue. Because these algorithms do not
consider the variance information, for a fair comparison, we abstain from the variance weights and set each
σt ” 1. Hyperparameters were chosen based on observations from the initial couple of steps so that τ0 “

?
d

and c0 “ c1 “ 1.

Experiment setup We experiment with the following configuration. We set d “ 10 and |Dt| ” 20. The
optimal θ˚ is generated by randomly sampling each coordinate from a uniform distribution Up0, 1q and
normalizing the resultant vector to unit length so that B “ 1. To simulate varying action sets, we generate
20 distinct basic action sets, tAiuiPr20s, and assign Dt “ Ai if t “ i mod 20. For each Ai, each arm vector
ϕ P Ai is formed in the same way as θ˚ so that L “ 1. Rewards are generated by yt “ xϕt,θ

˚y ` εt with εt

being an independent zero-mean noise. We investigate three noise types: Case (a) is Gaussian distribution

7



Published in Transactions on Machine Learning Research (April/2024)

εt „ N p0, 1q, while Cases (b) and (c) correspond to Student t-distributions εt „ tpdfq with df, the degree
of freedom, varying. Note that if a random variable X follows a Student’s t-distribution with a degree of
freedom df, its mean is well defined for df ą 1, its variance exists for df ą 2, and its variance becomes infinite
for 2 ě df ą 1. Case (b) sets df „ Up2, 3q, while Case (c) uses df „ Up1, 2q. As we move from Case (a) to
Case (c), the noise becomes increasingly heavy-tailed. To ensure a fair comparison, most parameters are
shared, e.g., βt ” 1 and λ “ 1. The experiment runs for T “ 1000 steps and is replicated 10 times, with the
outcomes averaged. The shadowed area depicts the area within one standard deviation, calculated over ten
repetitions.

Experiment results Figure 1 shows the regret and convergence results across three noise cases. It is clear
that for all considered algorithms, the regrets continue to grow and the L2 convergence errors }θt ´ θ˚} tend
to diminish. The continuous growth in regrets is also observed in previous heavy-tailed experiments (Shao
et al., 2018). A key message is that AdaOFUL consistently achieves the lowest regret, smallest convergence
errors, and least variability. In the context of light-tailed noise (in the left column), OFUL has a slightly
smaller regret than TOFU. The result implies that the truncation technique might hurt the performance
under light-tailed noises. As we transition to heavy-tailed noise with finite variance (in the middle column),
TOFU outperforms OFUL instead in terms of regret and convergence, implying truncation works better
in this case. However, both remain suboptimal compared to AdaOFUL. In the case where the noise is
predominantly heavy-tailed with only a bounded expectation (in the right column), TOFU and OFUL’s
convergence errors and regrets deteriorate, contrasting with the steadfast performance of AdaOFUL. These
findings show AdaOFUL’s empirical robustness even in the infinite variance noise regime.

3 An Extension to Linear MDPs

Ridge regression estimators are widely used in RL to provide confidence guarantees for bounded rewards.
However, when dealing with heavy-tailed rewards, these estimators tend to degrade or even fail (as shown in
Figure 1). In response, we advocate for the use of the adaptive Huber regression, or AdaOFUL, as a robust
alternative to ridge regression. AdaOFUL can seamlessly enhance the original algorithm to accommodate
heavy-tailed scenarios with minimal disruption to its core. In this section, we demonstrate this by integrating
AdaOFUL as a foundational element to solve linear MDPs and provide variance-aware regrets. This approach
can also be extended to other linear problems such as linear mixture MDPs (Zhou & Gu, 2022).

3.1 Linear MDPs with Heavy-tailed Rewards

Preliminaries about linear MDPs An episodic finite horizon MDP is denoted by a tuple M “

pS, A, H, trhuhPrHs, tPhuhPrHsq where S is the state space with a possibly infinite number of states, A the
action space, H P Z` the length of each episode, Ph : S ˆ A Ñ ∆pSq the transition probability function, and
rh : S ˆ A Ñ R the expected reward function. A linear MDP assumes that both the transition probability
and the expected reward are linear in a known state-action feature map ϕp¨, ¨q P Rd (Bradtke & Barto, 1996;
Melo & Ribeiro, 2007; Yang & Wang, 2019; Jin et al., 2020b).
Definition 3.1 (Linear MDP). M is called a time-inhomogeneous linear MDP, if there exist some known
feature map ϕps, aq : S ˆ A Ñ Balldp1q, unknown signed measures tµ˚

huhPrHs Ď Rdˆ|S|, and unknown
coefficients tθ˚

huhPrHs Ď BalldpW q such that rhps, aq “ xϕps, aq,θ˚
hy and Php¨|s, aq “ xϕps, aq,µ˚

hp¨qy for any
ps, aq P S ˆ A, h P rHs, where }µ˚

hpSq} :“ }
ř

sPS µ
˚
hpsq} ď

?
d for all h P rHs.

For a time-inhomogeneous MDP, we denote its deterministic and time-dependent policy by π “ tπhuhPrHs.
Let tpsh, ahquhPrHs be state-action pairs such that ah “ πhpshq and sh`1 „ Php¨|sh, ahq. Define the occupancy
measure for the policy π at the h-th round by dπ

hps, aq “ Pπpsh “ s, ah “ a|s1q where pa1, s2, a2, ¨ ¨ ¨ , sh, ahq is
a trajectory starting from s1 and following the policy π. The state-action function Qπ

hp¨, ¨q and value function
V π

h p¨q at the h-th round are defined as Qπ
hp¨, ¨q “ Er

řH
i“h ripsi, aiq|psh, ahq “ p¨, ¨qs and V π

h p¨q “ Qπ
hp¨, πhp¨qq

respectively. The optimal policy is denoted by π˚ and its value function is denoted by V ˚
1 . One can show

that V ˚
1 psq “ supπ V π

1 psq for any s P S. For any value function V , write rPhV sps, aq “ Es1„Php¨|s,aqV ps1q and
rVhV sps, aq “ rPhV 2sps, aq ´ rPhV s2ps, aq. With a slight abuse of notation, let rPhRhsps, aq and rVhRhsps, aq
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denote the expectation and variance of the random reward Rhps, aq at the h-th round given state-action pair
ps, aq.

Linear MDPs with heavy-tailed rewards We consider linear MDPs with heavy-tailed random rewards
that satisfy the following assumptions.
Assumption 3.1 (Realizable reward). We assume that the following holds.

1. For all ps, aq P S ˆ A and h P rHs, the random reward Rhps, aq is independent of sh`1ps, aq, where
sh`1ps, aq „ Php¨|s, aq represents the next state transitioned from ps, aq at the h-th round.

2. There exists known feature maps rϕps, aq : S ˆ A Ñ Balldp1q and unknown coefficients tψ˚
huhPrHs Ď

BalldpW q so that rPhR2
hsps, aq “ x rϕps, aq,ψ˚

hy for all ps, aq P S ˆ A and h P rHs.

Assumption 3.2 (Bounded variance). We assume that the following holds.

1. There exist known constants σR, σR2 ą 0 such that rVhRhsps, aq ď σ2
R and rVhR2

hsps, aq ď σ2
R2 for

all ps, a, hq P S ˆ A and h P rHs.

2. There exist known upper bounds H, V ą 0 such that for any policy π, we have 0 ď ERπ ď H and
VarpRπq ď V2 where Rπ “

řH
h“1 Rhpsh, ahq denotes the sum of random rewards along the trajectory

following π.

Rationale behind the assumptions Assumption 3.1 assumes that the random reward at each round is
independent of future states and its second moment can be realized using a known feature map. Under this
assumption, linear MDPs can recover tabular MDPs by setting the size of the state-action space as d “ |S||A|

and using the canonical basis ϕps, aq “ rϕps, aq “ eps,aq in Rd. Assumption 3.2 places upper bounds on the
means and variances of every random reward and the cumulative rewards. These upper bounds are available
under the classic uniformly bounded reward assumption that 0 ď supps,aqPSˆA suphPrHs Rhps, aq ď 1 so that
σR “ σR2 “ 1 and H “ V “ H. We emphasize that almost all previous works use these "1" and "H" upper
bounds implicitly in their algorithm design and regret analysis. In this way, they can’t tell the effect of the
expectation of cumulative rewards on the final regret from their variance. We are the first to distinguish them
by separate H and V. Since only upper bounds for H and V are required, in practice one can guess them
using the doubling trick.2 As we will observe, very large guessing values for H and V will not affect the order
of the dominant (or variance-aware) term in our regret as long as T is sufficiently large. As far as we know,
Assumption 3.2 is the weakest moment condition on random rewards in the variance-aware RL literature.

Learning protocol Let Fh,k denote the σ-field generated by all random variables up to, and including, the
h-th round and k-th episode. At the beginning of each episode k, the environment selects the initial state s1,k.
The agent proposes a policy πk “ tπk

huhPrHs based on the history up to the end of episode k ´ 1, and then
executes πk to generate a new trajectory tpsh,k, ah,k, rh,kquhPrHs. Here ah,k “ πk

hpsh,kq, rh,k „ Rhpsh,k, ah,kq

and sh`1,k „ Pp¨|sh,k, ah,kq. Here Rhps, aq denotes the distribution of the random reward conditioned on the
state-action pair ps, aq at horizon h, with its expected value being rhps, aq. The agent aims to minimize the
cumulative regret over K episodes, given by

RegpKq :“
K
ÿ

k“1
pV ˚

1 ´ V πk
1 qps1,kq.

3.2 High-level Algorithm Description

In this subsection, we introduce VARA, an algorithm present in Algorithm 2, that extends AdaOFUL
to solve linear MDPs with heavy-tailed rewards. At a high level, the VARA algorithm is built on LSVI-
UCB++ (He et al., 2022), an algorithm proposed recently to achieve minimax optimality for linear MDPs.

2For example, we can guess H as 2, 4, 6, ¨ ¨ ¨ . After a logarithmic number of guessing, we can find a true upper bound for
supπ ERπ . One can run a similar procedure for other quantities.
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Algorithm 2 The VARA algorithm (informal)
Require : K, H, H, V, W, σR, σR2 .

1 for episode k “ 1 to K do
2 for horizon h “ H to 1 do
3 Based on all tθh,k1 ,ψh,k1 uk1ďk, estimate an optimistic Q

k

h and a pessimistic Q-value Qk

h
by LSVI-

UCB++.
4 V

k

hp¨q “ maxa Q
k

hp¨, aq, V k
hp¨q “ maxa Qk

h
p¨, aq, πk

hp¨q P argmaxa Q
k

hp¨, aq.
5 end
6 for horizon h “ 1 to H do
7 Play ah,k “ πk

hpsh,kq and observe rh,k „ Rhpsh,k, ah,kq, sh`1,k „ Pp¨|sh,k, ah,kq.
8 Observe feature vectors ϕh,k “ ϕpsh,k, ah,kq and rϕh,k “ rϕpsh,k, ah,kq.
9 Update the estimated variance σh,k using observed data and estimated values Q

k

h and Qk

h
.

10 Update the parameters wh,k, τh,k, rwh,k, rτh,k following the spirit of AdaOFUL.
11 Using tϕh,k1 uk1ďk and tpσh,k1 , wh,k1 , τh,k1 quk1ďk, AdaOFUL produces θh,k as the estimate for θ˚

h .
12 Using t rϕh,k1 uk1ďk and tpσh,k1 , rwh,k1 , rτh,k1 quk1ďk, AdaOFUL produces ψh,k as the estimate for ψ˚

h .
13 end
14 end

LSVI-UCB++ (He et al., 2022) uses weighted ridge regression, where the weights depend on some proper
variance estimators σh,k’s. The variance estimation techniques in LSVI-UCB++ are important to obtain
variance-aware regrets. These techniques include (i) separate variance estimation, (ii) monotonicity of value
functions, and (iii) rare-switching value function update.

Due to limited space, we present the detailed and formal algorithm description in Appendix A and focus on the
differences between VARA and LSVI-UCB++ (He et al., 2022) here. To obtain variance-aware regrets under
heavy-tailed rewards, we made two improvements to LSVI-UCB++. First, while LSVI-UCB++ assumes a
deterministic, uniformly bounded, and known reward function, we use AdaOFUL to estimate the parameters
θ˚

h and ψ˚
h for both the expected reward functions and their second-order moments. This complicates the

construction of the variance estimators σh,k and requires a more detailed analysis of their impacts on the
final regrets (see Lemma D.10). Second, previous works use the Azuma-Hoeffding inequality to analyze
the concentration effect in the suboptimality gap, which leads to the regret of rOp

?
Kq. Instead, we use a

variance-aware Bernstein inequality and produce a much tighter upper bound of rOp1q for the concentration
effect (see Lemma D.8). We explain the analytical novelty in detail in Appendix D.2.

3.3 Regret Analysis

This section presents the statistical, space, and computational complexities of Algorithm 3.
Theorem 3.1. Consider a linear MDP satisfying Asumption 3.1 and 3.2. For any δ P p0, 1q, with probability
at least 1 ´ 21δ, Algorithm 3 achieves the following regret

RegpKq “ rO
ˆ

d
?

HKG˚ ` Hd
?

Kσmin `
H2.5d6H2 ` Hd2σR2

σmin
` H3d5H ` HdσR ` Hd2

˙

, (3.1)

where σmin is a manually set arbitrary lower bound for all variance estimators σh,k’s,

G˚ “ min
#

H
ÿ

h“1
E

ps,aq„ rdK
h

rVhRh ` VhV ˚
h`1sps, aq, V2

+

, (3.2)

and rdK
h ps, aq “ 1

K

řK
k“1 dπk

h ps, aq with dπk

h ps, aq “ Pπk psh “ s, ah “ a|s0 “ s1,kq the probability of reaching
psh,k, ah,kq “ ps, aq at the h-th step when the agent starts from s1,k and follows the policy πk.

Trade-off by σmin Theorem 3.1 reveals a trade-off arising from the choice of σmin. The second term
in equation 3.1, stemming from the imposed lower bound on variance estimates for stability purposes, is
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positively dependent on σmin. Consequently, if σmin “ 0, this term vanishes. The third term is negatively
dependent on σmin due to its effect on HT . Consider an extreme case. If σmin “ 8, HT is reduced to λI,
implying the shape of the confidence region Ct changes. This, then, would slightly decrease the confidence radii
βT and the regret. The choice of σmin must balance these opposing effects. Corollary 3.1 implies that choosing
the optimal σ˚

min “
a

H1.5d5H2 ` dσR2 ¨K´ 1
4 yields a regret barrier of rO

´

Hd ¨
a

d5H2 ` dσR2 ¨
4
?

K
¯

. When
K is sufficiently large, the regret bound in equation 3.3 can be further simplified to rO

`

d
?

HG˚K
˘

. To the
best of our knowledge, Theorem 3.1 is the first to derive the variance-aware regret for linear MDPs, especially
with heavy-tailed rewards.
Corollary 3.1. Under the same setting of Theorem 3.1, if we set σmin “

a

H1.5d5H2 ` dσR2 ¨ K´ 1
4 , the

regret of VARA is bounded by

RegpKq “ rO
´

d
?

HG˚K ` Hd
a

d5H2 ` dσR2 ¨
4
?

K ` H3d5H ` HdσR ` Hd2
¯

. (3.3)

Instance-dependent quantity G˚ The quantity G˚ is given by equation 3.2. Firstly, it is bounded above
by V2 in Assumption 3.2, which sets an upper bound on the variance of the cumulative random rewards
received when following any policy. Other upper bounds such as H, σR and σR2 don’t involve in G˚ and
thus the regret when K is sufficiently large. Secondly, even V is set to be extremely large, G˚ is no greater
than the sum of per-round conditional variances rVhRh ` VhV ˚

h`1sps, aq, weighted by an averaged occupancy
measure rdK

h ps, aq :“ 1
K

řK
k“1 dπk

h ps, aq. The function rdK
h p¨, ¨q introduces a probability measure on S ˆ A for

any fixed h P rHs, by the definition of dπ
h, which records the history of the policies taken.

Our variance-aware regret has two key features. Firstly, we do not require any prior knowledge of G˚ to
achieve variance awareness, which is the same as (Zanette & Brunskill, 2019). Secondly, the additional
conditions imposed on the MDP structure lead to other instance-dependent regrets. In the following, we also
impose Assumption 3.3 for a fair comparison with related work. However, we would like to emphasize that
all of our results are obtained in the presence of heavy-tailed rewards.
Assumption 3.3. We assume that 0 ď Rhps, aq ď 1 for all h P rHs and ps, aq P S ˆ A.

3.4 Other Instance-dependent Regrets

Worst-case regret Under Assumption 3.3, V2 “ H2 according to the law of total variance (Azar et al., 2013).
Consequently, we can infer that G˚ ď H2, and the regret reduces to the minimax optimal rOpdH

?
HKq (He

et al., 2022). The authors achieved this regret by directly setting σmin “ 1{H, without taking into account
the trade-off introduced by σmin. Although this was sufficient for their worst-case scenario, it was not suitable
for our goal of achieving variance awareness. If we also set σmin “ 1{H, the second term in equation 3.1
becomes d

?
K, and we cannot determine the dominant term between d

?
HKG˚ and d

?
K. Once we balance

the trade-off of σmin, the second term becomes much smaller, making rOpd
?

HG˚Kq the dominant term.

Range-dependent regret Let Ss,a be the set of immediate successor states after one transition from state
s upon taking action a, which is also the support set of Pp¨|s, aq. Define Φsucc as the maximum value function
range when restricted to the immediate successor states:

Φsucc :“ sup
hPrHs

sup
ps,aq

r sup
s1PSs,a

V ˚
h`1ps1q ´ inf

s1PSs,a

V ˚
h`1ps1qs.

Since the variance is upper bounded by one-fourth of the square range of a random variable, we have
suphPrHs supps,aqrVhV ˚

h`1sps, aq ď 1
4Φ2

succ and thus G˚ ď Hpσ2
R ` Φ2

succq. Therefore, our regret reduces to
rO
´

dH
a

pσ2
R ` Φ2

succqK
¯

. It is worth noting that similar range-dependent regrets have been derived for
tabular MDPs with bounded rewards (Bartlett & Tewari, 2009; Fruit et al., 2018; Zanette & Brunskill, 2019),
but to the best of our knowledge, we obtain the first such result for linear MDPs with heavy-tailed rewards.

First-order regret The first-order regret that scales proportionally to V ˚
1 , where V ˚

1 :“ V ˚
1 ps1q is the

value of the optimal value policy at the initial state s1, has been studied for tabular MDPs (Jin et al.,
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2020a) and linear MDPs (Wagenmaker et al., 2022a).3 However, under Assumption 3.3, the corresponding
instance-dependent quantity H2V ˚

1 can be much larger than G˚. This is because

G˚
paq

ď H
H
ÿ

h“1
E

ps,aq„ rdK
h

rrh ` PhV ˚
h`1sps, aq

pbq

ď H
H
ÿ

h“1
E

ps,aq„ rdK
h

V ˚
h ps, aq

pcq

ď H2V ˚
1 ,

where paq uses 0 ď Rh ď 1 and 0 ď V ˚
h`1 ď H ´ 1 under Assumption 3.3, pbq uses the optimality condition

V ˚
h psq “ rrh ` PhV ˚

h`1sps, aq for any ps, aq P S ˆ A, and pcq uses V ˚
h`1psq ď V ˚

h psq for any h P rHs and s P S
and

ř

aPS
rdk
hps1, aq “ 1 since each episode starts at a fixed state s1. Moreover, even replacing G˚ with the

coarse upper bound H2V ˚
1 , our regret bound becomes rOp

a

d2H3V ˚
1 Kq, which has a better dependence on d

than rOp
a

d3H3V ˚
1 Kq in (Wagenmaker et al., 2022a).

Concentrability-dependent regret Let Rπ˚ denote the sum of random rewards collected in a trajectory
following the optimal policy π˚. It is straightforward to see that VarpRπ˚ q “

řH
h“1 Eps,aq„dπ˚

h

rVhRh `

VhV ˚
h`1sps, aq. Since G˚ ď supπ

řH
h“1 Eps,aq„dπ

h
rVhRh `VhV ˚

h`1sps, aq, we can show that G˚ ď C: ¨ VarpRπ˚ q

where C: is a data coverage measure defined as

C: :“ sup
π

řH
h“1 Eps,aq„dπ

h
rVhRh ` VhV ˚

h`1sps, aq
řH

h“1 Eps,aq„dπ˚

h

rVhRh ` VhV ˚
h`1sps, aq

.

Therefore, our regret reduces to rOpd
a

C: VarpRπ˚ qHKq given C: ă 8. The C: is a counterpart of the
generalized concentrability coefficient which quantifies the effect of the distribution shift in offline RL (Chen
& Jiang, 2019; Xie et al., 2021; Cheng et al., 2022).

3.5 Space and Computational Complexities

Theorem 3.2 (Space and computational complexity). Assume the Nesterov accelerated method is used as a
solver to solve the adaptive Huber regression. Solving a H-horizon finite MDP in K episodes, VARA takes
Opd3H2 ` d|A|HKq space and has a running time of rOpd4|A|H3K ` HKpd ` H´3{4d´3{2K3{4qq.

On one hand, VARA achieves the same space complexity as LSVI-UCB++ but is slightly worse than the
original LSVI-UCB (Jin et al., 2020b) that needs Opd2H ` d|A|HKq space. This is because the technique
of monotone value function update requires remembering at most rOpdHq latest value functions, incurring
a slightly worse dependence on d and H. On the other hand, the computational complexity of VARA
rOpd4|A|H3K ` HKpd ` H´3{4d´3{2K3{4qq is slightly worse than LSVI-UCB++’s rOpd4|A|H3Kq in terms of
the dependence on K. This is because the adaptive Huber regression estimator does not have a closed-form
solution. Even though the Nesterov accelerated method is used, a slightly larger computational complexity is
still incurred due to the possibly large conditional number. However, VARA’s computational complexity is
better than LSVI-UCB’s rOpd2|A|HK2q thanks to the rare-switching mechanism in LSVI-UCB++.

4 Related Work

Heavy-tailed rewards in online decision making The standard heavy-tailed setting assumes rewards
with p1 ` εq-moments where ε ą 0. There exists a large body of work considering this setting in multi-arm
bandits, including deterministic (Vakili et al., 2013) and non-deterministic settings (Bubeck et al., 2013;
Carpentier & Valko, 2014; Lattimore, 2017; Bhatt et al., 2022). To handle heavy-tailed rewards, robust
mean estimation methods such as median of means and truncation have been applied to linear bandits
(Medina & Yang, 2016; Shao et al., 2018; Lu et al., 2019; Xue et al., 2021). Given that our objective is to
provide variance-aware regrets for general linear bandits, the minimal requirement is to have bounded second
moments, which is the primary focus of this study. Under the assumption of rewards with bounded second

3They assume all episodes start from the same initial state so that s1,k ” s1. However, our regret can be easily extended to
the setting where initial states are different. In this case one should replace V ˚

1 K with
řK

k“1 V ˚
1 ps1,kq in the regret bound.
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moments, the minimax optimal regret is rOpd
?

T q. Recently, Kang & Kim (2023) introduced the use of Huber
regression to address heavy-tailed linear contextual bandits where the action set is fixed (such that Dt ” D)
and the arm ϕt is independently and identically distributed, sampled from a fixed distribution over D. In
contrast, our proposed AdaOFUL is simpler and more versatile, capable of being applied to more complex
scenarios where the arm ϕt is selected adaptively based on historical observations.

On the other hand, there are a few RL algorithms designed to handle heavy-tailed rewards for MDPs. One
is (Zhuang & Sui, 2021), which modifies UCRL2 and Q-Learning by using truncated rewards and achieves
minimax optimal regret in tabular MDPs. However, none of these methods for linear bandits or MDPs
provide variance-aware regrets, even if variance information is available. Moreover, simple truncation methods
are not optimal in the noiseless setting. Recently, Huang et al. (2023) extends the Huber regression to the
more general p1 ` εq-moment setting and provides instance-dependent regret bounds for both linear bandits
and linear MDPs.

Variance-aware regrets for linear bandits A weighted ridge regression-based algorithm proposed by
Kirschner & Krause (2018) achieves the same regret in equation 2.7 by assuming each εt is νt-sub-Gaussian.
More recently, Zhou & Gu (2022) obtained the same regret assuming each εt is uniformly bounded and has
finite conditional variance ν2

t . In the case where the information of conditional variances tνtutě0 is unknown,
Zhang et al. (2021) and Kim et al. (2021) achieved regret bounds that involve sub-optimal dependence on d.
The currently tightest variance-aware regret is achieved by Zhao et al. (2023) with an optimal dependence
on d. Recently, Dai et al. (2022) explored variance-aware regrets in the context of high-dimensional and
sparse linear bandits, a topic that extends beyond the scope of our paper. All of the above works consider
light-tailed noises, which are either sub-Gaussian or uniformly bounded.

Robust approach to instance-dependent bounds Recent research explores the robust mean estimation
approach to obtain instance-dependent regrets, leveraging the observation that robust estimators can achieve
estimation errors that only depend on the noise scale. Such estimators often have better theoretical guarantees
than non-robust ones, whose estimation errors additionally depend on the range of the problem noise. For
instance, Pananjady & Wainwright (2020) use the median-of-means technique (Lecué & Lerasle, 2020) to
achieve local minimax optimality that depends on the standard deviations of the optimal value function and
random rewards for synchronous tabular MDPs. In linear bandits, Wagenmaker et al. (2022a) use Catoni’s
estimator (Catoni, 2012) to estimate the mean of vJH´1

T ϕtyt{σ2
t for a fixed unit-norm vector v. In contrast,

we modify the adaptive Huber regression to estimate θ˚ directly. This difference makes their bounds depend
on the second moments of yt’s, while ours only relies on their variances. Moreover, all of these works, except
ours, still assume light-tailed rewards.

Variance-aware regrets for tabular and linear MDPs In the context of online episodic MDPs,
Zanette & Brunskill (2019) first derived a variance-aware regret bound in the tabular setting with uniformly
bounded rewards. Their model-based algorithm, Euler, achieves a regret that can be bounded by either
rOp
a

QSAHKq or rOp
?

G2SAKq, where Q˚ “ maxps,a,hqpVhRh ` VhV ˚
h`1qps, aq is the maximum per-round

conditional variance and G is a deterministic upper bound on the maximum attainable reward on a single
trajectory for any policy π, such that

řH
h“1 Rhpsh, πpshqq ď G. One can show that our instance-dependent

quantity G˚ is smaller than mintHQ˚, G2u therein. Later, Jin et al. (2020a) adopted a modified analysis
of Euler to obtain the regret bound rOp

a

SAH3V ˚
1 Kq with V ˚

1 “ V ˚
1 ps1q.4 In linear MDPs, there are

several recent works on obtaining regret bounds for model-free algorithms. For example, Wagenmaker et al.
(2022a) proposed an optimistic algorithm with a regret bound that scales as rOp

a

d3H3V ˚
1 Kq. However,

this algorithm is computationally inefficient. A computationally efficient alternative suffers from a slightly
worse regret rOp

a

d4H3V ˚
1 Kq. All of these works utilize the instance-dependent quantity H2V ˚

1 (assuming
H “ H). However, as we argued, our proposed quantity G˚ is smaller than H2V ˚

1 , which implies that
our algorithm may achieve better performance than these previous works. Another research direction

4Unlike our setting, they assume all initial states are the same, denoted as s1. Furthermore, the original regret
rOp

b

SAH ¨ V ˚
1 Kq by Jin et al. (2020a) was derived for an MDP where the reward function equals to one deterministi-

cally only at a single ph, sq pair. In this way, they have 0 ď V ˚
1 ď 1. To convert it in the considered setting where 0 ď V ˚

1 ď H,
an additional factor of H should be multiplied to their regret.
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explores variance-adaptive algorithms for linear mixture MDPs, as initially explored by (Zhou et al., 2021).
Subsequent developments in this area were made by (Zhang et al., 2021; Zhou & Gu, 2022), culminating in
the state-of-the-art advancements by (Zhao et al., 2023). While our study does not consider this particular
setting, it is straightforward to extend our techniques and analysis to it, as linear mixture MDPs are generally
considered simpler than linear MDPs.

Other instance-dependent bounds In the infinite-horizon setting, Pananjady & Wainwright (2020);
Khamaru et al. (2021); Li et al. (2023) provided variance-aware sample complexities for Q-Learning and
its variants in tabular MDPs, given a generative model that produces independent samples for all state-
action pairs in every round. Variance-aware performance guarantees have also been established for offline
RL optimization (Yin & Wang, 2021; Nguyen-Tang et al., 2023), off-policy evaluation (Min et al., 2021),
stochastic approximation (Mou et al., 2020; 2022). Another approach to instance-dependence bounds focuses
on the minimum suboptimality gap, which is the minimum gap between the best and second-best actions
over all states (He et al., 2021; Wagenmaker et al., 2022c; Wagenmaker & Jamieson, 2022; Dong & Ma, 2022).
However, due to the differences in the settings, we cannot make a meaningful comparison between these
bounds and ours.

5 Conclusion

This paper introduces two new algorithms, AdaOFUL for linear bandits and VARA for linear MDPs, both
of which use modifications of the original adaptive Huber regression and are designed to handle online
sequential decision-making. With only the assumption of bounded reward variances, our algorithms achieve
either state-of-the-art or finer variance-aware regrets. Additionally, in linear MDPs, the instance-dependent
quantity G˚ can be bounded by other instance-dependent quantities when additional structure assumptions
are available. Our modified adaptive Huber regression can be a useful building block for algorithm design in
online problems with heavy-tailed rewards.
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Appendix
Overview

We describe VARA detailedly in Appendix A and explain the rationale behind its variance estimator in
Appendix B. Appendix C contains proofs for Theorem 2.2 and related lemmas specifically for linear bandits.
The theoretical analysis for VARA is presented in Appendix D, where we offer a proof sketch for Theorem 3.1,
while all related technical lemmas are deferred to Appendices F and G. We also highlight the differences
between our analysis and previous work. In Appendix E, we provide a proof for Theorem 3.2 that analyzes
the space and computational complexity of VARA.
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A Detailed Algorithm Description for VARA

For each episode k, we perform optimistic value iterations (Lines 3-11), compute the greedy policy πk
h with

respective to the pessimistic value function Q
k

h (Line 12), and then execute it to collect a new trajectory
of data (Lines 16-17). The rest of Algorithm 3 updates maintained estimators, including the conditional
variances σ2

h,k (Line 19), the transition parameters µh,k (Line 20), the reward parameters θh,k,ψh,k (Lines
21-22), and the Hessian matrices Hh,k, ĂHh,k (Line 23). In what follows, we discuss in detail the key steps of
Algorithm 3 in more detail.

Reward estimation Since rewards are collected adaptively and have only finite second moments, we use
the same strategy adopted in AdaOFUL to estimate θ˚

h :

θh,k :“ argmin
θPBalldpW q

#

L
pRq

h,k pθq :“ λ

2 }θ}2 `

k
ÿ

j“1
ℓτh,j

ˆ

rh,j ´ xϕh,j ,θy

σh,j

˙

+

. (A.1)

Following the spirit of Theorem 2.1, we set τ0 “ rOp
?

dq with its detailed expression provided in equation D.5
of the online supplement.

Transition estimation Let δpsq P R|S| be a one-hot vector that is zero everywhere except for the entry
corresponding to the state s, which is one. We define εh,k “ Php¨|sh,k, ah,kq ´ δpsh`1,kq. As Erεh,k|Fh,ks “ 0,
δpsh`1,kq is an unbiased estimator of Php¨|sh,k, ah,kq “ µJ

hϕpsh,k, ah,kq “ µJ
hϕh,k. Thus, we can learn µh by

regressing δpsh`1,kq on ϕh,k :“ ϕpsh,k, ah,kq:

µh,k :“ argmin
µPRdˆ|S|

#

L
pP q

h,k pµq :“ λ

2 }µ}2
F `

k
ÿ

j“1

›

›

›

›

µJ
hϕh,k ´ δpsh`1,jq

σh,j

›

›

›

›

2+

(A.2)

where } ¨ }F denotes the Frobenius norm. This problem admits a closed-form solution given by
µh,k “ H´1

h,k

řk
j“1 σ´2

h,jϕh,jδpsh`1,jqJ. We emphasize that VARA doesn’t need to compute µh,k ex-
actly out. VARA relies on only the matrix product of µh,k and a vectoerzied value function V that
is µh,kV “ H´1

h,k

řk
j“1 σ´2

h,jϕh,jV psh`1,kq for any value function V p¨q. As Theorem 3.2 shows, both the
computation and space complexity do not depend on the finite value of |S|.

Variance estimation for rewards In linear MDPs, estimating the variance of the reward Rhps, aq is
straightforward. Since PhR2

hps, aq “ x rϕps, aq,ψ˚
hy, we estimate ψ˚

h by

ψh,k :“ argmin
ψPBalldpW q

#

L
pR2

q

h,k pψq :“ λ

2 }ψ}2 `

k
ÿ

j“1
ℓ
rτh,j

˜

r2
h,j ´ x rϕh,j ,ψy

σh,j

¸+

(A.3)

where rτh,k “ rτ0

b

1 ` rw2
h,k{ rwh,k is the corresponding robustification parameter and rwh,k “ } rϕh,k}H´1

h,k´1
is

the importance weight. We then estimate rVhRhspsh, ahq by

rpVhRhspsh,k, ah,kq “ x rϕh,k,ψh,k´1y ´
“

xϕh,k,θh,k´1yr0,Hs

‰2
. (A.4)

Variance estimation Inspired by Hu et al. (2022), we set the variance estimator σh,k to be

σ2
h,k “ max

"

σ2
min, d3H ¨ Eh,k, Jh,k, c´2

0 b2
h,k,

ˆ

W
?

c1d
` Hd2.5H

˙

bh,k

*

(A.5)

where σmin is a small positive constant to avoid singularity, bh,k “ maxt}ϕh,k}H´1
h,k´1

, } rϕh,k}
ĂH´1

h,k´1
u is the

bonus term, Eh,k and Jh,k are defined as

Jh,k “ rpVh,kRh ` pVh,kV
k

h`1spsh,k, ah,kq ` Rh,k ` Uh,k, (A.6)
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Algorithm 3 The VARA algorithm (formal)
Require : K, H, H, V, W, σR, σR2 , τ0, rτ0.
Initialization :Hh,0 “ ĂHh,0 “ λI, c0 “ 1

6
b

3 log 2HK2
δ

, c1 “ 1
42¨log 2HK2

δ

, λ “ 1
H2`W 2 , klast “ 1.

1 for episode k “ 1 to K do
2 V

k

H`1p¨q “ V k
H`1p¨q “ 0 for round h “ H to 1 do

3 if there exists a stage h1 P rHs such that detpHh1,k´1q ě 2detpHh1,klast´1q then
4 Compute the products µh,k´1V

k

h`1 and µh,k´1V
k
h`1 with µh,k given in equation A.2.

5 pQk
hp¨, ¨q “ xϕp¨, ¨q,θh,k´1 ` µh,k´1V

k

h`1y ` β}ϕp¨, ¨q}H´1
h,k´1

.
6 qQk

hp¨, ¨q “ xϕp¨, ¨q,θh,k´1 ` µh,k´1V
k
h`1y ´ β}ϕp¨, ¨q}H´1

h,k´1
.

7 Q
k

hp¨, ¨q “ min
!

pQk
hp¨, ¨q, Q

k´1
h p¨, ¨q, H

)

, Qk

h
p¨, ¨q “ max

!

qQk
hp¨, ¨q, Qk´1

h
p¨, ¨q, 0

)

.
8 Record the last updating episode klast “ k.
9 else

10 Q
k

hp¨, ¨q “ Q
k´1
h p¨, ¨q, Qk

h
p¨, ¨q “ Qk´1

h
p¨, ¨q.

11 end
12 V

k

hp¨q “ maxa Q
k

hp¨, aq, V k
hp¨q “ maxa Qk

h
p¨, aq.

13 πk
hp¨q P argmaxa Q

k

hp¨, aq.
14 end
15 Receive the initial state s1,k.
16 for round h “ 1 to H do
17 Play ah,k “ πk

hpsh,kq and observe rh,k „ Rhpsh,k, ah,kq, sh`1,k „ Pp¨|sh,k, ah,kq.
18 Observe feature vectors ϕh,k “ ϕpsh,k, ah,kq and rϕh,k “ rϕpsh,k, ah,kq.
19 Set the bonus as bh,k “ maxt}ϕh,k}H´1

h,k´1
, } rϕh,k}

ĂH´1
h,k´1

u.
20 Set the estimated variance σh,k as in equation A.5.
21 Compute θh,k via equation A.1 with τh,k “ τ0

b

1 ` w2
h,k{wh,k and wh,k “ σ´1

h,k }ϕh,k}H´1
h,k´1

.

22 Compute ψh,k via equation A.3 with rτh,k “ rτ0

b

1 ` rw2
h,k{ rwh,k and rwh,k “ σ´1

h,k

›

›

›

rϕh,k

›

›

›

ĂH´1
h,k´1

.

23 Update Hh,k “ Hh,k´1 ` σ´2
h,kϕh,kϕ

J
h,k and ĂHh,k “ ĂHh,k´1 ` σ´2

h,k
rϕh,k

rϕJ
h,k.

24 end
25 end

Eh,k “ min
!

H2, 2Hβ0 ¨ }ϕh,k}H´1
h,k´1

` H ¨

”

pPh,kpV
k

h`1 ´ V k
h`1q

ı

psh,k, ah,kq

)

, (A.7)

in which β0 “ rO
´

σ´1
minH

?
d3H

¯

is an initial exploration radius, pPh,kp¨|s, aq “ µJ
h,k´1ϕps, aq is the empir-

ical transition kernel at the h-th round and k-the episode, pVhp¨q the empirical variance operator defined
in equation A.4, and Rh,k, Uh,k are defined as

Rh,k :“ βR2 } rϕh,k}
ĂHk´1

h,k´1
` 2HβR}ϕh,k}H´1

h,k´1
, (A.8)

Uh,k “ min
!

V2, 11Hβ0 ¨ }ϕh,k}H´1
h,k´1

` 4H ¨ pPh,kpV
k

h`1 ´ V k
h`1qpsh,k, ah,kq

)

, (A.9)

with βR “ rOp
?

dq, βR2 “ rO
´?

d `
?

d
σR2
σmin

¯

being two initial exploration radiuses. In Appendix B, we
explain in detail why σh,k’s are taken in the above way.

B Variance Estimation for Value Functions

To achieve worst-case optimality, He et al. (2022) proposes two important techniques we adopt in Algorithm 3.
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The first is the monotonicity of value functions. Specifically, we aim to enforce a decrease in k for the actual
optimistic value function Q

k

hp¨, ¨q and an increase in k for the actual pessimistic value function Qk

h
p¨, ¨q. This

concept is explained in detail below. In linear MDPs, we have rPhVh`1sps, aq “ xϕps, aq,µ˚
hVh`1y for any

value function V “ tVhuhPrHs and rPhRhsps, aq “ xϕps, aq,θ˚
hy for all h P rHs. One crucial aspect of typical

analysis (including ours) is demonstrating the high probability of the following event outlined in Appendix D.1.
Specifically, for all h P rHs and k P rKs, we need to establish that the following equations hold simultaneously
with high probability:

}θh,k ´ θ˚
h}Hh,k

ď βR “ rOp
?

dq,

}pµh,k´1 ´ µ˚
hqV

k

h`1}Hh,k´1 ď βV “ rOp
?

dq,

}pµh,k´1 ´ µ˚
hqV k

h`1}Hh,k´1 ď βV “ rOp
?

dq.

(B.1)

Conditional on the event that all inequalities in equation B.1 hold, we can easily verify that

|xϕp¨, ¨q,θh,k´1y ´ rPhRhsp¨, ¨q| ď βR}ϕp¨, ¨q}H´1
h,k´1

,

|xϕp¨, ¨q,µh,k´1Vh`1y ´ rPhVh`1sp¨, ¨q| ď βV }ϕp¨, ¨q}H´1
h,k´1

for both Vh`1 P tV k
h`1,V

k

h`1u. Therefore, we define the temporary optimistic value function by

pQk
hp¨, ¨q “ xϕp¨, ¨q,θh,k´1 ` µh,k´1V

k

h`1y ` β}ϕp¨, ¨q}H´1
h,k´1

,

and the temporary pessimistic value function by

qQk
hp¨, ¨q “ xϕp¨, ¨q,θh,k´1 ` µh,k´1V

k

h`1y ´ β}ϕp¨, ¨q}H´1
h,k´1

where β :“ βR ` βV “ rOp
?

dq. The actual optimistic value function Q
k

hp¨, ¨q is the minimum function of
history temporary optimistic value functions pQk

hp¨, ¨q, and the actual pessimistic value function Qk

h
p¨, ¨q is the

maximum function of history temporary pessimistic value functions qQk
hp¨, ¨q (Line 7 in Algorithm 3). In this

way, Q
k

hp¨, ¨q is always non-increasing in k and Qk

h
p¨, ¨q is always non-decreasing in k.

The second is the rare-switching value function update, which updates the value function only when the
determinant of the covariance matrix significantly exceeds the previous value (Line 6 in Algorithm 3). This
approach allows the complexity, as measured by the metric entropy, of the function class to which V

k

hp¨q

or V k
hp¨q belongs to be independent of K. Notably, the metric entropy is linearly dependent on rOpdHq.

Moreover, on the event equation B.1, we can establish optimism and pessimism in Lemma D.4, i.e., for all
k P rKs and h P rHs,

V k
h`1p¨q ď V ˚

h`1p¨q ď V
k

h`1p¨q. (B.2)

Directly estimating the variance of the optimistic value function V
k

h`1p¨q will encounter the dependence issue,
which is discussed in (Jin et al., 2020b) and will introduce an additional

?
d factor in the regret due to the

covering-based decoupling argument. To eliminate this factor, after noting the inequality

rVhV
k

h`1sp¨, ¨q ď 2rVhV ˚
h`1sp¨, ¨q ` 2rVhpV

k

h`1 ´ V ˚
h`1qsp¨, ¨q,

Hu et al. (2022) decompose the optimistic value function V
k

h`1p¨q into the optimal value function V ˚
h`1p¨q and

the sub-optimality gap rV
k

h`1´V ˚
h`1sp¨q and estimate their variances rVhV ˚

h`1sp¨, ¨q and rVhpV
k

h`1´V ˚
h`1qsp¨, ¨q

separately. The key insight is that: (i) as V ˚
h`1 is deterministic, there is no additional

?
d dependence in

estimating rVhV ˚
h`1sp¨, ¨q, and (ii) as V

k

h`1 gradually converges to V ˚
h`1, though a uniform argument is still

used, the incurred
?

d factor in the estimation of rVhpV
k

h`1 ´ V ˚
h`1qs has ignorable effects on the final regret.

We now describe the way we estimate these two variances.
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• For rVhV ˚
h`1sp¨, ¨q, since V ˚

h`1 is unknown, a natural choice is to estimate it by the optimistic value function
V

k

h`1. Hence, we estimate rVhV ˚
h`1spsh,k, ah,kq via

rpVh,kV
k

h`1spsh,k, ah,kq :“ rpPh,kpV
k

h`1q2spsh,k, ah,kqr0,H2s ´

”

rpPh,kV
k

h`1spsh,k, ah,kqr0,H2s

ı2
. (B.3)

To measure estimation accuracy, we introduce an error term Uh,k to guarantee that with high probability,
ˇ

ˇ

ˇ
rpVh,kV

k

h`1spsh,k, ah,kq ´ rVhV ˚
h`1spsh,k, ah,kq

ˇ

ˇ

ˇ
ď Uh,k holds uniformly over all h, k where

Uh,k “ min
!

V2, 11Hβ0 ¨ }ϕh,k}H´1
h,k´1

` 4H ¨ pPh,kpV
k

h`1 ´ V k
h`1qpsh,k, ah,kq

)

(A.9)

and β0 “ rO
´

H
σmin

?
d3H

¯

is an exploration radius.

• For rVhpV
k

h`1 ´V ˚
h`1qsp¨, ¨q, to meet the measurability condition of a concentration inequality (Lemma G.3),

we require
σ2

h,k ě d3H ¨ sup
kďjďK

rVhpV
j

h`1 ´ V ˚
h`1qspsh,k, ah,kq. (B.4)

Note that σh,k is Fh,k-measurable while V
k

h`1p¨q is FH,k´1-measurable. The condition equation B.4
essentially requires a Fh,k-measurable upper bound for rVhpV

j

h`1 ´ V ˚
h`1qspsh,k, ah,kq even if j ě k.

Fortunately, we have for any k ď j ď K,

rVhpV
j

h`1 ´ V ˚
h`1qspsh,k, ah,kq ď rPhpV

j

h`1 ´ V ˚
h`1q2spsh,k, ah,kq

paq

ď HrPhpV
j

h`1 ´ V ˚
h`1qspsh,k, ah,kq

pbq

ď HrPhpV
j

h`1 ´ V j
h`1qspsh,k, ah,kq

pcq

ď HrPhpV
k

h`1 ´ V k
h`1qspsh,k, ah,kq (B.5)

where paq uses |V
j

h`1 ´ V ˚
h`1|p¨q ď H and the optimism of V

j

h`1p¨q, pbq follows from the pessimism
in equation B.2, and pcq uses the monotonicity of value functions. The RHS of equation B.5 is Fh,k-
measurable but intractable due to the population expectation Php¨q. By replacing Php¨q with the tractable
pPh,kp¨q, we introduce Eh,k to overestimate the RHS of equation B.5 where

Eh,k “ min
!

H2, 2Hβ0 ¨ }ϕh,k}H´1
h,k´1

` H ¨

”

pPh,kpV
k

h`1 ´ V k
h`1q

ı

psh,k, ah,kq

)

. (A.7)

Hence, equation B.4 is guaranteed by σ2
h,k ě d3H ¨ Eh,k. The extra d3H factor is introduced to offset the

error caused by the covering number argument.

C Proof for Section 2.3

C.1 Proof of Theorem 2.2

Now, we turn to the regret equation 2.1. Recall that at iteration t, we set

pϕt, ˚q “ argmax
ϕPDt,θPCt´1

xϕ,θy.

Due to supϕP
Ť

tě0 Dt
|xϕ,θ˚y| ď R :“ LB, it follows that

RegpT q :“
T
ÿ

t“1

«

sup
ϕPDt

xϕ,θ˚y ´ xϕt,θ
˚y

ff
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ď

T
ÿ

t“1

«

sup
ϕPDt,θPCt´1

xϕ,θy ´ xϕt,θ
˚y

ff

“

T
ÿ

t“1

«

sup
θPCt´1

xϕt,θy ´ xϕt,θ
˚y

ff

ď

T
ÿ

t“1
}ϕt}H´1

t´1pθt´1q
¨ sup
θPCt´1

}θ ´ θ˚}Ht´1

Notice that with probability 1 ´ δ, θ˚ P Ct for all t ě 1, i.e., }θt ´ θ˚}Ht
ď βt. Hence,

sup
θPCt

}θ ´ θ˚}Ht
ď sup
θPCt

}θ ´ θt}Ht
` }θt ´ θ˚}Ht

ď 2βt.

Notice that βt is increasing in t and wt “

›

›

›

ϕt

σt

›

›

›

H´1
t´1

. Therefore,

RegpT q ď 2βT

T
ÿ

t“1
}ϕt}H´1

t´1
“ 2βT

T
ÿ

t“1
σtwt “ 2βT

T
ÿ

t“1
σt mint1, wtu. (C.1)

The last equality uses wt ď 1 (which is due to σt ě }ϕt}H´1
t´1

{c0 and c0 ď 1). Notice that }ϕt}{σt ď

}ϕt}{σmin ď L{σmin. Then by Lemma G.5,

T
ÿ

t“1
min

#

1,

›

›

›

›

ϕt

σt

›

›

›

›

2

H´1
t´1

+

“

T
ÿ

t“1
min

␣

1, w2
t

(

ď 2d log
ˆ

1 `
TL2

dλσ2
min

˙

“ 2κ. (C.2)

Recall that

σt “ max

$

’

&

’

%

νt, σmin,
}ϕt}H´1

t´1

c0
,

?
LB}ϕt}

1
2
H´1

t´1

c
1
4
1 d

1
4

,

/

.

/

-

.

According to what value σt takes, we decompose rT s into three sets rT s Ď
Ť3

i“1 Ji where

J1 “ tt P rT s : σt P tνt, σminuu,

J2 “

#

t P rT s : σt “

}ϕt}H´1
t´1

c0

+

,

J3 “

$

’

&

’

%

t P rT s : σt “
?

LB
}ϕt}

1
2
H´1

t´1

c
1
4
1 d

1
4

,

/

.

/

-

.

First, it follows that
ÿ

tPJ1

σt min t1, wtu ď
ÿ

tPJ1

maxtνt, σminu min t1, wtu

ď
ÿ

tPrT s

maxtνt, σminu min t1, wtu

paq

ď

d

ÿ

tPrT s

pν2
t ` σ2

minq

d

ÿ

tPrT s

min t1, w2
t u

pbq

ď
?

2κ ¨

d

ÿ

tPrT s

ν2
t ` 1. (C.3)
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Here paq holds due to Cauchy-Schwarz inequality and pbq uses equation C.2 and σmin “ 1?
T

.

Second, for any t P J2, we have wt “

›

›

›

ϕt

σt

›

›

›

H´1
t´1

“ c0 ď 1. Therefore,

ÿ

tPJ2

σt min t1, wtu “
ÿ

tPJ2

σtwt “
1
c0

ÿ

tPJ2

σtw
2
t ď

suptPJ2 σt

c0

ÿ

tPJ2

w2
t

ď

suptPrT s }ϕt}H´1
t´1

c2
0

¨
ÿ

tPJ2

mint1, w2
t u

ď

suptPrT s }ϕt}H´1
t´1

c2
0

¨
ÿ

tPrT s

mint1, w2
t u ď

2Lκ

c2
0
?

λ
(C.4)

where the last inequality uses }ϕt}H´1
t´1

ď 1?
λ

}ϕt} ď L?
λ

for all t ě 1 and equation C.2.

Finally, for any t P J3, we have L2B2w2
t “ c1dσ2

t due to w2
t “

›

›

›

ϕt

σt

›

›

›

2

H´1
t´1

. It implies σt “ LBwt{
?

c1d “

LB mint1, wtu{
?

c1d with the fact that wt ď 1. Therefore,

ÿ

tPJ3

σt min t1, wtu “
LB

?
c1d

¨
ÿ

tPJ3

min
␣

1, w2
t

(

ď
LB

?
c1d

¨
ÿ

tPrT s

min
␣

1, w2
t

(

ď
2LBκ
?

c1d
. (C.5)

Plugging equation C.3, equation C.4 and equation C.5 into equation C.1, we have

RegpT q ď 2βT

»

–

?
2κ ¨

d

ÿ

tPrT s

ν2
t ` 1 `

2Lκ

c2
0
?

λ
`

2LBκ
?

c1d

fi

fl .

C.2 Proof of Lemma 2.1

Recall that ztpθq “
yt´xϕt,θy

σt
. Direct computation yields that

∇2LT pθq “ λI `

T
ÿ

t“1

˜

τt
a

τ2
t ` z2

t pθq

¸3
ϕtϕ

J
t

σ2
t

.

Clearly, for any θ P Rd,

∇2LT pθq ĺ λI `

T
ÿ

t“1

ϕtϕ
J
t

σ2
t

“ HT .

For the other direction, we decompose it into four terms and analyze them respectively.

∇2LT pθq “ HT ´

T
ÿ

t“1

»

–1 ´

˜

τt
a

τ2
t ` z2

t pθ˚q

¸3
fi

fl

ϕtϕ
J
t

σ2
t

loooooooooooooooooooooooomoooooooooooooooooooooooon

H1,T

`

T
ÿ

t“1

»

–

˜

τt
a

τ2
t ` z2

t pθq

¸3

´

˜

τt
a

τ2
t ` z2

t pθ˚q

¸3
fi

fl

ϕtϕ
J
t

σ2
t

loooooooooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooooooooon

H2,T

.

(C.6)

where Etr¨s “ Er¨|Ft´1s for simplicity.

Since νt,θt´1 P Ft´1, from Algorithm 1, we have σt, wt, τt P Ft´1.
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Analysis of H1,T Notice that for any unit norm v P Rd, it follows that

vJH1,Tv “

T
ÿ

t“1

»

–1 ´

˜

τt
a

τ2
t ` z2

t pθ˚q

¸3
fi

fl

B

ϕt

σt
,v

F2

ď 3
T
ÿ

t“1

«

1 ´
τt

a

τ2
t ` z2

t pθ˚q

ff

B

ϕt

σt
,v

F2

ď 3
T
ÿ

t“1

«

1 ´
τt

a

τ2
t ` z2

t pθ˚q

ff

¨ sup
tPrT s

B

ϕt

σt
,v

F2

ď 3
T
ÿ

t“1

«

1 ´
τt

a

τ2
t ` z2

t pθ˚q

ff

¨ sup
tPrT s

›

›

›

›

ϕt

σt

›

›

›

›

2

H´1
T

¨ vJHTv

paq

ď 3
T
ÿ

t“1

«

1 ´
τt

a

τ2
t ` z2

t pθ˚q

ff

¨ sup
tPrT s

›

›

›

›

ϕt

σt

›

›

›

›

2

H´1
t

¨ vJHTv

pbq
“ 3

T
ÿ

t“1

«

1 ´
τt

a

τ2
t ` z2

t pθ˚q

ff

¨ sup
tPrT s

w2
t

1 ` w2
t

¨ vJHTv,

where paq uses H´1
T ĺ H´1

t for all t P rT s and pbq follows from
›

›

›

›

ϕt

σt

›

›

›

›

2

H´1
t

“
ϕJ

t

σt

¨

˝H´1
t´1 ´

H´1
t´1

ϕt

σt

ϕJ
t

σt
H´1

t´1

1 `
ϕJ

t

σt
H´1

t´1
ϕJ

t

σt

˛

‚

ϕt

σt
“ w2

t ´
w4

t

1 ` w2
t

“
w2

t

1 ` w2
t

.

By the arbitrariness of v, we know that

H1,T ĺ 3
T
ÿ

t“1

«

1 ´
τt

a

τ2
t ` z2

t pθ˚q

ff

¨ sup
tPrT s

w2
t

1 ` w2
t

¨HT . (C.7)

Let Xt “ 1 ´ τt?
τ2

t `z2
t pθ˚q

. It is obvious that 0 ď Xt ď 1. We then focus on the concentration of
řT

t“1 Xt. To
that end, we need a variance-aware Bernstein’s inequality Lemma G.2 for martingales. Lemma G.2 implies
that with probability at least 1 ´ δ

T 2 , we have

T
ÿ

t“1
Xt ď

T
ÿ

t“1
EtXt ` 3

g

f

f

e

T
ÿ

t“1
VarrXt|Ft´1s ¨ log 2KT 2

δ
` 5 log 2KT 2

δ

where K :“ 1 ` r2 log2 V s and V 2 is an upper bound satisfying
řT

t“1 ErX2
t |Ft´1s ď V 2.

First notice that for any t ě 1, we have

EtXt “ 1 ´ Et
τt

a

τ2
t ` z2

t pθ˚q
“ Et

z2
t pθ˚q

a

τ2
t ` z2

t pθ˚qp
a

τ2
t ` z2

t pθ˚q ` τtq

ď
1

2τ2
t

Etz
2
t pθ˚q ď

b2

2τ2
t

ď
b2

2τ2
0

w2
t

1 ` w2
t

(C.8)

which implies that
T
ÿ

t“1
EtXt ď

b2

2τ2
0

w2
t

1 ` w2
t

ď
b2

2τ2
0

T
ÿ

t“1
mint1, w2

t u ď
κb2

τ2
0

where the last inequality uses Lemma G.5 and thus
T
ÿ

t“1
mint1, w2

t u “

T
ÿ

t“1
min

#

1,

›

›

›

›

ϕt

σt

›

›

›

›

2

H´1
t´1

+

ď 2d log
ˆ

1 `
TL2

dλσ2
min

˙

“ 2κ.
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Secondly, we have

VarrXt|Ft´1s ď ErX2
t |Ft´1s ď Et

˜

1 ´
τt

a

τ2
t ` z2

t pθ˚q

¸2
p˚q

ď
1
4
Etz

2
t pθ˚q

τ2
t

ď
b2

4τ2
t

where p˚q uses 1 ´ τt?
τ2

t `z2
t pθ˚q

ď
z2

t pθ˚
q

2τt

?
τ2

t `z2
t pθ˚q

which is also used in equation C.8. As a result, we have

T
ÿ

t“1
VarrXt|Ft´1s ď

T
ÿ

t“1

b2

4τ2
t

ď
b2

4τ2
0

T
ÿ

t“1

w2
t

1 ` w2
t

ď
κb2

2τ2
0

.

Once requiring τ2
0 ě 2κb2, we have

řT
t“1 VarrXt|Ft´1s ď 1 and thus we can set V “ 1 and obtain K “ 1.

Putting them together, if τ2
0 ě 2κb2

log 2T 2
δ

, with probability at least 1 ´ δ, we have

T
ÿ

t“1
Xt ď

κb2

τ2
0

`
3b

τ0

d

κ log 2T 2

δ

2 ` 5 log 2T 2

δ

ď
1
2 log 2T 2

δ
`

3
2 log 2T 2

δ
` 5 log 2T 2

δ

ď 9 log 2T 2

δ
“

1
12c2

0
(C.9)

where the last equation is due to the definition of c0. Finally, taking a union bound for the last inequality
from T “ 1 to 8 and using the fact that

ř8

t“1 t´2 ă 2, we have
řT

t“1 Xt ď 1
12c2

0
for all T ě 1 with probability

at least 1 ´ 2δ.

On the other hand, by the choice of σt, we have σ2
t ě 1

c2
0

¨ }ϕt}
2
H´1

t´1
, which implies

sup
tPrT s

w2
t

1 ` w2
t

ď sup
tPrT s

w2
t ď c2

0. (C.10)

Plugging equation C.9 and equation C.10 into equation C.7, we have

H1,T ĺ
1
4HT . (C.11)

Analysis of H2,T We first notice that
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

˜

τt
a

τ2
t ` z2

t pθq

¸3

´

˜

τt
a

τ2
t ` z2

t pθ˚q

¸3
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď 3
ˇ

ˇ

ˇ

ˇ

ˇ

τt
a

τ2
t ` z2

t pθq
´

τt
a

τ2
t ` z2

t pθ˚q

ˇ

ˇ

ˇ

ˇ

ˇ

ď
3τt

a

τ2
t ` z2

t pθq
a

τ2
t ` z2

t pθ˚q

|z2
t pθq ´ z2

t pθ˚q|
a

τ2
t ` z2

t pθq `
a

τ2
t ` z2

t pθ˚q
. (C.12)

Notice that ztpθq “ ztpθ
˚q ` x

ϕt

σt
,θ ´ θ˚y. It then follows that for any c ą 0

z2
t pθq ď

ˆ

1 `
1
c

˙

z2
t pθ˚q ` p1 ` cq

B

ϕt

σt
,θ ´ θ˚

F2
;

z2
t pθ˚q ď

ˆ

1 `
1
c

˙

z2
t pθq ` p1 ` cq

B

ϕt

σt
,θ ´ θ˚

F2
,

By discussing which is larger between z2
t pθq and z2

t pθ˚q, we have

|z2
t pθq ´ z2

t pθ˚q| ď
1
c

min
␣

z2
t pθq, z2

t pθ˚q
(

` p1 ` cq

B

ϕt

σt
,θ ´ θ˚

F2
. (C.13)
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Plugging equation C.13 into equation C.12, we have that
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

˜

τt
a

τ2
t ` z2

t pθq

¸3

´

˜

τt
a

τ2
t ` z2

t pθ˚q

¸3
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď
3τt

τ2
t ` min tz2

t pθq, z2
t pθ˚qu

1
c min

␣

z2
t pθq, z2

t pθ˚q
(

2
a

τ2
t ` min tz2

t pθq, z2
t pθ˚qu

`
3p1 ` cq

2τ2
t

B

ϕt

σt
,θ ´ θ˚

F2

ď
3
2c

`
3p1 ` cq

2τ2
t

B

ϕt

σt
,θ ´ θ˚

F2
paq

ď
3
2c

`
6p1 ` cq

τ2
t

L2B2

σ2
t

ď
3
2c

`
6p1 ` cq

τ2
0

w2
t L2B2

σ2
t

pbq

ď
3
2c

`
6p1 ` cqc1d

τ2
0

(C.14)

where paq uses
A

ϕt

σt
,θ ´ θ˚

E

ď

›

›

›

ϕt

σt

›

›

›
p}θ} ` }θ˚}q ď 2LB

σt
due to }ϕt} ď L and θ,θ˚ P BalldpBq and pbq uses

the following result. By the definition of σt, we have σt ě
?

LB}ϕt}
1
2
H´1

t´1
{c

1
4
1 d

1
4 which implies σ2

t ě
w2

t L2B2

c1d .
As a result of equation C.14, by definition of H3,T , we have

´

ˆ

3
2c

`
6p1 ` cqc1d

τ2
0

˙ T
ÿ

t“1

ϕt

σt

ϕJ
t

σt
ĺ H2,T (C.15)

Putting pieces together Plugging equation C.11 and equation C.15 into equation C.6, with probability
at least 1 ´ δ, for any T ě 1 and for all θ P BalldpBq, we have

∇2LT pθq ľ HT ´
1
4HT ´

ˆ

3
2c

`
6p1 ` cqc1d

τ2
0

˙ T
ÿ

t“1

ϕt

σt

ϕJ
t

σt

ľ
3λ

4 I `

ˆ

1 ´
1
4 ´

3
2c

´
6p1 ` cqc1d

τ2
0

˙ T
ÿ

t“1

ϕt

σt

ϕJ
t

σt
.

Notice that c1 “ 1
42¨log 2T 2

δ

. If we set c “ 6 and τ0

b

2T 2

δ ě maxt
?

2κb, 2
?

du, we have

max
"

3
2c

,
6p1 ` cqc1d

τ2
0

*

ď
1
4 .

As a result, we have

∇2LT pθq ľ
3λ

4 I `
1
4

T
ÿ

t“1

ϕ

σt

ϕJ

σt
ľ

1
4HT .

C.3 Proof of Lemma 2.2

For simplicity, we denote z˚
t “ ztpθ

˚q for short. By triangle inequality, we have

}∇LT pθ˚q}H´1
T

ď }λθ˚}H´1
T

`

›

›

›

›

›

T
ÿ

t“1

τtz
˚
t

a

τ2
t ` pz˚

t q2

ϕt

σt

›

›

›

›

›

H´1
T

ď }λθ˚}H´1
T

`

›

›

›

›

›

T
ÿ

t“1

τtz
˚
t

a

τ2
t ` pz˚

t q2

ϕt

σt

›

›

›

›

›

H´1
T

loooooooooooooooomoooooooooooooooon

:“dT

. (C.16)

For the residual term }λθ˚}H´1
T

Notice that HT ľ λI and thus H´1
T ĺ λ´1Id. Therefore, }λθ˚}H´1

T
ď

?
λB.
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For the self-normalized term }dT }H´1
T

The fact that HT “ HT ´1 `
ϕTϕ

J
T

σ2
T

together with the Woodbury
matrix identity implies that

H´1
T “ H´1

T ´1 ´
H´1

T ´1ϕTϕ
J
TH

´1
T ´1

σ2
T p1 ` w2

T q
where w2

T :“
ϕJ

TH
´1
T ´1ϕT

σ2
T

“

›

›

›

›

ϕT

σT

›

›

›

›

2

HT ´1

. (C.17)

Clearly, wT is FT ´1-measurable and thus is predictable. By definition of dT and equation C.17,

}dT }2
H´1

T

“

˜

dT ´1 `
τT z˚

T
a

τ2
T ` pz˚

T q2
ϕT

σT

¸J

H´1
T

˜

dT ´1 `
τT z˚

T
a

τ2
T ` pz˚

T q2
ϕT

σT

¸

“ }dT ´1}2
H´1

T ´1
´

1
1 ` w2

T

˜

dJ
T ´1H

´1
T ´1ϕT

σT

¸2

`
2τT z˚

T
a

τ2
T ` pz˚

T q2

dJ
T ´1H

´1
T ϕT

σT
`

τ2
T pz˚

T q2

τ2
T ` pz˚

T q2
ϕJ

TH
´1
T ϕT

σ2
T

ď }dT ´1}2
H´1

T ´1
`

2τT z˚
T

a

τ2
T ` pz˚

T q2

dJ
T ´1H

´1
T ϕT

σT
looooooooooooooooomooooooooooooooooon

I1

`
τ2

T pz˚
T q2

τ2
T ` pz˚

T q2
ϕJ

TH
´1
T ϕT

σ2
T

loooooooooooooomoooooooooooooon

I2

. (C.18)

For I1, by equation C.17, we have

I1 “
2τT z˚

T
a

τ2
T ` pz˚

T q2
1

σT
dJ

T ´1

˜

H´1
T ´1 ´

H´1
T ´1ϕTϕ

J
TH

´1
T ´1

σ2
T p1 ` w2

T q

¸

ϕT

“
2τT z˚

T
a

τ2
T ` pz˚

T q2
1

1 ` w2
T

dJ
T ´1H

´1
T ´1ϕT

σT
.

For I2, we have

I2 “
τ2

T pz˚
T q2

τ2
T ` pz˚

T q2
ϕJ

TH
´1
T ϕT

σ2
T

“
τ2

T pz˚
T q2

τ2
T ` pz˚

T q2
1

σ2
T

ϕJ
T

˜

H´1
T ´1 ´

H´1
T ´1ϕTϕ

J
TH

´1
T ´1

σ2
T p1 ` w2

T q

¸

ϕT

“
τ2

T pz˚
T q2

τ2
T ` pz˚

T q2

ˆ

w2
T ´

w4
T

1 ` w2
T

˙

“
τ2

T pz˚
T q2

τ2
T ` pz˚

T q2
w2

T

1 ` w2
T

.

Using the equations for I1, I2 and iterating equation C.18, we have

}dT }2
H´1

T

ď

T
ÿ

t“1

τtz
˚
t

a

τ2
t ` pz˚

t q2

2
1 ` w2

t

dJ
t´1H

´1
t´1ϕt

σt
`

T
ÿ

t“1

τ2
t pz˚

t q2

τ2
t ` pz˚

t q2
w2

t

1 ` w2
t

. (C.19)

Recall that
κ “ d log

ˆ

1 `
TL2

dλσ2
min

˙

.

Lemma C.1. Assume Erpz˚
t q2|Ft´1s ď b2 for all t ě 1. Let At denotes the event where }dn}H´1

n
ď αn for

all n P rts. With probability at least 1 ´ δ, we have for all T ě 1,

T
ÿ

t“1

2τtz
˚
t 1At´1

pτ2
t ` pz˚

t q2q1{2
1

1 ` w2
t

dJ
t´1H

´1
t´1ϕt

σt
ď 4 max

tPrT s
αt ¨

«

κb2

4τ0
` b

c

κ log 2T 2

δ
`

2τ0

3 log 2T 2

δ

ff

.
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Lemma C.2. Assume Erpz˚
t q2|Ft´1s ď b2 for all t ě 1. For a fixed τ ě 0, with probability at least 1 ´ δ,

the follow inequality uniformly holds for all T ě 1,

T
ÿ

t“1

τ2
t pz˚

t q2

τ2
t ` pz˚

t q2
w2

t

1 ` w2
t

ď

«

?
2κb ` τ0

c

log 2T 2

δ

ff2

.

For any T ě 1, we define

αT “ 8
«

κb2

τ0
` b

c

κ log 2T 2

δ
` τ0 log 2T 2

δ

ff

. (C.20)

As a result of Lemma C.1 and Lemma C.2, with probability at least 1 ´ 2δ, for all T ě 0,5

T
ÿ

t“1

2τtz
˚
t 1At´1

a

τ2
t ` pz˚

t q2

1
1 ` w2

t

dJ
t´1H

´1
t´1ϕt

σt
ď

α2
T

2 and
T
ÿ

t“1

τ2
t pz˚

t q2

τ2
t ` pz˚

t q2
w2

t

1 ` w2
t

ď
α2

T

2 . (C.21)

Let B denote the event that the conditions in equation C.21 hold for T ě 0. By Lemma C.1 and Lemma C.2,
we know that PpBq ě 1 ´ 2δ. We now introduce a new event C that is defined by

C :“
!

}dT }H´1
T

ď αT , for all T ě 0
)

“

8
č

t“0
At.

In the following, we will show that B Ď C by mathematical induction. As a result, it follows that

PpCq ě PpBq ě 1 ´ δ.

Finally, we use mathematical induction to show that if B is true, then C must be true, i.e., all At is true for
all t ě 0 on the condition that the last inequalities equation C.21 are valid for all T ě 0. When t “ 0, A0 is
true by definition. Suppose that at iteration T ´ 1, for all 0 ď t ď T ´ 1, the event At is true, then we are
going to show that AT is also true. By comparing the definition of AT and AT ´1, we only need to show that
}dT }H´1

T
ď αT which is equivalent to }dT }2

H´1
T

ď α2
T . It follows due to the following inequality

}dT }2
H´1

T

pC.19q

ď

T
ÿ

t“1

τtz
˚
t

a

τ2
t ` pz˚

t q2

2
1 ` w2

t

dJ
t´1H

´1
t´1ϕt

σt
`

T
ÿ

t“1

τ2
t pz˚

t q2

τ2
t ` pz˚

t q2
w2

t

1 ` w2
t

paq
“

T
ÿ

t“1

τtz
˚
t 1At´1

a

τ2
t ` pz˚

t q2

2
1 ` w2

t

dJ
t´1H

´1
t´1ϕt

σt
`

T
ÿ

t“1

τ2
t pz˚

t q2

τ2
t ` pz˚

t q2
w2

t

1 ` w2
t

pbq

ď
α2

T

2 `
α2

T

2 “ α2
T ,

where paq uses the condition that all At is true for all 0 ď t ď T ´ 1 and pbq uses the conditions equation C.21.
As a result, we can conclude that all tAtutě0 is true and thus }dT }H´1

T
ď αT for all T ě 1.

C.4 Proof of Lemma C.1

Proof of Lemma C.1. We will make use of the Freedman inequality Lemma G.1 to prove our result. Recall
that τt “ τ0

?
1`w2

t

wt
. Set Yt “

τtz˚
t?

τ2
t `pz˚

t q2
2

1`w2
t

dJ
t´1H

´1
t´1ϕt1At´1

σt
with the event At´1 defined in the lemma. For

simplicity, we denote Xt “ Yt ´ ErYt|Ft´1s. Notice that
ˇ

ˇ

ˇ

ˇ

ˇ

dJ
t´1H

´1
t´1ϕt

σt
¨ 1At´1

ˇ

ˇ

ˇ

ˇ

ˇ

ď }dt´11At´1 }H´1
t´1

¨

›

›

›

›

ϕt

σt

›

›

›

›

H´1
t´1

ď αt´1wt.

5Note that it’s easy to verify that the following inequalities are true when t “ 0.
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As a result, we have

|Yt| ď τtαt´1 ¨
2wt

1 ` w2
t

ď 2τ0αt´1 and thus |Xt| ď |Yt| ` |ErYt|Ft´1s| ď 4τ0αt´1.

We also find that

ErX2
t |Ft´1s

paq

ď ErY 2
t |Ft´1s “ E

«

ˆ

2wt

1 ` w2
t

˙2
}dt´1}2

H´1
t´1

1At´1

τ2
t pz˚

t q2

τ2
t ` pz˚

t q2

ˇ

ˇ

ˇ

ˇ

Ft´1

ff

pbq

ď

ˆ

2wt

1 ` w2
t

˙2
α2

t´1b2 ď mint1, 2wtu
2α2

t´1b2 ď 4 mint1, w2
t uα2

t´1b2

where paq uses EpX ´ EXq2 ď EX2 for any random variable X and pbq uses Erε2
t |Ft´1s ď b2σ2

t due to
Erpz˚

t q2|Ft´1s ď b2.

Notice that }ϕt}{σt ď }ϕt}{σmin ď L{σmin. Then by Lemma G.5, we have

T
ÿ

t“1
mint1, w2

t u ď 2d log
ˆ

1 `
TL2

dλσ2
min

˙

:“ 2κ. (C.22)

Hence, by equation C.22,

T
ÿ

t“1
ErX2

t |Ft´1s ď 4
T
ÿ

t“1
mint1, w2

t uα2
t´1b2 ď 4 max

tPrT s
α2

t ¨

T
ÿ

t“1
mint1, w2

t ub2

ď max
tPrT s

α2
t ¨ 8db2 log

ˆ

1 `
TL2

dλσ2
min

˙

ď 8κb2 ¨ max
tPrT s

α2
t .

On the other hand, using Erz˚
t |Ft´1s “ 0 we have

ˇ

ˇ

ˇ

ˇ

ˇ

E

«

τtz
˚
t

a

τ2
t ` pz˚

t q2

ˇ

ˇ

ˇ

ˇ

Ft´1

ff
ˇ

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ˇ

E

«˜

τt
a

τ2
t ` pz˚

t q2
´ 1

¸

z˚
t

ˇ

ˇ

ˇ

ˇ

Ft´1

ff
ˇ

ˇ

ˇ

ˇ

ˇ

ď E
„

pz˚
t q2

2τt

ˇ

ˇ

ˇ

ˇ

Ft´1

ȷ

ď
b2

2τt

which implies
ˇ

ˇ

ˇ

ˇ

ˇ

T
ÿ

t“1
ErYt|Ft´1s

ˇ

ˇ

ˇ

ˇ

ˇ

ď

T
ÿ

t“1

b2

2τt

wt

1 ` w2
t

αt´1 ď
b2

2τ0

T
ÿ

t“1

w2
t

1 ` w2
t

αt´1

ď sup
tPrT s

αt ¨
b2

2τ

T
ÿ

t“1
mint1, w2

t u ď sup
tPrT s

αt ¨
κb2

τ0
.

By Freedman inequality in Lemma G.1, it follows that for a given T and τ0, with probability 1 ´ δ
2T 2 ,

T
ÿ

t“1
Yt ď

ˇ

ˇ

ˇ

ˇ

ˇ

T
ÿ

t“1
ErYt|Ft´1s

ˇ

ˇ

ˇ

ˇ

ˇ

` 4 max
tPrT s

αt ¨

«

b

c

κ log 2T 2

δ
`

2τ0

3 log 2T 2

δ

ff

ď 4 max
tPrT s

αt ¨

«

κb2

4τ0
` b

c

κ log 2T 2

δ
`

2τ0

3 log 2T 2

δ

ff

.

Finally, taking a union bound for the last inequality from T “ 1 to 8 and using the fact that
ř8

t“1 t´2 ă 2
completes the proof.

31



Published in Transactions on Machine Learning Research (April/2024)

C.5 Proof of Lemma C.2

Proof of Lemma C.2. Set Yt “
τ2

t pz˚
t q

2

τ2
t `pz˚

t q2
w2

t

1`w2
t

and Xt “ Yt ´ ErYt|Ft´1s. Recall that τt “ τ0

?
1`w2

t

wt
. Clearly,

we have |Yt| ď τ2
t

w2
t

1`w2
t

ď τ2
0 and thus |Xt| “ |Yt ´ ErYt|Ft´1s| ď maxt|Yt|, |ErYt|Ft´1s|u ď τ2

0 . We also find
that

ErX2
t |Ft´1s

paq

ď ErY 2
t |Ft´1s ď

ˆ

w2
t

1 ` w2
t

˙2

E

«

ˆ

τ2
t pz˚

t q2

τ2
t ` pz˚

t q2

˙2 ˇ
ˇ

ˇ

ˇ

Ft´1

ff

ď τ2
t

ˆ

w2
t

1 ` w2
t

˙2

E
“

pz˚
t q2|Ft´1

‰
pbq

ď τ2
0 b2 w2

t

1 ` w2
t

where paq uses EpX ´ EXq2 ď EX2 for any random variable X and pbq uses Erpz˚
t q2|Ft´1s ď b2 due to

Erε2
t |Ft´1s ď b2ν2

t . Hence, by equation C.22, we have

T
ÿ

t“1
ErX2

t |Ft´1s ď τ2
0 b2

T
ÿ

t“1

w2
t

1 ` w2
t

ď τ2
0 b2

T
ÿ

t“1
mint1, w2

t u ď 2κτ2
0 b2.

On the other hand,

T
ÿ

t“1
ErYt|Ft´1s “

T
ÿ

t“1

w2
t

1 ` w2
t

E
„

τ2
t pz˚

t q2

τ2
t ` pz˚

t q2

ˇ

ˇ

ˇ

ˇ

Ft´1

ȷ

ď

T
ÿ

t“1

w2
t

1 ` w2
t

E
“

pz˚
t q2|Ft´1

‰

ď

T
ÿ

t“1
mint1, w2

t ub2 ď 2κb2.

By Lemma G.1, it follows that with probability 1 ´ δ
2T 2 ,

T
ÿ

t“1
Yt ď

T
ÿ

t“1
ErYt|Ft´1s ` 2τ0b

c

κ log 2T 2

δ
`

2τ2
0

3 log 2T 2

δ

for a given T and τ0. Putting all pieces together, it follows that with probability 1 ´ δ
2T 2 ,

T
ÿ

t“1
Yt ď

«

?
2κb ` τ0

c

log 2T 2

δ

ff2

.

Finally, taking a union bound for the last inequality from T “ 1 to 8 and using the fact that
ř8

t“1 t´2 ă 2
completes the proof.

D Proof of Theorem 3.1

Measurability Let Fh,k denote the σ-field generated by all random variables up to and including the h-th
step and k-th episode. More specifically, let Ih,k “ tpi, jq : i P rHs, j P rk´1s or i P rhs, j “ ku denote the set of
index pairs up to and including the h-th step and k-th episode and then Fh,k “ σ

´

Ť

pi,jqPIh,k
tsi,j , ai,j , ri,ju

¯

.

We make a convention that F0,k “ FH,k´1. From our algorithm, we know that (i) Qk
h, V k

h , πk
h P FH,k´1 for

any Q P tQ, pQ, qQ, Qu and V P tV , pV , qV , V u, and (ii)

µh´1,k,θh,k,ψh,k, σh,k, Uh,k, Jh,k, Eh,k,ϕh,k, rϕh,k, wh,k, rwh,k, τh,k, rτh,k,Hh,k, ĂHh,k P Fh,k.

32



Published in Transactions on Machine Learning Research (April/2024)

D.1 High-Probability Events

Let κ “ d log
´

1 ` K
dλσ2

min

¯

. We first introduce the following high-probability events.

1. We define BR2 as the event that the following inequalities hold for all h P rHs and k P rKs
Ť

t0u,

ψ˚
h P rRh,k :“

!

}ψ} ď W : }ψh,k ´ψ}
ĂH´1

h,k

ď βR2

)

where

βR2 “ 128
ˆ?

κσR2

σmin
`

?
d

˙

c

log 2HK2

δ
` 5

?
λW.

2. We define B0 as the event that the following inequalities hold for all h P rHs and k P rKs,

max
"

›

›

›
pµ˚

h ´ µh,k´1qV
k

h`1

›

›

›

Hh,k´1
,
›

›

›
pµ˚

h ´ µh,k´1qV k
h`1

›

›

›

Hh,k´1

*

ď β0,

›

›

›
pµ˚

h ´ µh,k´1qrV
k

h`1s2
›

›

›

Hh,k´1
ď Hβ0,

where

β0 “
4H

σmin

c

d3Hι2
0 ` log 2H

δ
` 3

?
dλH

ι0 “ max
"

log
ˆ

1 `
8LK

λH
?

dσ2
min

˙

, log
ˆ

1 `
32B2K2

?
dλ3H2σ4

min

˙

, log
ˆ

1 `
K

λσ2
min

˙*

. (D.1)

Here we choose B ě 3pβR ` βV q and L “ W ` H
b

dK
λ .

3. We define BR as the event that the following inequalities hold for all h P rHs and k P rKs
Ť

t0u,

θ˚
h P Rh,k :“

␣

}θ} ď W : }θh,k ´ θ˚
h}Hh,k

ď βR

(

,
ˇ

ˇ

ˇ
rpVh

pRh ´ VhRhspsh,k, ah,kq

ˇ

ˇ

ˇ
ď Rh,k :“ βR2 } rϕh,k}

ĂHk´1
h,k´1

` 2HβR}ϕh,k}H´1
h,k´1

, (A.8)

where

βR “ 128p
?

κ `
?

dq

c

log 2HK2

δ
` 5

?
λW.

4. We define Bh as the event such that for all episode k P rKs, all stages h ď h1 ď H,

max
"

›

›

›
pµ˚

h1 ´ µh1,k´1qV
k

h1`1

›

›

›

Hh1,k´1

,
›

›

›
pµ˚

h1 ´ µh1,k´1qV k
h1`1

›

›

›

Hh1,k´1

*

ď βV , (D.2)

where

βV “ O
´?

dι2
1 `

?
dλH

¯

ι1 “ max
#

ι0, log 4HK2

δ
, log

˜

1 `
4L

?
d3H

σmin

¸

, log
˜

1 `
8

?
d7HB2

λσ2
min

¸+

. (D.3)

For simplicity, we further define BV :“ B1.

Our ultimate goal is to show BV holds with high probability, a target used in previous work (Hu et al., 2022;
He et al., 2022). More specifically, we first obtain coarse confidence sets for all parameters in the sense that
the confidence radius (that is βR2 and β0) is loose. In our analysis, BR2

Ş

B0 serves as the ‘coarse’ event
where the concentration results hold with a larger confidence radius, and BR

Ş

BV serves as a ‘refined’ event
where the confidence radius (that is βR and βV ) is much is tighter. Our first result is that BR2

Ş

B0 holds
with high probability as shown in Lemma D.1 and D.2. Their proofs are collected in Appendix F.1 and F.2.
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Lemma D.1. If we set

rτ0 “ max
"

?
2κσR2

σmin
, 2

?
d

*N

c

log 2HK2

δ
, (D.4)

the event BR2 holds with probability at least 1 ´ 4δ.
Lemma D.2. The event B0 holds with probability at least 1 ´ 3δ.

These coarse confidence sets are then used to estimate variance for the reward functions and value functions.
A key step is to show the adapted variance σh,k’s are indeed upper bounds of these variances (that is
rVhRhspsh,k, ah,kq ` rVhV ˚

h`1spsh,k, ah,kq) for all h P rHs. A frequently used argument is backward induction.
That is given the estimation is optimistic at the stage h ` 1, we then show the optimistic estimation is
maintained at the stage h. Induction over the stage h would complete the proof. The following lemma provides
estimation error bounds for rVhRhspsh,k, ah,kq and shows that the event BR holds with high probability. Its
proof is deferred in Appendix F.4.
Lemma D.3. If we set

τ0 “ maxt
?

2κ, 2
?

du

N

c

log 2HK2

δ
, (D.5)

the event BR holds with probability at least 1 ´ 8δ.

In Lemma D.4, we show that our constructed value functions V and V are indeed optimistic and pessimistic
estimators of the true value functions under the event defined before. Its proof is deferred in Appendix F.5.
Lemma D.4 (Optimism and pessimism). For any h P rHs, if BR

Ş

Bh holds, for any k P rKs
Ť

t0u,

V k
hp¨q ď V ˚

h p¨q ď V
k

hp¨q.

With the established optimism and pessimism, we can establish upper bounds for the estimation errors of the
three terms, namely rVhV ˚

h`1spsh,k, ah,kq,
”

VhpV
k

h`1 ´ V ˚
h`1q

ı

psh,k, ah,kq, and
”

VhpV k
h`1 ´ V ˚

h`1q

ı

psh,k, ah,kq

in the following lemmas. Their proofs are deferred in Appendix F.6 and F.7.
Lemma D.5. On the event B0

Ş

Bh`1, it follows that for all k P rKs

ˇ

ˇ

ˇ

”

VhV ˚
h`1 ´ pVhV

k

h`1

ı

psh,k, ah,kq

ˇ

ˇ

ˇ
ď Uh,k

where
Uh,k “ min

!

V2, 11Hβ0 ¨ }ϕh,k}H´1
h,k´1

` 4H ¨ pPh,kpV
k

h`1 ´ V k
h`1qpsh,k, ah,kq

)

(A.9)

with pPh,kp¨|s, aq “ µJ
h,k´1ϕps, aq.

Lemma D.6. On the event B0
Ş

BR

Ş

Bh`1, it follows that for all j ď k ď K

max
!”

VhpV
k

h`1 ´ V ˚
h`1q

ı

psh,j , ah,jq,
”

VhpV k
h`1 ´ V ˚

h`1q

ı

psh,j , ah,jq

)

ď Eh,j

where
Eh,j “ min

!

H2, 2Hβ0}ϕh,j}H´1
h,j´1

` H ¨

”

pPh,jpV
j

h`1 ´ V j
h`1q

ı

psh,j , ah,jq

)

(A.7)

with pPh,jp¨|s, aq “ µJ
h,j´1ϕps, aq.

With the last four lemmas, one can easily prove σh,k indeed serves as an upper bound of the true variance of
V ˚

h`1 at stage h. Therefore, by the backward induction, we can prove the following lemma whose proof is in
Appendix F.8.
Lemma D.7. On the event B0

Ş

BR, the event BV holds with probability at least 1 ´ 2δ.
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D.2 Regret Analysis

In the previous subsection, we know that with probability at least 1 ´ 17δ, the event BV

Ş

BR holds. Based
on Lemma D.4, the optimism implies that

RegpKq :“
K
ÿ

k“1
pV ˚

1 ´ V πk
1 qps1,kq ď

K
ÿ

k“1
pV

k

1 ´ V πk
1 qps1,kq.

We then relate the suboptimality gap
řk

k“1pV
k

1 ´ V πk
1 qps1,kq to the term

řK
k“1

řH
h“1 }ϕh,k}H´1

h,k´1
in

Lemma D.8. We emphasize that the bound in Lemma D.8 is much finer than previous bounds (e.g.,
Lemma B.1 in (He et al., 2022)) in the sense that the rest term is rOpHHq instead of previous rOp

?
HKHq.

This is because

• We first adopt a variance-aware Bernstein’s inequality to relate
řk

k“1pV
k

1 ´ V πk
1 qps1,kq with a sum of

martingale differences. In particular, we show that with high probability,
K
ÿ

k“1
pV

k

1 ´ V πk
1 qps1,kq ď

K
ÿ

k“1

H
ÿ

h“1

”

Xh,k ` 4β}ϕh,k}H´1
h,k´1

ı

.

where tXh,kuhPrHs is a martingale difference sequence define by

Xh,k :“ PhpV
k

h`1 ´ V πk

h`1qpsh,k, ah,kq ´ pV
k

h`1 ´ V πk

h`1qpsh`1,kq.

The variance-aware Bernstein’s inequality implies that with high probability,
ˇ

ˇ

ˇ

ˇ

ˇ

K
ÿ

k“1

H
ÿ

h“1
Xh,k

ˇ

ˇ

ˇ

ˇ

ˇ

ď rOp1q ¨

g

f

f

eH ¨

K
ÿ

k“1

H
ÿ

h“1
PhpV

k

h`1 ´ V πk

h`1qpsh,k, ah,kq ` rOpHq.

• We then use a recursion argument to simplify the variance term above. More specifically, we show
that with high probability,

K
ÿ

k“1

H
ÿ

h“1
PhpV

k

h`1 ´ V πk

h`1qpsh,k, ah,kq ď OpHq ¨

g

f

f

eH ¨

K
ÿ

k“1

H
ÿ

h“1
PhpV

k

h`1 ´ V πk

h`1qpsh,k, ah,kq

` OpHβq

K
ÿ

k“1

H
ÿ

h“2
}ϕh,k}H´1

h,k´1
` rOpHHq.

We decouple the self-dependence on
řK

k“1
řH

h“1 PhpV
k

h`1 ´ V πk

h`1qpsh,k, ah,kq using this inequality
that x ď 2pa2 ` b2q for any x ď |a|

?
x ` b2.

• Combining the two steps, we then complete the proof of Lemma D.8. The detailed proof is deferred
to Appendix F.9.

In contrast, previous work directly applies Azuma-Hoeffding inequality to analyze the concentration of
řk

k“1pV
k

1 ´ V πk
1 qps1,kq so that

ˇ

ˇ

ˇ

řK
k“1

řH
h“1 Xh,k

ˇ

ˇ

ˇ
ď rOp

?
HKHq, which inevitably introduces the additional

rOp
?

Kq dependence.
Lemma D.8 (Suboptimality gap). With probability at least 1 ´ δ, on the event BR

Ş

BV , it follows that
K
ÿ

k“1
pV

k

1 ´ V πk
1 qps1,kq ď 6β

K
ÿ

k“1

H
ÿ

h“1
}ϕh,k}H´1

h,k´1
` 38HH log 4rlog2 HKs

δ
and

K
ÿ

k“1

H
ÿ

h“1
PhpV

k

h`1 ´ V πk

h`1qpsh,k, ah,kq ď 8Hβ
K
ÿ

k“1

H
ÿ

h“1
}ϕh,k}H´1

h,k´1
` 38H2H log 4rlog2 HKs

δ
.
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Using a similar argument, we provide a finer bound for the gap between optimistic and pessimistic value
functions

řK
k“1

řH
h“1 PhpV

k

h`1 ´ V k
h`1qpsh,k, ah,kq in Lemma D.9. Its proof is provided in Appendix F.10.

Lemma D.9 (Gap between optimistic and pessimistic value functions). With probability at least 1 ´ δ, on
the event BV

Ş

BR, it follows that

K
ÿ

k“1

H
ÿ

h“1
PhpV

k

h`1 ´ V k
h`1qpsh,k, ah,kq ď 12Hβ

K
ÿ

k“1

H
ÿ

h“1
}ϕh,k}H´1

h,k´1
` 38H2H log 4rlog2 HKs

δ
.

The following issue is to upper bound the term
řK

k“1
řH

h“1 }ϕh,k}H´1
h,k´1

. Since the estimation of reward
variance concerns the other term

řK
k“1

řH
h“1 } rϕh,k}

ĂH´1
h,k´1

, we are motivated to analyze them simultaneously

via
řK

k“1
řH

h“1 bh,k where bh,k “ max
!

}ϕh,k}H´1
h,k´1

, } rϕh,k}
ĂH´1

h,k´1

)

. Previous works (Hu et al., 2022; He
et al., 2022) mainly use Cauchy–Schwarz inequality to analyze it and obtain

K
ÿ

k“1

H
ÿ

h“1
bh,k ď

g

f

f

e

˜

K
ÿ

k“1

H
ÿ

h“1
σ2

h,k

¸˜

K
ÿ

k“1

H
ÿ

h“1
maxtw2

h,k, rw2
h,ku

¸

“ rO

¨

˝

?
dH ¨

g

f

f

e

K
ÿ

k“1

H
ÿ

h“1
σ2

h,k

˛

‚.

where the last equality uses the elliptical potential lemmas in Lemma G.5. A standard analysis of the law
of total variation would imply

b

řK
k“1

řH
h“1 σ2

h,k “ rOp
?

H2Kq. However, this result doesn’t satisfy our
target for two reasons. First, due to the use of adaptive Huber regression, our definition of σh,k is more
complicated than previous algorithms. We need a more elaborate analysis to handle the additional terms in
the definition of σh,k’s. Second, the previous result considers the worst-case scenario, while our target is to
provide a finer variance-aware regret. Therefore, it is imperative to provide a finer bound for the sum of
bonuses

řK
k“1

řH
h“1 bh,k. We did it in Lemma D.10.

Lemma D.10 (Sum of bonuses). Set λ “ 1
H2`W 2 . Let A0 denote the intersection event of Lemma D.8

and D.9. With probability at least 1 ´ 2δ, on the event BR

Ş

BV

Ş

B0
Ş

BR2
Ş

A0, we have

K
ÿ

k“1

H
ÿ

h“1
bh,k “ rO

ˆ

?
dHKG˚ ` Hd0.5K0.5σmin `

H2.5d5.5H2 ` Hd1.5σR2

σmin

˙

` rO
`

H3d4.5H ` Hd0.5σR ` Hd1.5˘ .

where rOp¨q ignores constant factors and logarithmic dependence.

We emphasize that Lemma D.10 is perhaps the most technical lemma in our paper. To address the difficulty
mentioned earlier, we divide the full index set I :“ rHs ˆ rKs into three disjoint subsets I “

Ť

i“1,2,3 Ji

according to which value σh,k takes (given σh,k is the maximum value among five quantities). For those
indexes in J1 where the bonuses are small enough, we still use the Cauchy–Schwarz inequality to bound
ř

ph,kqPJ1
bh,k ď rO

´?
dH ¨

b

ř

ph,kqPI σ2
h,k

¯

. This sum-of-squared-bonus quantity involves
ř

ph,kqPI Eh,k and
ř

ph,kqPI Jh,k which we then pay additional efforts to analyze. For those indexes in J2 or J3 where the
bonuses are relatively large, we directly analyze

ř

ph,kqPJ2
Ť

J3
bh,k. Thanks to the particular structure,

ř

ph,kqPJ2
Ť

J3
bh,k contributes to the non-leading term in the final bound. Putting pieces together, we

complete the proof. A formal proof can be found in Appendix F.11.

At the end of the subsection, we summarize the proof in a few lines.

RegpKq “

K
ÿ

k“1
pV ˚

1 ´ V πk
1 qps1,kq

paq

ď

K
ÿ

k“1
pV

k

1 ´ V πk
1 qps1,kq

pbq

ď 3β
K
ÿ

k“1

H
ÿ

h“1
}ϕh,k}H´1

h,k´1
` 38HH log 4rlog2 HKs

δ
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pcq

ď 3β
K
ÿ

k“1

H
ÿ

h“1
bh,k ` 38HH log 4rlog2 HKs

δ

pdq
“ rO

ˆ

d
?

HKG˚ ` HdK0.5σmin `
H2.5d6H2 ` Hd2σR2

σmin
` H3d5H ` HdσR ` Hd2

˙

where paq follows from the optimism result in Lemma D.4, pbq follows from the suboptimality gap result in
Lemma D.8, pcq uses bh,k “ max

!

}ϕh,k}H´1
h,k´1

, } rϕh,k}
ĂH´1

h,k´1

)

, and pdq follows from sum-of-bonus result in

Lemma D.10 and β “ βR ` βV “ rOp
?

dq.

E Proof of Theorem 3.2

Proof of Theorem 3.2. We consider the two complexities respectively.

Space Complexity First, to perform AdaOFUL, VARA needs to store all seen rewards and feature vectors
(i.e., ϕh,k, rϕh,k), which is required by all RL/bandit algorithms robust to heavy-tailed rewards (Shao et al.,
2018; Xue et al., 2021; Zhuang & Sui, 2021). AdaOFUL also keeps all robustification parameters τh,k, rτh,k. It
then incurs OpHKdq space storage in total.

Second, due to the rare-switching technique, one can show that Q
k

h (or Qk

h
) is the minimum (or maximum) of

at most rOpdHq temporary optimistic (or pessimistic) functions (see Lemma G.7). It means that we need to
store at most rOpdHq different versions of θh,k´1,µh,k´1V

k
h`1,Hh,k´1’s. This incurs Opd3H2q space cost.

Last, for all ph, kq P rHs ˆ rKs, we need to trace tϕpsh,k, aquaPA to evaluate each µh,kV “

H´1
h,k

řk
j“1 σ´2

h,jϕh,jV psh`1,kq for V P tV
k

h`1, rV
k

h`1s2,V k
h`1u, which takes Opd|A|HKq space.

To sum up, VARA takes Opd3H2 ` d|A|HKq space.

Computational Complexity First, we use the Nesterov accelerated method to compute each θh,k. Since
the loss function in equation A.1 is λ-strongly convex and

´

λ ` K
σ2

min

¯

-smooth, the computational cost for each

θh,k is rO
ˆ

d
b

1 ` K
λpσ˚

minq2

˙

“ rOpmaxtd, H´3{4d´3{2K3{4uq and the total cost is rOpHKpd`H´3{4d´3{2K3{4qq.

We emphasize that we don’t need to compute θh,k exactly. It suffices to terminate at a solution pθh,k once
its accuracy satisfies }pθh,k ´ θh,k}Hh,k

ď
?

d. The iteration complexity is proportional to the root of the
conditional number, i.e., rOpmaxt1, d´7{4K3{4uq. Since each iteration takes Opdq operation, the computation
complexity is rOpmaxtd, d´3{4K3{4uq.

Second, each time when updating the value function, we take the minimum over at most rOpdHq quadratic
functions. Moreover, the Sherman-Morrison formula computes H´1

h,k and its products with any vectors, which
takes Opd2q operations. As a result, it needs rOpd3Hq to evaluate the updated Qh,kps, aq for a given pair
ps, aq. Hence, computing Qh,kpsh,k, ¨q, choosing ah,k “ argmaxaPA Qh,kpsh,k, aq, and estimating the variance
σh,k lead to rOpd3H2|A|q computational complexity for each episode.

Last, note µh,kV “ H´1
h,k

řk
j“1 σ´2

h,jϕh,jV psh`1,kq for any value function V p¨q. If V remains unchanged, we
only need to compute the new term σ´2

h,kϕh,kV psh`1,kq, which has an rOpd3H|A|q complexity each time. If V

changes to V 1, we need to recalculate µh,kV
1, which has an rOpd3H|A|Kq complexity each time. Combining

the computational complexity for all horizons and noticing that the number of episodes that trigger the
updating criterion is at most rOpdHq, VARA has a running time of rOpd4|A|H3K `HKpd`H´3{4d´3{2K3{4qq.
In terms of the dependence on K, it is slightly worse than LSVI-UCB++’s rOpd4|A|H3Kq since the adaptive
Huber regression doesn’t have a closed-form solution, but is better than LSVI-UCB’s rOpd2|A|HK2q due to
the rare-switching mechanism.
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F Omitted lemmas in Section D

F.1 Proof of Lemma D.1

Proof of Lemma D.1. The proof idea of Lemma D.1 is similar to that of Theorem 2.1 except for the following
changes. First, rϕh,k “ rϕpsh,k, ah,kq P Rd is instead the feature vector. Second, in the particular setting,
we should respectively replace L, B, T, δ therein with 1, W, K, δ{H defined here and redefine c0, c1 as c0 “

1
6
b

3 log 2HK2
δ

, c1 “ 1
42¨ 2HK2

δ

respectively. Third, by the choice of σh,k, we have σ2
h,k ě

´

W?
c1d

` Hd2.5H
¯

bh,k ě

W?
c1d

} rϕh,k}
ĂH´1

h,k´1
, which implies that W 2

rw2
h,k

σ2
h,k

ď c1d. Similarly, due to σ2
h,k ě c´2

0 } rϕh,k}2
ĂH´1

h´1,k

, we have

rw2
h,k ď c2

0. Last, for simplicity, we define εh,k “
r2

h,k´x rϕh,k,ψ˚
h

y

σh,k
and Gh,k “ σpFh´1,k

Ť

tsh,k, ah,kuq. Then,

we have εh,k P Fh,k, Erεh,k|Gh,ks “ 0 and Varrεh,k|Gh,ks ď

´

σR2
σmin

¯2
:“ b2. Theorem 2.1 concerns the case

where b “ 1, however, its proof considers the general case where b can be arbitrary. As a result, by a
similar argument in Appendix C (which is doable due to the four conditions mentioned above), once setting
rτ0

b

log 2HK2

δ “ max
!?

2κb, 2
?

d
)

, with probability at least 1 ´ 3δ, we have for all h P rHs and k P rKs,
}ψh,k ´ψ˚

h}
ĂHh,k

ď βR2 , that is the event BR2 holds.

F.2 Proof of Lemma D.2

We will make use of the following general results frequently. The proof is quite standard (Jin et al., 2020b;
Wagenmaker et al., 2022a; Hu et al., 2022). We provide proof in Appendix F.3 for completeness.
Lemma F.1. Fix any h P rHs. Consider a specific value function fp¨q which satisfies

(i) supsPS |fpsq| ď C0;

(ii) f P V where V is a class of functions with N pV, εq the ε-covering number of V with respective to the
distance distpf, f 1q :“ supsPS |fpsq ´ f 1psq|.

We assume there exists a deterministic Cσ ą 0 and Ah,k (which is Fh,k-measurable) such that Ah,k Ď
!

σ2
h,k ě pVhfqpsh,k, ah,kq{C2

σ

)

for all k P rKs. Let µh,k be defined equation A.2 and σh,k,Hh,k be defined in
our algorithm. Under any of the following conditions, with probability at least 1 ´ δ{H, it follows for all
k P rKs

Ť

t0u,
µ˚

h P

!

µ : }pµ´ µh,kqf}Hh,k
ď β

)

. (F.1)

(i) If fp¨q is a deterministic function and
Ş

kPrKs Ah,k is true, equation F.1 holds with

β “ 8Cσ

d

d log
ˆ

1 `
K

σ2
mindλ

˙

log 4HK2

δ
`

8C0

d2.5H
log 4HK2

δ
`

?
dλC0.

(ii) If fp¨q is a random function and
Ş

kPrKs Ah,k is true, equation F.1 holds with

β “ 8Cσ

d

d log
ˆ

1 `
K

σ2
mindλ

˙

log 4HK2N0

δ
`

8C0

d2.5HH
log 4HK2N0

δ
` 3

?
dλC0

where N0 “ |N pV, ε0q| and ε0 “ min
!

Cσσmin, λC0
?

d
K σ2

min

)

.

(iii) If fp¨q is a random function, equation F.1 holds with

β “
2C0

σmin

d

d log
ˆ

1 `
K

σ2
mindλ

˙

` log N1

δ
` 3

?
dλC0.
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where N1 “ |N pV, ε1q| and ε1 “ λC0
?

d
K σ2

min.

Using the last item suffices to prove Lemma D.2.

Proof of Lemma D.2. Let V` denote the class of optimistic value functions mapping from S to R with the
parametric form given in equation G.1 and V´ the class of pessimistic value functions with the parametric
form given in equation G.2. By Lemma G.8 and Lemma G.7,

log N pV˘, εq ď

„

d log
ˆ

1 `
4L

ε

˙

` d2 log
ˆ

1 `
8d1{2B2

λε2

˙ȷ

(F.2)

where B ě β0 and L “ W ` H
b

dK
λ .

(i) Let f “ V
k

h`1. One can find that f P V`
f with parameter L “ W ` KH

λσ2
min

. To plug in Lemma F.1,
we first specify the parameters defined therein. We have }f}8 ď C0 “ H and ε1 “ λH

?
d

K σ2
min.

By equation F.2, it follows that

log N pV`, ε1q

ď

„

d log
ˆ

1 `
4LK

λH
?

dσ2
min

˙

` d2 log
ˆ

1 `
8B2K2

?
dλ3H2σ4

min

˙ȷ

¨ dH log2

ˆ

1 `
K

λσ2
min

˙

ď
2

log 2d3Hι2
0 ď 3d3Hι2

0,

By the third condition of Lemma F.1, with probability at least 1 ´ δ
2H ,

›

›

›
pµ˚

h ´ µh,k´1q pV k
h`1

›

›

›
ď β0 for

all k P rKs. Similarly, we can also show that with probability at least 1´ δ
2H ,

›

›

›
pµ˚

h ´ µh,k´1q qV k
h`1

›

›

›
ď

β0 for all k P rKs. Putting them together finishes the proof.

(ii) The analysis on V k
h`1 is similar to (i).

(iii) The analysis on rV
k

h`1s2 is similar to (i) except for the following two changes. First, C0 “ H2 and
ε1

1 “ λH2?
d

K σ2
min. Second, with rV`s2 “ tf2 : f P V`u, we have rV

k

h`1s2 P rV`s2 and

log N prV`s2, ε1
1q

paq

ď log N pV`,
ε1

1
2H

q ď log N pV`,
ε1

2 q ď 3d3Hι2
0.

Here paq uses the fact that the ε1
1

2H -cover of V` is a ε1-cover of rV`s2 (which is also supported by
Lemma G.9).

F.3 Proof of Lemma F.1

Proof of Lemma F.1. Since the case of k “ 0 is trivial, we focus on k P rKs. By definition,

µh,k “ H´1
h,k

k
ÿ

j“1
σ´2

h,jϕh,jδpsh`1,jqJ “ H´1
h,k

k
ÿ

j“1
σ´2

h,jϕh,j

`

ϕJ
h,jµ

˚
h ´ εh,j

˘J

“ µ˚
h ´ λH´1

h,kµ
˚
h ´H´1

h,k

k
ÿ

j“1
σ´2

h,jϕh,jε
J
h,j .
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By the triangle inequality, it follows that

}pµ˚
h ´ µh,kqf}Hh,k

ď λ}H´1
h,kµ

˚
hf}Hh,k

`

›

›

›

›

›

H´1
h,k

k
ÿ

j“1
σ´2

h,jϕh,jε
J
h,jf

›

›

›

›

›

Hh,k

“ λ}µ˚
hf}H´1

h,k
`

›

›

›

›

›

k
ÿ

j“1
σ´2

h,jϕh,jε
J
h,jf

›

›

›

›

›

H´1
h,k

ď
?

dλC0 `

›

›

›

›

›

k
ÿ

j“1
σ´2

h,jϕh,jε
J
h,jf

›

›

›

›

›

H´1
h,k

where the last inequality uses }µ˚
hf} ď

?
dC0.

• Assume fp¨q is a deterministic function. To evoke Lemma G.3, we set Gj “ Fh,j ,xj “ σ´1
h,jϕh,j , ηj “

σ´1
h,jε

J
h,jf ¨ 1Ah,j

and Zk “ λI `
řk

j“1 σ´2
h,jϕh,jϕ

J
h,j “ Hh,k. Here 1A is the indicator function of the event

A.
Clearly xj P Gj ,Erηj |Gjs “ 0 and Erη2

j |Gjs ď C2
σ. We also have }xj} ď σ´1

min, |ηj | ď 2C0σ´1
h,j and

}xj}Zj´1 “ wh,j . As a result, |ηj | min
␣

1, }xj}Zj´1

(

ď 2C0
wh,j

σh,j
ď 2C0

Hd2.5H where the last inequality uses
σ2

h,j ě Hd2.5H}ϕh,j}H´1
h,k´1

(which is equivalent to wh,j

σh,j
ď pd2.5HHq´1). By Lemma Lemma G.3, it follows

that with probability 1 ´ δ
H , for all k P rKs,

›

›

›

›

›

k
ÿ

j“1
σ´2

h,jϕh,jε
J
h,jf1Ah,j

›

›

›

›

›

H´1
h,k

“

›

›

›

›

›

k
ÿ

j“1
xjηj

›

›

›

›

›

Z´1
k

ď 8Cσ

d

d log
ˆ

1 `
K

σ2
mindλ

˙

log 4HK2

δ
`

8C0

Hd2.5H
log 4HK2

δ
.

Finally, on the event
Ş

kPrKs Ah,k, we will have all the indicator functions equal to one.

• If fp¨q is a random function, we would use a covering argument to handle the possible correlation between
fp¨q and history data, which would, unfortunately, enlarge β.

Denote the ε0-net of V by N pV, ε0q where ε0 “ min
!

Cσσmin, λC0
?

d
K σ2

min

)

. Hence, for any f P V, there
exists f̄ P N pV, ε0q such that }f̄ ´ f}8 “ supsPS |fpsq ´ f̄psq| ď ε0. Then,

›

›

›

›

›

k
ÿ

j“1
σ´2

h,jϕh,jε
J
h,jf

›

›

›

›

›

H´1
h,k

ď

›

›

›

›

›

k
ÿ

j“1
σ´2

h,jϕh,jε
J
h,j f̄

›

›

›

›

›

H´1
h,k

loooooooooooooomoooooooooooooon

pIq

`

›

›

›

›

›

k
ÿ

j“1
σ´2

h,jϕh,jε
J
h,jpf ´ f̄q

›

›

›

›

›

H´1
h,k

loooooooooooooooooomoooooooooooooooooon

pIIq

.

For the term pIIq, due to }ϕh,j} ď 1 and |εJ
h,jpf ´ f̄q| ď }εh,j}1}f ´ f̄}8 ď 2ε0, we have

›

›

›

›

›

k
ÿ

j“1
σ´2

h,jϕh,jε
J
h,jpf ´ f̄q

›

›

›

›

›

H´1
h,k

ď
2Kε0

σ2
min

?
λ

ď 2
?

dλC0.

For the term pIq, we define Vh,k “

!

f 1 P V : 4C2
σσ2

h,k ě pVhf 1qpsh,k, ah,kq

)

. Since the definition of Vh,k

involves only σh,k, sh,k, ah,k P Fh,k, for any fixed function f P V , 1fPVh,k
is Fh,k-measurable. On the event

Ah,k, by definition of ε0,

pVhf̄qpsh,k, ah,kq ď 2pVhfqpsh,k, ah,kq ` 2pVhpf̄ ´ fqqpsh,k, ah,kq ď 2C2
σσ2

h,k ` 2ε2
0 ď 4C2

σσ2
h,k.
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Hence, Ah,k Ď

!

σ2
h,k ě pVhfqpsh,k, ah,kq{C2

σ

)

Ď tDf̄ P N pV, ε0q
Ş

Vh,ku for all k P rKs.

In the following, we will evoke Lemma G.3 to analyze the term pIq. For any fixed f 1 P V, we set
Gj “ Fh,j ,xj “ σ´1

h,jϕh,j , ηj “ σ´1
h,jε

J
h,jf

1 ¨ 1f 1PVh,k
and Zk “ λI `

řk
j“1 σ´2

h,jϕh,jϕ
J
h,j “ Hh,k. Moreover,

due to the choice of σh,j , it follows that
ˇ

ˇ

ˇ
ηj min

!

1, }xj}Z´1
j´1

)
ˇ

ˇ

ˇ
ď

ˇ

ˇ

ˇ

ˇ

C0

σh,j

ˇ

ˇ

ˇ

ˇ

¨

›

›

›

›

ϕh,j

σh,j

›

›

›

›

H´1
h,j´1

ď C0
bh,j

σ2
h,j

ď
C0

d2.5HH
.

By Lemma G.3 and the union bound, it follows that with probability 1 ´ δ
H , for all k P rKs,

sup
f 1PN pV,ε0q

›

›

›

›

›

k
ÿ

j“1
σ´2

h,jϕh,jε
J
h,jf

11f 1PVh,k

›

›

›

›

›

H´1
h,k

ď 8Cσ

d

d log
ˆ

1 `
K

σ2
mindλ

˙

log 4HK2N0

δ
`

8C0

d2.5HH
log 4HK2N0

δ
.

where N0 “ |N pV, ε0q|.

As a result, we know that
›

›

›

řk
j“1 σ´2

h,jϕh,jε
J
h,j f̄1f̄PVh,k

›

›

›

H´1
h,k

is no more than the RHS of the last inequality.

On the event
Ş

kPrKs Ah,k, we have f̄ P
Ş

kPrKs Vh,k and thus all the indicator functions equal to one,
completing the proof.

• The proof is almost similar to the second item except that we use Lemma G.4 to analyze the term pIq.
Noticing we also have |ηj | “ |σ´1

h,jε
J
h,jf

1| ď 2C0
σmin

. By Lemma G.4 and the union bound, it follows that with
probability 1 ´ δ

H , for all k P rKs,

sup
f 1PN pVf ,ε1q

›

›

›

›

›

k
ÿ

j“1
σ´2

h,jϕh,jε
J
h,jf

11f 1PVh,k

›

›

›

›

›

H´1
h,k

ď
2C0

σmin

d

d log
ˆ

1 `
K

σ2
mindλ

˙

` log N1

δ
.

Pay attention that here we don’t utilize the variance information so that we change N0 :“ |N pV, ε0q| to
N1 :“ |N pV, ε1q| and don’t require

Ş

kPrKs Ah,k is true.

F.4 Proof of Lemma D.3

Proof of Lemma D.3. The proof idea of Lemma D.3 is similar to that of Lemma D.1 except that we pay
more attention to the reward variance.

Given that BR2 holds, we have ψ˚
h P rRh,k for all h P rHs and k P rKs

Ť

t0u.

We will prove the lemma by induction over k. When k “ 0, we have θh,0 “ 0,Hh,0 “ λI and }θh,0 ´θ˚
h}Hh,0 “

?
λ}θ˚

h} ď
?

λW ď βR for all h P rHs. If we suppose θ˚
h P Rh,j holds for all h P rHs and j P rk ´ 1s, we are

going to prove θ˚
h P Rh,k uniformly for h P rHs. The first thing we will show is

σ2
h,j ě rpVhRhspsh,j , ah,jq ` Rh,j for all h P rHs and j P rks. (F.3)

Notice that rVhRhspsh,k, ah,kq “ x rϕh,k,ψ˚
hy ´ xϕh,k,θ˚

hy2. We then have for all h P rHs, j P rks,

|rpVhRh ´ VhRhspsh,j , ah,jq|

ď

ˇ

ˇ

ˇ
x rϕh,j ,ψh,j´1y ´ x rϕh,j ,ψ˚

hy

ˇ

ˇ

ˇ
`

ˇ

ˇ

ˇ
xϕh,j ,θ˚

hy2 ´ xϕh,j ,θh,j´1y2
r0,Hs

ˇ

ˇ

ˇ

ď |x rϕh,k,ψh,k´1 ´ψ˚
hy| ` 2H|xϕh,k,θh,j´1 ´ θ˚

hy|
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ď } rϕh,j}
ĂH´1

h,j´1
}ψh,j´1 ´ψ˚

h}
ĂHh,j´1

` 2H}ϕh,j}H´1
h,j´1

}θh,j´1 ´ θ˚
h}Hh,j´1

ď βR2 } rϕh,j}
ĂH´1

h,j´1
` 2HβR}ϕh,j}H´1

h,j´1
“ Rh,j

where the last inequality uses the hypothesis and the condition that BR2 holds. As a result, we establish equa-
tion F.3.

Let Gh,j “ σpFh´1,j

Ť

tsh,j , ah,juq. One can show that both Rh,j and σ2
h,j are Gh,j-measurable. As a result,

the event Eh,j :“
!

σ2
h,j ě rVhRhspsh,j , ah,jq

)

is also Gh,j-measurable. On the event BR2 , it is obvious that
Ş

hPrHs

Ş

jPrks Eh,j is true since equation F.3 is true.

On the other hand, we set εh,j “
rh,j ´xϕh,j ,θ˚

h
y

σh,j
1Eh,j

as the standardized reward. We then have εh,j P Fh,j ,
Erεh,j |Gh,js “ 0 and Varrεh,j |Gh,js ď 1. We define pθh,k as the solution of adaptive Huber regression to
the response trh,j1Eh,j

ujPrks and the feature tϕh,j1Eh,j
ujPrks. We also define xHh,k´1 as the counterpart

matrix of Hh,k obtained by replacing ϕh,k with ϕh,k1Eh,k
. We then apply Theorem 2.1 to analyze the

concentration of pθh,k. With probability at least 1 ´ 3δ, it follows that }pθh,k ´ θ˚
h}

xHh,k´1
ď βR for all h P rHs

and k P rKs . Because BR2 is true, all indicator functions are equal to one. Therefore, we have pθh,k “ θh,k

and xHh,k´1 “ Hh,k´1, implying θ˚
h P Rh,k uniformly for h P rHs.

F.5 Proof of Lemma D.4

Proof of Lemma D.4. By symmetry, we only prove the RHS inequality, or say, the optimism inequality. We
prove it by induction. The statement is true for h “ H ` 1 since both V ˚

H`1p¨q “ V
k

H`1p¨q “ 0 for all k P rKs.
Assume the statement is also true for h ` 1, implying V ˚

h`1p¨q ď V
k

h`1p¨q for all k P rKs. We assume there
exists a sequence of updating episodes 1 ď k1 ă ¨ ¨ ¨ ă kNk

ď K such that

Q
k

hp¨, ¨q “ min
iPrNks

!

xϕp¨, ¨q,θh,ki´1 ` µh,ki´1V
ki

h`1y ` β}ϕp¨, ¨q}H´1
h,ki´1

, H
)

. (F.4)

Using Q˚
hps, aq “ xϕps, aq,θ˚

h ` µ˚
hV

˚
h`1y, we have for any ps, aq P S ˆ A and k P rKs,

xϕp¨, ¨q,θh,k´1 ` µh,k´1V
k

h`1y ` β}ϕp¨, ¨q}H´1
h,k´1

´ Q˚
hp¨, ¨q

“ xϕp¨, ¨q,θh,k´1 ´ θ˚
hy ` xϕp¨, ¨q,µh,k´1V

k

h`1 ´ µ˚
hV

˚
h`1y ` β}ϕp¨, ¨q}H´1

h,k´1

paq

ě xϕp¨, ¨q,θh,k´1 ´ θ˚
hy ` xϕp¨, ¨q, pµh,k´1 ´ µ˚

hqV
k

h`1y ` β}ϕp¨, ¨q}H´1
h,k´1

pbq

ě }ϕp¨, ¨q}H´1
h,k´1

”

´}θh,k´1 ´ θ˚
h}Hh,k´1 ´ }pµh,k´1 ´ µ˚

hqV
k

h`1}Hh,k´1 ` β
ı pcq

ě 0

where paq uses xϕps, aq,µ˚
hpV

k

h`1 ´V ˚
h`1qy “ PhpV

k

h`1 ´V ˚
h`1qps, aq ě 0 from the hypothesis, pbq follows from

Cauchy-Schwarz inequality and pcq uses }θh,k´1 ´ θ˚
h}Hh,k´1 ` }pµh,k´1 ´ µ˚

hqV
k

h`1}Hh,k´1 ď βR ` βV “ β
on the event BR

Ş

Bh.

As a result, by the last inequality and equation F.4, it follows that for all k P rKs, Q
k

hp¨, ¨q ´ Q˚
hp¨, ¨q ě 0.

Taking maximum over actions, we have V
k

hp¨q ě V ˚
h p¨q for all k P rKs, which implies the case of h is also

true.

F.6 Proof of Lemma D.5

Proof of Lemma D.5. The proof technique has been used in Lemma C.13 in (Hu et al., 2022) and Lemma 7.2
in (He et al., 2022). We include the proof for completeness. By definition,

rVhV ˚
h`1spsh,k, ah,kq “ xµ˚

hrV ˚
h`1s2,ϕh,ky ´ xµ˚

hV
˚

h`1,ϕh,ky2
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rpVhV
k

h`1spsh,k, ah,kq “ xµh,k´1rV
k

h`1s2,ϕh,k´1yr0,H2s ´ xµh,k´1V
k

h`1,ϕh,ky2
r0,Hs.

Therefore, it follows that
ˇ

ˇ

ˇ

”

VhV ˚
h`1 ´ pVhV

k

h`1

ı

psh,k, ah,kq

ˇ

ˇ

ˇ

ď

ˇ

ˇ

ˇ

”

VhV
k

h`1 ´ pVhV
k

h`1

ı

psh,k, ah,kq

ˇ

ˇ

ˇ
`

ˇ

ˇ

ˇ

”

VhV ˚
h`1 ´ VhV

k

h`1

ı

psh,k, ah,kq

ˇ

ˇ

ˇ
.

We then bound the two terms in the RHS of the last inequality as follows.
ˇ

ˇ

ˇ

”

VhV
k

h`1 ´ pVhV
k

h`1

ı

psh,k, ah,kq

ˇ

ˇ

ˇ

ď

ˇ

ˇ

ˇ
xµ˚

hrV
k

h`1s2,ϕh,ky ´ xµh,k´1rV
k

h`1s2,ϕh,kyr0,H2s

ˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ
xµ˚

hV
k

h`1,ϕh,ky2 ´ xµh,k´1V
k

h`1,ϕh,ky2
r0,Hs

ˇ

ˇ

ˇ

ď

ˇ

ˇ

ˇ
xpµ˚

h ´ µh,k´1qrV
k

h`1s2,ϕh,ky

ˇ

ˇ

ˇ
` 2H ¨

ˇ

ˇ

ˇ
xµ˚

hV
k

h`1,ϕh,ky ´ xµh,k´1V
k

h`1,ϕh,kyr0,Hs

ˇ

ˇ

ˇ

ď

›

›

›
pµh,k´1 ´ µ˚

hqrV
k

h`1s2
›

›

›

Hh,k´1
}ϕh,k}H´1

h,k´1
` 2H}ϕh,k}H´1

h,k´1

›

›

›
pµh,k´1 ´ µ˚

hqV
k

h`1

›

›

›

Hh,k´1

where the second inequality uses the fact that both xµ˚
hV

k

h`1,ϕh,ky and xµh,k´1V
k

h`1,ϕh,kyr0,Hs lie between
0 and H. Similarly, it follows that

ˇ

ˇ

ˇ

”

VhV ˚
h`1 ´ VhV

k

h`1

ı

psh,k, ah,kq

ˇ

ˇ

ˇ

ď

ˇ

ˇ

ˇ
PhrrV ˚

h`1s2 ´ rV
k

h`1s2spsh,k, ah,kq

ˇ

ˇ

ˇ
`

ˇ

ˇ

ˇ
rPhV ˚

h`1s2psh,k, ah,kq ´ rPhV
k

h`1s2psh,k, ah,kq

ˇ

ˇ

ˇ

ď

ˇ

ˇ

ˇ
PhrpV

k

h`1 ´ V ˚
h`1qpV

k

h`1 ` V ˚
h`1qspsh,k, ah,kq

ˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ
rPhV

k

h`1 ´ PhV ˚
h`1srrPhV

k

h`1 ` PhV ˚
h`1sspsh,k, ah,kq

ˇ

ˇ

ˇ

ď 4H ¨ PhrV
k

h`1 ´ V ˚
h`1spsh,k, ah,kq

ď 4H ¨ PhrV
k

h`1 ´ V h`1spsh,k, ah,kq

ď 4H ¨ pPh,krV
k

h`1 ´ V h`1spsh,k, ah,kq

` 4H}ϕh,k}H´1
h,k´1

¨

„

›

›

›
pµh,k´1 ´ µ˚

hqV
k

h`1

›

›

›

Hh,k´1
`

›

›

›
pµh,k´1 ´ µ˚

hqV k
h`1

›

›

›

Hh,k´1

ȷ

where for the third and fourth inequalities we use the optimism and pessimism in Lemma D.4 and the last
inequality uses the following result.

ˇ

ˇ

ˇ
rPhV

k

h`1 ´ pPh,kV
k

h`1spsh,k, ah,kq

ˇ

ˇ

ˇ
“

ˇ

ˇ

ˇ
xpµ˚

h ´ µh,k´1qV
k

h`1,ϕh,ky

ˇ

ˇ

ˇ

ď }ϕh,k}H´1
h,k´1

›

›

›
pµh,k´1 ´ µ˚

hqV
k

h`1

›

›

›

Hh,k´1
.

A similar inequality can be derived for
ˇ

ˇ

ˇ
rPhV k

h`1 ´ pPh,kV k
h`1spsh,k, ah,kq

ˇ

ˇ

ˇ
. Finally, we have

ˇ

ˇ

ˇ

”

VhV ˚
h`1 ´ pVhV

k

h`1

ı

psh,k, ah,kq

ˇ

ˇ

ˇ

ď

›

›

›
pµh,k´1 ´ µ˚

hqrV
˚

h`1s2
›

›

›

Hh,k´1
}ϕh,k}H´1

h,k´1
` 4HpPh,kpV

k

h`1 ´ V k
h`1qpsh,k, ah,kq

` H}ϕh,k}H´1
h,k´1

¨

„

6
›

›

›
pµh,k´1 ´ µ˚

hqV
k

h`1

›

›

›

Hh,k´1
` 4

›

›

›
pµh,k´1 ´ µ˚

hqV k
h`1

›

›

›

Hh,k´1

ȷ

.

We complete the proof by noting that on the event B0, we have

max
"

›

›

›
pµ˚

h ´ µh,k´1qV
k

h`1

›

›

›

Hh,k´1
,
›

›

›
pµ˚

h ´ µh,k´1qV k
h`1

›

›

›

Hh,k´1

*

ď β0,
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›

›

›
pµ˚

h ´ µh,k´1qrV
k

h`1s2
›

›

›

Hh,k´1
ď Hβ0.

F.7 Proof of Lemma D.6

Proof of Lemma D.6. For any j ď k, we have
”

VhpV
k

h`1 ´ V ˚
h`1q

ı

psh,j , ah,jq
paq

ď

”

PhpV
k

h`1 ´ V ˚
h`1q2

ı

psh,j , ah,jq

pbq

ď H
”

PhpV
k

h`1 ´ V k
h`1q

ı

psh,j , ah,jq

pcq

ď H
”

PhpV
j

h`1 ´ V j
h`1q

ı

psh,j , ah,jq

where paq uses the fact that VarpXq ď EX2 for any random variable X, pbq uses 0 ď V k
h`1p¨q ď V ˚

h`1p¨q ď

V
k

h`1p¨q ď H on the event BR

Ş

Bh`1 from Lemma D.4, and pcq uses that V
j

h`1p¨q ě V
k

h`1p¨q and V j
h`1p¨q ď

V k
h`1p¨q by definition. On the other hand, in the event B0, we have

max
"

›

›

›
pµ˚

h ´ µh,j´1qV
j

h`1

›

›

›

Hh,j´1
,
›

›

›
pµ˚

h ´ µh,j´1qV j
h`1

›

›

›

Hh,j´1

*

ď β0.

As a result,
”´

Ph ´ pPh,j

¯

V
j

h`1

ı

psh,j , ah,jq “ xϕh,j , pµ˚
h ´ µh,j´1qV

j

h`1y

ď }ϕh,j}H´1
h,j´1

}pµ˚
h ´ µh,j´1qV

j

h`1}Hh,j´1 ď β0}ϕh,j}H´1
h,j´1

.

Similarily, we have
”´

Ph ´ pPh,j

¯

V j
h`1

ı

psh,j , ah,jq ď β0}ϕh,j}H´1
h,j´1

. Therefore,

”

VhpV
k

h`1 ´ V ˚
h`1q

ı

psh,j , ah,jq

ď H
”

2β0}ϕh,k}H´1
h,j´1

`

”

pPh,jpV
j

h`1 ´ V j
h`1q

ı

psh,j , ah,jq

ı

“: Eh,j

Repeating the above argument, we have a similar inequality for V
k

h`1 due to symmetry.

F.8 Proof of Lemma D.7

Proof of Lemma D.7. Due to the backward recursion structure, we will use induction (over horizon h) to
prove this lemma. First, equation D.2 is true for h “ H since V

k

H`1p¨q “ V k
H`1p¨q “ 0 for all k P rKs.

Therefore, we have BH holds. Assume equation D.2 holds for horizons no smaller than h ` 1, i.e., Bh`1 holds
with h ` 1 ď H. In the following, we will show, once Bh`1

Ş

B0 holds, Bh holds with probability at least than
1 ´ 2δ

H . Repeating the argument, we have, given BH

Ş

B0 holds, with probability at least 1 ´ 2δ, B1
Ş

B0
holds. Hence, PpB0

Ş

B1q ě 1 ´ 5δ.

Note that

max
"

›

›

›
pµ˚

h ´ µh,k´1qV
k

h`1

›

›

›

Hh,k´1
,
›

›

›
pµ˚

h ´ µh,k´1qV k
h`1

›

›

›

Hh,k´1

*

ď
›

›pµ˚
h ´ µh,k´1qV ˚

h`1
›

›

Hh,k´1

` max
"

›

›

›
pµ˚

h ´ µh,k´1qpV
k

h`1 ´ V ˚
h`1q

›

›

›

Hh,k´1
,
›

›

›
pµ˚

h ´ µh,k´1qpV k
h`1 ´ V ˚

h`1q

›

›

›

Hh,k´1

*

.

we would analyze the two terms in the RHS separately to proceed with the proof.
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For the first term Since V ˚
h`1 is a deterministic function, we apply the first item in Lemma F.1 to

bound it. In the following, we specify the parameters defined therein. First, we have C0 “ H and
Ah,k “

!

σ2
h,k ě pVhV ˚

h`1qpsh,k, ah,kq

)

is Fh,k-measurable. By Lemma D.5, on the event B0
Ş

Bh`1, we

have for all k P rKs,
ˇ

ˇ

ˇ

”

VhV ˚
h`1 ´ pVhV

k

h`1

ı

psh,k, ah,kq

ˇ

ˇ

ˇ
ď Uh,k with Uh,k defined in equation A.9. Hence,

σ2
h,k ě rpVh

pV k
h`1spsh,k, ah,kq ` Uh,k ě rVhV ˚

h`1spsh,k, ah,kq for all k P rKs, implying
Ş

kPrKs Ah,k holds under
B0

Ş

Bh`1 and Cσ “ 1. By Lemma F.1, with probability at least 1 ´ δ
H ,

›

›pµ˚
h ´ µh,k´1qV ˚

h`1
›

›

Hh,k´1
ď β1

for all k P rKs with β1 defined in the following. Finally, we simplify β1 as

β1 :“ 8

d

d log
ˆ

1 `
K

σ2
mindλ

˙

log 4HK2

δ
`

8
d2.5H

log 4HK2

δ
`

?
dλH

ď 8
?

dι1 `
8ι1

d2.5H
`

?
dλH ď 16

?
dι1 `

?
dλH.

For the second term Since both V k

h`1 ´V ˚
h`1 and V k

h`1 ´V ˚
h`1 are FH,k´1-measurable random functions,

we apply the second item in Lemma F.1 to analyze the second term. In the following, we specify the
parameters defined therein. First, C0 “ H and Ah,k “

!

σ2
h,k ě d3H ¨ Eh,k

)

is Fh,k-measurable. By

Lemma D.6, on the event B0
Ş

BR

Ş

Bh`1, we have simultaneously
”

VhpV
k

h`1 ´ V ˚
h`1q

ı

psh,j , ah,jq ď Eh,j

and
”

VhpV k
h`1 ´ V ˚

h`1q

ı

psh,j , ah,jq ď Eh,j for all j ď k ď K with Eh,j defined in equation A.7. As a result,
for all j ď k,

σ2
h,j ě d3H ¨ Eh,j ě d3H ¨ max

!”

VhpV
k

h`1 ´ V ˚
h`1q

ı

psh,j , ah,jq,
”

VhpV k
h`1 ´ V ˚

h`1q

ı

psh,j , ah,jq

)

.

It implies Cσ “ 1?
d3H

and for any j P rks,

Ah,j Ď

!

σ2
h,j ě C´2

σ max
!”

VhpV
k

h`1 ´ V ˚
h`1q

ı

psh,j , ah,jq,
”

VhpV k
h`1 ´ V ˚

h`1q

ı

psh,j , ah,jq

))

.

Finally, with by Lemma G.8 and G.7, the covering entropy for ε0 “ min
!

σmin?
d3H

, λH
?

d
K σ2

min

)

and the function

class to which V
k

h`1 ´ V ˚
h`1 and V k

h`1 ´ V ˚
h`1 belong is

log N0 “ |N pV˘, ε0q| ď

«

d log
ˆ

1 `
4L

ε0

˙

` d2 log
˜

1 `
8

?
dB2

λε2
0

¸ff

¨ dH log2

ˆ

1 `
K

λσ2
min

˙

“ Opd3Hι2
1q

By Lemma F.1, with probability at least 1 ´ δ
H ,

max
"

›

›

›
pµ˚

h ´ µh,k´1qpV
k

h`1 ´ V ˚
h`1q

›

›

›

Hh,k´1
,
›

›

›
pµ˚

h ´ µh,k´1qpV k
h`1 ´ V ˚

h`1q

›

›

›

Hh,k´1

*

ď β2

for all k P rKs with β2 defined in the following. Finally, we simplify β2 as

β2 “
8

?
d3H

d

d log
ˆ

1 `
K

σ2
mindλ

˙

log 4N0HK2

δ
`

8
d2.5H

log 4N0HK2

δ
`

?
dλH

ď 8
c

ι1

d2H
¨ pι1 ` Opd3Hι2

1qq `
8

d2.5H

`

ι1 ` Opd3Hι2
1q
˘

`
?

dλH

“ O
´?

dι1.5
1 ` ι1 `

?
dι2

1 `
?

dλH
¯

“ O
´?

dι2
1 `

?
dλH

¯

.
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Putting pieces together we have shown that given Bh`1
Ş

B0 is true, with probability at least 1 ´ 2δ,
for all h P rHs and k P rKs,

max
"

›

›

›
pµ˚

h ´ µh,k´1qV
k

h`1

›

›

›

Hh,k´1
,
›

›

›
pµ˚

h ´ µh,k´1qV k
h`1

›

›

›

Hh,k´1

*

ď β1 ` β2 “ O
´?

dι2
1 `

?
dλH

¯

.

Therefore, BV :“ B1 holds.

F.9 Proof of Lemma D.8

Proof of Lemma D.8. For a given k, let klast denote the latest update episode before episode k, that is
klast ď k ă klast ` 1. By Lemma G.6, due to Hh,k´1 ľ Hh,klast´1 and detpHh,k´1q ď 2 detpHh,klast´1q, it
follows that for any x P Rd,

}x}H´1
h,klast´1

ď 2}x}H´1
h,k´1

. (F.5)

By definition, Q
k

hp¨, ¨q ď xϕp¨, ¨q,θh,klast´1 ` µh,klast´1V
klast
h`1 y ` β}ϕp¨, ¨q}H´1

h,klast´1
and Qπk

h ps, aq “

xϕps, aq,θ˚
h ` µ˚

hV
πk

h`1y. Using ah,k “ πk
hpsh,kq “ argmaxaPA Q

k

hpsh,k, aq, we then have

pV
k

h ´ V πk

h qpsh,kq ď pQ
k

h ´ Qπk

h qpsh,k, ah,kq

ď xϕh,k,θh,klast´1 ` µh,klast´1V
klast
h`1 ´ pθ˚

h ` µ˚
hV

πk

h`1qy ` β}ϕpsh,k, ah,kq}H´1
h,klast´1

paq

ď xϕh,k, pθh,klast´1 ´ θ˚
hq ` pµh,klast´1 ´ µ˚

hqV
klast
h`1 y ` xϕh,k,µ˚

hpV
klast
h`1 ´ V πk

h`1qy ` 2β}ϕh,k}H´1
h,k´1

pbq

ď 4β}ϕh,k}H´1
h,k´1

` xϕh,k,µ˚
hpV

k

h`1 ´ V πk

h`1qy

pcq
“ 4β}ϕh,k}H´1

h,k´1
` PhpV

k

h`1 ´ V πk

h`1qpsh,k, ah,kq

pdq
“ 4β}ϕh,k}H´1

h,k´1
` pV

k

h`1 ´ V πk

h`1qpsh`1,kq ` Xh,k.

Here paq uses equation F.5, pbq uses

|xϕh,k, pθh,klast´1 ´ θ˚
hq ` pµh,klast´1 ´ µ˚

hqV
klast
h`1 y|

ď }ϕh,k}H´1
h,klast´1

}pθh,klast´1 ´ θ˚
hq ` pµh,klast´1 ´ µ˚

hqV
klast
h`1 }Hh,klast´1

ď β}ϕh,k}H´1
h,klast´1

ď 2β}ϕh,k}H´1
h,k´1

on BR

Ş

BV , pcq uses xϕh,k,µ˚
hpV

klast
h`1 ´V πk

h`1qy “ PhpV
klast
h`1 ´V πk

h`1qpsh,k, ah,kq “ PhpV
k

h`1 ´V πk

h`1qpsh,k, ah,kq,
and pdq uses the notation

Xh,k :“ PhpV
k

h`1 ´ V πk

h`1qpsh,k, ah,kq ´ pV
k

h`1 ´ V πk

h`1qpsh`1,kq.

The last inequality implies

pV
k

h ´ V πk

h qpsh,kq ď pV
k

h`1 ´ V πk

h`1qpsh`1,kq ` Xh,k ` 4β}ϕh,k}H´1
h,k´1

.

Iterating the above inequality over h and using V
k

H`1p¨q “ V πk

H`1p¨q “ 0, we have

pV
k

h ´ V πk

h qpsh,kq ď

H
ÿ

i“h

”

Xi,k ` 4β}ϕi,k}H´1
i,k´1

ı

. (F.6)

Therefore, setting h “ 1 and summing equation F.6 over k P rKs, we have
K
ÿ

k“1
pV

k

1 ´ V πk
1 qps1,kq ď

K
ÿ

k“1

H
ÿ

h“1

”

Xh,k ` 4β}ϕh,k}H´1
h,k´1

ı

. (F.7)
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We then need to analyze
řK

k“1
řH

h“1 Xh,k. Since sh`1,k is Fh`1,k-measurable, πk “ tπk
huhPrHs, V

k

h`1 is
FH,k´1-measurable, we have Xh,k is Fh`1,k-measurable. We also have ErXh,k|Fh,ks “ 0, |Xh,k| ď 2H and

ErX2
h,k|Fh,ks ď ErpV

k

h`1 ´ V πk

h`1q2psh`1,kq|Fh,ks
paq

ď HEr|V
k

h`1 ´ V πk

h`1|psh`1,kq|Fh,ks

pbq
“ HErpV

k

h`1 ´ V πk

h`1qpsh`1,kq|Fh,ks “ HPhpV
k

h`1 ´ V πk

h`1qpsh,k, ah,kq

where paq uses |V
k

h`1 ´ V πk

h`1|p¨q ď H and pbq uses the optimism in Lemma D.4. By the variance-aware
Freedman inequality in Lemma G.2, with probability at least 1 ´ δ

2 , it follows that

ˇ

ˇ

ˇ

ˇ

ˇ

K
ÿ

k“1

H
ÿ

h“1
Xh,k

ˇ

ˇ

ˇ

ˇ

ˇ

ď 3
?

ι ¨

g

f

f

eH ¨

K
ÿ

k“1

H
ÿ

h“1
PhpV

k

h`1 ´ V πk

h`1qpsh,k, ah,kq ` 10H ¨ ι (F.8)

where ι “ log 4rlog2 HKs

δ . On the other hand, it follows that

K
ÿ

k“1

H
ÿ

h“1
PhpV

k

h`1 ´ V πk

h`1qpsh,k, ah,kq “

K
ÿ

k“1

H
ÿ

h“2
pV

k

h ´ V πk

h qpsh,kq `

K
ÿ

k“1

H
ÿ

h“1
Xh,k

paq

ď

K
ÿ

k“1

H
ÿ

h“2

H
ÿ

i“h

”

Xi,k ` 4β}ϕi,k}H´1
i,k´1

ı

`

K
ÿ

k“1

H
ÿ

h“1
Xh,k

“

K
ÿ

k“1

H
ÿ

h“2
pH ´ h ` 1q

”

Xh,k ` 4β}ϕh,k}H´1
h,k´1

ı

`

K
ÿ

k“1

H
ÿ

h“1
Xh,k

pbq

ď 4Hβ
K
ÿ

k“1

H
ÿ

h“2
}ϕh,k}H´1

h,k´1
`

K
ÿ

k“1

H
ÿ

h“1
Xh,kbh

where paq uses equation F.6 and pbq uses the notation bh “ 1 if h “ 1; otherwise “ H ´ h ` 2 for 2 ď h ď H.
Clearly, we have |bh| ď H for all h P rHs. By the variance-aware Freedman inequality in Lemma G.2, with
probability at least 1 ´ δ

2 , it follows that

ˇ

ˇ

ˇ

ˇ

ˇ

K
ÿ

k“1

H
ÿ

h“1
Xh,kbh

ˇ

ˇ

ˇ

ˇ

ˇ

ď 3H
?

ι ¨

g

f

f

eH ¨

K
ÿ

k“1

H
ÿ

h“1
PhpV

k

h`1 ´ V πk

h`1qpsh,k, ah,kq ` 10HH ¨ ι.

As a result, we have

K
ÿ

k“1

H
ÿ

h“1
PhpV

k

h`1 ´ V πk

h`1qpsh,k, ah,kq ď 3H
?

ι ¨

g

f

f

eH ¨

K
ÿ

k“1

H
ÿ

h“1
PhpV

k

h`1 ´ V πk

h`1qpsh,k, ah,kq

` 4Hβ
K
ÿ

k“1

H
ÿ

h“2
}ϕh,k}H´1

h,k´1
` 10HHι.

Using the inequality that x ď 2pa2 ` b2q for any x ď |a|
?

x ` b2, we have

K
ÿ

k“1

H
ÿ

h“1
PhpV

k

h`1 ´ V πk

h`1qpsh,k, ah,kq ď 8Hβ
K
ÿ

k“1

H
ÿ

h“1
}ϕh,k}H´1

h,k´1
` 38H2Hι. (F.9)

Putting pieces together, we have

K
ÿ

k“1
pV

k

1 ´ V πk
1 qps1,kq

equation F.7
ď

K
ÿ

k“1

H
ÿ

h“1

”

Xh,k ` 4β}ϕh,k}H´1
h,k´1

ı
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equation F.8
ď 4β

K
ÿ

k“1

H
ÿ

h“1
}ϕh,k}H´1

h,k´1
` 3

?
ι ¨

g

f

f

eH ¨

K
ÿ

k“1

H
ÿ

h“1
PhpV

k

h`1 ´ V πk

h`1qpsh,k, ah,kq ` 10H ¨ ι

equation F.9
ď 4β

K
ÿ

k“1

H
ÿ

h“1
}ϕh,k}H´1

h,k´1
` 3

?
ι ¨

g

f

f

eH ¨

«

8Hβ
K
ÿ

k“1

H
ÿ

h“1
}ϕh,k}H´1

h,k´1
` 38H2Hι

ff

` 10H ¨ ι

ď 6β
K
ÿ

k“1

H
ÿ

h“1
}ϕh,k}H´1

h,k´1
` 38HHι

where the last inequality uses
?

a ` b ď
?

a `
?

b and 2
?

ab ď a ` b for non-negative numbers a, b ě 0.

F.10 Proof of Lemma D.9

Proof of Lemma D.9. The proof main idea is similar to that in Lemma D.8. For a given k, let klast denote the
latest update episode before episode k, that is klast ď k ă klast`1. By definition, Q

k

hp¨, ¨q ď xϕp¨, ¨q,θh,klast´1`

µh,klast´1V
klast
h`1 y ` β}ϕp¨, ¨q}H´1

h,klast´1
and Qk

h
p¨, ¨q ě xϕp¨, ¨q,θh,klast´1 `µh,klast´1V

klast
h`1 y ´ β}ϕp¨, ¨q}H´1

h,klast´1
.

Using
ah,k “ πk

hpsh,kq “ argmax
aPA

Q
k

hpsh,k, aq,

we then have

pV
k

h ´ V k
hqpsh,kq ď pQ

k

h ´ Qk

h
qpsh,k, ah,kq

ď xϕh,k,µh,klast´1pV
klast
h`1 ´ V klast

h`1 qy ` 2β}ϕh,k}H´1
h,klast´1

paq

ď xϕh,k, pµh,k´1 ´ µ˚
hqpV

klast
h`1 ´ V klast

h`1 qy ` xϕh,k,µ˚
hpV

klast
h`1 ´ V klast

h`1 qy ` 4β}ϕh,k}H´1
h,k´1

pbq

ď 6β}ϕh,k}H´1
h,k´1

` xϕh,k,µ˚
hpV

klast
h`1 ´ V klast

h`1 qy

pcq
“ 6β}ϕh,k}H´1

h,k´1
` PhpV

k

h`1 ´ V k
h`1qpsh,k, ah,kq

pdq
“ 6β}ϕh,k}H´1

h,k´1
` pV

k

h`1 ´ V k
h`1qpsh`1,kq ` Xh,k.

Here paq uses equation F.5, pbq uses

|xϕh,k, pµh,klast´1 ´ µ˚
hqpV

klast
h`1 ´ V klast

h`1 qy|

ď }ϕh,k}H´1
h,klast´1

}pµh,klast´1 ´ µ˚
hqpV

klast
h`1 ´ V klast

h`1 q}Hh,klast´1

ď 2β}ϕh,k}H´1
h,klast´1

ď 2β}ϕh,k}H´1
h,k´1

on BV

Ş

BR, pcq uses xϕh,k,µ˚
hpV

klast
h`1 ´V klast

h`1 qy “ PhpV
klast
h`1 ´V klast

h`1 qpsh,k, ah,kq “ PhpV
k

h`1´V k
h`1qpsh,k, ah,kq,

and pdq uses the notation

Xh,k :“ PhpV
k

h`1 ´ V k
h`1qpsh,k, ah,kq ´ pV

k

h`1 ´ V k
h`1qpsh`1,kq. (F.10)

The last inequality implies

pV
k

h ´ V k
hqpsh,kq ď pV

k

h`1 ´ V k
h`1qpsh`1,kq ` Xh,k ` 6β}ϕh,k}H´1

h,k´1
.

Iterating the above inequality over h and using V
k

H`1p¨q “ V k
H`1p¨q “ 0, we have

pV
k

h ´ V k
hqpsh,kq ď

H
ÿ

i“h

”

Xi,k ` 6β}ϕi,k}H´1
i,k´1

ı

. (F.11)
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Using the last inequality, it follows that

K
ÿ

k“1

H
ÿ

h“1
PhpV

k

h`1 ´ V k
h`1qpsh,k, ah,kq “

K
ÿ

k“1

H
ÿ

h“2
pV

k

h ´ V k
hqpsh,kq `

K
ÿ

k“1

H
ÿ

h“1
Xh,k

paq

ď

K
ÿ

k“1

H
ÿ

h“2

H
ÿ

i“h

”

Xi,k ` 8β}ϕi,k}H´1
i,k´1

ı

`

K
ÿ

k“1

H
ÿ

h“1
Xh,k

“

K
ÿ

k“1

H
ÿ

h“2
pH ´ h ` 1q

”

Xh,k ` 6β}ϕh,k}H´1
h,k´1

ı

`

K
ÿ

k“1

H
ÿ

h“1
Xh,k

pbq

ď 6Hβ
K
ÿ

k“1

H
ÿ

h“2
}ϕh,k}H´1

h,k´1
`

K
ÿ

k“1

H
ÿ

h“1
Xh,kbh (F.12)

where paq uses equation F.6 and pbq uses the notation bh “ 1 if h “ 1; otherwise “ H ´ h ` 2 for 2 ď h ď H.
Clearly, we have |bh| ď H for all h P rHs.

We then need to analyze
řK

k“1
řH

h“1 Xh,kbh with Xh,k’s defined in equation F.10. Since sh`1,k is
Fh`1,k-measurable, V

k

h`1, V k
h`1 is FH,k´1-measurable, we have Xh,k is Fh`1,k-measurable. We also have

ErXh,k|Fh,ks “ 0, |Xh,k| ď 2H and

ErX2
h,k|Fh,ks ď ErpV

k

h`1 ´ V k
h`1q2psh`1,kq|Fh,ks

paq

ď HEr|V
k

h`1 ´ V k
h`1|psh`1,kq|Fh,ks “ HPhpV

k

h`1 ´ V k
h`1qpsh,k, ah,kq

where paq uses |V
k

h`1 ´ V k
h`1|p¨q ď H. By the variance-aware Freedman inequality in Lemma G.2, with

probability at least 1 ´ δ, it follows that
ˇ

ˇ

ˇ

ˇ

ˇ

K
ÿ

k“1

H
ÿ

h“1
Xh,kbh

ˇ

ˇ

ˇ

ˇ

ˇ

ď 3H
?

ι ¨

g

f

f

eH ¨

K
ÿ

k“1

H
ÿ

h“1
PhpV

k

h`1 ´ V k
h`1qpsh,k, ah,kq ` 10HH ¨ ι (F.13)

where ι “ log 4rlog2 HKs

δ . As a result, plugging equation F.13 into equation F.12, we have

K
ÿ

k“1

H
ÿ

h“1
PhpV

k

h`1 ´ V k
h`1qpsh,k, ah,kq ď 3H

?
ι ¨

g

f

f

eH ¨

K
ÿ

k“1

H
ÿ

h“1
PhpV

k

h`1 ´ V k
h`1qpsh,k, ah,kq

` 6Hβ
K
ÿ

k“1

H
ÿ

h“2
}ϕh,k}H´1

h,k´1
` 10HHι.

Using the inequality that x ď 2pa2 ` b2q for any x ď |a|
?

x ` b2, we have

K
ÿ

k“1

H
ÿ

h“1
PhpV

k

h`1 ´ V k
h`1qpsh,k, ah,kq ď 12Hβ

K
ÿ

k“1

H
ÿ

h“1
}ϕh,k}H´1

h,k´1
` 38H2Hι.

F.11 Proof of Lemma D.10

Proof of Lemma D.10. Recall that bh,k “ maxt}ϕh,k}H´1
h,k´1

, } rϕh,k}
ĂH´1

h,k´1
u, wh,k “ σ´1

h,k}ϕh,k}H´1
h,k´1

and

rwh,k “ σ´1
h,k} rϕh,k}

ĂH´1
h,k´1

. As a result, we have σ´1
h,kbh,k “ max twh,k, rwh,ku. On the other hand,

σ2
h,k “ max

"

σ2
min, d3H ¨ Eh,k, Jh,k, c´2

0 b2
h,k,

ˆ

W
?

c1d
` Hd2.5H

˙

bh,k

*

. (A.5)
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Based on what value σh,k takes, we compose the full index set I :“ rHs ˆ rKs into three disjoint sets with
ties broken arbitrarily:

J1 “
␣

ph, kq Ď rHs ˆ rKs : σ2
h,k P

␣

σ2
min, d3H ¨ Eh,k, Uh,k

((

,

J2 “
␣

ph, kq Ď rHs ˆ rKs : σ2
h,k “ c´2

0 b2
h,k

(

,

J3 “

"

ph, kq Ď rHs ˆ rKs : σ2
h,k “

ˆ

W
?

c1d
` Hd2.5H

˙

bh,k

*

.

For simplicity, we denote zh,k :“ bh,k

σh,k
“ maxtwh,k, rwh,ku. Therefore,

K
ÿ

k“1

H
ÿ

h“1
bh,k “

ÿ

ph,kqPI

σh,kzh,k “

3
ÿ

i“1

ÿ

ph,kqPJi

σh,kzh,k. (F.14)

Recall that κ “ d log
´

1 ` K
dλσ2

min

¯

, we have
ř

ph,kqPI z2
h,k ď 4Hκ. This is because

ÿ

ph,kqPI

z2
h,k ď

ÿ

ph,kqPI

`

w2
h,k ` rw2

h,k

˘ paq
“

K
ÿ

k“1

H
ÿ

h“1
min

␣

1, w2
h,k

(

`

K
ÿ

k“1

H
ÿ

h“1
min

␣

1, rw2
h,k

(

pbq

ď 4Hd log
ˆ

1 `
K

dλσ2
min

˙

“ 4Hκ.

where paq uses zh,k ď c0 ď 1 due to σh,k ě c´1
0 bh,k, c0 ď 1 and pbq uses Lemma G.5. We will frequently use

the above inequality.

Now, we are ready to analyze the three terms in the RHS of equation F.14 respectively.

• For the first term, it follows that
ÿ

ph,kqPJ1

σh,kzh,k ď

d

ÿ

ph,kqPJ1

σ2
h,k

d

ÿ

ph,kqPJ1

z2
h,k

ď

d

ÿ

ph,kqPJ1

pσ2
min ` d3H ¨ Eh,k ` Jh,kq

d

ÿ

ph,kqPJ1

z2
h,k

ď

d

ÿ

ph,kqPI

pσ2
min ` d3H ¨ Eh,k ` Jh,kq

d

ÿ

ph,kqPI

z2
h,k

ď

d

HKσ2
min `

ÿ

ph,kqPI

pd3H ¨ Eh,k ` Jh,kq ¨
?

4Hκ.

We provide a upper bound for
řK

k“1
řH

h“1 Eh,k in Lemma F.2 whose proof is deferred in Appendix F.11.1.
Lemma F.2 (Sum of Eh,k). On the event B0

Ş

A0,
K
ÿ

k“1

H
ÿ

h“1
Eh,k “ O

˜

pβ0 ` HβqH ¨

K
ÿ

k“1

H
ÿ

h“1
}ϕh,k}H´1

h,k´1
` H2H2 log 4rlog2 HKs

δ

¸

.

where Op¨q hides universal positive constants.

We also provide a upper bound for
řK

k“1
řH

h“1 Jh,k in Lemma F.3 whose proof is deferred in Ap-
pendix F.11.2.
Lemma F.3 (Sum of Jh,k). Recall that Jh,k “ rpVhRh ` pVhV

k

h`1spsh,k, ah,kq `Rh,k `Uh,k with Rh,k, Uh,k

defined in equation A.8 and equation A.9 respectively. On the event BR

Ş

BV

Ş

B0
Ş

A0, with probability
at least 1 ´ 2δ,

K
ÿ

k“1

H
ÿ

h“1
Jh,k “ O

˜

G˚K ` rpβ0 ` HβqH ` βR2 s

K
ÿ

k“1

H
ÿ

h“1
bh,k ` H2H2 log 4rlog2 HKs

δ
` Hσ2

R log 1
δ

¸

.
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where G˚ is defined in equation 3.2 and Op¨q hides universal positive constants.

Putting pieces together and using
?

a ` b ` c ď
?

a `
?

b `
?

c, we have

ÿ

ph,kqPJ1

bh,k “
ÿ

ph,kqPJ1

σh,kzh,k “ O
ˆ

?
Hκ ¨

b

K pHσ2
min ` G˚q

˙

` O

˜

?
Hκ ¨

c

H3d3H2 log 4rlog2 HKs

δ
` Hσ2

R log 1
δ

.

¸

` O

¨

˝

?
Hκ ¨

d

rpβ0 ` HβqHd3H ` βR2 s
ÿ

ph,kqPI

bh,k

˛

‚.

(F.15)

• For the second term, due to σh,k “ c´1
0 bh,k, we have zh,k “ bh,k{σh,k “ c0 ď 1 for all ph, kq P J2. Hence,

ÿ

ph,kqPJ2

bh,k “
ÿ

ph,kqPJ2

σh,kzh,k “
1
c0

ÿ

ph,kqPJ2

σh,kz2
h,k ď

supph,kqPI σh,k

c0

ÿ

ph,kqPJ2

z2
h,k

ď sup
ph,kqPI

maxt}ϕh,k}H´1
h,k´1

, } rϕh,k}
ĂH´1

h,k´1
u

c2
0

¨
ÿ

ph,kqPI

z2
h,k ď

4Hκ

c2
0
?

λ
(F.16)

where the last inequality uses }ϕh,k}H´1
h,k´1

ď 1?
λ

}ϕh,k} ď 1?
λ

and } rϕh,k}
ĂH´1

h,k´1
ď 1?

λ
} rϕh,k} ď 1?

λ
for any

ph, kq P I.

• For the third term, σ2
h,k “

´

W?
c1d

` Hd2.5H
¯

bh,k and thus σh,k “

´

W?
c1d

` Hd2.5H
¯

zh,k. Hence,

ÿ

ph,kqPJ3

bh,k “
ÿ

ph,kqPJ3

σh,kzh,k “

ˆ

W
?

c1d
` Hd2.5H

˙

ÿ

ph,kqPJ3

z2
h,k

ď

ˆ

W
?

c1d
` Hd2.5H

˙

ÿ

ph,kqPI

z2
h,k ď 4Hκ ¨

ˆ

W
?

c1d
` Hd2.5H

˙

. (F.17)

Combing equation F.15, equation F.16 and equation F.17, we have

ÿ

ph,kqPI

bh,k “ O

¨

˝C `
?

Hκ

d

rpβ0 ` HβqHd3H ` βR2 s ¨
ÿ

ph,kqPI

bh,k

˛

‚

where

C “
?

Hκ ¨

b

K pHσ2
min ` G˚q ` Hκ ¨

ˆ

W
?

c1d
`

1
c2

0
?

λ
` Hd2.5H

˙

`
?

Hκ ¨

c

H3d3H2 log 4rlog2 HKs

δ
` Hσ2

R log 1
δ

.

Using the inequality that x ď 2pa2 ` b2q for any x ď |a|
?

x ` b2, we have
ÿ

ph,kqPI

bh,k “ O
`

C ` H2Hκd3 pβ0 ` Hβq ` HκβR2
˘

.

In the following, we are going to simplify the last inequality. For simplicity, we will use rOp¨q to hide
logarithmic factors. Notice that κ “ rOpdq. By setting λ “ 1

H2`W 2 , we have βR “ βV “ rOp
?

dq and
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thus β “ βV ` βR “ rOp
?

dq. Moreover, βR2 “ rO
´?

d `
?

d
σR2
σmin

`
?

λW
¯

“ rO
´?

d `
?

d
σR2
σmin

¯

and

β0 “ rO
´?

d3HH
σmin

`
?

dλH
¯

“ rO
´?

d3HH
σmin

`
?

d
¯

. Therefore,
ÿ

ph,kqPI

bh,k “ O
`

C ` H2Hκd3 pβ0 ` Hβq ` HκβR2
˘

“ OpCq ` rO
ˆ

H2.5d5.5H2 ` Hd1.5σR2

σmin
` H3d4.5H ` Hd1.5

˙

.

We then analyze C. Using
?

a ` b ď
?

a `
?

b for non-negative numbers a, b ě 0, we have

C “ rO
´?

dHKG˚ ` Hd0.5K0.5σmin ` H2d3.5H ` H2d2H ` Hd0.5σR ` Hd
¯

.

Putting the results together, we have
ÿ

ph,kqPI

bh,k “ rO
ˆ

?
dHKG˚ ` Hd0.5K0.5σmin `

H2.5d5.5H2 ` Hd1.5σR2

σmin
` H3d4.5H ` Hd0.5σR ` Hd1.5

˙

.

F.11.1 Proof of Lemma F.2

Proof of Lemma F.2. By the definition of Eh,k in equation A.7, it follows that

K
ÿ

k“1

H
ÿ

h“1
Eh,k ď

K
ÿ

k“1

H
ÿ

h“1

”

2Hβ0}ϕh,k}H´1
h,k´1

` H ¨

”

pPh,kpV
k

h`1 ´ V k
h`1q

ı

psh,k, ah,kq

ı

paq

ď

K
ÿ

k“1

H
ÿ

h“1

”

4Hβ0}ϕh,k}H´1
h,k´1

` H ¨

”

PhpV
k

h`1 ´ V k
h`1q

ı

psh,k, ah,kq

ı

pbq

ď p4β0 ` 16HβqH ¨

K
ÿ

k“1

H
ÿ

h“1
}ϕh,k}H´1

h,k´1
` 38H2H2 log 4rlog2 HKs

δ

“ O

˜

pβ0 ` HβqH ¨

K
ÿ

k“1

H
ÿ

h“1
}ϕh,k}H´1

h,k´1
` H2H2 log 4rlog2 HKs

δ

¸

where paq uses
ˇ

ˇ

ˇ
rppPh,k ´ PhqV

k

h`1spsh,k, ah,kq

ˇ

ˇ

ˇ
“ |xϕh,k, pµh,k´1 ´µ˚

hqV
k

h`1y| ď β0}ϕh,k}H´1
h,k´1

on B0 and pbq

follows from Lemma D.9.

F.11.2 Proof of Lemma F.3

Proof of Lemma F.3. By Lemma D.3, on the event BR, we have
ˇ

ˇ

ˇ
rpVh

pRh ´ VhRhspsh,k, ah,kq

ˇ

ˇ

ˇ
ď Rh,k for all h P

rHs and k P rKs. By Lemma D.5, on the event B0
Ş

BV , rpVhV
k

h`1spsh,k, ah,kq ď rVhV ˚
h`1spsh,k, ah,kq ` Uh,k

for all h P rHs and k P rKs. Therefore,

K
ÿ

k“1

H
ÿ

h“1
Jh,k ď

K
ÿ

k“1

H
ÿ

h“1
rVhRh ` VhV ˚

h`1spsh,k, ah,kq ` 2
K
ÿ

k“1

H
ÿ

h“1
Rh,k ` 2

K
ÿ

k“1

H
ÿ

h“1
Uh,k

:“ pIq ` pIIq ` pIIIq.

For the term pIIIq, we have

K
ÿ

k“1

H
ÿ

h“1
Uh,k “

K
ÿ

k“1

H
ÿ

h“1

”

11Hβ0 ¨ }ϕh,k}H´1
h,k´1

` 4H ¨ pPh,kpV
k

h`1 ´ V k
h`1qpsh,k, ah,kq

ı

52



Published in Transactions on Machine Learning Research (April/2024)

paq

ď

K
ÿ

k“1

H
ÿ

h“1

”

19Hβ0 ¨ }ϕh,k}H´1
h,k´1

` 4H ¨ PhpV
k

h`1 ´ V k
h`1qpsh,k, ah,kq

ı

pbq

ď p19β0 ` 64HβqH ¨

K
ÿ

k“1

H
ÿ

h“1
}ϕh,k}H´1

h,k´1
` 152H2H2 log 4rlog2 HKs

δ
, (F.18)

where paq uses
ˇ

ˇ

ˇ
rppPh,k ´ PhqV

k

h`1spsh,k, ah,kq

ˇ

ˇ

ˇ
“ |xϕh,k, pµh,k´1 ´ µ˚

hqV
k

h`1y| ď β0}ϕh,k}H´1
h,k´1

on B0; and
pbq follows from Lemma D.9.

For the term pIIq, we have
K
ÿ

k“1

H
ÿ

h“1
Rh,k “ βR2

K
ÿ

k“1

H
ÿ

h“1
} rϕh,k}

ĂHk´1
h,k´1

` 2HβR

K
ÿ

k“1

H
ÿ

h“1
}ϕh,k}H´1

h,k´1
. (F.19)

We provide two ways to analyze the term pIq.

• On one hand, we denote Xk “
řH

h“1rVhRh ` VhV ˚
h`1spsh,k, ah,kq for simplicity. Let Gk :“ FH,k be the

σ-field generated by all the random variables over the first k episodes. Then πk is Gk´1-measurable,
Xk ě 0 is Gk-measurable, and |Xk| ď Hpσ2

R ` H2q. Therefore, |Xk ´ ErXk|Gk´1s| ď Hpσ2
R ` H2q and

VarrXk|Gk´1s ď Hpσ2
R ` H2q ¨ ErXk|Gk´1s. By the variance-aware Freedman inequality in Lemma G.2,

with probability at least 1 ´ δ, we have

K
ÿ

k“1
Xk ď

K
ÿ

k“1
ErXk|Fk´1s ` 3

g

f

f

eHpσ2
R ` H2q

K
ÿ

k“1
ErXk|Gk´1s log 2rlog2 Ks

δ

` 5Hpσ2
R ` H2q log 2rlog2 Ks

δ

ď 3
K
ÿ

k“1
ErXk|Fk´1s ` 7Hpσ2

R ` H2q log 2rlog2 Ks

δ
.

Notice that

ErXk|Fk´1s “ E

«

H
ÿ

h“1
rVhRh ` VhV ˚

h`1spsh,k, ah,kq

ˇ

ˇ

ˇ

ˇ

Gk´1

ff

“

H
ÿ

h“1
Eps,aq„d

πk
h

rVhRh ` VhV ˚
h`1sps, aq

where dπk

h ps, aq “ Pπk psh “ s, ah “ a|s0 “ s1,kq is the probability reaching psh,k, ah,kq “ ps, aq at the h-th
step when the agent starts from s1,k and follows the policy πk. Therefore, we have

pIq ď 3
K
ÿ

k“1

H
ÿ

h“1
Eps,aq„d

πk
h

rVhRh ` VhV ˚
h`1sps, aq ` 7Hpσ2

R ` H2q log 2rlog2 Ks

δ

ď 3G˚
0 K ` 7Hpσ2

R ` H2q log 2rlog2 Ks

δ

where

G˚
0 “

1
K

K
ÿ

k“1

H
ÿ

h“1
Eps,aq„d

πk
h

rVhRh ` VhV πk

h`1sps, aq.

• On the other hand, we have

pIq “

K
ÿ

k“1

H
ÿ

h“1

“

VhV ˚
h`1 ´ VhV πk

h`1
‰

psh,k, ah,kq `

K
ÿ

k“1

H
ÿ

h“1
rVhRh ` VhV πk

h`1spsh,k, ah,kq
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equation F.20
ď 2H ¨

K
ÿ

k“1

H
ÿ

h“1
PhpV

k

h`1 ´ V πk

h`1qpsh,k, ah,kq `

K
ÿ

k“1

H
ÿ

h“1
rVhRh ` VhV πk

h`1spsh,k, ah,kq

ď 2H ¨

K
ÿ

k“1

H
ÿ

h“1
PhpV

k

h`1 ´ V πk

h`1qpsh,k, ah,kq ` 2V2K ` 2Hpσ2
R ` H2q log 1

δ

ď 2V2K ` 2Hpσ2
R ` H2q log 1

δ
` 16HβH

K
ÿ

k“1

H
ÿ

h“1
}ϕh,k}H´1

h,k´1
` 76H2H2 log 4rlog2 HKs

δ

ď 2V2K ` 16HβH
K
ÿ

k“1

H
ÿ

h“1
}ϕh,k}H´1

h,k´1
` 78H2H2 log 4rlog2 HKs

δ
` 2Hσ2

R log 1
δ

where the first inequality uses equation F.20, the second inequality uses Lemma F.4, and the third
inequality uses Lemma D.8.

“

VhV ˚
h`1 ´ VhV πk

h`1
‰

psh,k, ah,kq “ PhrV ˚
h`1s2psh,k, ah,kq ´ rPhV ˚

h`1psh,k, ah,kqs2

´
`

PhrV πk

h`1s2psh,k, ah,kq ´ rPhV πk

h`1psh,k, ah,kqs2˘

paq

ď PhrV ˚
h`1s2psh,k, ah,kq ´ PhrV πk

h`1s2psh,k, ah,kq

pbq

ď 2H ¨ PhpV ˚
h`1 ´ V πk

h`1qpsh,k, ah,kq

pcq

ď 2H ¨ PhpV
k

h`1 ´ V πk

h`1qpsh,k, ah,kq (F.20)

where paq uses V ˚
h`1p¨q ě V πk

h`1p¨q, pbq uses V πk

h`1p¨q ď V ˚
h`1p¨q ď H, and pcq uses Lemma D.4.

Finally, we are going to put the pieces together. In order to simplicity notation, we use bh,k “

maxt}ϕh,k}H´1
h,k´1

, } rϕh,k}
ĂH´1

h,k´1
u and β “ βV ` βR. From the first bullet point, we have

K
ÿ

k“1

H
ÿ

h“1
Jh,k “ O

˜

G˚
0 ¨ K ` rpβ0 ` HβqH ` βR2 s ¨

K
ÿ

k“1

H
ÿ

h“1
bh,k ` H2H2 log 4rlog2 HKs

δ
` Hσ2

R log 1
δ

¸

.

From the second bullet point, we have
K
ÿ

k“1

H
ÿ

h“1
Jh,k “ O

˜

V2K ` rpβ0 ` HβqH ` βR2 s

K
ÿ

k“1

H
ÿ

h“1
bh,k ` H2H2 log 4rlog2 HKs

δ
` Hσ2

R log 1
δ

¸

.

Taking minimum of the last two inequalities and using min
␣

G˚
0 , V2( ď G˚ complete the proof.

F.11.3 Proof of Lemma F.4

Lemma F.4 (Total variance lemma). With probability at least 1 ´ δ, we have
K
ÿ

k“1

H
ÿ

h“1
rVhRh ` VhV πk

h`1spsh,k, ah,kq ď 2V2K ` 2Hpσ2
R ` H2q log 1

δ
.

Proof of Lemma F.4. The proof uses a similar argument as Lemma C.5 in (Jin et al., 2018). Notice that the
first state s1,k is fixed and ah,k “ πk

hpsh,kq. Therefore, ps2,k, ¨ ¨ ¨ , sH,kq is a sequence generated by following
policy πk starting at s1,k. Let Gk be the σ-field generated by all the random variables over the first k

episodes. Xk “
řH

h“1rVhRh ` VhV πk

h`1spsh,k, ah,kq. We have the following properties about Xk. Clearly πk is
Gk´1-measurable, Xk ě 0 is Gk-measurable, and |Xk| ď Hpσ2

R ` H2q.

Let Ekp¨q :“ Er¨|Gks for simplicity.

V2 ě Ek´1

«

H
ÿ

h“1
Rhpsh,k, ah,kq ´ V πk

1 ps1,kq

ff2
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paq
“ Ek´1

«

H
ÿ

h“1

`

Rhpsh,k, ah,kq ` V πk

h`1psh`1,kq ´ V πk

h psh,kq
˘

ff2

pbq
“

H
ÿ

h“1
Ek´1

“

Rhpsh,k, ah,kq ` V πk

h`1psh`1,kq ´ V πk

h psh,kq
‰2

pcq
“

H
ÿ

h“1
Ek´1

”

rRh ´ rhs2psh,k, ah,kq `
“

rhpsh,k, ah,kq ` V πk

h`1psh`1,kq ´ V πk

h psh,kq
‰2
ı

pdq
“ Ek´1

H
ÿ

h“1
rVhRh ` VhV πk

h`1spsh,k, ah,kq “ ErXk|Fk´1s

where paq uses V πk

H`1p¨q “ 0, pbq uses the independence due to the Markov property, pcq holds since
Rhpsh,k, ah,kq is independent with sh`1,k conditioning on psh,k, ah,kq, and pdq uses V πk

h psh,kq “ rhpsh,k, ah,kq`

Esh`1,k„Php¨|sh,k,ah,kqrV πk

h`1psh`1,kqs. Using VarrXk|Gk´1s ď Hpσ2
R ` H2q ¨ ErXk|Gk´1s, we have

K
ÿ

k“1
VarrXk|Gk´1s ď Hpσ2

R ` H2q ¨

K
ÿ

k“1
ErXk|Gk´1s ď pσ2

R ` H2qV2HK.

By the Freedman inequality in Lemma G.1, with probability at least 1 ´ δ, we have

K
ÿ

k“1

H
ÿ

h“1
rVhRh ` VhV πk

h`1spsh,k, ah,kq

“

K
ÿ

k“1
Xk ď

K
ÿ

k“1
ErXk|Fk´1s `

c

2pσ2
R ` H2qV2HK log 1

δ
`

2
3Hpσ2

R ` H2q log 1
δ

ď V2K ` 2
c

V2K ¨ Hpσ2
R ` H2q log 1

δ
`

2
3Hpσ2

R ` H2q log 1
δ

ď 2V2K ` 2Hpσ2
R ` H2q log 1

δ
.

G Auxiliary Lemmas

G.1 Concentration Inequalities

Lemma G.1 (Freedman inequality (Freedman, 1975)). Let tXtutPrT s be a stochastic process that adapts to
the filtration Ft so that Xt is Ft-measurable, ErXt|Ft´1s “ 0, |Xt| ď M and

řT
t“1 ErX2

t |Ft´1s ď V where
M ą 0 and V ą 0 are positive constants. Then with probability at least 1 ´ δ, we have

T
ÿ

t“1
Xt ď

c

2V ln 1
δ

`
2M

3 ln 1
δ

.

Lemma G.2 (Variance-aware Freedman inequality). Let tXtutPrT s be a stochastic process that adapts to
the filtration Ft so that Xt is Ft-measurable, ErXt|Ft´1s “ 0, |Xt| ď M and

řT
t“1 ErX2

t |Ft´1s ď V 2 where
M ą 0 and V ą 0 are positive constants. Then with probability at least 1 ´ δ, we have

ˇ

ˇ

ˇ

ˇ

ˇ

T
ÿ

t“1
Xt

ˇ

ˇ

ˇ

ˇ

ˇ

ď 3

g

f

f

e

T
ÿ

t“1
ErX2

t |Ft´1s ¨ log 2K

δ
` 5M log 2K

δ

where K “ 1 ` r2 log2
V
M s.
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Proof of Lemma G.2. By Theorem 5 in (Li et al., 2021), we have for any positive integer K ě 1,

P

¨

˝

ˇ

ˇ

ˇ

ˇ

ˇ

T
ÿ

t“1
Xt

ˇ

ˇ

ˇ

ˇ

ˇ

ď

g

f

f

e8 max
#

T
ÿ

t“1
ErX2

t |Ft´1s,
V 2

2K

+

¨ ln 2K

δ
`

4M

3 ln 2K

δ

˛

‚ě 1 ´ δ.

By setting K “ 1 ` r2 log2
V
M s, we have V 2

2K ď M2. Using maxta, bu ď a ` b,
?

a ` b ď
?

a `
?

b for any
a, b ě 0 and ln 2K

δ ě 1, we complete the proof.

The following two lemmas are the counterpart lemmas of Theorem 2.1 under the light-tail assumption.
Lemma G.3 (Bernstein’s inequality for self-normalized martingales, Lemma F.4 in (Hu et al., 2022)).
Let tGtutě0 be a filtration and txt, ηtutě0 be a stochastic process so that xt P Rd is Gt-measurable and
ηt P R is Gt`1-measurable.. If }xt} ď L and tηtutě1 satisfies that Erηt|Gts “ 0, Erη2

t |Gts ď σ2 and
|ηt min

!

1, }xt}Z´1
t´1

)

| ď M for all t ě 1. Then, for any δ P p0, 1q, with probability at least 1 ´ δ, we have for
all t ě 1,

›

›

›

›

›

t
ÿ

j“1
xjηj

›

›

›

›

›

Z´1
t

ď 8σ

d

d log
ˆ

1 `
tL2

dλ

˙

log 4t2

δ
` 4M log 4t2

δ

where Zt “ λI `
řt

j“1 xjx
J
j for t ě 1 and Z0 “ λI.

Lemma G.4 (Hoeffding inequality for self-normalized martingales, Theorem 1 in (Abbasi-Yadkori et al.,
2011)). Let tGtutě0 be a filtration and txt, ηtutě0 be a stochastic process so that xt P Rd is Gt-measurable
and ηt P R is Gt`1-measurable.. If }xt} ď L and tηtutě1 satisfies that Erηt|Gts “ 0 and |ηt| ď M for all t ě 1.
Then, for any δ P p0, 1q, with probability at least 1 ´ δ, we have for all t ě 1,

›

›

›

›

›

t
ÿ

j“1
xjηj

›

›

›

›

›

Z´1
t

ď M

d

d log
ˆ

1 `
tL2

dλ

˙

` log 1
δ

where Zt “ λI `
řt

j“1 xjx
J
j for t ě 1 and Z0 “ λI.

G.2 Elliptical Lemmas

Lemma G.5 (Lemma 11 in (Abbasi-Yadkori et al., 2011)). Let txtutě1 Ă Rd and assume }xt} ď L for all
t ě 1. Set Zt “

řt
s“1 xtx

J
t ` λI. Then it follows that

T
ÿ

t“1
min

!

1, }xt}
2
Zt´1

)

ď 2d log
ˆ

dλ ` TL2

dλ

˙

.

Lemma G.6 (Lemma 12 in (Abbasi-Yadkori et al., 2011)). Suppose A,B P Rdˆd are two positive definite
matrices satisfying that A ľ B, then for any x P Rd,

}x}B´1 ď }x}A´1

d

detpAq

detpBq
.

G.3 Function Class and Covering Number

This subsection collects important lemmas in (He et al., 2022). Let K “ tk1, k2, ¨ ¨ ¨ u denote the set of episodes
where the algorithm updates the value function in Algorithm 3. For a given total number of episodes K, it
follows that |K| ď K. Furthermore, due to the mechanism of rare-switching value function updates, |K| is
much smaller than K.
Lemma G.7.

|K| ď dH log2

ˆ

1 `
K

λσ2
min

˙

.
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Proof of Lemma G.7. The proof is almost identical to Lemma E.1 in (He et al., 2022) except that we maintain
the dependence on σmin. According to the determinant-based criterion, for each episode ki, there exists a
stage h1 P rHs such that detpHh1,ki´1q ě 2detpHh1,ki´1´1q. Since we always have Hh,ki´1 ľ Hh,ki´1´1 for
all h P rHs, it then follows that

ź

hPrHs

detpHh,ki´1q ě 2
ź

hPrHs

detpHh,ki´1´1q.

By induction, it follows that
ź

hPrHs

detpHh,k|K|´1q ě 2|K|
ź

hPrHs

detpHh,k1´1q ě 2|K|
ź

hPrHs

detpλIq “ 2|K|λdH

On the other hand, due to Hh,k|K|´1 ĺ Hh,K the determinant detpHh,k|K|´1 is upper bounded by

ź

hPrHs

detpHh,k|K|´1q ď
ź

hPrHs

detpHh,Kq ď

ˆ

λ `
K

σ2
min

˙dH

.

Combining the last two inequalities, we have

|K| ď dH log2

ˆ

1 `
K

λσ2
min

˙

.

The optimistic value function V
k

hp¨q “ minkiďk maxa Q
ki

h p¨, aq belong to the function class V`

V` “

"

f |fp¨q “ max
aPA

min
iď|K|

min
!

wJ
i ϕp¨, aq ` β}ϕp¨, aq}H´1

i
, H

)

, β P r0, Bs, }wi} ď L,Hi ľ λI

*

. (G.1)

while the pessimistic value function V k
hp¨q “ maxkiďk maxa Qki

h
p¨, aq belong to the function class V´,

V´ “

"

f |fp¨q “ max
aPA

max
iď|K|

max
!

wJ
i ϕp¨, aq ´ β}ϕp¨, aq}H´1

i
, H

)

, β P r0, Bs, }wi} ď L,Hi ľ λI

*

. (G.2)

Here B upper bounds β and L “ W ` H
b

dK
λ is a uniformly bound for θh,k´1 ` µh,k´1V

k

h`1 because

}θh,k´1 ` µh,k´1V
k

h`1} ď }θh,k´1} ` }µh,k´1V
k

h`1} ď W ` H
c

dK

λ

where the last inequality uses the boundedness of θh,k´1’s and the inequality }µh,k´1V
k

h`1} ď H
b

dK
λ (whose

proof can be found in Lemma E.2 of He et al. (2022)).
Lemma G.8 (Covering number of value functions). Let V˘ denote the class of optimistic or pessimistic value
functions with definition in equation G.1 and equation G.2 respectively. Assume }ϕps, aq} ď 1 for all ps, aq pairs,
and let N pV, εq be the ε-covering number of V with respective to the distance distpf, f 1q :“ supsPS |fpsq´f 1psq|.
Then,

log N pV˘, εq ď

„

d log
ˆ

1 `
4L

ε

˙

` d2 log
ˆ

1 `
8d1{2B2

λε2

˙ȷ

¨ |K|.

Proof of Lemma G.8. The result about V`
f follows from Lemma E.6 in (He et al., 2022). The result about

V´
f follows from Lemma E.7 in (He et al., 2022).

Lemma G.9 (Covering number of squared functions, Lemma E.8 in (He et al., 2022)). For the squared
function class rV`s2 :“

␣

f2|f P V`
(

, let N prV`s2, εq be the ε-covering number of rV`s2 with respective to
the distance distpf, f 1q :“ supsPS |fpsq ´ f 1psq|. Then

log N prV`s2, εq ď

„

d log
ˆ

1 `
8HL

ε

˙

` d2 log
ˆ

1 `
32d1{2H2B2

λε2

˙ȷ

¨ |K|.
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