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Abstract
Control variates are variance reduction techniques
for Monte Carlo estimators. They can reduce
the cost of the estimation of integrals involving
computationally expensive scientific models. We
propose an extension of control variates, multi-
level control functional (MLCF), which uses non-
parametric Stein-based control variates and mul-
tifidelity models with lower cost to gain better
performance. MLCF is widely applicable. We
show that when the integrand and the density are
smooth, and when the dimensionality is not very
high, MLCF enjoys a fast convergence rate. We
provide both theoretical analysis and empirical
assessments on differential equation examples, in-
cluding a Bayesian inference for ecological model
example, to demonstrate the effectiveness of our
proposed approach.

1. Introduction
The paper focuses on the approximation of intractable in-
tegrals, where the integrands lack closed-form solutions or
expressions and are computationally expensive to evaluate.
The integrals are of the form

Π[f ] =
∫
X f(x)π(x)dx,

where Π is a distribution with a Lebesgue density π on
X ⊆ Rd, and f : X → R is the integrand of interest. As-
suming that f is square-integrable i.e. Π[f2] < ∞, Monte
Carlo estimator (MC) is the most widely used approach for
estimating such integrals. However, MC estimators have
high variance and slow convergence rates. Thus, one chal-
lenge in using MC estimators is to reduce the variance of
the estimator and to improve its accuracy.

Control variates (Robert et al., 1999) reduce the variance of
MC estimators by involving a function well correlated to
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the integrand in the estimator. When dealing with complex
scientific models, sampling or evaluating the integrand can
be very computational expensive. To achieve the desired ac-
curacy, the overall sampling and evaluation cost can still be
prohibitive. To further reduce the overall cost, using multifi-
delity models is a useful tool. We focus on multilevel Monte
Carlo (MLMC) method (Giles, 2008; 2015) here. MLMC
estimator uses a sequence of multifidelity models to con-
struct a telescoping sum. The telescoping sum is a sum of
the expectation of increments between each two consecutive
multifidelity models. By using multifidelity models, MLMC
estimators usually require less overall cost to achieve the
desired accuracy compared to the cost required by MC es-
timators. We propose to use a non-parametric Stein-based
control variate for each increment in the telescoping sum
and call the method multilevel control functional (MLCF).

Although there are some related methods, they have vari-
ous restrictions and are not widely applicable. Multilevel
Bayesian quadrature (Li et al., 2023) combines Bayesian
quadrature and MLMC. This method can only be applied
to specific pairs of kernels and distributions. Thus, it is
not widely suitable for Bayesian inference with posterior
distributions. Existing multilevel control variates are tai-
lored for specific cases and thus are not widely applicable.
Nobile & Tesei (2015) used the solution to an auxiliary dif-
fusion problem with smoothed coefficient to be the control
variate for the original problem, which was only applicable
to specific partial differential equations. Fairbanks et al.
(2017) focused on using a low-rank representation for the
high-fidelity models among each two consecutive multifi-
delity models to construct a control variate. Geraci et al.
(2017) used a simplified physical model to construct control
variates for the original complex real-world physical model,
which required additional expert knowledge.

In contrast, the proposed MLCF does not require any addi-
tional expert knowledge for implementation. It can be used
for Baysian inference with unnormalized density. It also
has a faster convergence rate when the dimensionality is
not very high and when both the integrand function and the
density are smooth. These properties make MLCF widely
applicable and easy to implement.
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2. Background
Stein-based Control Variates and Control Functionals
Given evaluations of the integrand f at n independent and
identically distributed (i.i.d) realisations {xi}ni=1 from Π,
the Monte Carlo estimator can be expressed as

Π̂MC[f ] =
1
n

∑n
i=1 f(xi).

However, the convergence rate of the estimator is slow, i.e.
O(n−1/2). Thus, it often requires a large number of func-
tion evaluations to achieve the desired accuracy. Similarly,
Markov Chain Monte Carlo (MCMC) methods also exhibit
similar slow convergence rate.

Stein-based control variates (Oates et al., 2017; Wan et al.,
2019; Si et al., 2022; Sun et al., 2021; 2023) are variance
reduction tools for Monte Carlo integration. They are also
widely used in the cases when the density is unnormal-
ized and the samples are MCMC samples. This often ap-
pears in Bayesian inference. The general framework is to
construct a candidate set G first such that Π[g] = 0 for
∀g ∈ G, which can be achieved by using Stein’s opera-
tors; see (Anastasiou et al., 2023) for a detailed review.
Then we have Π[f − g] = Π[f ]. The second step is to
select an effective control variate g ∈ G with reduced vari-
ance, i.e., V[f − g] = Π[(f − g − Π[f − g])2] < V[f ]
(Oates et al., 2017; Wan et al., 2019; South et al., 2022;
Sun et al., 2021) where V[f ] := Π[(f − Π[f ])2]. Such
an effective control variate g is often learnt by minimising
the empirical (penalised) variance of V[f − g] conditioning
on m samples {xi}mi=1 and their function evaluations from
all samples {xi}ni=1 available. Then, through estimating
Π[f − g], we can get an estimate of Π[f ] with reduced vari-
ance and improved accuracy. The estimator takes the form
of Π̂CV[f ] =

1
n−m

∑n
i=m+1 (f(xi)− g(xi)).

We are focusing on a current state-of-the-art Stein-based
control variate for single Monte Carlo integration tasks,
i.e., control functional (CF) (Oates et al., 2017; 2019). It
is a class of non-parametric Stein-based control variates
based on reproducing kernel Hilbert spaces (RKHS). It ap-
plies the Langevin Stein operator onto vector-valued func-
tions u ∈ C1(X ) × · · · × C1(X ) which takes the form,
SΠ[u](x) := ∇x · u(x) + u(x) · ∇x log π(x), where ∇·
denotes the divergence operator and ∇ denotes the gradi-
ent operator. Each component function ui : X → R is
constrained to belong to a Hilbert space H. Let Hk be the
RKHS induced by a reproducing kernel k. The image of
U := Hk × · · · ×Hk under SΠ is a RKHS G with kernel k0
(also known as Stein kernel)

k0(x, x
′) = ∇x · ∇x′k(x, x′) +∇x log π(x) · ∇x′k(x, x′)

+∇x′ log π(x′) · ∇xk(x, y)

+ (∇x log π(x) · ∇x′ log π(x′))k(x, x′), (1)

where ∇x := (∂/∂x1, . . . , ∂/∂xd). Oates et al. (2017;
2019) used functional approximations s(x) = β+SΠ[u](x)
where β and u are selected by solving a constraint least-
square optimisation problem in G conditioning on m sam-
ples {xi}mi=1 and {f(xi)}mi=1. The control functional takes
the form of: gm(x) = s(x) − Π[s]. The standard control
functional estimator is then

Π̂n−m
CF [f ] := 1

n−m111⊤{f(X1)− k0(X
1, X0)k0(X

0, X0)−1

× [f(X0)− (1
11⊤k0(X

0,X0)−1f(X0))
111⊤k0(X0,X0)−1111

)111]}

where X0 = (x1, . . . , xm)⊤, X1 = (xm+1, . . . , xn)
⊤,

(f(X0))i = f(xi), (k0(X
0, X0))i,j = k0(xi, xj), for

all i, j ∈ {1, . . . ,m}, and (f(X1))i = f(xm+i),
(k0(X

1, X0))i,j = k0(xm+i, xj), for all i ∈ {1, . . . , n −
m}, and for all j ∈ {1, . . . ,m}. A simplified estimator is,

Π̂n
CF[f ] := 111⊤k0(X,X)−1f(X)/

(
111⊤k0(X,X)−1111

)
,

where X = (x1, . . . , xn)
⊤, (f(X))i = f(xi), and

(k0(X,X))i,j = k0(xi, xj), for all i, j ∈ {1, . . . , n}. A
major drawback of control functional is the O(m3) compu-
tational cost. However, this is not a big issue in the setting
considered in this paper as such cost is much smaller than
the cost of the evaluation of integrand.

Multifidelity Models and Multilevel Monte Carlo Mul-
tifidelity models has been used to accelerate a wide range
of algorithms and the related applications, including uncer-
tainty propagation, inference, and optimization; see (Pe-
herstorfer et al., 2018) for a detailed review. Giles (2015)
showed that for the same accuracy constraint, the evaluation
cost of using MLMC was lower than the evaluation cost of
using MC. Multilevel Monte Carlo (Giles, 2008; 2015) uses
a hierarchy of approximations f0, f1, . . . , fL−1 to fL := f
with increasing levels of accuracy and cost to estimate the
integral of interest. The method can achieve a higher ac-
curacy with a lower computational cost compared to MC
using only the fL := f . Given the sequence of approxi-
mations, MLMC sums up the estimates of the corrections
with respect to the consecutive lower level and obtain the
telescoping sum

Π[f ] = Π[fL] =
∑L

l=0 Π[fl − fl−1],

where f−1 := 0 to simply the equations. MLMC estimates
each of these integrals in the telescoping sum independently.
At each level, MLMC uses a MC estimator to estimate
Π[fl − fl−1] by drawing i.i.d samples {x(l,i)}nl

i=1 from Π
and evaluating fl(x(l,i)) and fl−1(x(l,i)). Therefore, the
unbiased MLMC estimator takes the form

Π̂MLMC[f ] :=
∑L

l=0 Π̂MC[fl − fl−1]

=
∑L

l=0
1
nl

∑nl

i=1

(
fl(x(l,i))− fl−1(x(l,i))

)
.
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3. Methodology
We call our proposed method multilevel control functional
(MLCF). The MLCF estimator takes the form

Π̂MLCF[f ] =
∑L

l=0
1

nl−ml

∑nl

i=ml+1(fl(x(l,i))

− fl−1(x(l,i))− (sl(x(l,i))−Π[sl])),

with sl −Π[sl] being the control functional at each level l.

Proposition 3.1. Given the samples X0
l =

(x(l,1), . . . , x(l,ml))
⊤ and X1

l = (x(l,ml+1), . . . , x(l,nl))
⊤

from Π, for l ∈ {0, . . . , L}, and evaluations
{{fl(x(l,i)) − fl−1(x(l−1,i))}nl

i=0}Ll=0, the standard
multilevel control functional estimator on Π[f ] is unbiased
and has the form

Π̂n−m
MLCF[f ] :=

∑L
l=0 Π̂

n−m
CF [fl − fl−1]

=
∑L

l=0
1

nl−ml
111⊤{(fl(X1

l )− fl−1(X
1
l ))

−kl0(X
1
l , X

0
l )k

l
0(X

0
l , X

0
l )

−1[(fl(X
0
l )−fl−1(X

0
l ))−al111]},

where al = 111⊤kl0(X
0
l , X

0
l )

−1(fl(X
0
l ) −

fl−1(X
0
l ))/111

⊤kl0(X
0
l , X

0
l )

−1111.

The proof is provided in Appendix A.1. It is also common
in practice to use a simplified estimator for each level as
shown in Remark 3.2. Although in this case the estimator
is biased, it has superior mean square error (Oates et al.,
2019).
Remark 3.2. The simplified MLCF estimator takes the form,

Π̂n
MLCF[f ] :=

∑L
l=0 Π̂

n
CF[fl − fl−1]

=
∑L

l=0 111
⊤kl0(Xl, Xl)

−1(fl(Xl)− fl−1(Xl))

×
(
111⊤kl0(Xl, Xl)

−1111
)−1

where Xl = (x(l,1), . . . , x(l,nl))
⊤.

Our proposed method is simple yet effective, widely appli-
cable and has a few benefits. (i) The restriction on Π can
be relaxed. We only assume that π is smooth and π(x) > 0,
such that the gradient of log π can be evaluated pointwise.
In Bayesian statistics, it is often the case that we only have
π up to an unknown normalization constant due to the in-
tractable marginal likelihood. (ii) The MLCF estimator in
Proposition 3.1 is unbiased and has a faster convergence rate
if the assumptions are satisfied. Users have the flexibility
to modify the estimator. For example, users can choose to
use control functionals only on some selected low levels.
(iii) The simplified MLCF estimator in Remark 3.2 has no
restriction on how to generate samples. It can employ any
experimental design to further improve the efficiency. (iv)
Implementing MLCF is simple and straightforward, which
doesn’t require additional expert knowledge on the specific
problem users are tackling.

Next, we provide theoretical analysis of the variance of
MLCF, which is based on the proof of Theorem 1 of (Oates
et al., 2019). We will see that the convergence rate of MLCF
is related to the smoothness of π and fl. We use Cq(X ) to
denote the set of measurable functions for which continu-
ous partial derivatives exist on X up to order q ∈ N0. For
k ∈ Cq

2(X ), ∂2qk/∂xi1 · · · ∂xiq∂x
′
j1
· · · ∂x′

jq
is a continu-

ous function for all i1, · · · , iq, j1, · · · , jq ∈ {1, . . . , d}.

Assumptions Let ∂X denote the boundary of X . We
make following assumptions: (A1) X is [cli, cui]

d where
cli, cui ∈ R for i ∈ {1, . . . , d}; (A2) π ∈ Ca+1(X ) for
a ∈ N0; (A3) π > 0 on X ; (A4) ∇xi log π ∈ L2(X ,Π′)
for i = 1, . . . , d for all distributions Π′ on X ; (A5)
π(x)kl(x, ·) = 0 for x ∈ ∂X ; (A6) for each l ∈ {0, . . . , L},
kl ∈ Cbl+1

2 (X ) for bl ∈ N0; (A7) fl, fl−1 ∈ Hl
+,

for every l ∈ {1, . . . , L}, where Hl
+ is a RKHS with

kl+(x, x
′) := cl + kl0(x, x

′) with positive constant cl, where
kl0 is obtained by plugging kl into Equation (1); (A8)
for each l ∈ {0, . . . , L}, the fill-distance of the samples
X0

l , hl := supx∈X mini=1,...,ml
∥x − x(l,i)∥2, satisfies

hl ≤ qm
−1/d
l for a constant q > 0.

Theorem 3.3. Suppose that the assumptions A1-8 hold and
X1

l are i.i.d at each level, when X0
l are sufficiently dense,

the upper bound of the variance of MLCF estimator is given
by

VX1
0 ,...,X

1
L
[Π̂MLCF[f ]] ≤

∑L
l=0

(Clm
−τl/d

l ∥fl−fl−1∥Hl
+
)2

nl−ml
,

where τl := min{a, bl} and Cl is a constant independent of
fl, fl−1 and data points.

The proof is provided in Appendix A.2. A1 can be gen-
eralised by following Oates et al. (2019). A5 is satis-
fied by a constructive approach to ensure it holds as in
Oates et al. (2019). The mean-squared error of MLCF
is MSE(Π̂MLCF[f ]) = EX1

0 ,...,X
1
L
[(Π̂MLCF[f ] − Π[f ])2] =

VX1
0 ,...,X

1
L
[Π̂MLCF[f ]] + (EX1

0 ,...,X
1
L
[Π̂MLCF[f ]] − Π[f ])2.

Since MLCF is an unbiased estimator, MSE(Π̂MLCF[f ]) =
V[Π̂MLCF[f ]]. If we assume that the proportion ml/nl is the
same at all levels, then at each level, the convergence rate
is O(n(−τl/d)−1/2). Compare to the convergence rate of
MLMC at each level, which is O(n−1/2), the convergence
rate of MLCF is faster. The theoretical results show that
MLCF tends to converge fast when the dimension is not
very large and the integrand and the density are smooth.

4. Experimental Results
We now assess the performance of MLCF through two dif-
ferential equation examples where the implementation of the
other methods reviewed in Section 1 is either very difficult
or not feasible.
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Figure 1. Boundary-value ODE: Absolute integration error under
a budget constraint.

Boundary-value ODE The boundary-value ordinary dif-
ferential equation (ODE) example can also be viewed as a
one-dimensional elliptic partial differential equation, with
random coefficients and random forcing:

d
dz (c(z)

du
dz ) = −502x2

2 for z ∈ (0, 1)

u(0) = u(1) = 0

where c(z) = 1 + x1z, x1 ∼ N (0, 0.2) and x2 ∼ N (0, 1).
This example is a variation of the test case for MLMC
in Section 7.1 of Giles (2015). The integral of interest is
Π[f ] =

∫
X f(x)dx, where x = (x1, x2), X = R2. f(x) =∫ 1

0
u(z)dz is approximated with h

∑1/h
i=1 u(zi), where h is

the step size and each u(zi) is obtained by solving the ODE
with the finite difference method described in (Giles, 2015;
Li et al., 2023).

To compare MCLF using quasi-Monte Carlo points (QMC),
Latin hypercube sampling (LHS), and i.i.d points (IID) with
MLMC and CF using i.i.d points, we repeat the experiment
100 times. The sample size, evaluation cost at each level,
and other details can be found in Appendix B. As shown in
Figure 1, under the same evaluation cost constraint, MLCF
outperforms MLMC and CF. Figure 1 also shows that ex-
perimental designs can improve the performance of MLCF.

Bayesian Inference for Lotka-Volterra We now consider
to perform Bayesian inference for the Lotka-Volterra system
(Lotka, 1925; 1927; Volterra, 1927), which is also known as
the predator-prey model. The model usually uses a system
of differential equations:

du1(t)
dt = x1u1(t)− x2u1(t)u2(t),

du2(t)
dt = x3u1(t)u2(t)− x4u2(t),

to describe the interaction between a predator and its prey in
an ecosystem. u1(t) and u2(t) are the prey population and
the predator population at time t ∈ [0, s], for some s ∈ R+.
The initial conditions of the system are u1(0) = x5 and
u2(0) = x6. The observations u1(ti) and u2(ti) obtained
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Figure 2. Bayesian Inference for Lotka-Volterra: Absolute integra-
tion error under a budget constraint.

exhibit log-normal noise with independent standard devi-
ation x7 and x8 respectively, for all i ∈ {1, . . . ,m}. We
can re-parameterise x as in Sun et al. (2021; 2023) such
that the re-parameterised model has parameters x̃ ∈ R8.
With the Gaussian distribution priors we assign on x̃ and
the observations, we can construct the posterior distribution
of x̃. The quantity of interest Π[f ] is the posterior expec-
tation of the average prey population over the time period
between 0 and s, i.e. Π[f ] =

∫
R8 f(x̃)π(x̃)dx̃, where π is

the posterior probability distribution of x̃ and f(x̃) is the
average prey population between 0 and s with the model
parameter is x̃. f(x̃) = s−1

∫ s

0
u1(t)dt is approximated

with (s)−1h
∑s/h

i=1 u1(ti), where h is the step size and each
u1(ti) is obtained by solving the differential equations nu-
merically. The real-world dataset (Hewitt, 1921) consisting
of the population of snowshoe hares (prey) and Canadian
lynxes (predators) is used as observations for our study.
With the real-world observations, we conduct Bayesian in-
ference and use a MCMC sampler (no-U-turn sampler) in
Stan (Carpenter et al., 2017) to obtain samples.

We compare (i) MLCF with MCMC points, (ii) MLMC
framework with MCMC points (MLMCMC), (iii) CF with
MCMC points and (iv) MCMC. We repeat the experiment
50 times. The sample size, sampling and evaluation cost at
each level, and other details can be found in Appendix B.
As shown in Figure 2, under the same budget constraint,
MLCF outperforms all other methods.

5. Conclusion
In this initial work we introduced a generally applicable and
efficient method for estimating intractable integrals, mul-
tilevel control function. The performance of the MLCF is
demonstrated both theoretically, and empirically on an ODE
example and a Bayesian inference for the Lotka-Volterra
system. In the full version of this paper we will consider the
optimal sample size at each level of MLCF and include an
example based on the optimal sample size. This will allow
us to optimize the performance of MLCF.
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A. Proofs
A.1. Proof of Proposition 3.1

Proof. The unbiasedness can be obtained by taking the expectation with respect to the distribution Π of the nl −ml random
variables that constitute X1

l for l ∈ {0, . . . , L}. Firstly, we have that

E[kl0(X1
l , X

0
l )k

l
0(X

0
l , X

0
l )

−1((fl(X
0
l )− fl−1(X

0
l ))− al111ml

)] = 0,

due to the property of the Stein kernel kl0 that the Stein kernel kl0 satisfies
∫
X kl0(x, x

′)π(x)dx = 0 for all x ∈ X . Then, we
have

E[Π̂n−m
MLCF[f ]] := E[

∑L
l=0 Π̂

n−m
CF [fl − fl−1]]

= E[
∑L

l=0
1

nl−ml
111⊤{(fl(X1

l )− fl−1(X
1
l ))

− kl0(X
1
l , X

0
l )k

l
0(X

0
l , X

0
l )

−1[(fl(X
0
l )− fl−1(X

0
l ))− al111]}]

= [
∑L

l=0
1

nl−ml
111⊤{E[(fl(X1

l )− fl−1(X
1
l ))]

− E
[
kl0(X

1
l , X

0
l )k

l
0(X

0
l , X

0
l )

−1[(fl(X
0
l )− fl−1(X

0
l ))− al111]

]
}]

=
∑L

l=0 Π[fl − fl−1]

= Π[f ].

A.2. Proof of Theorem 3.3

Proof. Following the proof of Theorem 1 of (Oates et al., 2019) or Theorem 11.13 of (Wendland, 2004), under assumptions
A1-7, there exists C∗

l > 0 and h∗
l > 0, for hl < h∗

l ,

|fl(x)− fl−1(x)− sl(x)| ≤ C∗
l h

τl
l ∥fl − fl−1∥Hl

+

for all x ∈ X . Since X1
l are i.i.d at each level, combing the bound above, we have

VX1
0 ,...,X

1
L
[Π̂MLCF[f ]] = VX1

0 ,...,X
1
L
[
∑L

l=0
1

nl−ml

∑nl

i=ml+1

(
fl(x(l,i))− fl−1(x(l,i))− (sl(x(l,i))−Π[sl])

)
]

=
∑L

l=0
V[fl−fl−1−sl]

nl−ml

=
∑L

l=0
Π[(fl−fl−1−sl)

2]−Π[fl−fl−1−sl]
2

nl−ml

≤
∑L

l=0
Π[(fl−fl−1−sl)

2]
nl−ml

=
∑L

l=0
Π[|fl−fl−1−sl|2]

nl−ml

≤
∑L

l=0

(C∗
l h

τl
l ∥fl−fl−1∥Hl

+
)2

nl−ml
.

Under the assumption A8, and let Cl = qC∗
l , we can then write

VX1
0 ,...,X

1
L
[Π̂MLCF[f ]] ≤

∑L
l=0

(qC∗
l m

−τl/d

l ∥fl−fl−1∥Hl
+
)2

nl−ml

=
∑L

l=0

(Clm
−τl/d

l ∥fl−fl−1∥Hl
+
)2

nl−ml
.

B. Experimental Setup
In Section 4, the performance of MLCF is being evaluated through empirical assessments. We used different probability
distributions in these experiments including Gaussian and intractable posterior distributions. Although some of the
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assumptions are not fulfilled in these experiments, we still use these examples to study the versatility of our method across a
variety of settings. We used squared-exponential kernels in these examples.

For the ODE example, we have evaluation cost at each level C = (C0, C1, C2) = (1.22, 3.57, 11.89) (all measured in 10−3

seconds). Under the same evaluation cost constraint, we compared (1) MLCF with Quasi-Monte Carlo points (QMC), (2)
MLCF with Latin hypercube sampling (LHS), (3) MLCF with i.i.d points, (4) CF with i.i.d points, (5) MLMC with i.i.d
points. The sample size is the optimal sample size for MLMC, which is listed in Table 1.

For the Lotka-Volterra example, we have sampling and evaluation cost at each level C = (C0, C1, C2) =
(6.88, 34.41, 165.18) (all measured in 10−4 seconds). We use different step sizes h for different levels. Under the same
budget constraint, we compare (1) MLCF with MCMC points, (2) MLMC framework with MCMC points (MLMCMC), (3)
CF with MCMC points, (4) MCMC. The sample size is listed in Table 2.

Table 1. ODE example: Number of samples at level l given budget constraint T .
T l = 0 l = 1 l = 1 CF

0.30 s 70 10 2 15
0.91s 209 31 5 45
1.52s 349 52 6 75

Table 2. Lotka-Volterra: Number of samples at level l given budget constraint T .
T l = 0 l = 1 l = 1 CF MCMC

0.26 s 207 23 2 20 20
0.51s 413 47 4 40 40
0.77s 620 70 6 60 60


