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Abstract

Machine learning frequently suffers from the discrepancy in data distribution,
commonly known as domain shift. Single-source Domain Generalization (sDG) is
a task designed to simulate domain shift artificially, in order to train a model that
can generalize well to multiple unseen target domains from a single source domain.
A popular approach is to learn robustness via the alignment of augmented samples.
However, prior works frequently overlooked what is learned from such alignment.
In this paper, we study the effectiveness of augmentation-based sDG methods
via a causal interpretation of the data generating process. We highlight issues in
using augmentation for generalization, namely, the distinction between domain
invariance and augmentation invariance. To alleviate these issues, we introduce a
novel regularization method that leverages pretrained models to guide the learning
process via a feature-level regularization, which we name PROF (Progressive mutual
information Regularization for Online distillation of Frozen oracles). PROF can
be applied to conventional augmentation-based methods to moderate the impact
of stochasticity in models repeatedly trained on augmented data, encouraging the
model to learn domain-invariant representations. We empirically show that PROF
stabilizes the learning process for sDG.

1 Introduction

Distribution shift is prevalent in many machine learning settings. The term is often referred to as
domain shift, where a domain is understood as the joint probability distribution from which samples
are drawn. An important aspect of domain shift is that it severely hinders the generalizability of
trained models [1]. The issue is easily observable when a model trained in a source domain suffers in
a target domain that is inconsistent with the source. Single-source Domain Generalization is a task
devised to test a model’s robustness under domain shift, where the model is given a single labeled
dataset at train time and tested across multiple unseen domains. The absence of additional source
domains makes sDG challenging, mainly because methods that leverage multiple domains cannot
be easily adopted. To overcome such barriers, prior works on sDG often utilize data augmentation
to generate unseen domains [2] and learn domain-invariant features through an alignment of the
generated domains using self-supervised contrastive loss [3] (hereinafter contrastive loss).

Accepted to the NeurIPS 2023 Workshop on Causal Representation Learning.



However, there is a relative void in the discussion on what is learned through the alignment of aug-
mented samples. In this paper, we analyze the effectiveness of augmentation-based sDG approaches
from a novel perspective of style-content disentanglement. Style-Content (S-C) disentanglement
aims to identify a partitioned latent space, namely style, and content [4, 5]. Here we define content
as latent features that are invariant across augmentations (i.e. augment-invariant), while style is
the latent feature subpart that changes with the augmentation. Recently, Von Kügelgen et al. [6]
studied an interesting connection between S-C disentanglement and data augmentation, demon-
strating that contrastive learning provably learns to retrieve the augment-invariant features under
some assumptions. We connect the discovery to the sDG literature to analyze the effectiveness of
retrieving domain-invariant information from augmented data. We examine the problem from a causal
standpoint by illustrating it via a causal graph [7]. Finally, we devise a regularization method (PROF)
under the assumption that generalized oracles can extract domain-invariant representations.

We state our contributions as follows. (1) We analyze the single source domain generalization task
through the lens of S-C disentanglement and highlight the difficulties of learning domain-invariant
information from augmentation-based sDG methods. (2) We empirically show that augmentation-
based sDG methods display large fluctuations in OOD performance across various datasets (3)
To mitigate the issues brought by the aforementioned obstacles, we introduce a causality-inspired
regularization method PROF for sDG, and experimentally display its effectiveness in stabilizing the
learning process.

2 Limitations of Augmentation for sDG

In this section, we reveal an overlooked problem of augmentation-based sDG methods. Specifically,
we revisit works on S-C disentanglement to analyze the validity of utilizing augmentation for sDG.

A general view towards augmentation-based sDG methods We present a general expression for
augmentation-based sDG methods and discuss their effectiveness. Generally, augmentation-based
methods can be expressed as augment and align, minimizing the following objective (omitting some
arguments for simplicity) denoting x and x̄ as an original sample and its augmented view:

L := Lce + LMaxEnt(x, x̄; Φ). (1)

where Lce is the cross-entropy loss Lce(y, ŷ) = −
∑

i yi log(ŷi) with y the ground truth, ŷ the
softmax prediction of the model, and LMaxEnt is an objective that simultaneously aligns the mapped
representations Φ(x) and Φ(x̄) under entropy regularization, where Φ is a feature extractor. Com-
monly, contrastive loss is used as LMaxEnt. Recently, Von Kügelgen et al. [6] showed that the
optimization of a contrastive loss provably minimizes LMaxEnt, learning Φ to extract features that are
augment-invariant, under a certain condition. In this perspective, conventional augmentation-based
sDG methods could be understood as retrieving augment-invariant features.
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Figure 1: A causal diagram
depicting DGP under data
augmentation.

A causal interpretation of data augmentation We illustrate the
underlying data generating process (i.e., DGP) using a causal graph
and incorporate data augmentation into the causal graph under the sDG
setting. An instance of a given labeled dataset is typically composed
of an observation X (i.e., image) and its label Y . Although supervised
learning predicts Y directly from X , this does not reflect the underlying
causality. We can think of the existence of hidden features (e.g., real-
world attributes regarding the subject of the image and the background),
which we will refer W , that affect both the image and label. At this
moment, the causal graph for DGP can be simply represented as X ←
W → Y where W is unobserved.

Now, we incorporate data augmentation into the picture. Given label-preserving augmentations, we
attain X̄ the augmented view of X . Such an augmentation can be considered as manipulating only
the style S (augment-variant) to yield S̄ while retaining its content (augment-invariant) C where
C and S partitions W , that is, W = (C, S) (see Von Kügelgen et al. [6] for a detailed discussion).
Yet, this does not imply that C and S are independent. C causally affects S (also corroborated by
experimental results [8]). A way to understand this separation is by viewing such an augmentation as
a soft intervention [9] on S, resulting in a modified style S̄. By definition, (C, S̄) becomes the hidden
features of X̄ . Furthermore, C consistently affects Y regardless of the label-preserving augmentation.
This understanding results in the graph in Fig. 1 (W is implicit) excluding D.
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Von Kügelgen et al. [6] showed that, under certain conditions, the above DGP is sound, and augmen-
tation separates C and S. However, the original picture misses an important variable: the domain D.
By definition, observations are drawn from the distribution of the domain, thus latent variables W
are affected by the domain the data is generated from. Therefore it is unavoidable to incorporate a
variable indicating domain D in the figure. In sDG, D is fixed in the sense that we are given just one
domain. Due to the single source setting, we cannot distinguish what information is shared across
different domains, leaving both C and S potentially affected by D. Note that C and S are defined by
augmentation, not by the domain. Hence, unless the discrepancy between the source and target is
moderate, optimizing solely the augment-and-align objective (Eq. 1) would be insufficient to address
the issue caused by a large domain gap.

Learning to ignore To address a large domain shift, we begin with some observations. Conventional
augment and align methods are vulnerable to domain shift in the sense that their effectiveness is
affected by the augmentation’s proximity to the domain shift. While advanced augmentation methods
may simulate small shifts in distribution (e.g., MNIST → USPS in Digits), it is hard to approximate
large domain shifts (e.g., PHOTO → SKETCH in PACS) (Appendix B.1). If the gap between the
source and target domain is large, failure in simulating domain shift would make its augment-invariant
features less relevant to domain-invariant features, leading to overfitting to the source domain.

To avoid learning irrelevant features, we can think of a hypothetical regularizer that encourages the
learning of domain-invariant features, while discouraging domain-specific features. Certainly, this
requires a condition that the regularizer be an oracle that can distinguish domain-invariant information.
Using this oracle regularizer, we aim to solve the phenomena associated with the large domain gap.
Especially, the mid-training fluctuation of OOD performance, which was observed in earlier sDG
works [10–12] but not discussed in-depth.1 We view that the fluctuation is strongly correlated with the
challenge of acquiring domain-invariant features under a large domain gap. We empirically observe
that the level of domain gap between the source and target closely matches the magnitude of the
mid-train fluctuation, where the increase in domain gap is simultaneously observed with the increase
in fluctuation. Detailed information regarding the measure of domain gap is included in Sec. 4.1. In
the following section, we search for ways to implement the hypothetical oracle regularizer.

3 Leveraging Pretrained Models to Learn Domain Invariance

We present a novel sDG method where the aim is to mitigate the issue of mid-train fluctuation. While
the principle of our approach is orthogonal to the type of data, in this paper, we focus on image data.
The overview of our method is depicted in Fig. 3 (Appendix). At large, the method involves three
neural networks, a domain generator G, task model classifier F , and an oracle O. We sequentially
learn generators {Gk}Kk=1 and use augmented samples created by the generators to train the task
model F . Specifically, the generators provide challenging augmented samples to the task model,
while the task model guides the generator to create valid augmentations. We train the above process
using a combination of two losses: L = Lf + wg · Lg where Lf (Eq. 2) and Lg (Eq. 10) are the loss
used to train F and G, respectively, and wg ∈ {0, 1} controls the training of G.2 The exact forms for
Lf and Lg will become clear at the end of this section.

Notation We begin by introducing related notations regarding our method. To begin with, calli-
graphic letters are used to denote state space of a variable. For example, X , Y , andH respectively
represent the space of the input images, labels, and intermediate feature representations.
• Task model: The task model F = C ◦ H consists of a feature-extractor H : X → H and a

classification head C : H → Y .
• Oracle: The oracle model O = Co ◦ Ho consists of a frozen feature-extractor Ho : X → H

and a trainable classification head Co : H → Y . Task model F and oracle model O use separate
feature-extractors (H and Ho) to map the input data as intermediate representation and pass the
representation to the classification head (C and Co) for the downstream classification task. 3

• Generator: A trainable generator G : X → X consists of an encoder-decoder architecture with a
style-transfer module placed between the encoder and decoder.

1On the contrary, the phenomenon has been discussed in the multi-DG literature [13].
2Generally, wg = 1 during the first half of the training epochs for Gk, then wg = 0 to stop the training [11].
3For experimental purposes, we match the dimension of representation for the oracle and task model.
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• Distillation Head: The distillation head V : H → V is used to impose regularization for the task
model via oracle’s representation. Instead of directly comparing the intermediate representation in
H, representations from Ho and H are mapped through the shared distillation head V , following
the analysis of Gupta et al. [14] on the efficacy of projection heads.

• Projection Head: Similarly, the projection head P : H → Z projects the intermediate representa-
tions into a different dimension. The projection head is reserved for alignment of augmented views
with MDAR, and its associated adversarial loss Ladv , thus not for PROF.

We train the task model F using a weighted combination of multiple losses, namely, the cross-entropy
classification loss of x (Lce) and x̄ (Lcls; eq. (6)), with LPROF and LMDAR written as:

Lf = Lce(C(H(x)), y) + Lcls + wPROF · LPROF + wMDAR · LMDAR, (2)

where wPROF and wMDAR are user-set parameters to activate differing methods, PROF and MDAR. When
training with the oracle regularizer (PROF) alone, wPROF is non-zero while wMDAR is set as 0. Vice
versa, wPROF is 0 in our baseline (MDAR). We explain losses for PROF and MDAR in the next sections.

3.1 Oracle Regularizer

We devise a novel learning method PROF (Progressive mutual information Regularization for Online
distillation of Frozen oracles). PROF reformulates the sDG problem under the assumption that if there
exists a generalized oracle model O, we can leverage the oracle to guide the learning process. The
objective for PROF can be formulated as:

LPROF(x, x̄, λPROF) =
∑

x′∈{x,x̄}
BT(V (H(x′)), V (Ho(x

′)), λPROF), (3)

where x denotes the original sample and x̄ the augmented view created by G, λPROF is a user-set
parameter, and Barlow Twins (BT)[15] is defined as:

BT(z, z+, λ) =
∑

i(1−Mii)
2 + λ

∑
i

∑
j ̸=i M

2
ij , (4)

where M refers to the cross-correlation matrix of the two positive-pair feature representations z, z+,
and λ a user-set parameter.4 BT (Eq. 4) is a feature-decorrelation loss originally introduced as a
contrastive learning objective. BT is a combination of two terms balanced via a hyperparameter λ,
where the first term

∑
i(1−Mii)

2 aligns two representations by spurring the diagonal values in M
of (z, z+) to be 1 while the second term

∑
i

∑
j ̸=i M

2
ij minimizes redundancy in the representation

by encouraging the off-diagonal values to be closer to 0.

Discussion on the Regularization via MI Optimization The idea of PROF is that we can distill the
oracle’s knowledge into the task model by maximizing the shared information between the two models.
PROF aims to maximize the MI between the intermediate output features of the two feature-extractors
H and Ho. PROF functions as a regularizer that guides the task model from deviating too far from
the oracle, learning the oracle’s behavior on data. From this perspective, an intended objective for
PROF could be formulated as maxH I(H(x);Ho(x)) where I(X;Y ) = Ep(x,y)[log p(x | y)/p(x)]
indicates the mutual information (MI). However, directly optimizing MI is challenging, as its exact
estimation is intractable [16]. There exists InfoNCE loss [3] which adopts a lower bound of MI [17]
as a surrogate objective for MI optimization:

INCE(X;Y ) ≜ E
[
K−1

∑K
i=1 log

exp(f(xi,yi))

K−1
∑K

j=1 exp(f(xi,yi))

]
≤ I(X;Y ).

However, an issue of InfoNCE as a variational bound of MI is that InfoNCE requires a large batch
size for convergence [18, 19], making it doubtful for use in small datasets (e.g., PACS). Consequently,
we indirectly approximate InfoNCE with a feature decorrelation loss [15], based on empirical and
theoretical results that show its functional proximity [20, 21]. Contrary to InfoNCE, the feature
decorrelation converges effectively with small batch sizes and large vector dimensions.

Now we discuss the availability of an oracle. In reality, oracles may not be readily available. However,
previous studies [22, 23] report that models pretrained from a large dataset or with deeper architectures
tend to generalize better at unseen domains. Considering this, we utilize a model pretrained on a
larger domain as oracle, and freeze the feature-extractor Ho to preserve its knowledge.

4The actual computation involves a batch of data to obtain an empirical cross-correlation matrix.
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3.2 Multi-Domain Alignment with Redundancy Reduction

We now introduce a novel alignment objective MDAR (Multi-Domain Alignment with Redundancy
reduction) for sDG. MDAR aims to disentangle latent features that are invariant across multiple
augmented views. We design MDAR as a fair baseline of the conventional augment and align method.
In learning the kth generator Gk, we create an augmented view x̄ for a batch of original samples x
using the kth generator Gk. We then randomly load two previously learned generators to construct
two augmented views x̄′ and x̄′′. With {x, x̄, x̄′, x̄′′}, we encourage their representations vary in a
similar way. Hence, we use BT (Eq. 4) over the representations for {x, x̄, x̄′, x̄′′} obtained through
the projection head and feature extractor, P ◦ H . That is, their cross-correlation matrix M to be
closer to an identity matrix. Our alignment loss LMDAR is written as:

LMDAR(x = {x, x̄, x̄′, x̄′′}, λMDAR) =
∑

xi ̸=xj

BT(P (H(xi)), P (H(xj)), λMDAR), (5)

where λMDAR a user-set parameter. Intuitively, via optimizing LMDAR, we can train the task model in
a way that multiple views (representations) are aligned. In terms of S-C disentanglement, MDAR
encourages the retrieval of augment-invariant features. Different from the commonly used InfoNCE
loss, our objective (Eq. 5) does not require negative pairs, thus works well on small batch sizes [15, 24],
suitable for benchmarks like PACS. In our conventional augment and align baseline experiment, we
train our model with a variant of Eq. 2: Lf = Lce(C(H(x)), y) + Lcls + wMDAR · LMDAR.

3.3 Learnable Domain Shift Simulators

We sequentially train multiple generators to obtain varying simulated domains. The purpose of this
process is to examine the behavior of models repeatedly trained on simulated domains, namely, the
mid-train OOD fluctuation. To simulate domain shift, we must ensure that the augmented domain is
label-preserved, while different from the source domain. Reflecting this, we adopt methods of Wang
et al. [12], Li et al. [11] to assure the consistency of generated samples:

Lcls(x̄, y) = Lce(C(H(x̄)), y) + I(wPROF > 0) · Lce(Co(Ho(x̄)), y), (6)
Lcyc(x, x̄) = ∥x−Gcyc(x̄)∥2, (7)

where I is an indicator function. Lcls is a cross-entropy loss that assures the validity of the generated
samples x̄ based on predictions from task model F (also from oracle O if PROF is employed.) Lcyc

ensures that the output of G, can be recovered to the original input image when passed through the
inversed generator Gcyc [25]. Next, we encourage the generator to create diverse augmentations with:

Ldiv(x̄1, x̄2) = −∥x̄1 − x̄2∥2, (8)
Ladv(x, x̄, λadv) = −BT(P (H(x)), P (H(x̄)), λadv). (9)

Ldiv is a negated L2-norm between two augmented views (x̄1,x̄2) of a batch x created with the
generator. Intuitively, optimizing with Ldiv encourages the generator to augment diverse samples,
preventing collapse. Ladv is an adversarial loss function designed to reverse the alignment process by
negating the feature-decorrelation loss used in Eq. 4. We train the generator with the weighted sum
Lg of the above four objectives (where Ladv is active only if MDAR is used.):

Lg = Lcls + wcyc · Lcyc + wdiv · Ldiv + I(wMDAR>0) · wadv · Ladv. (10)

4 Experiment
Table 1: sDG accuracy on PACS.

Method A C S Avg.

ERM [26] 54.43 42.74 42.02 46.39
ADA [27] 58.72 45.58 48.26 50.85
ME-ADA [28] 58.96 51.05 58.42 51.00
L2D (AN) [12] 56.26 51.04 58.42 55.24
MetaCNN [29] 54.05 53.58 63.88 57.17
Ours (P) 52.46 50.29 66.79 56.52
Ours (M) 57.54 46.89 64.93 56.45
Ours (MP) 58.96 45.86 64.57 56.46

Datasets & Implementation Following the experimental
settings in prior sDG works, we adopted two broadly used
benchmarks (e.g., PACS [30] and Digits) for our problem,
along with an additional benchmark, Office-Home [31]. De-
tails of the datasets are included in Appendix B.1. In all exper-
iments, we utilized the identical network architectures used in
previous sDG works, its details reported in Appendix B.2. In-
formation regarding the pretraining process, training process,
and training hyperparameters are reported in Appendix B.4,
Appendix B.3, and Appendix B.5, respectively.

4.1 Experimental Results and Analysis
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Table 2: sDG accuracy on Digits.

Method SVHN M-M S-D USPS Avg.

ERM [26] 27.83 52.72 39.65 76.94 49.29
JiGen [32] 33.80 57.80 43.79 77.15 53.14
M-ADA [10] 42.55 67.94 48.95 78.53 59.49
L2D [12] 62.86 87.30 63.72 83.97 74.46
PDEN [11] 62.21 82.20 69.39 85.26 74.77
MetaCNN [29] 66.50 88.27 70.66 89.64 78.76
Ours M 68.29 81.88 76.24 88.79 78.80
Ours P 74.50 87.98 78.67 86.15 81.82

Experiment with PACS PACS experiment aims to
show that PROF functions as a stable regularizer for
sDG, reducing the mid-train OOD fluctuation reported
in conventional augment and align methods. The ex-
perimental results are reported in Table 1 where M and
P stand for MDAR, and PROF. First, we compare the
generalization accuracy. Training with PROF (Eq.(2))
showed results close to the current SoTA without ad-
ditional process of alignment. Our augment and align
baseline (MDAR) showed a similar accuracy, but dis-
played a fluctuation of OOD performance after a certain point (i.e. K > 5), escalating as training
continued. On the contrary, training with PROF resulted in stabilization of the OOD performance,
mitigating fluctuations, quantified as the reduction in variance across the target domain accuracy
in K > 5 (Art: 3.39→1.27, Cartoon: 5.22→2.49, Sketch: 7.23→5.30). The stabilization effect is
depicted in Fig. 2(A, C, and S are from PACS). More PACS experiments are reported in Appendix A.1.

Experiment with Digits Digits experiment aims to display the efficacy of (PROF) and present the
strength of our baseline (MDAR). We share the results on Table 2. We underline that in Digits, we
could not obtain a pretrained model fit for use as oracle. Hence, we follow the practice of Cha et al.
[22] and use a true oracle, a model pretrained on both the source and target domains. Our method
with PROF showed a large drop in mid-train OOD fluctuation compared to the baseline (M-M: 2.56
→ 1.17, USPS: 3.48→ 1.11, SVHN: 3.58→ 1.95, S-D: 2.36→ 2.10). The OOD stabilization effect
is illustrated in Fig. 5 (Appendix A.2). Furthermore, PROF displays superior generalization accuracy.5
Notably, our baseline (MDAR) surpassed SoTA records. The analysis continues in Appendix A.2.

Table 3: sDG accuracy on Office-Home.

Method Art Clipart Product Avg.

ERM 52.78 40.19 68.73 53.90
Ours (M) 53.39 43.38 66.25 54.34
Ours (P) 55.25 46.69 69.26 57.07

Experiment with Office-Home Office-Home experi-
ment reconfirms the effectiveness of PROF for mitigating
the issues under large domain shifts. The results of the ex-
periment is reported on Table 3. In terms of performance,
regularizing with PROF displayed a strong advantage over
the conventional baseline (MDAR). In terms of OOD fluc-
tuation, PROF showed a stabilization of the OOD perfor-
mance, measured as the reduction in variance across the target domain accuracy (Art: 10.63 →
8.23, Clipart: 2.17→ 2.05, Product: 7.46→ 6.41). The stabilization effect is illustrated in Fig. 6
(Appendix A.3). Detailed analysis of the Office-Home experiment is reported in Appendix A.3.
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Figure 2: OOD accuracy (%) on PACS

Experiment on domain gaps We show results that dis-
play a strong correlation between the level of domain gap
and the magnitude of mid-train fluctuation. In Digits,
it is commonly viewed that the gap between the source
(MNIST) and the target is greater in certain datasets (e.g.,
SVHN and SYNDIGIT) over others (e.g., MNIST-M and
USPS). For instance, the baseline OOD accuracy is much
higher in some target domains as opposed to others, in
the order of USPS(76.94%) > MNIST-M(52.72%) >
SYNDIGIT(39.65%) > SVHN(27.83%), as recorded in
Table 2. Interestingly, in our baseline experiment with
MDAR, we find that the fluctuation magnitude follows
the same order: USPS(1.211) < MNIST-M(1.1795) <
SYNDIGIT(4.938) < SVHN(5.106), measured by the variance of the OOD accuracy after K > 5.
A similar pattern is observed on PACS (Table 1), where the baseline OOD accuracy order A (54.43%),
C (42.74%), and S (42.02%) matches the order of the mid-train fluctuation: A (3.39), C (5.22), and
S (7.23). We view that these results empirically support the correlation between domain gap and
mid-train fluctuation. We elaborate the domain gap further in Appendix C.

Effect of PROF We study further the effect of PROF on OOD generalization. The stabilization
effect of PROF is repeatedly confirmed across many benchmarks including PACS, Digits (Fig. 5), and
Office-Home (Fig. 6). In real-world settings, a model with large fluctuation is unreliable since its
performance may drop unknowingly. Hence, a reduction in fluctuation is closely synonymous with

5As we use the true oracle, performance boost is expectable [33]. Hence, we do not claim SoTA for PROF.
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model consistency at test time. Furthermore, PROF boosts generalization accuracy. OOD accuracy
benefited from using PROF in PACS (Table 4(Appendix A.1)) and Office-Home (Table 3). However,
the gain was marginal in PACS with an AlexNet backbone Table 1. Our notion is that the model
architecture (e.g., width and depth) affects the knowledge transfer, though further research is required.

5 Discussion

In this section, we discuss the limitations of our work and propose ideas for future work.

Limitations PROF leverages pretrained models under the hypothesis that it can approximate an
oracle that can generalize to all domains. As displayed in previous studies [22, 23], RegNetY-16GF
sufficiently works as an oracle for the PACS benchmark. However, the same model does not fit well
with the Digits benchmark. Due to the large gap between the pretrained dataset of the RegNetY-16GF
and the Digits dataset. This issue can be explained with the work of Wolpert and Macready [34], in
which the authors demonstrated that there exists a trade-off between a model’s performance on a
certain task and the performance on all remaining tasks.

Future Work As mentioned above, a critical limitation of our work is that the method relies on
an external source of knowledge (i.e., Oracle) to regulate the learning process. Naturally, there are
concerns that question the necessity of such regularization, suggesting the direct use of the oracle. In
our defense, the direct implementation of oracles is discouraged in the sDG setting, as most works
follow the same model selection criteria (e.g., AlexNet for PACS, 3-layer MLP for Digits). However,
we agree that it is an important concern to address in future work. A possible suggestion is to regulate
only the later layers, under the assumption that earlier layers contain general, domain-invariant
information [35]. We believe further research is necessary to alleviate this issue.

6 Conclusion
This paper presents PROF, a novel oracle regularizer to address single source domain generalization
under large domain discrepancy. We underscore the vulnerability of learning robustness via augmen-
tation, which is observed as large fluctuations in the OOD performance during the training process.
To mitigate this issue, PROF leverages pretrained oracles to guide the model to learn features that are
less domain-specific, via maximization of the feature-level mutual information between the learning
model and the oracle. Experiments on multiple datasets (PACS, Digits, Office-Home) demonstrate
that PROF can stabilize the fluctuations associated with large domain gaps. We further introduce a
strong baseline method with MDAR for a fair comparison with PROF. Training with MDAR showed
state-of-the-art performance in Digits and displayed a boost in performance when applied to existing
methods.
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Figure 3: The illustration of our method. We sequentially train multiple generators G1...K . The
Oracle Ho regulates the task model H’s learning process. During the training, multiple modules (e.g.,
P, V,C) are used for optimization.

A Experimental Results

A.1 Experiments on PACS (Continued)

Table 4: sDG accuracy on PACS
(ResNet).

Method A C S Avg.

L2D (RN) 68.41 43.56 48.84 53.60
L2D (RN+M) 57.57 50.09 65.51 57.72
Ours (RN+M) 58.25 47.35 67.81 57.80
Ours (RN+P) 58.42 48.29 66.68 57.80
Ours (RN+MP) 64.06 42.06 73.98 60.03

Here we continue presenting the results of experiments
with the PACS benchmark.

Next, we present experimental results where the backbone
is switched from the default backbone AlexNet to ResNet.
We applied MDAR to an existing sDG method [12] by re-
placing the InfoNCE loss with MDAR. We observe wide
improvement over conventional methods under certain
conditions, as recorded in the last rows of Table 4. Fur-
thermore, synergistic methods that apply both PROF and
MDAR displayed large improvements in the generalization performance. We will discuss further on
the synergistic method further in Appendix A.4.

Table 5: sDG accuracy on PACS (Full).

Method P A C S Avg.

Source: Photo
Ours (AN+P) 52.46 50.29 66.79 56.52
Ours (AN+M) 57.54 46.89 64.93 56.45

Source: Art
Ours (AN+P) 78.07 66.04 63.15 69.09
Ours (AN+M) 77.53 59.39 60.04 65.65

Source: Cartoon
Ours (AN+P) 64.57 50.02 69.00 62.04
Ours (AN+M) 65.20 47.10 65.81 59.37

Source: Sketch
Ours (AN+P) 46.25 44.31 61.60 50.72
Ours (AN+M) 48.03 47.83 60.32 52.06

Previous experiments on the PACS benchmark only used
the Photo dataset as the source domain. In the following
section, we report other cases where the source domain is
changed (e.g., Art, Cartoon, Sketch). Here, we will denote
each experiment as Art as source, Cartoon as source, and
Sketch as source, respectively.

In Table 5, we report the sDG accuracy of our two meth-
ods, MDAR and PROF, where AN, M, and P stands for
AlexNet, MDAR, and PROF, respectively. Each row in
the table displays the source domain, backbone type, and
the training method (M/P). In cases where Art or Car-
toon is used as source domain, training with our oracle
regularization PROF marked higher OOD accuracy then
its counterpart. On the other hand, PROF suffered when
Sketch was set as the source domain, falling behind the baseline MDAR. Our hypothesis is that this
behavior is triggered by the subpar performance of the oracle. To elaborate, the oracle used on the
Sketch as source experiment displayed low OOD accuracy on the target domains, unsuitable for
effective oracle regularization (Photo: 51.61%, Art: 39.39%, Cartoon: 56.85%).

Next, we present the analysis on mid-train OOD fluctuation in each experimental configuration.
When the source domain is set as Art, employing PROF resulted in yielded a stabilization of the OOD
performance, effectively mitigating fluctuations. The fluctuation was quantified as the reduction in
variance across the target domain accuracy in K > 5. When compared with the conventional augment
& align method MDAR, our regularization method PROF displayed large reductions in variance (Photo:
1.71→1.17, Cartoon: 3.13→2.97, Sketch: 21.50→11.22). The mid-train OOD fluctuation when
source is set as Art, is depicted in Fig. 4a.

Similarly, when the source domain is configured as Cartoon, PROF displays similar stabilization of
the mid-train OOD performance. Using PROF allows a reduction in fluctuation, measured as variance
(Photo: 5.15→ 3.06, Art: 5.00→ 3.07, Sketch: 0.70→ 3.91). We note that the stabilization effect in
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(b) Source: Cartoon
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Figure 4: OOD accuracy (%) on PACS (Additional)

Sketch is relatively lower than that of other target domains, even lower than our augment & align
baseline MDAR. The mid-train fluctuation is demonstrated in Fig. 4b.

Lastly, we report the experimental results where the source was set as Sketch. In the Sketch as source
experiment, we observe that PROF not only suffers in terms of performance but also exhibits instability.
PROF displayed high variance in mid-train performance when compared to the baseline (Photo: 2.46
→ 10.41, Art: 2.33→ 7.99, Cartoon: 1.01→ 1.04). The fluctuation is illustrated in Fig. 4c. While a
clear explanation is absent, we view that this phenomenon is caused by the under-performance of
the oracle in the Sketch as source experiment. This result displays a clear example of the problems
associated with the obstacles regarding the oracle, where obtaining an oracle may not be readily
available. We further discuss the issue with oracles in the following section, Appendix D

A.2 Experimental Results on Digits (Continued)
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Figure 5: OOD accuracy (%) on
Digits

Here we continue our analysis on the results of the Digits Exper-
iment. In Sec. 4, we demonstrated that our regularization method
PROF successfully mitigates issues of OOD fluctuation, measured
as variance. This is illustrated in Fig. 5 (M and P are from MDAR
and PROF.). One notable observation is the significant increase in
OOD generalization accuracy (81.82) when using PROF, in Table 2.
As mentioned in the footnote, we do not claim this score to be
state-of-the-art, as the true oracle is used. From the perspective
of knowledge distillation, this is anticipated as the true oracle is
already generalized to the target domains. In comparison, the
approximated oracle in PACS does not guarantee robustness in the
target domains, despite its higher generalizability. This confirms that a gap between the approximated
oracle and the true oracle exists, which is a limitation that we acknowledge. We provide further
analysis on the oracle in Appendix D

Next, we discuss the results of our baseline experiment using MDAR. As mentioned in the main paper,
our baseline surpassed state-of-the-art in Digits. In SVHN and SYNDIGIT (S-D), we show large
improvement, while results in MNIST-M (M-M) show slight deficiency. Similar to existing methods,
we refrain from using any form of manual data augmentation. We find that in Digits, increasing the
number of simulated domains (K) helps OOD generalization. Both our baseline (MDAR) and PROF
benefited from long training (K > 100).

A.3 Experimental Results on Office-Home (Continued)
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Figure 6: OOD accuracy (%) on
Office-Home

Here we continue our analysis of the results of the Office-Home
Experiment. The Office-Home benchmark is not commonly used
in the sDG literature, but we include the benchmark to bring
attention to an important question: Is augmentation reliable for
sDG?

As described in Table 3, augmentation-based approaches do show
a boost in OOD accuracy. However, the effect gradually disappears
with a sharp decline in OOD accuracy, as depicted in Fig. 6. (A,
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C, and P are abbreviations of Art, Clipart, and Product domains, while M and P are from MDAR and
PROF.) This downward trend is also spotted on other benchmarks, but not as intense.

We believe that this phenomenon aligns with our analysis of the uncertainty of utilizing augmentation
for OOD generalization. Our hypothesis is that the distributional gap within the Office-Home
benchmark may be more intense than conventional sDG benchmarks (e.g., Digits, PACS). The
phenomenon brings novel questions on the efficacy of augmentation-based generalization methods.
We believe that further research is required. Nonetheless, even in this case, PROF continues to stabilize
the learning process, showing a smaller variance than our baseline (MDAR).

A.4 A Synergistic Approach: Combined use of MDAR and PROF
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Figure 7: OOD accuracy (%) on
PACS (MDAR + PROF)

In this section, we report the effect of using MDAR and PROF
simultaneously. While PROF was designed for use without an
alignment term (e.g., MDAR), we tested the effect of combining
the two terms together. We observe that the synergistic method of
PROF and MDAR triggered some differences in the training process.

Regarding the OOD accuracy, the synergistic method marked
Art: 58.96%, Cartoon: 45.86%, Sketch: 64.57%, an average of
56.46% with AlexNet, as seen in Table 1. While the accuracy is
slightly higher than using MDAR alone (56.45%), we view that
the synergistic method does not significantly benefit the OOD
performance. On the other hand, applying the synergistic method
with a ResNet18 backbone showed a rise in OOD accuracy by a
large gap 4. Further research is necessary to provide an understanding of this behavior as no definitive
explanation currently exists, while our hypothesis is that the model architecture may have caused the
phenomenon.

Regarding the mid-train OOD fluctuation, the synergistic method was not able to reduce fluctuations
across Art and Cartoon, while reducing the fluctuation in Sketch. (Art: 3.39→4.50, Cartoon:
5.22→5.86, Sketch: 7.23→3.52) Similar to previous experiments, the mid-train OOD fluctuation
was quantified with the variance across the target domain accuracy in K > 5. The mid-train OOD
fluctuation is depicted in Fig. 7 (A, C, and S are from PACS and M and MP from MDAR and
MDAR+PROF, the synergistic method.). Our hypothesis is that the two terms may have disrupted each
other, while a clear explanation for this phenomenon remains elusive. We believe that additional
research is needed to produce an effective synergy of both methods.

A.5 Study of Hyperparameters

We explore our method’s sensitivity to hyperparameters. (λPROF): λPROF is the hyperparameter used for
PROF that operates as the balancing weight of the two functions in Eq. (4). We begin with the value
in the original paper of Zbontar et al. [15] with λPROF = 0.005, and an alternate value 1

d introduced in
Tsai et al. [24] where d is the length of a vector in D (distillation head output space). We observe
that our method is resilient to the switch between two candidate values of λPROF although we cannot
guarantee they are optimal. (λMDAR and λadv): The study on λMDAR and λadv is processed similar to
λPROF. Switching between λ = 0.005 and 1

p posed no notable impact on the learning process, where
p is the length of a vector in P (projection head output space). While we cannot guarantee an optimal
value. (wadv, wcyc, wdiv): We optimize the hyperparameters wadv, wcyc, wdiv using grid search.
We find that as long as the weight-multiplied loss (wL) is situated on the (0, 1) range, there is no
significant impact on performance.

B Implementation Detail

In this section, we report the implementation details of our method.

B.1 Datasets

Here, we elaborate on the datasets used in our experiments.
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PACS [30] consists of 4 domains of differing styles (Photo, Art, Cartoon, and Sketch) with 7 classes.
In default, we train our model with the Photo domain and evaluate the remaining target domains. We
also present additional experiments in Appendix A.1. Among the selected benchmarks, PACS is the
main target of PROF due to its large gap between domains.

Digits is comprised of 5 different digit classification datasets, MNIST [36], SVHN [37], MNIST-M
[38], SYNDIGIT [39], USPS [40]. In our experiment, we train our model with the first 10,000
samples of the MNIST dataset and assess its generalization accuracy across the remaining four
domains.

Office-Home [31] is a common benchmark for DG, but not for sDG. The benchmark consists of 4
datasets (Real-world, Art, Clipart, Product) with differing styles with 65 classes. We train on the
Real-world domain and evaluate on the remaining domains.

B.2 Model Architecture

We report the details of model architectures used in our experiments. All models were built to match
the architecture used in previous studies.

Task Model The task model architecture varies in each experiment. For each experiment, we report
the feature extractor H , including an additional layer (i.e. buffer) used to match the feature extractor’s
output dimension to the oracle’s.

The model used in the PACS experiment is AlexNet [41], pretrained on ImageNet [42]. The model
consists of 5 convolutional layers with channels of {96, 256, 384, 384, 256}, followed by two fully-
connected layers of size 4096 units. The buffer is a 2-layered MLP that maps the output dimension
4096 to that of the oracle (RegNetY-16GF), which is 3024. Hence, the final output dimension of the
feature extractor is 3024.

The model used in the Digits experiment is a multi-layer CNN network (i.e. conv-pool-conv-pool-fc-
fc-softmax). The architecture consists of two 5 × 5 convolutional layers, with 64 and 128 channels
respectively. Each convolutional layer is followed by a MaxPooling layer (2 × 2). The network also
includes two fully connected layers with sizes of 1024, 1024 being the final output dimension of the
feature extractor. As the true oracle in Digits uses an identical network design as the task model, no
buffer layer was used.

Lastly, The model used in the Office-Home experiment is a ResNet18 network. The ResNet is
torchvision implemented, and pretrained on the ImageNet dataset. Similar to the PACS experiment,
The buffer is a 2-layered MLP that maps the output dimension to that of the oracle (RegNetY-16GF),
which is 3024. Hence, the final output dimension of the feature extractor is 3024.

Generator In this section, we describe the generator in detail. While the design of the generator
slightly varies in each experiment, the basic architecture is the same. The generator consists of an
encoder and a decoder, with a spatial transformer network (STN) and a style-transfer module in
between the encoder and the decoder. The four components are placed in the order of Encoder -
STN - Style-Transfer - Decoder.

We begin by illustrating the overall process of how an image is augmented by the generator. First, the
input image is passed through the encoder to get a feature representation vector. The feature vector is
then passed through the STN and the style-transfer module for modification. The modified vector is
then reconstructed via a decoder, returning an augmented image. The mentioned process is illustrated
in Fig. 8. In the figure, we depict how each module modifies the input image.

STN is a module that learns to perform spatial transformations on the input [43]. During the process,
the STN module learns transformation parameters, where the parameters each define the magnitude
of spatial transformations (e.g., rotation, scaling, translation). The STN module can be inserted at any
point in the generator, allowing the generator to selectively transform the data up to a degree that is
label-preserving. We place the STN right after the Encoder, following the experimental results of the
original paper [43]. In Fig. 8, we can see that the STN performs spatial transformations, creating the
modified image at the middle. An advantage of STN is that no additional requirements are needed for
training the module.
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STN Style-
TransferEncoder Decoder

Figure 8: The illustration of the Generator.

(a) Conventional Style-transfer (b) STN + Style-transfer

Figure 9: The illustrated comparison of the generators.

The style-transfer module modifies the features of the input image by adjusting the mean and standard
deviation of the image features. This is performed using a normalization technique called Batch-
Instance Normalization (i.e. BIN) [44]. BIN selectively normalizes the features of the input image
that are of less significance, while preserving features that are important. Note that this module is a
modified version of the AdaIN method introduced in Huang and Belongie [45], where we switched
the normalization method from Instance Normalization [46] to BIN for effective style transfer.

We share the results of applying these modifications in Fig. 9. Whilst previous augmentation methods
[11, 12] were limited to manipulating certain attributes (e.g., color, stroke), our method further allows
spatial manipulations (e.g., shape, location). For instance, in the right image of Fig. 9, we can observe
that the images generated using our method displayed a large variance in shape, position, and color.
This modification is inspired by recent studies on domain shift [47, 48], which revealed that domain
shift occurs on a variety of levels. However, an observable limitation is that the STN cannot transform
complex images as in PACS, as small spatial modifications vastly change the semantics of the image.
As depicted in Fig. 10, the effect of the spatial modification is limited on PACS images.

Oracle Here, we report the architecture of the oracle. The oracle varies on the type of the experiment,
a RegNetY-16GF for the PACS and Office-Home experiment, and a multi-layer CNN network for the
Digits experiment.

The RegNetY-16GF is a variant of the RegNet family, a line of models introduced in [49] for image
classification. The name of the model indicates its configurations, where the "Y" indicates the
convolution method, and the "16GF" represents the model’s capacity or complexity. We implement
the model, and its model weights using the torchvision [50] library. We used the weights pretrained
via end-to-end fine-tuning of the original SWAG [51] weights on the ImageNet-1K data [42]. We
then fine-tuned the pretrained model again with the Photo domain of PACS for 200 epochs, with a
learning rate of 1e− 4 using the SGD optimizer and the Cosine Annealing learning rate scheduler,
a batch size of 64. For the Office-Home, we fine-tuned the pretrained model with the Real World
domain of Office-Home for 30 epochs, using the SGD optimizer and the Cosine Annealing scheduler,
a batch size of 16.

For the PROF experiment in Digits, an identical network architecture was used for both the task model
F and the true oracle model O. The true oracle was pretrained on the source and target domains
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Figure 10: The illustration of generated images (PACS).

of Digits. The pretraining epochs were set as 100, with a learning rate of 1e − 4 using the Adam
optimizer. The batch size was set as 256.

B.3 Model Training

In this section, we elaborate on the details of the training process. We explicitly state the training
hyperparameters (e.g., number of simulated domains (K), number of inner training loops for each
generator, learning rate, the type of the optimizer, learning rate scheduler, and batch size). We further
state the configurations of the projection heads (e.g., projection dimension (Z) of the projection head
P , projection dimension (D) of the distillation head D).

PACS For the PACS experiment, we set K as 20, training each generator with 30 inner loops.
During the first 15 inner loops we train the generator, and stop the training during the last 15 loops.
We manually set the number of epochs by analyzing the training behavior of the generators. We set the
learning rate as 1e− 4, using the Adam optimizer [52]. The batch size was set as 64. Regarding the
model architecture, both the projection dimension (Z) and the distillation head projection dimension
(D) were set as 1024.

Digits For the Digits experiment, we set K as 100, with 10 inner loops. Similar to the above
two experiments, we trained the generator for 5 epochs and stopped the training for the other 5.
Furthermore, the learning rate was tuned as 1e− 4, using the Adam optimizer. The batch size was set
as 128. Finally, both the projection dimension (Z) and the distillation head projection dimension (D)
were as 128.

Office-Home For the Office-Home experiment, we set K as 20, training each generator with
30 inner loops. During the first 15 inner loops we train the generator, and halted training for the
remaining 15 loops. Similar to other cases, we set the number of epochs by analyzing the training
behavior of the generators. The learning rate was set as 1e− 4, using the Adam optimizer. The batch
size was set as 64. Regarding the model architecture, both the projection dimension (Z) and the
distillation head projection dimension (D) were set as 512.

B.4 Model Pretraining

In this section, we report the information regarding the pretraining process. As mentioned above, we
pretrained our task model with the source domain prior to the main training procedure. We announce
the number of pretraining epochs, the learning rate, the optimizer, the learning rate scheduler, and the
batch size.

PACS We pretrained the AlexNet with the train data of the Photo domain, using the train split
introduced in the original paper [30]. We pretrained the model for 60 epochs, with a learning rate of
5e− 3 using the SGD optimizer. We further used the Step learning rate scheduler with a gamma rate
(i.e. the strength of the learning rate decay) of 0.5. The batch size was set as 32.
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Digits For the Digits experiment, we set the number of pretraining epochs as 100, with a learning
rate of 1e− 4 using the Adam optimizer. The batch size was set as 256.

Office-Home We pretrained the ResNet18 with the train split of the Real World domain. We
pretrained the model for 100 epochs, with a learning rate of 1e − 4 using the SGD optimizer. We
used no learning rate scheduler. The batch size was set as 64.

B.5 Hyperparameters

In this part, we state the hyperparameters used in our experiments.

λPROF λPROF is a balancing coefficient for LPROF, an objective adopting the feature-decorrelation loss
introduced in Zbontar et al. [15]. We tuned λPROF using experimental results of the original paper
and [24]. In the original paper, the author reported the optimal value of the balancing term as 0.005,
which remains consistent under varying projection dimensions. We set this as a starting point for
hyperparameter tuning. We find that if λPROF balances the off-diagonal term (i.e. redundancy reduction
term) and the diagonal term (i.e. alignment term) to a similar degree, no significant differences are
observed. Furthermore, switching λPROF to 1

d ≈ 0.0001 showed no significant changes to the learning
process. Here, d denotes the projection dimension of the distillation head D (distillation head output
space). While we cannot guarantee an optimal value for λPROF, we set λPROF = 0.005 for our two
experiments using PROF.

λMDAR, λadv The hyperparameters λMDAR and λadv is used together for adversarial learning, hence
we report the two together. λMDAR was set in a similar way as λPROF. For our experiments, λadv

was set as 0.005. λadv was searched under a fixed value of λMDAR = 0.005. We experimented with
varying values of λadv: {0.005, 0.05, 0.5}, which showed no significant difference to the training
process, while 0.05 showed slightly better results in the validation set of the source domain. Hence, in
our experiments, λadv was set to 0.05. To explicate, generally, Ladv displayed a value approximately
10 times larger than LMDAR. We believe that this behavior is correlated to 0.05 being a good value for
λadv under a fixed value of λMDAR = 0.005.

All other hyperparameters (e.g., wcyc, wdiv, wadv, wPROF ) are searched with a similar method to Li
et al. [11]. For all experiments, we set wcyc as 20.0, wcyc as 2.0, and wadv as 0.1 in Digits, and 0.02
in PACS. Finally, wPROF was set as 0.1. The values were tuned such that the weighted losses (i.e. wL)
are situated in a similar range.

C On Domain Gaps

In previous works, there exist different mentions regarding the domain gap within the experimental
datasets. We begin this section by comparing such views.

There are contradicting views on the domain gap within the PACS dataset, the authors of Wan et al.
[29] view that the domain gap is significant between the Art domain and the source domain (Photo),
while relatively smaller with the Sketch and Cartoon domain. In contrast, Wang et al. [12] viewed that
the domain gap is the largest between the source and the Sketch domain, due to its vastly abstracted
shapes. Concerning the Digits dataset, the authors of Qiao et al. [10], Wang et al. [12], Li et al. [11]
view that USPS displays the smallest domain gap with the source domain (MNIST). This is very
similar to the view of Wan et al. [29] that USPS and SYNDIGIT datasets are closer to the source,
while there is a large domain gap between the MNIST-M and the source domain.

In our paper, we used a different measure to observe the domain gap between datasets: the OOD
classification accuracy on unseen domains. Our view on domain discrepancy is that it can be indirectly
observed through the downstream task performance. This is closely tied to realistic settings, where
task performance is the leading motive behind the study of sDG. The method is simple: using a fixed
model, we train the model with the train split of the source domain. Then, using the trained model,
we test the classification accuracy on unseen domains. We reported the results in Sec. 4.1. Using
the baseline OOD accuracy as a measure for domain gap matches the view of many existing works,
while differences exist. For instance, USPS displays the highest OOD accuracy, matching the view of
previous works that USPS shows the smallest discrepancy with the source [10, 12, 11, 29]. In PACS,
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the Sketch domain displays the lowest baseline OOD accuracy, which is in line with the view of some
previous works [12], while different from the view of Wan et al. [29].

D On Oracles

In this section, we discuss the implementation of the oracle using pretrained models. Using pretrained
models for OOD generalization is not an entirely novel idea [23, 22], but first for the task of sDG.

We selected the pretrained RegNetY-16GF as an oracle for PACS. In Cha et al. [22], a pretrained
RegNetY-16GF model displayed high MI with the true oracle, a model that is trained on all source and
target domains). The authors reported that the true oracle displayed an average validation accuracy of
98.4% on all PACS domains.

Similar to this, our implementation of the oracle with a pretrained RegNetY-16GF finetuned on the
source domain (i.e. Photo in PACS, MNIST in Digits, Real World in Office-Home) displayed high
validation accuracies across all target domains. To be specific, in PACS, the finetuned RegNetY-16GF
marked 75.16%, 75.30%, 69.00% on Art, Cartoon, Sketch, and an average validation accuracy of
73.15. While the average accuracy is lower than the true oracle in Cha et al. [22], this is an expected
behavior as our oracle used only the Photo domain, while the true oracle in [22] utilized all four
domains of PACS.

However, we empirically confirm that the RegNetY-16GF is not universally available for use as the
oracle. For instance, using the RegNetY-16GF to implement the oracle for the Digits experiment was
not satisfactory. When finetuned with the source domain (i.e. MNIST), RegNetY-16GF marked low
validation accuracy in the target domain. We believe that this difference is derived from the difference
between the two datasets. For instance, PACS is a collection of images without any distortion, while
Digits is a dataset solely comprised of digit images. Hence, we view that the large gap between the
pretrained dataset of the RegNetY-16GF and the Digit classification datasets is responsible for this
behavior.

This issue can be explained with the work of Wolpert and Macready [34], where the authors demon-
strate that there exists a trade-off between a model’s performance on a certain task and the perfor-
mance on all remaining tasks. We believe this to be a crucial limitation of our method, and aspire to
investigate further.

E Preliminaries

Learning domain agnostic models from limited source domains is a longstanding area of investigation.
In this section, we revisit related works on S-C disentanglement and domain generalization.

Style-Content Disentanglement Style-Content disentanglement seeks to separate the aggregated
latent variable into two parts, denoted as style and content. While the term style and content originated
from the style transfer literature [53, 54], recent works try to push the idea further using concepts
of causal inference [7, 55, 56] and Independent Component Analysis (ICA) [57–59]. Notably,
disentanglement is used to elucidate the underlying mechanism of data augmentation [6, 60, 61].

Domain Generalization In the multi-source domain generalization field, disentanglement of
domain-invariant features has shown great success in training robust domain-agnostic models by
leveraging shared information across domains. To learn domain-invariant information, researchers
commonly analyze the data generating process (DGP) using structural causal models to design
effective algorithms [62–64]. On the contrary, disentanglement is rarely discussed in the sDG
literature. This is due to innate conditions of sDG, where only one domain is available for training.
This setting makes it hard to apply conventional disentanglement approaches developed in the
multi-DG literature. To tackle this, a line of work focuses on how to augment unseen domains
effectively with generative models [2, 10–12, 29, 27]. However, there is a lack of discussion on
whether augmented samples can simulate unseen domains, or whether it can be used to learn
domain-invariance. A recent movement in the multi-DG literature highlights the use of pretrained
models for OOD generalization, leveraging the knowledge of the pretrained models [22, 65, 23].
Such works closely resemble the methods introduced in the Knowledge Distillation (KD) literature
[66–68, 18, 69].
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