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The Gromov–Wasserstein (GW) distance, rooted in optimal transport
(OT) theory, quantifies dissimilarity between metric measure spaces and pro-
vides a framework for aligning heterogeneous datasets. While computational
aspects of the GW problem have been widely studied, a duality theory and
fundamental statistical questions concerning empirical convergence rates re-
mained obscure. This work closes these gaps for the quadratic GW distance
over Euclidean spaces of different dimensions dx and dy . We treat both the
standard and the entropically regularized GW distance, and derive dual forms
that represent them in terms of the well-understood OT and entropic OT
(EOT) problems, respectively. This enables employing proof techniques from
statistical OT based on regularity analysis of dual potentials and empirical
process theory, using which we establish the first GW empirical convergence
rates. The derived two-sample rates are n−2/max{min{dx,dy },4} (up to a log
factor when min{dx, dy} = 4) for standard GW and n−1/2 for entropic GW
(EGW), which matches the corresponding rates for standard and entropic OT.
The parametric rate for EGW is evidently optimal, while for standard GW
we provide matching lower bounds, which establish sharpness of the derived
rates. We also study stability of EGW in the entropic regularization param-
eter and prove approximation and continuity results for the cost and optimal
couplings. Lastly, the duality is leveraged to shed new light on the open prob-
lem of the one-dimensional GW distance between uniform distributions on n

points, illuminating why the identity and anti-identity permutations may not
be optimal. Our results serve as a first step towards a comprehensive statis-
tical theory as well as computational advancements for GW distances, based
on the discovered dual formulations.

1. Introduction. The Gromov–Wasserstein (GW) distance, proposed by Mémoli in
[45], quantifies discrepancy between probability distributions supported on different metric
spaces by aligning them with one another. Given two metric measure (mm) spaces (X ,dX ,μ)

and (Y,dY , ν), the (p, q)-GW distance between them is [61]

(1) Dp,q(μ, ν) := inf
π∈�(μ,ν)

(∫
X×Y

∫
X×Y

∣∣dX (x, x′)q −dY
(
y, y′)q ∣∣p dπ ⊗π

(
x, y, x′, y′)) 1

p

,

where �(μ,ν) is the set of all couplings between μ and ν. The GW distance thus equals
the least amount of distance distortion one can achieve between the mm spaces when opti-
mizing over all possible alignments thereof (as modeled by couplings). This approach, which
is rooted in optimal transport (OT) theory [53, 65], is an Lp relaxation of the Gromov–
Hausdorff distance between metric spaces and enjoys various favorable properties. Among
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others, the GW distance (i) identifies pairs of mm spaces between which there exists a mea-
sure preserving isometry; (ii) defines a metric on the space of all mm spaces modulo the afore-
mentioned isomorphic relation; and (iii) captures the empirical convergence of mm space,
that is, when μ, ν are replaced with their empirical measures μ̂n, ν̂n based on n samples.
As such, the GW framework has been utilized for many applications concerning heteroge-
neous data, including single-cell genomics [5, 16], alignment of language models [1], shape
and graph matching [39, 44, 67, 68], heterogeneous domain adaptation [69] and generative
modeling [7].

While such applications predominantly run on sampled data, a statistical GW theory to
guarantee valid estimation and inference has remained elusive. This gap can be attributed,
in part, to the quadratic (in π ) structure of the GW functional, which prevents directly using
well-developed proof techniques from statistical OT. Indeed, the linear OT problem enjoys
strong duality, which enables analyzing empirical OT distances via techniques from empirical
process theory, such as chaining, entropy integral bounds, and the functional delta method.
These approaches have proven central to the development of statistical OT, leading to a com-
prehensive account of empirical convergence rates [10, 18, 37, 42] and limit distributions of
both classical [14, 27, 36, 41, 59, 62] and regularized OT distances [4, 13, 25–28, 38, 46]; cf.
Remarks 2.1 and 2.2 ahead for a detailed discussion about the utility of duality for the statis-
tical analysis of standard and regularized OT, respectively. For the GW distance, on the other
hand, while we know that Dp,q(μ̂n, ν̂n) → Dp,q(μ, ν) as n → ∞ [45],1 the rate at which
this convergence happens is an open problem of theoretical and practical importance. This
work closes this gap by deriving a dual formulation for the (standard and entropic) (2,2)-GW
distance over Euclidean spaces, and leveraging it to establish the first empirical convergence
rates for the GW problem.

1.1. Contribution. For probability distributions μ and ν supported in R
dx and R

dy , re-
spectively, we study both the standard (2,2)-GW distances from (1) and its entropically reg-
ularized version [58]

Sε(μ, ν) := inf
π∈�(μ,ν)

∫∫ ∣∣∥∥x − x′∥∥2 − ∥∥y − y′∥∥2∣∣2 dπ ⊗ π
(
x, y, x′, y′)+ εDKL(π‖μ ⊗ ν),

where DKL(·‖·) is the Kullback–Leibler (KL) divergence. The interest in entropic GW (EGW)
stems from its computational tractability [49, 51, 54, 58], which makes it a popular approach
in practice. Our first main contribution is a duality theory for GW and EGW, which linearizes
these quadratic functionals and ties them, respectively, to the well understood problems of
OT and EOT. This is done by introducing an auxiliary, matrix-valued optimization variable
A ∈ R

dx×dy that enables linearizing the dependence on the coupling. We then interchange the
optimization over A and π and identify the inner problem as classical or entropic OT (EOT)
with respect to (w.r.t.) a cost function cA that depends on A. Upon verifying that cA satisfies
mild regularity conditions, we invoke OT or EOT duality to arrive at a dual formulation for
D2,2(μ, ν)2 and Sε(μ, ν). The dual form involves optimization over A, which we show can
be restricted to a hypercube whose side length depends only on the 2nd moments of μ, ν.

The GW and EGW dual forms enable an analysis of expected empirical convergence rates
by drawing upon proof techniques from statistical OT. Namely, we consider the rates at which
E[|D2,2(μ, ν)2 −D2,2(μ̂n, ν̂n)

2|] and E[|Sε(μ, ν)−Sε(μ̂n, ν̂n)|] decay to zero with n, as well
as the one-sample case where ν is not estimated. Invoking strong duality we bound the em-
pirical estimation error by the suprema of empirical processes indexed by OT or EOT dual

1[45] established this convergence for compact mm spaces and q = 1, but the argument readily extends to any
q ≥ 1 and arbitrary mm space, so long that μ, ν have bounded pqth moments.
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potentials w.r.t. the cost cA, supremized over all feasible matrices A. We then study the reg-
ularity of optimal potentials, uniformly in A, which is the main technical difference from
the corresponding OT and EOT analyses. For EGW, we show that the potentials are Hölder
smooth to an arbitrary order and provide bounds on the growth rate of their Hölder norm.
Combining the regularity theory with a chaining argument and entropy integral bounds for
Hölder classes, we arrive at n−1/2 as the empirical convergence rate for EGW. This para-
metric rate holds in any ambient dimensions dx , dy and is inline with EOT empirical rates
[21, 46]. For the unregularized GW problem, we focus on compactly supported distributions
and exploit smoothness and marginal-concavity of the cost cA to show that optimal potentials
are concave and Lipschitz. Following a similar analysis to the entropic case while lever-
aging a variant of the lower complexity adaptation (LCA) principle from [37] leads to an
n−2/max{min{dx,dy},4} upper bound on the two-sample rate of the quadratic GW distance (up
to a log factor when min{dx, dy} = 4). We then establish matching lower bounds on the one-
and two-sample empirical estimation errors, demonstrating that the said rates are sharp. The
lower bound proof is constructive and utilizes a novel inequality between the quadratic GW
distance and the 2-Wasserstein procrustes [32], which may be of independent interest.

We also address basic structural properties of the GW and EGW distances. First, we
study stability of the entropic variant in the regularization parameter ε and establish an
O(ε log(1/ε)) bound on the gap between (squared) GW and EGW. This bound matches the
entropic approximation error in the standard OT case [21]. However, unlike the result from
[21], that accounts only for compactly supported distributions, our derivation relies on max-
imum entropy inequalities and holds for arbitrary distributions. After treating the entropic
approximation of the GW cost, we prove that optimal entropic couplings weakly converge to-
wards an optimal GW coupling as ε → 0 by leveraging the notion of �-convergence. Lastly,
we revisit the open problem of the one-dimensional GW distance between uniform distribu-
tions on n points and use our duality theory to shed new light on it. We consider the peculiar
example from [2], where, contrary to common belief (cf. [63]), the identity and anti-identity
permutations were shown to not necessarily be optimal. Our dual form allows representing
the GW distance on R as a sum of concave and convex functions, explaining why the opti-
mum need not be attained at the boundary. We verify and visualize the different regimes of
optimal solutions via simple numerical simulations.

1.2. Literature review. The GW distance was first proposed in [45] as an Lp relaxation
of the Gromov–Hausdorff distance between metric spaces. Basic structural properties of the
distance were also established in that work, with more advanced aspects concerning topol-
ogy and curvature addressed in [61]. The existence of Gromov–Monge maps was studied
in [19], showing that optimal couplings are induced by a bimap (viz. two-way map) under
quite general conditions. Targeting analytic solutions, optimal couplings between Gaussian
distributions were explored in [15], but only upper and lower bounds on the GW value were
derived. An exact characterization of the optimal coupling and cost is known for the entropic
inner product GW distance between Gaussians [40].

As GW distances grew in popularity for applications, computational tractability became
increasingly important. However, exact computation of the GW distance is generally a
quadratic assignment problem, which is NP-complete [11]. For this reason, significant atten-
tion was devoted to variants of the GW problem that circumvent this computational hardness.
The sliced GW distance [63] attempts to reduce the computational burden by considering the
average of GW distances between one-dimensional projections of the marginals. However,
unlike one-dimensional OT, the GW problem does not have a known simple solution even in
one dimension [2]. Another approach is to relax the strict marginal constraints to obtain the
unbalanced GW distance [56], which lends well for convex/conic relaxations. A variant that
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directly optimizes over bi-directional Monge maps between the mm space was considered
in [71]. While these methods offer certain advantages, it is the approach based on entropic
regularization that is most frequently used in practice. This is since EGW is computable via
iterative optimization routines that employ Sinkhorn iterations [49, 51, 54, 58], which allows
scalability and parallelization in large-scale applications.

Follow-up works. We address two follow-up works that appeared on arXiv several months
after the original submission of this work (and its upload to arXiv on March 2). The paper
[51], by one of the authors of the current work and other collaborators, leveraged the duality
theory proposed herein to study algorithms, limit theorems and resampling methods for the
EGW distance. Their approach relied on a stability analysis of the dual formulation in A,
based on which L-smoothness and sufficient conditions for convexity of the objective func-
tion were derived. These, in turn, were used to propose the first algorithms for computing
EGW in O(n2) time (where n is the number of support points of the two marginals) subject
to formal convergence guarantees in both the convex and nonconvex regimes. That work also
considered stability of the dual in the marginals μ, ν, which led to a limit distribution the-
ory for the empirical EGW distance and, under additional conditions, asymptotic normality,
bootstrap consistency and semiparametric efficiency. Our results along with those from [51]
now provide the statistical and computational foundations for valid estimation and inference
for the EGW distance, with efficient implementations via the aforementioned algorithms.

Another notable follow-up work is [33], which appeared online two months after our paper
was posted to arXiv and submitted to the journal. That work studied the LCA principle from
[37] under the EOT setting. In particular, they observed that the dependence on dimension
in our empirical convergence rate bounds can be relaxed from max{dx, dy} to min{dx, dy},
provided that the populations are compactly supported. For EGW, as the rate is parametric
and dimension-free, this observation only serves to improve the constant. Furthermore, our
EGW bounds hold for distributions with unbounded supports, which are beyond the scope
of [33]. For the standard GW distance, our original submission proved an n−2/max{dx,dy,4}
upper bound on the two-sample rate, but Remark 5.6 of [33] observed that it can be improved
to n−2/max{min{dx,dy},4} and provided high-level proof outline. Herein we provide a full proof
of the two-sample upper bound with the dependence on the smaller dimension, and also
establish new lower bounds that demonstrate the sharpness of the derived one- and two-
sample empirical convergence rates. The reader is referred to Remarks 3.6 and 4.3 for a
detailed discussion and comparison to [33].

1.3. Organization. The rest of this paper is organized as follows. In Section 2, we collect
background material on the OT, EOT, GW, and EGW problems. Section 3 treats the EGW
distance, covering stability in the regularization parameter, duality and sample complexity.
In Section 4, we extend the duality and the statistical treatment to the (unregularized) GW
distance itself. Section 5 contains proofs for Sections 3 and 4. Section 6 leaves concluding
remarks and discusses future directions. The Appendix contains proofs of technical results
that are omitted from the main text.

1.4. Notation. Let ‖ · ‖ and 〈·, ·〉 denote the Euclidean norm and inner product, respec-
tively. Let Bd(x, r) := {y ∈ R

d : ‖y − x‖ ≤ r} denote the closed ball with center x and radius
r . We use ‖ · ‖op and ‖ · ‖F for the operator and Frobenius norms of matrices, respectively.
For a topological space S, P(S) denotes the class of Borel probability measures on it. For
p ∈ [1,∞), let Pp(Rd) be the space of Borel probability measures with finite pth absolute
moment, that is, Mp(ρ) := ∫

Rd ‖x‖p dρ(x) < ∞ for any ρ ∈ Pp(Rd). For a signed Borel
measure ρ and a measurable function f , we use the shorthand ρf := ∫

f dρ, whenever the
integral exists. The support of ρ ∈ P(Rd) is spt(ρ), while its covariance matrix (when exists)
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is denoted by �ρ . For a sequence of probability measures (ρn)n∈N that weakly converges

to ρ, we write ρn
w−→ ρ. A probability distribution ρ ∈ P(Rd) is called β-sub-Weibull with

parameter σ 2 for σ ≥ 0 if
∫

exp(‖x‖β/2σ 2) dρ(x) ≤ 2. In particular, ρ is sub-Gaussian if it
is 2-sub-Weibull. Notice that X ∼ ρ being 4-sub-Weibull is equivalent to ‖X‖2 being sub-
Gaussian, in which case

∫
et‖x‖2

dρ(x) ≤ 2et2σ 2/2. The latter bound is repeatedly used in our
derivations.

Let Cb(R
d) be the space of bounded continuous functions on R

d equipped with the L∞
norm. The Lipschitz seminorm of a function f : Rd → R is ‖f ‖Lip := supx 
=x′ |f (x)−f (x′)|

‖x−x′‖ .

For p ∈ [1,∞) and ρ ∈ P(Rd), let Lp(ρ) be the space of measurable functions f of R
d

such that ‖f ‖Lp(ρ) := (
∫
Rd |f |p dρ)1/p < ∞. For any multi-index k = (k1, . . . , kd) ∈N

d
0 with

|k| =∑d
j=1 kj (N0 = N ∪ {0}), define the differential operator Dk = ∂ |k|

∂x
k1
1 ···∂x

kd
d

with D0f =
f . We write N(ε,F,d) for the ε-covering number of a function class F w.r.t. a metric d, and
N[ ](ε,F,d) for the bracketing number. We use �x to denote inequalities up to constants that
only depend on x; the subscript is dropped when the constant is universal. For a, b ∈ R, let
a ∨ b = max{a, b} and a ∧ b = min{a, b}.

2. Background and preliminaries.

2.1. Classical and entropic optimal transport. We briefly review basic definitions and
results concerning the classical and entropic OT problems, which serve as building blocks for
our subsequent analysis of the GW distance. For a detailed exposition, the reader is referred
to [48, 53, 65]. Let X , Y be two Polish spaces and consider a lower semicontinuous cost
function c : X ×Y →R, where note that we allow c to take negative value.

2.1.1. Optimal transport. The OT problem between (μ, ν) ∈ P(X ) × P(Y) with cost
c is

(2) OTc(μ, ν) := inf
π∈�(μ,ν)

∫
X×Y

c dπ,

where �(μ,ν) is the set of all couplings of μ and ν, that is, each π ∈ �(μ,ν) is a
probability distribution on X × Y that has μ and ν as its first and second marginals, re-
spectively. The special case of the p-Wasserstein distance, for p ∈ [1,∞), is given by
Wp(μ, ν) := (OT‖·‖p(μ, ν))1/p . Wp is a metric on Pp(Rd) which metrizes weak conver-

gence plus convergence of pth moments, that is, Wp(μ̂n,μ) → 0 if and only if μ̂n
w→ μ and

Mp(μ̂n) → Mp(μ).
OT is a linear program and as such it admits strong duality. Suppose that the cost func-

tion satisfies c(x, y) ≥ a(x) + b(y), for all (x, y) ∈ X × Y , for some upper semicontinuous
functions (a, b) ∈ L1(μ) × L1(ν). Then (cf. [65], Theorem 5.10)

(3) OTc(μ, ν) = sup
(ϕ,ψ)∈�c

∫
X

ϕ dμ +
∫
Y

ψ dν,

where �c := {(ϕ,ψ) ∈ Cb(X ) × Cb(Y) : ϕ(x) + ψ(y) ≤ c(x, y),∀(x, y) ∈ X × Y}. Fur-
thermore, defining the c- and c̄-transform of ϕ ∈ Cb(X ) and ψ ∈ Cb(Y) as ϕc(y) :=
infx∈X c(x, y) − ϕ(x) and ψc̄(x) := infy∈Y c(x, y) − ψ(y), respectively, the optimization
above can be restricted to pairs (ϕ,ψ) such that ψ = ϕc and ϕ = ψc̄.

REMARK 2.1 (Duality for statistical OT). The dual form in (3) is key for the statistical
analysis of OT, encompassing empirical convergence rates [10, 18, 37, 42] and limit distri-
bution theorems [14, 27, 36, 41, 59, 62]. For instance, if optimal dual potentials in (3) lie,
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respectively, in functional classes F and G, one can bound the two-sample error as

E
[∣∣OTc(μ, ν) − OTc(μ̂n, ν̂n)

∣∣]� E

[
sup
ϕ∈Fc

(μ − μ̂n)ϕ
]
+E

[
sup
ψ∈Gc

(ν − ν̂n)ψ
]
.

This reduces the error analysis to that of the expected suprema of two empirical processes
indexed by the classes Fc and Gc. One may then use techniques from empirical process theory
[64] to obtain the desired convergence rate. This requires studying regularity of optimal dual
potentials to obtain bounds on the covering numbers of the corresponding function classes.
Given bounds of the form N(ε,Fc,L

∞) ∨ N(ε,Gc,L
∞)� ε−k , a convergence rate of n−1/k

immediately follows by standard chaining arguments and entropy integral bounds.
This argument can be readily used to prove an n−1/d rate for empirical estimation of

the 1-Wasserstein distance (relying on the fact that the covering number of the Lipschitz
class scales like ε−1/d ), although Dudley, who originally established this rate [18], used a
different approach that chained the space of Lipschitz functions using a dyadic procedure.
More recently, [42] refined this argument to establish a two-sample rate of n−2/d , under
smoothness and convexity assumptions on the cost, by observing that dual potentials are
not only Lipschitz but also convex in that case. This yielded a covering number bound of
ε−d/2 and the rate follows. The primal form was used in [6, 17, 20, 66] to derive sharp
empirical convergence rates for the p-Wasserstein distance via a block (dyadic) partitioning
argument for the optimal coupling. More recently, however, duality enabled an even finer
statistical analysis for deriving limit distribution theorems of empirical OT, for example, via
linearization arguments [14, 41] or by proving weak convergence of the underlying empirical
processes and invoking the functional delta method [52, 57], as done in [27, 36, 59, 62].

2.1.2. Entropic optimal transport. EOT is a convexification of the classical OT problem
by means of an entropic penalty. For a regularization parameter ε > 0, EOT is given by

(4) OTc,ε(μ, ν) := inf
π∈�(μ,ν)

∫
c dπ + εDKL(π‖μ ⊗ ν),

where the KL divergence is given by DKL(α‖β) := ∫
log(dα/dβ)dα if α � β and equals

+∞ otherwise. The optimization objective in (4) is strongly convex in π and thus admits
a unique solution π�. The entropic cost OTc,ε and the optimal solutions π� are known to
converge towards the classical OT cost [21] and a corresponding optimal plan [8] as ε → 0.2

In particular, Theorem 1 from [21] shows that for smooth costs and compact spaces X , Y ,
the entropic approximation gap is |OTε(μ, ν) − OT(μ, ν)|� ε log(1/ε).

EOT satisfies duality and can be rewritten as (cf. [47]):

(5)

OTc,ε(μ, ν) = sup
(ϕ,ψ)∈L1(μ)×L1(ν)

∫
ϕ dμ +

∫
ψ dν

− ε

∫
e

ϕ(x)+ψ(y)−c(x,y)
ε dμ ⊗ ν(x, y) + ε.

There exist functions (ϕ,ψ) ∈ L1(μ) × L1(ν) that achieve the supremum in (5), which we
call EOT potentials. EOT potentials are almost surely (a.s.) unique up to additive constants in
the sense that if (ϕ̃, ψ̃) is another pair of EOT potentials, then there exists a constant a ∈ R

such that ϕ̃ = ϕ + a μ-a.s. and ψ̃ = ψ − a ν-a.s. Furthermore, a pair of functions (ϕ,ψ) ∈
L1(μ)×L1(ν) are EOT potentials if and only if they satisfy the so-called Schrödinger system

(6)
∫
X

e
ϕ(x)+ψ(·)−c(x,·)

ε dμ(x) = 1 ν-a.s. and
∫
Y

e
ϕ(·)+ψ(y)−c(·,y)

ε dν(y) = 1 μ-a.s.

2For the plan, convergence happens in the weak topology and possibly along a subsequence.
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Given EOT potentials (ϕ,ψ), the unique EOT plan can be expressed in their terms as

dπ�(x, y) = e
ϕ(x)+ψ(y)−c(x,y)

ε dμ ⊗ ν(x, y).

REMARK 2.2 (Duality for statistical EOT). Akin to the utility of duality for the statis-
tical analysis of OT, as discussed in Remark 2.1, the EOT dual served a pivotal role in the
development of a statistical theory under entropic regularization. Thanks for the Schrödinger
system in (6), smoothness of the cost c implies the existence of EOT potentials that reside in
a Hölder space of arbitrarily large smoothness; cf., for example, [28], Lemma 1. This, in turn,
enables establishing parametric n−1/2 convergence rates for EOT [21, 33, 46, 50] under quite
general conditions and a rich limit distribution theory for the EOT cost, plan, dual potentials
and the barycentric projection [4, 13, 28–30, 34, 38, 46]. Recently, statistical results for EOT
were extended beyond smooth cost functions. In [50], parametric estimation rates of the EOT
cost, optimal coupling and the induced map (sometimes termed, the barycentric projection)
were derived assuming only boundedness of the cost function. Their argument employed du-
ality, but circumvented the need to control the suprema of an empirical process indexed by
dual potential, thereby ridding of the cost smoothness assumption. Limit theorems for the
EOT with a bounded cost function were later obtained in [29], while a method to estimate
intrinsic dimension via EOT with Lipschitz cost was proposed in [60].

2.2. Classical and entropic Gromov–Wasserstein distance. The objects of interest in this
work are the GW distance and its entropic version. The (p, q)-GW distance quantifies simi-
larity between (complete and separable) mm spaces (X ,dX ,μ) and (Y,dY , ν) as [45, 61].

Dp,q(μ, ν) := inf
π∈�(μ,ν)

∥∥�X ,Y
q

∥∥
Lp(π⊗π),

where �X ,Y
q (x, y, x′, y′) = |dX (x, x′)q − dY(y, y′)q |. This definition is an Lp relaxation

of the Gromov–Hausdorff distance between metric spaces,3 and gives rise to a metric
on the collection of all isomorphism classes of mm spaces4 with finite pq-size, that is,∫

dX (x, x′)pq dμ ⊗ μ(x, x′) < ∞ and similarly for ν. Like the p-Wasserstein distance,
Theorem 5.1 in [45] reveals that Dp,q captures empirical convergence of mm spaces: if
X1, . . . ,Xn are samples from μ ∈ P(X ) and μ̂n := n−1∑n

i=1 δXi
is their empirical mea-

sures, then Dp,q(μ̂n,μ) → 0 a.s. The rate at which this empirical convergence happens is,
however, an open problem.

Towards a complete resolution, one of our main contributions is to quantify the empirical
convergence rate of the (2,2)-GW distance between Euclidean mm spaces (Rdx ,‖ · ‖,μ) and

(Rdy ,‖ · ‖, ν) of different dimensions. Abbreviating �
R

dx ,Rdy

2 = �, the distance of interest is

D(μ, ν) := inf
π∈�(μ,ν)

‖�‖L2(π⊗π)

= inf
π∈�(μ,ν)

(∫
Rdx ×R

dy

∫
Rdx ×R

dy

∣∣∥∥x − x′∥∥2 − ∥∥y − y′∥∥2∣∣2 dπ ⊗ π
(
x, y, x′, y′)) 1

2
.

(7)

We drop subscripts from our notation because we focus on the (2,2)-GW case from here on
out. For finiteness we will always assume μ ∈ P4(R

dx ) and ν ∈ P4(R
dy ). We also treat the

3The Gromov–Hausdorff distance between (X ,dX ) and (Y,dY ) is 1
2 infR∈R(X ,Y) ‖�X ,Y

1,1 ‖L∞(R), where
R(X ,Y) is the collection of all correspondence sets of X and Y , that is, subsets R ⊂ X × Y such that the
coordinate projection maps are surjective when restricted to R. The correspondence set can be thought of as
spt(π) in the GW formulation.

4The mm spaces (X ,dX ,μ) and (Y,dY , ν) are isomorphic if there is an isometry f : X → Y with f�μ = ν.
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GW distance with entropic regularization, which, for ε > 0, is defined as

Sε(μ, ν) := inf
π∈�(μ,ν)

‖�‖2
L2(π⊗π)

+ εDKL(π‖μ ⊗ ν).

The motivation for EGW stems from its computational tractability [49, 51, 54, 58], which
makes it a popular approach in practice.5 With the setup above, we have S0(μ, ν) = D(μ, ν)2

but approximation bounds that account for the gap |Sε(μ, ν) − D(μ, ν)2| are currently un-
known (nor is there a proof of weak convergence for the corresponding optimal couplings).
Another major gap in GW and EGW theory is the lack of dual formulations, without which
an empirical convergence rate analysis of standard and entropic GW distances remained ob-
scure. In what follows, we close these gaps.

3. Entropic Gromov–Wasserstein distance.

3.1. Continuity in regularization parameter. We study continuity of the EGW cost and
optimal coupling in ε. Our first result quantifies the gap between the GW and EGW costs.

PROPOSITION 3.1 (Cost approximation gap). For any ε ∈ (0,1] and (μ, ν) ∈ P4(R
dx )×

P4(R
dy ), we have ∣∣Sε(μ, ν) − D(μ, ν)2∣∣�dx,dy,M4(μ),M4(ν) ε log

1

ε
.

The proof of Proposition 3.1, which is given in Section A of the Supplementary Mate-
rial [70], relies on a block approximation of optimal GW couplings and the Gaussian max-
imum entropy inequality. Specifically, we decompose the space into cubes with side length
� and construct a new coupling π� that is piecewise uniform on these cubes (the block ap-
proximation idea for the EOT coupling originally dates back to [8]). The error of the entropic
approximation is then quantified in terms of �, with the KL divergence term being bounded
using the differential entropy of the Gaussian distribution with a matched covariance matrix.
We then optimize the bound over � to arrive at the desired dependence on ε.

REMARK 3.2 (Comparison to EOT approximation results). A similar bound of order
O(ε log(1/ε)) was derived in Theorem 1 of [21] for the entropic approximation gap of the OT
problem on compact domains with Lipschitz cost. Our proof of Proposition 3.1, which relies
on a block approximation of optimal GW couplings, is inspired by their derivation but with
several key differences. Specifically, by leveraging the Gaussian maximum entropy inequal-
ity, we allow for arbitrary distributions with bounded 4th moments (which is always required
for finiteness of D) and costs that grow at most polynomially. Our proof technique can di-
rectly be used to relax the assumptions of [21], Theorem 1, to match those of Proposition 3.1.
Another related entropic approximation result appeared in Theorem 1 of [10], providing an
O(ε2) bound on the gap between the squared 2-Wasserstein distance and the Sinkhorn diver-
gence (which is a centered version of EOT). Their derivation utilizes a dynamical formulation
of the Sinkhorn divergence [9, 12, 22, 23], which allows tying it to the Benamou–Brenier for-
mula for W2

2 [3]. No dynamical form for the GW distance is currently known.

5As discussed in Section 1.2, the follow-up work [51] proposed the first algorithms for computing EGW be-

tween discrete distributions on n points to arbitrary precision in O(n2) time, subject to formal convergence
guarantees. These algorithms hinge upon the dual formulation developed herein. This progress, along with the
statistical theory we provide, poses EGW as a viable tool for statistical estimation and inference.



1624 ZHANG, GOLDFELD, MROUEH AND SRIPERUMBUDUR

Proposition 3.1 guarantees the convergence of the EGW cost towards that of GW, as ε → 0.
It is natural to ask whether the optimal couplings that achieve these costs converge as well?
We answer this question to the affirmative.

PROPOSITION 3.3 (Convergence of plans). Fix (μ, ν) ∈ P4(R
dx ) × P4(R

dy ) and let
(εk)k∈N be a sequence with εk ↘ ε ≥ 0. For each k ∈ N, let πk ∈ �(μ,ν) be an optimal
coupling for Sεk

(μ, ν). Then there exists π ∈ �(μ,ν) such that πk
w−→ π as k → ∞ along a

subsequence, and π is optimal for Sε(μ, ν).

The proof of Proposition 3.3, which is given in Section B of the Supplementary Material
[70], relies on establishing �-convergence of the EGW functional with ε. Having that, conver-
gence of optimal couplings follows by a tightness argument. In particular, this result implies
that a sequence of optimal couplings for Sε(μ, ν) converges, up to extracting a subsequence,
to an optimal coupling for the regular (2,2)-GW distance as ε → 0.

3.2. Duality. We next derive a dual formulation for the EGW distance. This duality
serves as the key component for our sample complexity analysis of empirical EGW in the next
subsection. Towards the dual form, first observe that Sε is invariant to isometric operations
on the marginal spaces, such as translation and orthonormal rotation. Thus, without loss of
generality (w.l.o.g.), we assume that μ and ν are centered, that is,

∫
x dμ(x) = ∫

y dν(y) = 0.
Next, by expanding the (2,2)-GW cost, we split the EGW functional into two terms as

(8) Sε(μ, ν) = S1(μ, ν) + S2
ε(μ, ν),

where

S1(μ, ν)

:=
∫ ∥∥x − x′∥∥4

dμ ⊗ μ
(
x, x′)+ ∫ ∥∥y − y′∥∥4

dν ⊗ ν
(
y, y′)

− 4
∫

‖x‖2‖y‖2 dμ ⊗ ν(x, y),

S2
ε(μ, ν)

:= inf
π∈�(μ,ν)

∫
−4‖x‖2‖y‖2 dπ(x, y) − 8

∑
1≤i≤d1
1≤j≤d2

(∫
xiyj dπ(x, y)

)2
+ εDKL(π‖μ ⊗ ν).

See (14) for the derivation. Evidently, the first term depends only on the marginals μ, ν,
while the second captures the dependence on the coupling π . The following theorem es-
tablishes duality for S2

ε(μ, ν), which, in turn, yields a dual form for Sε(μ, ν) via the above
decomposition.

THEOREM 3.4 (Entropic GW duality). Fix ε > 0, let (μ, ν) ∈ P4(R
dx ) × P4(R

dy ), and
define Mμ,ν := √

M2(μ)M2(ν). We have

(9) S2
ε(μ, ν) = inf

A∈Rdx×dy
32‖A‖2

F + OTA,ε(μ, ν),

where OTA,ε is the EOT problem with cost function cA : (x, y) ∈ R
dx ×R

dy �→ −4‖x‖2‖y‖2−
32xᵀAy. Moreover, the infimum is achieved at some A� ∈ DMμ,ν

:= [−Mμ,ν/2,

Mμ,ν/2]dx×dy .



GROMOV–WASSERSTEIN: REGULARIZATION, DUALITY AND SAMPLE COMPLEXITY 1625

The variational representation above relates the EGW to the well-understood problem of
EOT. This enables leveraging knowledge on the latter to make progress in the study of EGW.
In particular, this representation unlocks the sample complexity analysis in the next sub-
section, which relies on inserting the EOT dual from (5) into the above. Since (9) allows
utilizing EOT duality for the EGW analysis, we synonymously refer to it as the EGW dual
(even though it is somewhat of a misnomer, since strictly speaking, (9) is not a dual problem
for Sε(μ, ν) in the standard optimization theory sense).

The proof of Theorem 3.4 is given in Section 5.1. The key idea in deriving the above rep-
resentation is to introduce the additional dual variable A as a means to linearize the quadratic
(in fact, concave) in π term of S2

ε(μ, ν). The resulting objective comprises two infima, over
A ∈ DMμ,ν and π ∈ �(μ,ν), which we may interchange. Upon doing so, we identify the in-
ner optimization as the primal EOT problem (up to a minus sign) with the cost cA. Existence
of an optimal A follow from continuity of the functional and compactness of the optimization
domain. As the optimum is always achieved inside FMμ,ν , we may restrict the optimization
domain to A ∈DM , for any M ≥ Mμ,ν , without changing the value. The flexibility of choos-
ing M an optimizing over the compact set DM is crucial for our sample complexity analysis.

3.3. Sample complexity. The dual formulation from Theorem 3.4 enables deriving, for
the first time, the sample complexity of empirical EGW distances. Let X1, . . . ,Xn and
Y1, . . . , Yn be independently and identically distributed (i.i.d.) samples from μ and ν, respec-
tively, and denote their empirical measures by μ̂n = n−1∑n

i=1 δXi
and ν̂n = n−1∑n

i=1 δYi
.

We study one- and two-sample empirical convergence, that is, the rate at which Sε(μ̂n, ν)

and Sε(μ̂n, ν̂n) approach Sε(μ, ν), under a sub-Weibull condition on the population distribu-
tions.

THEOREM 3.5 (Entropic GW sample complexity). Fix ε > 0 and let (μ, ν) ∈ P(Rdx ) ×
P(Rdy ) be a pair of 4-sub-Weibull distributions with parameter σ 2 > 0. We have

E
[∣∣Sε(μ, ν) − Sε(μ̂n, ν)

∣∣]�dx,dy

1 + σ 4
√

n
+ ε

(
1 +

(
σ√
ε

)9� dx
2 �+11) 1√

n
,

E
[∣∣Sε(μ, ν) − Sε(μ̂n, ν̂n)

∣∣]�dx,dy

1 + σ 4
√

n
+ ε

(
1 +

(
σ√
ε

)9� dx∨dy
2 �+11) 1√

n
.

Theorem 3.5 is derived in Section 5.2. Here, we provide a proof outline, and explain how
the duality from Theorem 3.4 facilitates the derivation. The proof follows three main steps:

1. Decomposition: We first split the empirical estimation error of Sε to that of its com-
ponents S1 and S2

ε . Notice that the decomposition is not straightforward since Sε = S1 + S2
ε

holds only for centered measures, and while we may assume this w.l.o.g. on the populations
(μ, ν), centering need not hold for the empirical measures. Thus, to perform the split we first
center (μ̂n, ν̂n) by their sample means, and then further account for the bias induced by this
centering step, which is shown to be at most σ 2/

√
n. Altogether, we obtain

E
[∣∣Sε(μ, ν) − Sε(μ̂n, ν̂n)

∣∣]
≤ E

[∣∣S1(μ, ν) − S1(μ̂n, ν̂n)
∣∣]+E

[∣∣S2
ε(μ, ν) − S2

ε(μ̂n, ν̂n)
∣∣]+ σ 2

√
n
,

and may analyze each component separately.
2. S1 analysis: The first term on the right-hand side (RHS) above is simple to analyze, as

estimation of S1 boils down to estimating moments of (μ, ν). Since the sub-Weibull condition
implies finite moments, we establish an O(1/

√
n) bound on the S1 estimation error.
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3. S2
ε analysis: The treatment of the S2

ε is more involved and hinges on the dual represen-
tation from Theorem 3.4. Specifically, using our dual with any M ≥ Mμ,ν , we obtain∣∣S2

ε(μ, ν) − S2
ε(μ̂n, ν̂n)

∣∣≤ sup
A∈DM

∣∣OTA,ε(μ, ν) − OTA,ε(μ̂n, ν̂n)
∣∣,

where the RHS can be controlled by the suprema of empirical processes indexed by optimal
entropic potentials. As the potentials depend on the cost cA, we analyze regularity of opti-
mal (ϕ,ψ) pairs by bounding these functions and their partial derivative of arbitrary order,
uniformly in A ∈ DM . Given the derivative bounds, a chaining argument and entropy integral
bounds yield the second term on the RHS above as a bound on the empirical convergence rate
for S2

ε . The overall rate we obtain is parametric, and hence optimal, although the dependence
of the bound on σ and ε could possibly be improved.

REMARK 3.6 (Dependence on dimension). The empirical convergence rate of EGW
given in Theorem 3.5 is parametric, and hence cannot be improved. The dependence of the
constant in the two-sample bound on the maximal dimension, however, can be relaxed. The
follow-up work [33], which was posted on arXiv several months after our original submis-
sion and arXiv upload, observed that the dependence on dimension can be improved from
dx ∨ dy to dx ∧ dy , for compactly supported populations. That work studied the LCA prin-
ciple from [37] in the context of EOT. Relying on our duality theory, Theorem 5.4 of [33]
showed that, when μ, ν are compactly supported, an empirical convergence rate with dx ∧ dy

instead of dx ∨ dy in the constant holds true.6 This result does not cover the full scope of
Theorem 3.5, which treats unboundedly supported distributions with 4-sub-Weibull tails. The
LCA principle, in its current form, is not compatible with the case where both distributions
have unbounded supports, since the argument relies on uniform metric entropy bounds of
the dual potential class. Still, [33], Theorem 3.13, was able to extend it to the EOT prob-
lem with quadratic cost and only one unboundedly supported distribution, assuming that it is
sub-Gaussian.

REMARK 3.7 (Comparison to EOT). The EGW empirical convergence rates from Theo-
rem 3.5 are similar to the corresponding rates for the EOT problem, which are also paramet-
ric. Specifically, the n−1/2 rate was established in [21] for EOT between compactly supported
distributions and assuming that the cost is C∞ and Lipschitz, although their bound contained
an undesirable exponential dependence on 1/ε. This result was extended to sub-Gaussian
distributions and quadratic cost in [46], while shaving off the said exponential factor and ar-
riving to a bound that is similar to ours. More recently, [33] observed that the LCA principle
holds for EOT, showing that the constant in front of the n−1/2 term adapts to the smaller
intrinsic dimension of the two measures.

Our approach for proving Theorem 3.5 is inspired by [46], but requires overcoming several
new challenges. First, a strong duality theory, which is at the core of the proof technique,
was not available until now for the EGW distance. Second, our analysis goes through the
decomposition (8), which needs the distributions to be centered. While we may assume this
w.l.o.g. on μ, ν, the empirical measures are generally noncentered, which necessitates a bias
analysis of the EGW functional due to centering, as discussed above. Lastly, as the dual form
in (9) involves optimization over A ∈ DM , with M ≥ Mμ,ν , our regularity analysis of EGW
potentials must hold uniformly in A, so as to allow the reduction to empirical processes.

6More precisely, [33] improves the exponent of the ε−1/2 term in the two-sample rate bound from Theorem 3.5
to dx ∧ dy , but their overall bound still contains an implicit constant that depends on the maximal dimension
dx ∨ dy .
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4. Gromov–Wasserstein distance.

4.1. Duality and sample complexity. We now consider the unregularized (2,2)-GW dis-
tance from (7), establish duality, derive its sample complexity, and study its one-dimensional
structure. Let (μ, ν) ∈P4(R

dx ) ×P4(R
dy ) be centered w.l.o.g. and note that, similarly to the

EGW case, the (2,2)-GW distance decomposes as

D(μ, ν)2 = S1(μ, ν) + S2(μ, ν),

where S2 := S2
0, with S1 and S2

ε as given after (8). To obtain a dual form for S2, an inspection
of the proof of Theorem 3.4 reveals that the same argument holds also for ε = 0 (i.e., any
ε ≥ 0 is allowed in that statement), up to replacing the EOT problem OTA,ε in (9) with
the standard (unregularized) OT problem OTA := OTA,0. Recalling the definitions of Mμ,ν ,
DMμ,ν and cA from Theorem 3.4, we have the following corollary.

COROLLARY 4.1 (GW duality). For any (μ, ν) ∈ P4(R
dx ) ×P4(R

dy ), we have

(10) S2(μ, ν) = inf
A∈Rdx×dy

32‖A‖2
F + OTA(μ, ν),

where OTA is the OT problem with cost cA and the infimum is achieved at some A� ∈DMμ,ν .

Given this dual form for D(μ, ν)2 we proceed with a sample complexity analysis. We
focus on compactly supported distributions and refer the reader to Remark 4.6 ahead for a
discussion on extensions to unbounded domains. The following theorem gives a sharp char-
acterization of the one- and two-sample empirical convergence rate of the quadratic GW
distance, providing matching upper and lower rate bounds.

THEOREM 4.2 (GW sample complexity). Let (μ, ν) ∈ P(X ) × P(Y), where X ⊂ R
dx

and Y ⊂R
dy are compact, and let R = diam(X ) ∨ diam(Y). We have

E
[∣∣D(μ, ν)2 − D(μ̂n, ν)2∣∣]�dx,dy

R4
√

n
+ (

1 + R4)n− 2
(dx∧dy )∨4 (logn)

1{dx∧dy=4},

E
[∣∣D(μ, ν)2 − D(μ̂n, ν̂n)

2∣∣]�dx,dy

R4
√

n
+ (

1 + R4)n− 2
(dx∧dy )∨4 (logn)

1{dx∧dy=4},

and if μ, ν are separated in the (2,2)-GW distance, that is, D(μ, ν) > 0, then the same rates
hold for estimating D itself, without the square.

Furthermore, the above rates are sharp in the sense that for any n large enough, we have

sup
(μ,ν)∈P(X )×P(Y)

E
[∣∣D(μ, ν)2 − D(μ̂n, ν)2∣∣]�dx,dy,R n

− 2
(dx∧dy )∨4 ,

sup
(μ,ν)∈P(X )×P(Y)

E
[∣∣D(μ, ν)2 − D(μ̂n, ν̂n)

2∣∣]�dx,dy,R n
− 2

(dx∧dy )∨4 ,

where the latter (two-sample) lower bound further assumes that the samples X1, . . . ,Xn and
Y1, . . . , Yn are independent of each other.

REMARK 4.3 (Chronology of results). The originally submitted version of this work
included only upper bounds on the one- and two-sample empirical convergence rates of D,
where the dependence on dimension was through the maximum dx ∨ dy , as opposed to the
minimum as above. The follow-up work [33], which appeared online two months after our
paper was uploaded to arXiv and submitted to the journal, studied the LCA principle in the
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context of the EOT problem. Remark 5.6 of that work, observed that the LCA principle
applies to our original Theorem 4.2 and commented that the dependence on dimension can
be improved to dx ∧ dy . A full proof of that claim was not provided in [33], only a high-
level outline of the argument. Herein, in Section 5.3, we provide a full derivation of the upper
bounds with the dependence on the smaller dimension. In addition, we establish a novel lower
bound that demonstrates that these empirical convergence rates are sharp.

Theorem 4.2 is proven in Section 5.3. The upper bounds leverage the duality from Corol-
lary 4.1 to reduce the empirical estimation analysis of D2 to that of the OT problem with cost
cA. The OT estimation error is then bounded by the suprema of empirical processes indexed
by dual OT potentials. To control the corresponding entropy integrals, we exploit smoothness
of our cost as well as Lipschitzness and convexity of optimal potentials as c-transforms of
each other. The fact that the two-sample convergence rate adapts to the smaller dimension is
a consequence of the LCA principle [37], Lemma 2.1, whereby the L∞ covering number of a
function class F is no less than that of its c-transform Fc. This observation enables adapting
the bound to the class of dual potentials over the lower-dimensional space. Still, when the
estimated measure(s) are high-dimensional, both the one- and two-sample rates for the GW
distance suffer from the curse of dimensionality. This is expected in the absence of entropic
regularization and is in line with empirical convergence rates for OT; see Remark 4.6 ahead
for further discussion on the comparison between the empirical rates for GW and OT.

To prove the lower bound, we present a reduction from GW distance estimation to that of
the 2-Wasserstein procrustes infU∈E(d) W2(μ,U�ν), where E(d) is the isometry group on R

d

[32] (see also [31, 55]). This relies on the following lemma, which may be of independent
interest. We state two-sided bounds, but only the lower bound is used in the derivation.

LEMMA 4.4 (GW vs. W-procrustes). For any p,q ∈ [1,∞) and μ,ν ∈ Ppq(R
d), we

have

Dp,q(μ, ν) ≤ qp2pq+p−1+1/q(Mpq(μ) + Mpq(ν)
) q−1

pq Wpq(μ, ν).

Furthermore, for p = q = 2, if μ and ν have covariance matrices �μ and �ν with full rank
and smallest eigenvalues λmin(�μ) and λmin(�ν), respectively, then(

8
(
λmin(�μ)2 + λmin(�ν)

2)) 1
4 inf

U∈E(d)
W2(μ,U�ν) ≤ D(μ, ν).

If μ and ν are also centered, then it suffices to optimize only over the orthogonal group O(d).

The lemma, which is proven in Section C of the Supplementary Material [70], enables
showing that the empirical GW rate, when the population measures are uniform over the unit
ball and its scaled version, is at least as large as that of the Wasserstein procrustes. We then
develop a new lower bound on the convergence rate of the latter, showing that it is at least
n−1/d . This, in turn, gives rise to the rates from Theorem 4.2.

REMARK 4.5 (Suboptimal (p, q)-GW rates from Lemma 4.4). Fix any (p, q) and
μ ∈ Ppq(R

d). The upper bound from Lemma 4.4, directly yields E[Dp,q(μ̂n,μ)] �
E[Wpq(μ̂n,μ)] � n−1/dx . Via the triangle inequality we can further obtain an n−1/(dx∨dy)

two-sample rate bound for the (p, q)-GW distance. However, as seen from the lower bounds
in Theorem 4.2, this rate is suboptimal and does not adapt to the lower of the two dimensions.

REMARK 4.6 (Comparison to OT, unbounded domains and intrinsic dimension). The
rates in Theorem 4.2 are inline with those for classical OT with Hölder smooth costs [42]
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(although our analysis is different from theirs). Over compact domains, smoothness of the
cost enables establishing global Lipschitzness and convexity of OT potentials, which, in turn,
leads to the quadratic improvement from the standard n−1/d empirical convergence rate to
n−2/d , when d > 4. Evidently, a similar phenomenon happens in the GW case. OT with
unbounded domains is treated in Theorem 13 of [42], but this result relies on restrictive as-
sumptions on the population distributions and the cost. Namely, the distributions must satisfy
certain high-level concentration and anti-concentration conditions, while the cost must be lo-
cally Hölder smooth and be lower and upper bounded by a polynomial of appropriate degree.
Our cost cA does not immediately adhere to these assumptions. While we believe that the ar-
gument can be adapted, we leave this extension as a question for future work. Lastly, we note
that empirical convergence rates of OT and the Wasserstein distance are known to present a
multiscale behavior, adapting to the intrinsic dimension dimension of the supports of μ, ν;
cf., for example, [37, 66]. The general form of the LCA principle from [37], Theorem 2.2,
is sufficiently fine to capture that since it measures ‘dimension’ via uniform control over the
covering number of the class of dual potentials, which follows from uniform covering of
spt(μ) and spt(ν). Consequently, while the bounds from Theorem 4.2 only invoke the LCA
principle w.r.t. the ambient spaces R

dx and R
dy , they can be readily refined to depend only

on the intrinsic dimensions of the supports. We leave a formal derivation of this refinement
for future work.

4.2. One-dimensional case study. We leverage our duality theory to shed new light on the
one-dimensional GW distance. The solution to the GW problem between distributions on R

is currently unknown and remains one of the most basic open questions in that space. While
the standard p-Wasserstein distance between distributions on R is given by the Lp([0,1])
distance between their quantile functions,7 there is no known simple solution for the one-
dimensional GW problem. Even for uniform distributions over n distinct points, for which
it was previously believed that the optimal GW coupling was always induced by the identity
or anti-identity permutations [63], it was recently shown that this is not true in general [2].
Indeed, [2] produced an example of discrete distributions, defined up to a tuning parameter ξ ,
for which the identity or anti-identity become suboptimal once ξ surpasses a certain thresh-
old. We revisit this example and attempt to better understand it using our dual formulation.

Consider two uniform distributions on n distinct points, that is, μ = n−1∑n
i=1 δxi

and ν =
n−1∑

i=1 δyi
, where (xi)

n
i=1, (yi)

n
i=1 ⊂ R with x1 < x2 < · · · < xn and y1 < y2 < · · · < yn.

To compute D(μ, ν) it suffices to optimize over couplings induced by permutations [63],
Theorem 9.2, (see also [43]), that is,

(11) D(μ, ν)2 = 1

n2 min
σ∈Sn

n∑
i=1

n∑
j=1

∣∣|xi − xj |2 − |yσ(i) − yσ(j)|2
∣∣2,

where Sn is the symmetric group over n elements. For ξ ∈ (0,2/(n − 3)) and n > 6, define
the point sets xξ = (x

ξ
i )ni=1 and yξ = (y

ξ
i )ni=1 as

(12) x
ξ
i :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
−1 i = 1,
2i − n − 1

2
ξ 2 ≤ i ≤ n − 1,

1 i = n

and y
ξ
i :=

⎧⎪⎪⎨⎪⎪⎩
−1 i = 1,

−1 + ξ i = 2,

(i − 2)ξ 3 ≤ i ≤ n.

Note that each of these sets indeed has ascending ordered, pairwise distinct components. The
proof of Proposition 1 in [2] shows that there exists ξ� ∈ (0,2/(n − 3)), such that the cyclic

7For p = 1, the formula further simplifies to the L1(R) distance between the cumulative distribution functions.
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permutation σcyc(i) = i + 1 mod n between xξ�
and yξ�

achieves a strictly smaller cost in
(11) than both the identity id(i) = i and the anti-identity id(i) = n − i + 1 permutations.

To better understand the reason for the existence of strict optimizers outside the boundary,
we recall that D(μ, ν)2 = S1(μ, ν)+S2(μ, ν) and henceforth focus on S2(μ, ν), which is the
term that depends on the coupling. As mentioned before, this decomposition requires μ and
ν to be centered, but we may assume this w.l.o.g. due the translation invariance of the GW-
distance and of optimal permutations. By Corollary 4.1, we have the following representation:

S2(μ, ν) = inf
A∈DM

32‖A‖2
F + inf

π∈�(μ,ν)

∫
cA(x, y) dπ(x, y).

Specializing to the one-dimensional case, we further obtain

(13) S2(μ, ν) = inf
a∈[0.5W−,0.5W+] 32a2 + inf

π∈�(μ,ν)

∫ (−4x2y2 − 32axy
)
dπ(x, y),

where W− := infπ∈�(μ,ν)

∫
xy dπ(x, y) and W+ := supπ∈�(μ,ν)

∫
xy dπ(x, y). Here, we

have used the fact that, switching the infima order, for each π ∈ �(μ,ν), optimality is at-
tained at a�(π) = 1

2

∫
xy dπ(x, y). The notation W− and W+ reflects the relation to the 2-

Wasserstein distance: indeed, 2W+ = M2(μ) + M2(ν) − W2
2(μ, ν), while W− is OT with

product cost.
Once we identify the optimal a� in (13), the GW problem is reduced to an OT prob-

lem. Hence, we investigate the optimization in a. Define f (a) := 32a2 and g(a) :=
infπ∈�(μ,ν)

∫
(−4x2y2 − 32axy)dπ(x, y), and note that g is concave (as the infimum

of affine functions). We see that the optimization over a in (13), which is rewritten as
infa∈[0.5W−,0.5W+](f + g)(a), minimizes the sum of a convex and a concave function. The
next proposition identifies a correspondence between the boundary values of a and optimal
permutations in (11); see Section D of the Supplementary Material [70] for the proof.

PROPOSITION 4.7 (Boundary values and optimal permutations). Consider the GW prob-
lem from (11) between uniform distributions over n distinct points and its representa-
tion as D(μ, ν)2 = S1(μ, ν) + S2(μ, ν), where S2(μ, ν) is given in (13). Let S� ⊂ Sn

and A� ⊂ [0.5W−,0.5W+] be the argmin sets for (11) and (13), respectively. Then A� ⊂
{0.5W−,0.5W+} if and only if S� ⊂ {id, id}.

Proposition 4.7 thus implies that the identity and anti-identity can only optimize the GW
distance when (13) achieves its minimum on the boundary. However, as f is convex and
g is concave, it is not necessarily the case that A� contains only boundary points, as other
values may be optimal. To visualize this behavior, Figure 1 plots the two datasets xξ and

FIG. 1. (Left) The datasets xξ and yξ from (12), for n = 7 and ξ = 0.06; (Right) The functions f , g and f + g

on the interval a ∈ [0.5W−,0.5W+], for ξ = 0.01,0.03,0.06. When ξ = 0.01, the minimizer of f + g is attained
outside the boundary and thus the corresponding optimal permutation is neither the identity nor the anti-identity.
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yξ from (12) and the corresponding f , g and f + g functions for different ξ values. While
the infimum is achieved at the boundaries for ξ = 0.06 and ξ = 0.03, when ξ = 0.01 the
optimizing a� ≈ 0 and, by Proposition 4.7, the optimal permutation is different from id and
id. The structure of the corresponding optimal coupling is not trivial, as already seen from the
proof of Proposition 1 from [2]. Better understanding the relation between optimal a values
and their corresponding couplings is an interesting research avenue. Nevertheless, the above
clarifies the optimization structure of the one-dimensional GW problem and provides a visual
argument for the suboptimality of id and id in the example above.

5. Proofs of main theorems.

5.1. Proof of Theorem 3.4. For completeness, we first show the decomposition of
Sε(μ, ν) for centered μ, ν, given in (8). Expanding the (2,2)-GW cost we have

Sε(μ, ν) =
∫ ∥∥x − x′∥∥4

dμ ⊗ μ
(
x, x′)+ ∫ ∥∥y − y′∥∥4

dν ⊗ ν
(
y, y′)

− 4
∫

‖x‖2‖y‖2 dμ ⊗ ν(x, y)

+ inf
π∈�(μ,ν)

{
−4

∫
‖x‖2‖y‖2 dπ(x, y) − 8

∫ 〈
x, x′〉〈y, y′〉dπ ⊗ π

(
x, y, x′, y′)

+ 8
∫ (〈

x, x′〉‖y‖2 + ‖x‖2〈y, y′〉)dπ ⊗ π
(
x, y, x′, y′)+ εDKL(π‖μ ⊗ ν)

}
.

(14)

By the centering assumption, the term in the last line nullifies, while the first and second lines
on the RHS correspond to S1(μ, ν) and S2

ε(μ, ν), respectively.
We now move to derive the dual form for S2

ε . Recall that Mμ,ν := √
M2(μ)M2(ν), DMμ,ν

:
= [−Mμ,ν/2,Mμ,ν/2]dx×dy . Consider:

S2
ε(μ, ν) = inf

π∈�(μ,ν)

∫
−4‖x‖2‖y‖2 dπ(x, y)

− 8
∑

1≤i≤dx
1≤j≤dy

(∫
xiyj dπ(x, y)

)2
+ εDKL(π‖μ ⊗ ν)

= inf
π∈�(μ,ν)

∫
−4‖x‖2‖y‖2 dπ(x, y)

+ ∑
1≤i≤dx
1≤j≤dy

inf
|aij |≤Mμ,ν

2

32
(
a2
ij −

∫
aij xiyj dπ(x, y)

)

+ εDKL(π‖μ ⊗ ν)

= inf
A∈DMμ,ν

32‖A‖2
F + inf

π∈�(μ,ν)

∫
cA(x, y) dπ(x, y) + εDKL(π‖μ ⊗ ν),

where in the second step we introduced aij whose optimum is achieved at 1
2

∫
xiyj dπ(x, y).

This means we may restrict the optimization to DMμ,ν without affecting the value since∫
xiyj dπ(x, y) ≤ Mμ,ν by the Cauchy Schwarz inequality. We also switched the order of

the two inf and claimed that the optimums are achieved, which follows from the lower semi-
continuity in π and A. We conclude by identifying the EOT problem OTA,ε in the last line.
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5.2. Proof of Theorem 3.5. We only prove the two-sample case; the one-sample deriva-
tion is similar, except that in (16) ahead one would only consider the empirical process in-
duced by μ. Proofs of technical lemmas stated throughout this proof are given in Section D
in the Supplementary Material [70]. We proceed with the three steps described in the proof
outline, after the theorem statement.

Decomposition: Recall from (8) that Sε(μ, ν) = S1(μ, ν) + S2
ε(μ, ν) holds if μ, ν are

centered distributions. This decomposition is convenient for analysis as it allows separately
treating the marginals- and the coupling-dependents terms. Namely, we would like to have∣∣Sε(μ, ν) − Sε(μ̂n, ν̂n)

∣∣≤ ∣∣S1(μ, ν) − S1(μ̂n, ν̂n)
∣∣+ ∣∣S2

ε(μ, ν) − S2
ε(μ̂n, ν̂n)

∣∣.
However, while the EGW distance Sε is translation invariant and we may assume

∫
x dμ =∫

y dν = 0 w.l.o.g., the empirical measures μ̂n, ν̂n are generally not centered and the decom-
position into S1 and S2

ε may not hold. To amend this, we center μ̂n, ν̂n and quantify the bias
that this incurs on Sε . This is stated in the following lemma, which is proven in Section E.1
of the Supplementary Material [70].

LEMMA 5.1 (Centering bias). If μ, ν are centered, then

E
[∣∣Sε(μ, ν)−Sε(μ̂n, ν̂n)

∣∣]� E
[∣∣S1(μ, ν)−S1(μ̂n, ν̂n)

∣∣]+E
[∣∣S2

ε(μ, ν)−S2
ε(μ̂n, ν̂n)

∣∣]+ σ 2
√

n
.

Given this decomposition, we proceed to separately treat the empirical errors of S1 and
S2

ε .
Sample complexity of S1: The analysis of S1 reduces to estimating moments of μ, ν, with

parametric convergence rate for the error. The following lemma is proven in Section E.2 of
the Supplementary Material [70].

LEMMA 5.2 (S1 parametric rate). If μ, ν are 4-sub-Weibull with parameter σ 2 > 0, then

E
[∣∣S1(μ, ν) − S1(μ̂n, ν̂n)

∣∣]� 1 + σ 4
√

n
.

Sample complexity of S2
ε : It remains to analyze the sample complexity of S2

ε . To that end,

we use the dual form of S2
1 to control its empirical error by the supremum of an empirical

process indexed by optimal EGW potentials. We then derive regularity properties of the po-
tentials, based on which standard empirical process techniques via entropy integral bounds
yield the desired rate. For ease of presentation, the derivation is split into several steps.

(i) Normalization and reduction to EOT. Observe that if με , νε are the pushforward mea-
sures of μ, ν through the mapping x �→ ε−1/4x, then we have S2

ε(μ, ν) = εS2
1(μ

ε, νε). Also
note that με , νε are 4-sub-Weibull distributions with parameter σ 2/ε. Thus, we henceforth
set ε = 1 and later adapt to a general ε > 0 using the aforementioned observation. Invoking
Theorem 3.4 for S2

1, while optimizing over A ∈ DM , for some M ≥ Mμ,ν to be specified later
(which does not change the optimization value since A� ∈ DMμ,ν ), we obtain

(15)
∣∣S2

1(μ, ν) − S2
1(μ̂n, ν̂n)

∣∣≤ sup
A∈DM

∣∣OTA,1(μ, ν) − OTA,1(μ̂n, ν̂n)
∣∣,

which reduces the analysis to that of EOT with the cost function cA, uniformly over A ∈DM .
We next analyze the regularity of optimal dual potentials for the EOT problems on the RHS
above. This regularity theory is later used to decompose the RHS into suprema of empirical
processes indexed by these potentials and to analyze their expected convergence rates.



GROMOV–WASSERSTEIN: REGULARIZATION, DUALITY AND SAMPLE COMPLEXITY 1633

(ii) Smoothness of EOT potentials. To simplify notation, we henceforth drop the subscript
A from the EOT potentials (ϕA,ψA) for OTA,ε(μ, ν), writing only (ϕ,ψ). The following
lemma provides bounds on the magnitude of partial derivatives (of any order) of EOT poten-
tials between any two sub-Weibull distribution, w.r.t. the cost cA, uniformly in A ∈ DM . To
state the result, for any σ,M > 0, let Fσ,M be the class of C∞(Rdx ) functions ϕ satisfying

ϕ(x) ≤ 4σ 2 + 8M
√

2σdxdy

(√
σ + 2‖x‖2)

− ϕ(x) ≤ log 2 + 4σ 2 + 8M
√

2σdxdy

(
1 + √

σ + ‖x‖2
√

2σ

)
+ 8σ 2(2M

√
dxdy(1 + √

2σ) + ‖x‖2)2,∣∣Dαϕ(x)
∣∣≤ Cα

(
1 + M

√
dy + ‖x‖)|α|(1 + σ |α| + (1 + M

√
dxdy)

|α|(1 + σ 5 + σ 4‖x‖4) |α|
2
)
,

for all multi-indices α ∈ N
dx

0 and some constant Cα > 0 that depends only on α. Define the
class Gσ,M analogously but for functions ψ : Rdy →R.

LEMMA 5.3 (Uniform regularity of EOT potentials). Fix M ≥ Mμ,ν , A ∈ DM and sup-
pose that μ, ν are 4-sub-Weibull with parameter σ 2. Then there exist optimal EOT potentials
(ϕ,ψ) for OTA,1(μ, ν) from (4), such that ϕ ∈ FM,σ and ψ ∈ GM,σ .

The proof of the lemma is deferred to Section E.3 of the Supplementary Material [70]. The
key idea is that given optimal EOT potentials (ϕ0,ψ0), we may define new potentials (ϕ,ψ)

via the Schrödinger systems (6) and show that the pairs agree μ⊗ν-a.s. Consequently, (ϕ,ψ)

are also optimal for OTA,1(μ, ν), but they enjoy an explicit representation via the Schrödinger
systems, which evidently renders (ϕ,ψ) smooth functions.

Lemma 5.3 allows restricting the optimization domain in the dual form of OTA,1 from
L1(μ)×L1(ν) to FM,σ̃ ×GM,σ̃ , for an appropriately chosen σ̃ . Let σ̃ be the random variables
defined as the smallest σ ′ > 0 such that μ, ν, μ̂n, ν̂n are all 4-sub-Weibull with parameter
σ ′2. Clearly, any ϕ ∈ FM,σ̃ with M = √

2σ̃ also satisfies∣∣ϕ(x)
∣∣≤ Cdx,dy

(
1 + σ̃ 5)(1 + ‖x‖4),∣∣Dαϕ(x)

∣∣≤ Cα,dx,dy

(
1 + σ̃ 9|α|/2)(1 + ‖x‖3|α|) ∀α ∈ N

dx

0 ,

and similarly for ψ ∈ GM,σ̃ . Recalling that Theorem 3.4 requires M2 to be at least as large
as the product of the 2nd moments of the involved distributions, we note that M = √

2σ̃ is
feasible for OTA,1(·, ·) between any pair from {μ,ν, μ̂n} and (ν, ν̂n), for any A ∈ DM . Lastly,
define the Hölder class

Fs = {
ϕ :Rdx →R : |ϕ| ≤ Cs,dx,dy

(
1 + ‖ · ‖4), ∣∣Dαϕ

∣∣≤ Cs,dx,dy

(
1 + ‖ · ‖3s),∀|α| ≤ s

}
,

with Gs defined analogously. We conclude that for each A ∈ DM , any smooth potentials
(ϕ,ψ) for the corresponding EGW problem satisfy (1 + σ̃ 5s)−1ϕ ∈ Fs and (1 + σ̃ 5s)−1ψ ∈
Gs . This regularity of potentials will be used to derive the parametric rate of convergence for
empirical S2

1, following the decomposition presented in the next part.
(iii) Decomposition into suprema of empirical processes. We upper bound the empirical

estimation error of S2
1 by the suprema of empirical processes indexed by optimal potentials.

To simplify notation, recall the shorthand ρϕ := ∫
ϕ dρ for any signed Borel measure ρ.

Starting from (15), we have∣∣S2
1(μ, ν) − S2

1(μ̂n, ν̂n)
∣∣≤ sup

A∈DM

∣∣OTA,1(μ, ν) − OTA,1(μ̂n, ν̂n)
∣∣

�
(
1 + σ̃ 5s)( sup

ϕ∈Fs

∣∣(μ − μ̂n)ϕ
∣∣+ sup

ψ∈Gs

∣∣(ν − ν̂n)ψ
∣∣),(16)
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where the second inequality follows by [46], Proposition 2, which uses the fact that the op-
timal EOT potentials between (μ, ν), (μ̂n, ν) and (μ̂n, ν̂n) belong to Fs × Gs . We have also
used the fact that Lemma 5.3 holds uniformly in A ∈ DM to remove the supremum.

(iv) Sample complexity analysis. We are now in place to establish that S2
1(μ̂n, ν̂n) converges

towards S2
1(μ, ν) at the parametric rate. More specifically, we will show

(17) E
[∣∣S2

1(μ, ν) − S2
1(μ̂n, ν̂n)

∣∣]�dx,dy

(
1 + σ 7� dx∨dy

2 �+9)n− 1
2 .

Starting from the RHS of (16), we present the analysis of the first supremum, with the second
one being treated similarly. We bound it as

(18) E

[(
1 + σ̃ 5s) sup

ϕ∈Fs

∣∣(μ − μ̂n)ϕ
∣∣]≤

√
E
[(

1 + σ̃ 5s
)2]

E

[(
sup
ϕ∈Fs

(μ − μ̂n)ϕ
)2]

,

and proceed to bound the second term. By Theorem 3.5.1. from [24], we have

(19) E

[(
sup
ϕ∈Fs

(μ − μ̂n)ϕ
)2]

�dx

1

n
E

(∫ √
maxϕ∈Fs ‖ϕ‖2

L2(μ̂n)

0

√
log

(
2N

(
ξ,Fs,L2(μ̂n)

))
dξ

)2
.

The integration domain is bounded by observing that

max
ϕ∈Fs

‖ϕ‖2
L2(μ̂n)

≤ Cdx,dy

1

n

n∑
i=1

(
1 + ‖xi‖8)≤ Cdx,dy

(
1 + σ 4L

)
,

where L := 1
n

∑n
i=1 e

‖xi‖4

2σ2 satisfies E[L] ≤ 2. To control the integrand, we apply Corol-
lary 2.7.4. from [64] (see also [46] Proposition 3) as follows. First, define Qj := [−2j

√
σ,

2j
√

σ ]dx for j ∈ N0, and partition R
dx into the sets Ij = Qj\Qj−1. Note that the Lebesgue

measure of each {x ∈ R
dx : ‖x−Ij‖ ≤ 1} is bounded by Cdx (1+2jdxσ dx/2), and by Markov’s

inequality we further obtain μ̂n(Ij ) ≤ Le−24j−5
. Lastly, for any j ∈ N0 and ϕ ∈ Fs , the re-

striction ϕ|Ij
has a Cs(Ij )-Hölder norm bounded by Cs,dx (1 + σ 3s/2)23js . This verifies the

conditions of [64], Corollary 2.7.4., which we invoke with s = �dx/2� + 1, V = dx/s and
r = 2, to get

logN
(
ξ,Fs,L

2(μ̂n)
)

≤ logN[ ]
(
2ξ,Fs,L

2(μ̂n)
)

≤ Cdx,dy ξ
−V L

V
r

( ∞∑
j=0

(
1 + 2jdxσ

dx
2
) r

V +r
(
e−24j−5) V

V +r
((

1 + σ
3s
2
)
23js) V r

V +r

)V +r
r

≤ Cdx,dy ξ
−V L

V
r
(
1 + σ

dx+3sV
2

)( ∞∑
j=0

e− 24j−5V
V +r 2

(3sV +dx )jr
V +r

)V +r
r

≤ Cdx,dy ξ
− dx

s L
dx
2s
(
1 + σ 2dx

)
,

where the last line follows because the summation is finite and only depends on dx . Inserting
this bound back into (19), we have

E

[(
sup
ϕ∈Fs

(μ − μ̂n)ϕ
)2]

�dx,dy

1

n
E

[(∫ √
1+σ 4L

0

√
ξ− dx

s L
dx
2s
(
1 + σ 2dx

)
dξ

)2]

�dx,dy

(1 + σ 2dx )

n
E
[
L

dx
2s
(
1 + σ 4L

)1− dx
2s
]

�dx,dy

(
1 + σ 2(2+dx))n−1.
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In light of (18), it remains to bound the appropriate moment of σ̃ . For any k ∈ N, set

τ 2
k = σ 2 ∨

(
kσ 2

n

n∑
i=1

e
‖xi‖4

2kσ2

)
∨
(

kσ 2

n

n∑
i=1

e
‖yi‖4

2kσ2

)

so that μ, ν, μ̂n, ν̂n are all 4-sub-Weibull with parameter τ 2
k ; cf. [46], Lemma 4. Therefore

E
[
σ̃ 2k]≤ E

[
τ 2k
k

]≤ σ 2k + kkσ 2k

n
E

[
n∑

i=1

e
‖xi‖4

2σ2 + e
‖yi‖4

2σ2

]
≤ (

1 + 4kk)σ 2k.

Combining all the pieces leads to:

E

[(
1 + σ̃ 5s) sup

ϕ∈Fs

(μ − μ̂n)ϕ
]
�dx,dy

√
E
[(

1 + σ̃ 5s
)2](1 + σ 2dx+4)

n
� (1 + σ 9�dx/2�+11)√

n

with a similar bound holding for the corresponding term with Fs replaced by Gs . Together
with (16), these two bounds imply (17). �

5.3. Proof of Theorem 4.2.

5.3.1. Upper bounds. We maintain our convention of suppressing the subscript A from
our notation for optimal dual potentials for the OT problem with cost cA, simply writing
(ϕ,ψ). As in the proof of Theorem 3.5, we only prove the two-sample case. The one-sample
result follows similarly. Derivations of technical lemmas stated throughout this proof are
deferred to Section E of the Supplementary Material [70].

Assume w.l.o.g. that μ, ν are centered and recall that we have the decomposition
D(μ, ν)2 = S1(μ, ν) + S2(μ, ν). To split our sample complexity analysis into those of S1

and S2, we again need to account for the fact that empirical measures are generally not cen-
tered. Let μ̃n and ν̃n be centered versions of the empirical measures μ̂n and ν̂n, respectively.
Following the same steps leading to Eqs. (E.1) and (E.2) of the Supplementary Material [70],
we observe that

E
[∣∣S1(μ̂n, ν̂n) − S1(μ̃n, ν̃n)

∣∣]∨E
[∣∣S2(μ̂n, ν̂n) − S2(μ̃n, ν̃n)

∣∣]� R4
√

n
,

which also uses the fact that any distribution whose support diameter is bounded by R is
trivially 4-sub-Weibull with parameter R4. Consequently, we may split

(20)

E
[∣∣D(μ, ν)2 − D(μ̂n, ν̂n)

2∣∣]
≤ E

[∣∣S1(μ, ν) − S1(μ̂n, ν̂n)
∣∣]+E

[∣∣S2(μ, ν) − S2(μ̂n, ν̂n)
∣∣]+ R4

√
n
,

and proceed with a separate analysis for S1 and S2.
For S1, we follow the steps leading to Eq. (E.3) of the Supplementary Material [70] in the

EGW sample complexity analysis and use the fact that μ, ν are 4-sub-Weibull with parameter
R4 to deduce

(21) E
[∣∣S1(μ̂n, ν̂n) − S1(μ, ν)

∣∣]� R4
√

n
.

To treat S2, we start from the variational representation from Corollary 4.1 and choose M =
R2 ≥ Mμ,ν , which is evidently feasible. Invoking this result, we obtain

(22)
∣∣S2(μ, ν) − S2(μ̂n, ν̂n)

∣∣≤ sup
A∈D

R2

∣∣OTA(μ, ν) − OTA(μ̂n, ν̂n)
∣∣,
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and proceed to show that for any A ∈ DR2 , corresponding optimal dual potentials can be
restricted to concave Lipschitz functions and their c-transforms (w.r.t. the cost function cA).

(i) Smoothness of OT potentials. Let

FR :=
⎧⎪⎨⎪⎩ϕ : Bdx (0,R) →R :

ϕ concave, ‖ϕ‖∞ ≤ 1 + 10(1 + 4
√

dxdy)R
4,

‖ϕ‖Lip ≤ 8(1 + 2
√

dxdy)R
3

⎫⎪⎬⎪⎭
and define GR analogously over Bdy (0,R). Recall that the c-transform of ϕ : Rdx → R w.r.t.
cA is a new function ϕc : Rdy → R, given by ϕc = infx∈X cA(x, ·) − ϕ(x). The next lemma
allows restricting the set of optimal dual potentials for OTA(μ, ν) to pairs (ϕ,ϕc) ∈ FR ×GR .

LEMMA 5.4 (Uniform regularity of OT potentials). Fix R > 0 and suppose that (μ, ν) ∈
P(X ) × P(Y), with X ⊂ Bdx (0,R) and Y ⊂ Bdy (0,R). Then, for any A ∈ DR2 , there exist
ϕ ∈ FR with ϕc ∈ GR , such that (ϕ,ϕc) is a pair of optimal dual potentials for OTA(μ, ν).

The proof, which is given in Section F.1 of the Supplementary Material [70], arrives at the
above properties by exploiting concavity of cA and the c-transform representation of optimal
dual pairs.

(ii) Sample complexity analysis. Equipped with Lemma 5.4, we are ready to conduct the
sample complexity analysis. Suppose w.l.o.g. that dx ≤ dy ; otherwise, flip their roles in the
derivation below. For each A ∈ DR2 , let �A be the class of optimal dual potential pairs for
OTA(μ, ν) (see (3)). Define FA := projFR

(�A ∩ (FR × GR)) and let Fc
A be its c-transform

w.r.t. cA. We may now further upper bound the RHS of (22), to arrive at

E
[∣∣S2(μ, ν) − S2(μ̂n, ν̂n)

∣∣]
≤ E

[
sup

ϕ∈⋃A FA

∣∣(μ − μ̂n)ϕ
∣∣]+E

[
sup

ψ∈⋃A Fc
A

∣∣(ν − ν̂n)ψ
∣∣].(23)

As Lemma 5.4 implies that
⋃

A FA ⊂ FR , the first term above is controlled by the expected
supremum of an empirical process indexed by FR . Dudley’s entropy integral formula yields

E

[
sup

ϕ∈FR

∣∣(μ − μ̂n)ϕ
∣∣]� inf

α>0
α + 1√

n

∫ 2 supϕ∈FR
‖ϕ‖∞

α

√
logN

(
ξ,FR,‖ · ‖∞

)
dξ.

Theorem 3.2 from [35] provides a bound on the metric entropy of bounded, convex, Lip-
schitz functions, whereby if F̃d := {f : Bd(0,1) → R : f convex, ‖f ‖∞ ∨ ‖f ‖Lip ≤ 1},
then logN(ξ, F̃d,‖ · ‖∞) ≤ Cdξ− d

2 . For any ϕ : Rd → R, define its rescaled version8

(Sϕ)(z) := ϕ(Rz)/(1 +Cdx,dyR
4), where Cdx,dy = 10(1 + 4

√
dxdy), and note that Sϕ ∈ F̃dx ,

for any ϕ ∈ FR . We also define the map s : x �→ x/R. Combining the above, for dx ≥ 4, we
have

E

[
sup

ϕ∈FR

∣∣(μ − μ̂n)ϕ
∣∣]�dx,dy

(
1 + R4)

E

[
sup

ϕ∈FR

∣∣(s�μ − s�μ̂n)(Sϕ)
∣∣]

�dx,dy

(
1 + R4)( inf

α>0
α + 1√

n

∫ 2

α
ξ− dx

4 dξ

)
�dx,dy

(
1 + R4)n− 2

dx (logn)1{dx=4} .

8With some abuse of notation, we apply this re-scaling transform to functions defined on spaces of possibly
different dimensions without explicitly reflecting this in the notation.
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When dx < 4, the entropy integral is finite and we may pick α = 0. Hence, in this case, FR is
a Donsker class and the resulting convergence rate is parametric n−1/2. Altogether, we have

(24) E

[
sup

ϕ∈⋃A FA

∣∣(μ − μ̂n)ϕ
∣∣]�dx,dy

(
1 + R4)n− 2

dx∨4 (logn)1{dx=4} .

We now move to treat the second term on the RHS of (23). First, observe that one may
control it by the expected supremum of an empirical process indexed by GR , which is bounded
by (1 +R4)n−2/(dy∨4)(logn)

1{dy=4} via similar steps as above. Together with (24), this would
yield a two-sample empirical convergence rate bound of n−2/(dx∨dy∨4)(logn)

1{dx∨dy=4} for the
squared (2,2)-GW distance. However, we aim to arrive at an upper bound that depends on
the smaller dimension dx ∧ dy , as opposed to the larger one. As pointed out in Remark 5.6
of [33], this is possible by employing the LCA principle from [37], Lemma 2.1, which states
that for any cost function c and function class F , we have N(ξ,Fc,‖·‖∞) ≤ N(ξ,F,‖·‖∞).
Starting from a rescaling step as before, we obtain

(25) E

[
sup

ψ∈⋃A Fc
A

∣∣(ν − ν̂n)ψ
∣∣]�dx,dy

(
1 + R4)

E

[
sup

ψ∈⋃A Fc
A

∣∣(s�ν − s�ν̂n)(Sψ)
∣∣].

Using the LCA principle, we have the following bound on the covering number of the union
of rescaled c-transformed classes, proven in Section F.2 of the Supplementary Material [70].

LEMMA 5.5. For any ξ > 0, we have the covering bound

N

(
ξ,

⋃
A∈D

R2

S
(
Fc

A
)
,‖ · ‖∞

)
≤ N

(
ξ

64R2 ,DR2,‖ · ‖op

)
N

(
ξ

2
, F̃dx ,‖ · ‖∞

)
.

Armed with the lemma, we proceed from (25) and, for dx ≥ 4, obtain

E

[
sup

ψ∈⋃A Fc
A

∣∣(ν − ν̂n)ψ
∣∣]�dx,dy

(
1 + R4)( inf

α>0
α + 1√

n

∫ 2

α
ξ− dx

4 + log
R4

ξ
dξ

)

�dx,dy

(
1 + R4)n− 2

dx (logn)1{dx=4} .

As before, when dx < 4, a parametric rate bound holds instead. Inserting the above along with
(23) into (24) concludes the proof of the two-sample upper bound for the squared distance.

Lastly, observe that if D(μ, ν) > 0, then the two-sample rate for D(μ, ν)2 readily extends
to D(μ, ν), since E[|D(μ, ν)−D(μ̂n, ν̂n)|] ≤ D(μ, ν)−1

E[|D(μ, ν)2 −D(μ̂n, ν̂n)
2|], and sim-

ilarly for the one-sample case. We note, however, that unlike the bounds for D2, this bound is
not uniform over pairs of distributions with compact supports.

5.3.2. Lower bounds. We now move to establish the lower bounds. As the parametric
lower bound of n−1/2 trivially holds for our problem, we assume w.l.o.g. that 4 < dx ≤ dy

and R = 4.9 Denoting d := dx , we shall construct compactly supported distributions μ,ν ∈
R

d with the desired n−2/d empirical convergence rate lower bound. This is sufficient since
lower-dimensional distributions can be canonically embedded into higher dimensions without
changing the value of D. As the lower bound holds for n sufficiently large, we occasionally
absorb terms of order O(1/n), O(1/

√
n) and O(

√
log(n)/n) into the n−2/d convergence

rate. Consider the uniform distributions μ = Unif(Bd(0,1)) and ν = Unif(Bd(0,2)).
We start from the one-sample case and establish E[|D(μ, ν)2 − D(μ̂n, ν)2|] ≥ n−2/d . The-

orem 9.21 of [61] implies that T : x �→ 2x is an optimal Gromov–Monge map from μ and ν,

9To treat general R, one only needs to include a factor of R4/256 in front of the one- and two-sample errors.
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and thus D(μ, ν)2 = ∫
X×X |‖x − x′‖2 − ‖2x − 2x′‖2|2 dμ ⊗ μ(x, x′). Let πn ∈ �(μ̂n, ν) be

an optimal coupling for D(μ̂n, ν) and notice that π ′
n = (id, ·/2)�πn ∈ �(μ̂n,μ) is optimal for

D(μ̂n,μ). By completing the square, we then have

D(μ̂n, ν)2 =
∫ ∣∣∥∥y − y′∥∥2 − ∥∥z − z′∥∥2∣∣2 dπn ⊗ πn

(
y, z, y′, z′)

=
∫ ∣∣∥∥y − y′∥∥2 − ∥∥2x − 2x′∥∥2∣∣2 dπ ′

n ⊗ π ′
n

(
y, x, y′, x′)

= 4D(μ̂n,μ)2 − 3
∫ ∥∥y − y′∥∥4

dμ̂n ⊗ μ̂n

(
y, y′)+ 12

∫ ∥∥x − x′∥∥4
dμ ⊗ μ

(
x, x′).

(26)

Combining this with the above expression for D(μ, ν)2, we obtain

E
[∣∣D(μ, ν)2 − D(μ̂n, ν)2∣∣]
≥ 4E

[
D(μ̂n,μ)2]+ 3E

[∫ ∥∥x − x′∥∥4
dμ ⊗ μ

(
x, x′)− ∫ ∥∥y − y′∥∥4

dμ̂n ⊗ μ̂n

(
y, y′)].

Evidently, the second term decays as n−1 since

E

[∫ ∥∥y −y′∥∥4
dμ̂n ⊗ μ̂n

(
y, y′)]−

∫ ∥∥x −x′∥∥4
dμ⊗μ

(
x, x′)= 1

n

∫ ∥∥x −x′∥∥4
dμ⊗μ

(
x, x′).

For the first term, let μ̃n be the centered version of μ̂n and invoke Lemma 4.4 to obtain

E
[
D2(μ̂n,μ)

]= E
[
D2(μ̃n,μ)

]
� λmin(�μ) inf

U∈O(d)
W2(μ̃n,U�μ)2

= λmin(�μ)E
[
W2(μ̃n,μ)2]

≥ λmin(�μ)
(
E
[
W1(μ̂n,μ) − W1(μ̂n, μ̃n)

])2
,

where the equality uses the rotational invariance of μ, while the last step is by monotonicity
of p �→ Wp and Jensen’s inequality. Observe that E[W1(μ̂n, μ̃n)] ≤ E[‖x̄n‖] ≤ √

M2(μ)/n,
where x̄n := ∫

xμ̂n(x) is the sample mean. Combining this with the fact that E[W1(μ̂n,μ)]�
n−1/d [18], produces the desired lower bound on the one-sample GW convergence rate.

We proceed with the two-sample lower bound, which requires more work. Given the em-
pirical measures μ̂n, ν̂n, define μ̂′

n := (·/2)�ν̂n and note that it forms an empirical distribution
of μ that is independent of μ̂n. Write X′

1, . . . ,X
′
n for the samples comprising μ̂′

n. Let πn ∈
�(μ̂n, ν̂n) be an optimal GW coupling for D(μ̂n, ν̂n) and set π ′

n := (id, ·/2)�πn ∈ �(μ̂n, μ̂
′
n),

which is optimal for D(μ̂n, μ̂
′
n). Repeating the steps in (26), with ν̂n, μ̂′

n in place of ν, μ yields

D(μ̂n, ν̂n)
2 = 4D

(
μ̂n, μ̂

′
n

)2 −3
∫ ∥∥y−y′∥∥4

dμ̂n⊗μ̂n

(
y, y′)+12

∫ ∥∥y−y′∥∥4
dμ̂′

n⊗μ̂′
n

(
y, y′).

Consequently, we represent the two-sample error as

D(μ̂n, ν̂n)
2 − D(μ, ν)2 = 4D

(
μ̂n, μ̂

′
n

)2 − 3
∫ ∥∥y − y′∥∥4

dμ̂n ⊗ μ̂n

(
y, y′)

+ 12
∫ ∥∥y − y′∥∥4

dμ̂′
n ⊗ μ̂′

n

(
y, y′)− 9

∫ ∥∥y − y′∥∥4
dμ ⊗ μ

(
y, y′).(27)

As before, we have E[∫ ‖y − y′‖4 dμ̂n ⊗ μ̂n(y, y′)] = n−1
n

∫ ‖y − y′‖4 dμ ⊗ μ(y, y′) and
similarly for E[∫ ‖y − y′‖4 dμ̂′

n ⊗ μ̂′
n(y, y′)], and the problem reduces to lower bounding

E[D(μ̂n, μ̂
′
n)

2]. We have the technical lemma below, which is proven in Section F.3 of the
Supplementary Material [70].



GROMOV–WASSERSTEIN: REGULARIZATION, DUALITY AND SAMPLE COMPLEXITY 1639

LEMMA 5.6 (Intermediate lower bound). The following bound holds:

(28) E
[
D
(
μ̂n, μ̂

′
n

)2]� E

[
λmin(�μ̂n

)E
[

inf
U∈O(d)

W1
(
μ̂n,U�μ̂

′
n

)2|X1, . . . ,Xn

]]
− 2

√
M2(μ)

n
.

To treat the inner (conditional) expectation on the RHS of (28), we make use of the next
lemma; see Section F.4 of the Supplementary Material [70] for the proof.

LEMMA 5.7. For any μ,ν ∈P(Rd) with spt(μ), spt(ν) ⊂ Bd(0,1), we have

E

[
inf

U∈O(d)
W1(μ̂n,U�ν)

]
≥ inf

U∈O(d)
E
[
W1(μ̂n,U�ν)

]− Cd

√
logn

n
,

where Cd depends only on the dimension d .

Applying the lemma, we obtain

E

[
inf

U∈O(d)
W1

(
μ̂n,U�μ̂

′
n

)|X1, . . . ,Xn

]
≥ inf

U∈O(d)
E
[
W1

(
μ̂n,U�μ̂

′
n

)|X1, . . . ,Xn

]− Cd

√
logn

n
.

Note that for any U ∈ O(d), we have E[W1(μ̂n,U�μ̂
′
n)|X1, . . . ,Xn] ≥ W1(μ,U�μ̂

′
n) =

W1(μ, μ̂′
n), where the first inequality follows because E[W1(μ̂n, ν)] ≥ W1(μ, ν) for any μ,

ν (due to convexity), while the second equality uses the fact that Wp(μ, ν) = Wp(f�μ,f�ν)

for any isometry f and the rotational invariance of μ. Inserting this back into (28), yields

E
[
D
(
μ̂n, μ̂

′
n

)2]� E

[
λmin(�μ̂n

) inf
U∈O(d)

W2
(
μ̂n,U�μ̂

′
n

)2]≥ E
[
λmin(�μ̂n

)W1(μ̂n,μ)2].
To lower bound the expectation on the RHS, recall that by Proposition 2.1 in [18] (see also

[66], Proposition 6), for n sufficiently large, we have W1(α,βn) �d n−1/d for any distribu-
tions α,βn ∈ P(Rd), such that α has a Lebesgue density and βn is supported on n points. In
particular, we conclude that there exists n0 ∈ N and cd > 0, such that for all n > n0, we have
W1(μ, μ̂′

n) ≥ cdn−1/d a.s. Inserting this into the bound above gives

(29) E
[
D
(
μ̂n, μ̂

′
n

)2]�d E
[
λmin(�μ̂n

)
] · n−2/d,

and the problem reduces to lower bounding the expected smallest eigenvalue.
Write E[λmin(�μ̂n

)] = E[inf‖v‖=1 μ̂n|v ·x|2]. We again control this quantity via bounds on
an empirical processes indexed by the Donsker class {|v · x|2 : ‖v‖ = 1}. Specifically, there
is an n1 ∈ N that depends only on d , such that for any n > n1, we have E[sup‖v‖=1 |(μ̂n −
μ)|v · x|2|] ≤ λmin(�μ)/2. Consequently

E

[
inf‖v‖=1

μ̂n|v · x|2
]
= E

[
inf‖v‖=1

μ̂n|v · x|2 − inf‖v‖=1
E
[
μ̂n|v · x|2]]+ inf‖v‖=1

E
[
μ̂n|v · x|2]

≥ E

[
inf‖v‖=1

μ̂n|v · x|2 −E
[
μ̂n|v · x|2]]+ inf‖v‖=1

μ|v · x|2

≥ inf‖v‖=1
μ|v · x|2 −E

[
sup

‖v‖=1

∣∣(μ̂n − μ)|v · x|2∣∣]

≥ λmin(�μ)

2
.

Inserting this back into (29) and recalling the decomposition of the empirical estimation
error from (27) concludes the proof of the two-sample lower bound. �
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REMARK 5.8 (W-procrustes empirical convergence). Our two-sample analysis estab-
lishes an n−1/d lower bound on the Wasserstein Procrustes empirical convergence rate, when-
ever d ≥ 3. Since the Procrustes is trivially upper bounded by standard W2 and is a pseudo-
metric, it inherits the n−1/d upper bound on the rate from it as well. Together, these show that
the n−1/d empirical convergence rate is sharp in general. Our argument is readily adjusted to
cover both the one- and two-sample settings and can be extended to any order p ≥ 1.

6. Outlook and concluding remarks. This paper established a dual formulation for
both the standard (2,2)-GW distance and its entropically regularized version, between dis-
tributions supported on Euclidean spaces of different dimensions dx and dy . The dual forms
represented GW and EGW as infima of a class of OT and EOT problems, respectively, in-
dexed by a dx ×dy auxiliary matrix with bounded entries, which specified the associated cost
function. This connection to the well-understood OT problem enabled lifting analysis tech-
niques from statistical OT to establish, for the first time, sharp empirical convergences rates
for GW and EGW. The derived two-sample rates are n−2/((dx∧dy)∨4) (up to a log factor when
dx ∧ dy = 4) for GW and n−1/2 for EGW. The GW result accounts for compactly supported
distributions, and provides matching upper and lower rate bound. For EGW, our analysis al-
lows for unbounded domains subject to a 4-sub-Weibull condition. These results are in line
with the empirical convergence rates of OT [37, 42] and EOT [33, 46].

We have also explored stability and continuity of the EGW problem in the entropic regu-
larization parameter ε. We provided an O(ε log(1/ε)) approximation bound on the GW cost
and a continuity result for the optimal couplings in the weak topology. Lastly, we reexam-
ined the open problem of the one-dimensional GW distance between discrete distributions
on n points. Leveraging our duality theory, we shed new light on the peculiar example from
[2], that showed that the identity and anti-identity permutations are not necessarily optimal.
Specifically, the dual form represents the GW distance as a sum of concave and convex func-
tions, illuminating that, in some regimes, the optimum is not attained on the boundary.

Future research directions stemming from this work are aplenty. Due to the central role
of duality for statistical and algorithmic advancements, a first key objective is to extend our
duality theory beyond the (2,2)-cost and to non-Euclidean mm spaces. While our techniques
are rather specialized for the (2,2)-cost and treating arbitrary (p, q) values may require new
ideas, we comment here on one relatively direct extension. Consider the GW distance of order
(p, q) = (2,2k), for some k ∈ N, between distributions (μ, ν) ∈ P4k(R

dx ) × P4k(R
dy ) (in

fact, we can treat any even p parameter as well, but restrict to p = 2 for simplicity). Following
a decomposition along the lines of (14), in Section G in the Supplementary Material [70] we
show that

D2,2k(μ, ν)2

= 4 sup
a∈R�

inf
b∈Rm−�

{
−‖a‖2 + ‖b‖2

+ inf
π∈�(μ,ν)

∫ (
−‖x‖2k‖y‖2k +

�∑
i=1

aigi(x, y) −
m∑

i=�+1

bi−�gi(x, y)

)
dπ(x, y)

}
,

(30)

where g1, . . . , gm are polynomials of degree at most 4k, m corresponds to the number of poly-
nomials emerging from the quadratic expansion of the (2,2k)-cost, and � ≤ m is determined
by a certain diagonalization argument (see Section G in the Supplementary Material [70] for
the specifics). One may further show that

∫
gi dπ are uniformly bounded for all i = 1, . . . ,m

and π ∈ �(μ,ν), and so we may restrict optimization over a, b to bounded domains. In the
appendix, we also show how the above dual reduces to the one from Corollary 4.1 once we set
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k = 1 and assume that μ, ν are centered. A similar representation holds for the (2,2k)-EGW
variant, but with the entropic penalty εDKL(π‖μ ⊗ ν) added to the transportation cost in the
second line above.

Notice now that the inner optimization over π specifies an OT problem with cost ca,b :
(x, y) �→ −‖x‖2k‖y‖2k +∑�

i=1 aigi(x, y) −∑m
i=�+1 bi−�gi(x, y), which is smooth (indeed,

a polynomial) but not necessarily concave in x or y. For the standard (2,2k)-GW distance
between compactly supported distributions, an argument similar to the proof of Theorem 4.2,
would result in a two-sample convergence rate of O(n−1/(dx∧dy)). This rate stems from the
fact that the corresponding dual potentials are Lipschitz continuous, but it is unclear whether
they posses further convexity/concavity properties. For the EGW case, under proper tail con-
ditions (say, 4k-sub-Weibull), smoothness of the cost would allow to reproduce the current
derivation of Theorem 3.5 and arrive at the parametric convergence rate. In sum, while a du-
ality theory for general (p, q) remains an open question, our results for the quadratic GW
and EGW distances can be extended to cover any even q value.

As mentioned above, extending our duality to non-Euclidean mm spaces is of great inter-
est, as this would enable accounting for graph and manifold data modalities. We also believe
that our dual can be used to derive new and efficient algorithms for computing the GW and
EGW distances. Lastly, we mention the avenue of generalizing the GW empirical conver-
gence results to distributions with unbounded supports. Identifying sufficient conditions for
deriving explicit rates seems nontrivial and may require assumptions along the lines of The-
orem 13 from [42], where empirical convergence of OT on unbounded domains was treated.
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SUPPLEMENTARY MATERIAL

Supplement to: “Gromov–Wasserstein distances: Entropic regularization, duality
and sample complexity”. (DOI: 10.1214/24-AOS2406SUPP; .pdf). Due to space con-
straints, proofs of some technical lemmas and propositions from the main text are provided
in the supplement.
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