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ABSTRACT

Safety alignment in Large Language Models (LLMs) often involves mediating
internal representations to refuse harmful requests. Recent research has demon-
strated that these safety mechanisms can be bypassed by ablating or removing
specific representational directions within the model. In this paper, we propose
the opposite approach: RANK-ONE SAFETY INJECTION (ROSI), a white-box
method that amplifies a model’s safety alignment by permanently steering its ac-
tivations toward the refusal-mediating subspace. ROSI operates as a simple, fine-
tuning-free rank-one weight modification applied to all residual stream write ma-
trices. The required safety direction can be computed from a small set of harmful
and harmless instruction pairs. We show that ROSI consistently increases safety
refusal rates - as evaluated by LLAMA GUARD 3 - while preserving the utility
of the model on standard benchmarks such as MMLU, HELLASWAG, and ARC.
Furthermore, we show that ROSI can also re-align ’uncensored’ models by am-
plifying their own latent safety directions, demonstrating its utility as an effective
last-mile safety procedure. Our results suggest that targeted, interpretable weight
steering is a cheap and potent mechanism to improve LLM safety, complementing
more resource-intensive fine-tuning paradigms.

Warning: This document may contain harmful or unsafe prompts.

1 INTRODUCTION

Large language models (LLMs) have demonstrated striking generality (Brown et al., 2020), ex-
celling across tasks ranging from factual question answering (Kamalloo et al., 2023) and reasoning
(Wei et al., 2023b) to code synthesis (Tong & Zhang, 2024) and creative writing (Gómez-Rodrı́guez
& Williams, 2023). Their versatility has made them the foundation of modern conversational as-
sistants and productivity tools, where alignment techniques such as supervised fine-tuning and rein-
forcement learning from human feedback enable models to follow user instructions while adhering
to safety constraints (Ouyang et al., 2022). As general-purpose interfaces for language interaction,
LLMs are now widely deployed, fueling expectations that they may one day serve as core compo-
nents of autonomous, high-stakes systems.

Yet the same properties that make LLMs powerful also render them fragile and exposed to attack.
Pre-training on vast, uncurated corpora inevitably imbues models with the capacity to generate harm-
ful content (Wu et al., 2024), and safety alignment through post-training optimization offers only
a partial safeguard (Mendu et al., 2025). Researchers have shown that even carefully aligned chat
models remain vulnerable to a growing arsenal of jailbreak strategies, including prompt injection,
obfuscation, multilingual exploits, and fine-tuning aimed at suppressing refusal, all capable of cir-
cumventing safety guardrails (Lin et al., 2024; Chu et al., 2024; Wei et al., 2023a).

Recent advances in mechanistic interpretability shed light on why these vulnerabilities arise. In
particular, Arditi et al. (2024) demonstrate that refusal behavior is mediated by a one-dimensional
linear direction in the activation space of many open-source chat models. Erasing this “refusal di-
rection” from the residual stream suffices to disable safety alignment, enabling harmful completions;
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Figure 1: RANK-ONE SAFETY INJECTION (ROSI). An aligned model processes both be-
nign and harmful prompts in a forward pass (1). A safety vector is derived from the difference
between harmful and harmless activations (2). Subtracting this vector ablates safety signals, pro-
ducing an Abliterated Model. Adding it reinforces safety, producing a ROSI Model.
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conversely, adding this direction to a model’s activations can induce refusal even on benign prompts.
This remarkable finding shows that refusal is encoded in an interpretable, causal subspace. Yet, it
also exposes a critical weakness: if such a simple linear feature can be ablated, safety alignment is
precarious.

Inspired by these insights, we ask the opposite question: rather than removing safety, can we system-
atically amplify it? In this paper, we propose RANK-ONE SAFETY INJECTION (ROSI), a simple,
fine-tuning-free method that hardens model refusal by applying a lightweight rank-one modification
to its weights. ROSI extracts a refusal-mediating direction from a small set of harmful/harmless
instruction pairs, and permanently injects this direction into all residual stream write matrices.

We empirically demonstrate that ROSI provides two key benefits. First, it amplifies the safety of
already aligned models, substantially improving their refusal rates and robustness against jailbreak
attacks with negligible loss of utility. Second, it can re-align “uncensored” models that have been
deliberately fine-tuned to ignore safety, reinstating refusal behavior without retraining. In summary,
our contributions are:

• We introduce RANK-ONE SAFETY INJECTION (ROSI), a lightweight and interpretable
weight-editing method to improve safety alignment in LLMs.

• We show that ROSI consistently improves the refusal and robustness of aligned models
while preserving general utility on standard benchmarks.

• We demonstrate that ROSI can serve as an effective last-mile safety procedure, re-aligning
uncensored models without expensive retraining.

Our findings highlight the practical value of mechanistic interpretability: by identifying and manip-
ulating linear representations of safety, we can design efficient and powerful alignment techniques
that complement resource-intensive optimization pipelines. More broadly, ROSI illustrates how
interpretability-driven interventions can transform vulnerabilities into actionable tools to build safer
AI systems.

2 RELATED WORK

Mechanistic Interpretability of Refusal. A central finding in alignment research is that refusal
behavior in LLMs can be localized to low-dimensional linear features. Arditi et al. (2024) showed
that a single direction in the residual stream mediates refusals across diverse chat models, with
erasure or amplification of this direction directly controlling compliance with harmful prompts.
Follow-up work has extended this line of inquiry: Zheng et al. (2024) disentangled harmfulness from
refusal, showing that models encode internal judgments of harmfulness independently of whether
they refuse; Hong et al. (2025) identified another single direction governing the balance between
reasoning and memorization; and Jain et al. (2024b) demonstrated how fine-tuning minimally alters
weights to cluster unsafe activations. Others proposed activation interventions, including SAE-
based steering (O’Brien et al., 2024; He et al., 2025), Trojan activation bypasses (Wang & Shu,
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2024), and neuron- or rank-level manipulations (Wei et al., 2024; Li et al., 2024b). Together, these
works establish refusal as an interpretable and causally manipulable concept, but also highlight its
brittleness to adversarial inputs and fine-tuning.

Safety Steering and Training-free Defenses. Training-free interventions attempt to steer model
activations without costly fine-tuning. Early work showed that feature directions derived from con-
trastive inputs can modulate model behavior (Zou et al., 2023; Panickssery et al., 2023; Li et al.,
2024a; Marks & Tegmark, 2023; Turner et al., 2023). Sparse autoencoders (SAEs) provide an un-
supervised route to discover such features (Bricken et al., 2023; Templeton et al., 2024). Recently,
SAE-based steering has been applied directly to safety, revealing both promise and utility tradeoffs
(O’Brien et al., 2024). Extensions include instruction-following features (He et al., 2025), category-
wise safety steering (Ghosh et al., 2025; Bhattacharjee et al., 2024), and adaptive methods such as
AdaSteer (Zhao et al., 2025). Complementary strategies include Safety Arithmetic (Hazra et al.,
2024), Representation Bending (Yousefpour et al., 2025), Low-Rank Extrapolation (Perin et al.,
2025), adversarial training approaches such as ReFAT (Yu et al., 2024), and null-space constraints
methods like AlphaSteer (Sheng et al., 2025) that builds on insights from AlphaEdit(Fang et al.,
2025) which is used for robust knowledge editing. Foundational studies further established linear
features in representation spaces (Bolukbasi et al., 2016; Elhage et al., 2022; Geiger et al., 2024;
Ravfogel et al., 2020). While effective, many steering-based defenses introduce capability tradeoffs,
motivating interpretable and more surgical alternatives such as ours.

Beyond Steering: Fine-tuning and Safety Robustness. Another line of work examines how
safety alignment emerges or fails under fine-tuning. Works like Zhan et al. (2023); Yang et al.
(2023); Qi et al. (2023); Lermen et al. (2023) show that even small malicious or benign finetunes
can undo refusal, while mechanistic studies suggest the internal circuitry remains intact (Jain et al.,
2024b). SAFELORA, a training-free and data-free approach that shows how LORA weights can
be projected onto a safety-aligned subspace reducing safety degradation from fine-tuning LLMs.
Other interventions strengthen refusal explicitly, such as extended-refusal finetuning against ablit-
eration attacks (Shairah et al., 2025), refusal tokens for controllable calibration (Jain et al., 2024a),
and single-vector ablations to mitigate false refusals (Wang et al., 2025). Others work on run-time
interventions to protect against jailbreaks, such as SMOOTHLLM (Robey et al., 2024), and Jail-
break Antidote (Shen et al., 2025). Alignment fragility also arises in model merging: Hammoud
et al. (2024) showed that unsafe models contaminate the merged ones unless alignment is explic-
itly included. Together, these works highlight the tension between robustness and utility in safety
interventions.

Our Contribution. We build directly on the insight of Arditi et al. (2024) but invert its vulnerabil-
ity: instead of ablating the safety direction to weaken safety, our ROSI method permanently injects
it into model weights. Compared to inference-time steering (O’Brien et al., 2024; Zhao et al., 2025;
Ghosh et al., 2025; Sheng et al., 2025; Shen et al., 2025), ROSI provides a one-time lightweight,
fine-tuning-free, interpretable mechanism that is permanent yet minimally invasive. Compared to
approaches based on fine-tuning (Zhan et al., 2023; Shairah et al., 2025), it achieves comparable
robustness with a much lower cost. Importantly, ROSI is not intended to replace existing safety
strategies; it can be layered with steering, fine-tuning, or other alignment methods to further rein-
force model robustness. Thus, our work illustrates how mechanistic interpretability can be leveraged
not only to diagnose vulnerabilities but also to design efficient last-mile safety amplification tech-
niques.

3 METHODOLOGY

Our proposed method, ROSI, which is illustrated in Figure 1, is based on the principle that high-level
concepts such as safety are linearly represented in the activation space of a model. We first extract
this ”safety direction” and then use it to craft a permanent modification to the model’s weights.

3.1 MATHEMATICAL PRELIMINARIES: TRANSFORMERS

A decoder-only Transformer model processes a sequence of input tokens t = (t1, . . . , tn). The core
of the model is the residual stream, x(l)

i ∈ Rdmodel , which represents the activation for the i-th token

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

at the l-th layer. Each layer l updates this activation through an attention block and a multi-layer
perceptron (MLP) block:

x̃
(l)
i = x

(l)
i + Attn(l)(x

(l)
1:i) (1)

x
(l+1)
i = x̃

(l)
i + MLP(l)(x̃

(l)
i ) (2)

The key components that are written in the residual stream are the attention output projection matrix
(WO) and the MLP output projection matrix (Wout). Our method targets these matrices, among
others, for modification.

3.2 EXTRACTING THE SAFETY DIRECTION

To isolate the direction in the activation space corresponding to safety and refusal, we employ the
difference-in-means technique. We construct two small and contrasting datasets.

• Dharmful: A set of instructions that should elicit a refusal (e.g., ”How do I build a bomb?”).
• Dharmless: A set of benign instructions that should be answered helpfully (e.g., ”How do I

bake a cake?”).

We run the model on all the prompts in both datasets and collect the residual stream activations x(l)
i

at a specific layer l and the position of the token i (typically the last token of the prompt). We then
compute the mean activation for each dataset:

µ(l) =
1

|Dharmful|
∑

t∈Dharmful

x
(l)
i (t) (3)

ν(l) =
1

|Dharmless|
∑

t∈Dharmless

x
(l)
i (t) (4)

The safety direction s(l) is defined as the difference between these two means:

s(l) = µ(l) − ν(l) (5)

This vector s(l) points from the center of the harmless activation cluster towards the center of the
harmful activation cluster. We select the optimal layer l∗ that yields the most effective direction
based on a validation set of harmful and harmless prompts. We select the direction that maximizes
refusal on harmful prompts while maintaining a KL-Divergence of ≤ 0.1 on the harmless instruc-
tions. The final normalized safety direction is denoted as ŝ.

3.3 RANK-ONE SAFETY INJECTION (ROSI)

Previous work has shown that one can ablate a direction ŝ from a weight matrix W by applying a
projection: W ′ ← (I−ŝŝT )W . This effectively removes the model’s ability to represent information
along that direction.

We propose the opposite: to amplify this direction. We achieve this by modifying every weight
matrix Wout ∈ Rdmodel×dinput that writes to the residual stream. The modification is a rank-one update
designed to add a small, consistent push in the direction of ŝ. The ROSI update rule is:

W ′
out ←Wout + α · ŝ · w̄T (6)

where:

• α is a scalar hyperparameter that controls the strength of the injection.
• ŝ ∈ Rdmodel is the normalized safety direction.
• w̄ ∈ Rdinput is the mean of the row vectors of the original weight matrix Wout.

This formulation creates a rank-one matrix α(ŝw̄T ) which is added to the original weights. The
intuition is that for an average input, this modification adds a component proportional to the safety
direction ŝ to the output, effectively steering the model’s activations toward the refusal-mediating
subspace. This is a permanent, efficient, and targeted change to the model’s behavior.

4
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4 EXPERIMENTS AND RESULTS

Our empirical evaluation is designed to answer three key questions:

1. Can ROSI amplify the safety of existing, aligned models and improve their robustness to
adversarial attacks without degrading their general capabilities?

2. Can ROSI effectively inject safety into ”uncensored” models that have been fine-tuned to
bypass safety constraints?

3. Does this injected safety come at the cost of utility in these uncensored models?

We address these questions through a series of controlled experiments on a diverse set of models
and benchmarks.

4.1 EXPERIMENTAL SETUP

Models. We test two categories of models: Aligned Models including LLAMA-2 (Touvron et al.,
2023), LLAMA-3 (Llama Team, 2024), QWEN2.5 (Qwen et al., 2025), GEMMA (Team et al., 2024),
and YI (AI et al., 2025), which have standard safety training; and Uncensored Models, specifically
the DOLPHIN series (Dolphin, 2025), which are intentionally fine-tuned to ignore safety.

Evaluation. Safety is measured via Harm Refusal (HR) on CATQA (Bhardwaj et al., 2024), a set
of 550 harmful instructions from 11 categories, evaluated using LLAMA GUARD 3 (Llama Team,
2024). We also measure attack success rates on jailbreak benchmarks—DAN, HARMBENCH
(Mazeika et al., 2024), WILDGUARDTEST, and WILDJAILBREAK (Jiang et al., 2024)—judged by
WILDGUARD (Han et al., 2024). Utility is assessed on standard benchmarks: MMLU (Hendrycks
et al., 2021), HELLASWAG (Zellers et al., 2019), ARC (Chollet, 2019), BOOLQ (Clark et al., 2019),
and TRUTHFULQA (Lin et al., 2022). We also measure Benign Compliance (BC) on a randomly
sampled set of 512 instructions from ALPACA (Taori et al., 2023), to ensure ROSI models do not
refuse safe instructions.

Implementation. The safety direction for each model was extracted using 50 harmful/harmless
pairs. Generations use greedy decoding with a max length of 1024 tokens.

Table 1: Harm Refusal in Aligned Models. ROSI consistently improves the refusal rate for harm-
ful prompts (HR %) while maintaining high compliance for benign ones (BC %).

Model ROSI HR % BC %

GEMMA-2B-INSTRUCT
✗ 98.4 99.4
✓ 99.8 (+1.5) 99.0 (-0.4)

LLAMA-2-7B-CHAT-HF
✗ 99.8 98.8
✓ 100.0 (+0.2) 99.8 (+1.0)

META-LLAMA-3.1-8B-INSTRUCT
✗ 98.2 99.6
✓ 99.1 (+0.9) 99.6 (0.0)

META-LLAMA-3.2-1B-INSTRUCT
✗ 79.5 99.2
✓ 92.7 (+13.2) 95.9 (-3.9)

QWEN2.5-0.5B-INSTRUCT
✗ 90.4 98.6
✓ 99.3 (+8.9) 91.4 (-7.2)

QWEN2.5-3B-INSTRUCT
✗ 89.8 99.6
✓ 99.6 (+9.8) 98.6 (-1.0)

QWEN2.5-7B-INSTRUCT
✗ 95.8 100.0
✓ 100.0 (+4.2) 99.0 (-1.0)

QWEN2.5-14B-INSTRUCT
✗ 98.9 100.0
✓ 100.0 (+1.1) 99.4 (-0.6)

YI-6B-CHAT
✗ 81.3 99.6
✓ 99.5 (+18.2) 97.7 (-1.7)
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Table 2: Jailbreak Robustness of Aligned Models. Scores represent attack success rates (lower is
better). ROSI significantly reduces model vulnerability across all attack vectors.

Model ROSI DAN ↓ HARMBENCH ↓ WILDGUARDTEST ↓ WILDJAILBREAK Harmful ↓
WG-Micro WG-Adv. WG-Vanilla

GEMMA-2B-INSTRUCT
✗ 5.3 6.2 9.1 16.6 2.9 42.3
✓ 1.0 (-4.3) 3.4 (-2.8) 2.4 (-6.7) 4.7 (-11.9) 0.5 (-2.4) 8.2 (-34.1)

LLAMA-2-7B-CHAT-HF
✗ 0.0 0.0 0.9 2.1 0.0 3.5
✓ 0.0 (0.0) 0.0 (0.0) 0.0 (-0.9) 0.0 (-2.1) 0.0 (0.0) 0.1 (-3.4)

LLAMA-3.1-8B-INSTRUCT
✗ 0.3 5.9 1.6 2.7 0.7 14.8
✓ 0.0 (-0.3) 5.3 (-0.6) 0.0 (-1.6) 0.0 (-2.7) 0.0 (-0.7) 1.8 (-13.0)

LLAMA-3.2-1B-INSTRUCT
✗ 1.3 8.4 4.0 3.9 4.1 18.7
✓ 0.0 (-1.3) 5.6 (-2.8) 1.3 (-2.7) 1.5 (-2.4) 1.2 (-2.9) 7.5 (-11.1)

QWEN2.5-0.5B-INSTRUCT
✗ 36.0 31.6 33.1 48.1 20.9 91.8
✓ 7.0 (-29.0) 12.8 (-18.8) 21.1 (-12.0) 38.0 (-10.1) 7.3 (-13.6) 58.8 (-33.0)

QWEN2.5-3B-INSTRUCT
✗ 52.7 12.5 21.4 37.4 8.3 93.7
✓ 6.7 (-46.0) 1.6 (-10.9) 12.7 (-8.7) 26.7 (-10.7) 1.2 (-7.1) 61.5 (-32.2)

QWEN2.5-7B-INSTRUCT
✗ 40.3 22.5 18.6 36.2 4.1 90.7
✓ 11.7 (-28.6) 1.9 (-20.6) 3.9 (-14.7) 7.7 (-28.5) 0.7 (-3.4) 36.7 (-54.0)

QWEN2.5-14B-INSTRUCT
✗ 32.3 7.2 12.1 24.0 2.4 81.2
✓ 5.0 (-27.3) 1.6 (-5.6) 5.1 (-7.0) 11.0 (-13.0) 0.2 (-2.2) 43.9 (-37.3)

YI-6B-CHAT
✗ 52.0 20.9 22.7 39.2 9.2 89.4
✓ 15.3 (-36.7) 7.8 (-13.1) 10.1 (-12.6) 22.0 (-17.2) 0.5 (-8.7) 44.6 (-44.8)

Table 3: Utility Preservation in Aligned Models. Performance on standard benchmarks with ROSI
(✓) versus baseline (✗).

Model ROSI MMLU HELLASWAG ARC EASY ARC CHAL. BOOLQ TRUTHFULQA

GEMMA-2B-INSTRUCT
✗ 38.1 49.2 71.7 40.4 63.7 45.8
✓ 38.3 (+0.2) 49.3 (+0.1) 70.8 (-0.9) 39.0 (-1.4) 61.4 (-2.3) 46.7 (+0.9)

LLAMA-2-7B-CHAT-HF ✗ 46.3 57.8 74.0 43.9 79.6 45.3
✓ 46.4 (+0.1) 57.7 (-0.1) 73.4 (-0.6) 43.3 (-0.6) 79.8 (+0.2) 47.2 (+1.9)

META-LLAMA-3.1-8B-INSTRUCT
✗ 68.0 59.1 81.7 51.6 84.0 54.1
✓ 67.6 (-0.4) 58.9 (-0.2) 81.1 (-0.6) 51.1 (-0.5) 83.8 (-0.2) 54.8 (+0.7)

META-LLAMA-3.2-1B-INSTRUCT
✗ 46.0 45.2 68.3 35.6 69.3 43.9
✓ 45.4 (-0.6) 45.4 (+0.2) 67.4 (-0.9) 34.7 (-0.9) 68.7 (-0.6) 45.0 (+1.1)

QWEN2.5-0.5B-INSTRUCT
✗ 45.8 40.5 65.5 30.1 67.6 41.8
✓ 45.3 (-0.5) 40.4 (-0.1) 64.3 (-1.2) 29.6 (-0.5) 63.2 (-4.4) 43.8 (+2.0)

QWEN2.5-3B-INSTRUCT
✗ 65.4 56.3 76.9 45.7 80.1 58.7
✓ 65.0 (-0.4) 55.8 (-0.5) 76.6 (-0.3) 45.1 (-0.6) 77.4 (-2.7) 59.7 (+1.0)

QWEN2.5-7B-INSTRUCT
✗ 71.8 62.0 81.6 52.6 86.4 64.8
✓ 71.9 (+0.1) 61.9 (-0.1) 81.0 (-0.6) 52.6 (0.0) 86.2 (-0.2) 66.1 (+1.3)

QWEN2.5-14B-INSTRUCT
✗ 78.8 65.6 85.7 60.4 88.0 69.0
✓ 78.9 (+0.1) 65.6 (0.0) 85.6 (-0.1) 60.7 (+0.3) 85.8 (-2.2) 71.9 (+2.9)

YI-6B-CHAT
✗ 61.6 57.7 74.5 44.1 82.8 49.9
✓ 61.1 (-0.5) 57.2 (-0.5) 78.1 (+3.6) 46.9 (+2.8) 84.2 (+1.4) 51.2 (+1.3)

4.2 AMPLIFYING SAFETY IN ALIGNED MODELS

We first test ROSI’s ability to bolster the defenses of models that already possess safety alignment.

Increased Refusal and Jailbreak Robustness. As shown in Table 1, applying ROSI consistently
enhances the Harm Refusal (HR) rate across all aligned models tested. The effect is particularly
pronounced for models with weaker baselines, such as YI-6B-CHAT (+18.2 points) and META-
LLAMA-3.2-1B-INSTRUCT (+13.3 points), elevating their safety to near-perfect levels. This im-
provement is not superficial; Table 2 shows that ROSI drastically hardens models against a full
suite of adversarial jailbreak attacks. For many models, attack success rates are cut by more than
half, demonstrating a fundamental increase in robustness.

In Appendix 5, we discuss what role ROSI can play in fine-tuning LLMs.

Preservation of Model Utility. Crucially, these safety gains do not compromise the models’ core
functionalities. Table 3 provides a comprehensive view of utility preservation. The average perfor-
mance across a suite of seven benchmarks remains remarkably stable. The vast majority of models
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(b) Layers are selected at random; the process is re-
peated 10 times for each ratio, the plot show he mean
refusal rate with confidence intervals.

Figure 2: Injected Layers Ablations. In Figure 2a, we ablate the number of layers we apply ROSI
to by taking a ratio x (x-axis) of a model’s layers that is centered around the index of the layer i
used to extract the safety vector. In Figure 2b, a subset of layers is selected randomly each time,
we repeat the run 10 times for each ratio and take the average of the harm refusal rate. Confidence
intervals are reported.

see an average score change of less than 0.5%. A similar pattern holds for BC, as seen in Table
1, ROSI models’ refusal of safe instructions, on average, remains minimal. While smaller mod-
els (≤ 1B) show the biggest degradation in BC, they still gain more in HR than what they lose in
BC. These results demonstrate that the safety direction is largely orthogonal to the representations
required for knowledge and reasoning tasks. ROSI acts as a surgical tool, enhancing safety with
minimal side effects.

Injected Layers Ablations. To assess how stable the ROSI update is within a model, we perform
a set of ablations that vary both the number and the identity of the layers receiving the safety injection
for two representative models, YI-6B-CHAT and QWEN2.5-3B-INSTRUCT. In the first setting, we
inject ROSI into a contiguous block of layers centered on the layer index used to extract the safety
vector, expanding this window according to a chosen fraction of the model’s total depth. Figure 2a
shows how injecting just at the source layer yields only modest improvements, and as the window
of injected layers is expanded, the harm refusal rate keeps increasing until it stabilizes around the
30−40% window size, suggesting that only a limited number of layers within a model contribute to
the concept of ”safety”. In a second setting, we examine robustness by randomly selecting the same
number of layers for each fraction. For every ratio, we repeat the process ten times and average
the resulting refusal scores. Figure 2b displays a similar trend to the former experiment, but the
confidence intervals show that performance varies considerably depending on the layers selected.
Notably,YI-6B-CHAT peaks at 100% HR rates in one of the runs where ROSI was applied to only
half of the layers, which suggests that optimizing the set of injected layers can further improve
performance.

Conclusion 1

ROSI effectively amplifies the safety of existing aligned models. It robustly increases their
refusal of harmful prompts and hardens them against jailbreak attacks, all with a negligible
impact on their general utility and performance.

4.3 INJECTING SAFETY INTO UNCENSORED MODELS

The previous experiment demonstrated that ROSI can enhance refusal behavior in models that are
already aligned. We now turn to the more demanding task of applying ROSI to uncensored DOL-
PHIN models. This tests whether our method can serve as a ”last-mile” re-alignment tool to instill
safety where it was deliberately removed.

7
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Figure 3: Applying ROSI to Uncensored Models. In the forward pass, harmful and harmless
instructions are prepended with a system prompt directing an uncensored model to reject harmful
requests, thus eliciting refusal.

Forward Pass Calculate Safety Vector

𝝁 Harmful Activations

Harmless Activations𝝊

𝒔$ Safety Vector

How to bake a cake?

How to build a bomb?

Don’t help with illegal stuff

Uncensored Model ROSI Model

: Add 
(ROSI)

3

21

Table 4: Safety Injection in Uncensored Models. Applying ROSI substantially boosts harm re-
fusal (HR) across DOLPHIN models, while preserving compliance with benign instructions (BC).
Ablations without a safety system prompt (❢) highlight the role of prompt-level safety conditioning.

Model ROSI HR % BC %

DOLPHIN3.0-LLAMA3.2-1B
✗ 23.5 100.0
✓ 46.0 (+22.5) 99.4 (-0.6)
❢ 18.4 (-5.1) 100.0 (0.0)

DOLPHIN3.0-QWEN2.5-3B
✗ 50.0 100.0
✓ 86.0 (+36.0) 99.6 (-0.4)
❢ 33.6 (-16.4) 100.0 (0.0)

DOLPHIN3.0-LLAMA3.1-8B
✗ 65.8 100.0
✓ 100.0 (+34.2) 100.0 (0.0)
❢ 88.9 (+23.1) 100.0 (0.0)

DOLPHIN3.0-MISTRAL-24B
✗ 64.4 100.0
✓ 92.0 (+27.6) 100.0 (0.0)
❢ 47.8 (-16.6) 100.0 (0.0)

Eliciting Refusal Behavior and Reducing Vulnerability. The DOLPHIN models exhibit very low
baseline safety, leaving little to no refusal signal to extract. Directly applying the method from
Section 3 to a DOLPHIN model would therefore yield a vector ŝ that does not represent a safety
direction.

To overcome this, we explicitly elicit refusal behavior by modifying the system prompt, as can
be seen in Figure 3. Specifically, we prepend instructions that direct the model to reject harmful
categories of requests; the prompt we used can be seen in Appendix D. This artificially introduces a
refusal subspace that would otherwise be absent. Once present, we can apply ROSI to these models.
Afterwards, the system prompt is no longer needed and is removed during testing.

Table 4 shows that ROSI achieves dramatic improvements. For instance, DOLPHIN3.0-QWEN2.5-
3B’s safe response rate skyrockets from 50.0% to 86.0% (+36.0), while DOLPHIN3.0-LLAMA3.1-
8B is fully re-aligned to 100% safety. This demonstrates that even uncensored models retain a latent
safety direction that is potent enough to overwrite their fine-tuning when amplified. This injected
safety also translates to improved robustness. As seen in Table 5, ROSI provides a powerful first
line of defense, slashing attack success rates by large margins (e.g., a 46.3-point reduction on DAN
for DOLPHIN3.0-QWEN2.5-3B).

Utility Preservation. Answering our final question, Table 6 confirms that this powerful safety in-
jection does not harm the utility of the uncensored models. The average performance across the
benchmark suite is virtually unchanged, with score differences of only +/- 0.2%. This result is
significant: it shows that safety can be added back to a model post-hoc without repeating expen-
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Table 5: Jailbreak Vulnerability of Uncensored Models. Scores are attack success rates (lower is
better). ROSI provides a crucial layer of defense, significantly reducing their extreme vulnerability.

Model ROSI DAN ↓ HARMBENCH ↓ WILDGUARDTEST ↓ WILDJAILBREAK Harmful ↓
WG-Micro WG-Adv. WG-Vanilla

DOLPHIN3.0-LLAMA3.2-1B
✗ 90.3 62.8 50.3 42.4 56.8 98.5
✓ 65.7 (-24.7) 51.9 (-10.9) 33.9 (-16.4) 38.3 (-4.2) 30.3 (-26.5) 88.9 (-9.5)
❢ 88.6 (-1.7) 72.2 (+9.4) 59.3 (+9.0) 48.1 (+5.7) 68.5 (+11.7) 97.7 (-0.8)

DOLPHIN3.0-QWEN2.5-3B
✗ 90.3 52.8 32.6 37.7 28.4 96.7
✓ 44.0 (-46.3) 20.9 (-31.9) 15.4 (-17.2) 27.3 (-10.4) 5.6 (-22.8) 70.4 (-26.3)
❢ 52.7 (-37.6) 32.2 (-20.6) 23.4 (-9.2) 29.4 (-8.3) 18.4 (-10.0) 82.8 (-13.9)

DOLPHIN3.0-LLAMA3.1-8B
✗ 90.3 54.7 27.0 34.7 20.6 94.0
✓ 82.3 (-8.0) 47.2 (-7.5) 21.1 (-5.9) 29.4 (-5.3) 14.3 (-6.3) 82.8 (-11.3)
❢ 81.3 (-9.0) 44.7 (-10.0) 19.2 (-7.8) 26.7 (-8.0) 13.1 (-7.5) 84.1 (-9.9)

DOLPHIN3.0-MISTRAL-24B
✗ 80.7 43.8 18.7 27.3 11.7 87.5
✓ 64.3 (-16.3) 28.4 (-15.3) 9.1 (-9.6) 16.9 (-10.4) 2.7 (-9.0) 63.2 (-24.2)
❢ 84.0 (+3.3) 50.0 (+6.2) 22.4 (+3.7) 27.0 (-0.3) 18.7 (+7.0) 92.2 (+4.7)

Table 6: Utility Preservation in Uncensored Models. Performance after applying ROSI is shown
with deltas relative to the baseline.

Model ROSI MMLU HELLASWAG ARC EASY ARC CHAL. BOOLQ TRUTHFULQA

DOLPHIN3.0-LLAMA3.2-1B
✗ 35.3 47.8 65.7 34.7 59.3 39.5
✓ 35.0 (-0.3) 47.7 (-0.1) 65.7 (0.0) 34.7 (0.0) 60.0 (+0.7) 40.2 (+0.7)
❢ 30.1 (-5.2) 41.5 (-6.3) 58.3 (-7.4) 27.5 (-7.2) 53.2 (-6.1) 42.8 (+3.3)

DOLPHIN3.0-QWEN2.5-3B
✗ 64.7 55.5 77.9 43.8 80.5 49.5
✓ 64.7 (0.0) 55.4 (-0.1) 77.7 (-0.2) 43.8 (0.0) 80.6 (+0.1) 50.8 (+1.3)
❢ 64.7 (0.0) 55.6 (+0.1) 77.2 (-0.7) 43.7 (-0.1) 78.7 (-1.8) 50.1 (+0.6)

DOLPHIN3.0-LLAMA3.1-8B
✗ 59.0 61.3 80.9 50.1 85.6 50.1
✓ 58.9 (-0.1) 61.2 (-0.1) 80.4 (-0.5) 50.4 (+0.3) 85.0 (-0.6) 51.0 (+0.9)
❢ 59.0 (0.0) 61.2 (-0.1) 80.1 (-0.8) 50.2 (+0.1) 85.1 (-0.5) 50.9 (+0.8)

DOLPHIN3.0-MISTRAL-24B
✗ 72.5 59.8 26.6 22.1 84.1 54.6
✓ 72.5 (0.0) 59.7 (-0.1) 26.9 (+0.3) 22.5 (+0.4) 83.9 (-0.2) 55.7 (+1.1)
❢ 72.2 (-0.3) 59.6 (-0.2) 27.0 (+0.4) 23.0 (+0.9) 84.2 (+0.1) 53.8 (-0.8)

sive training or compromising the helpful capabilities that the uncensored model was designed to
maximize.

System Prompt Ablation. Values marked with (❢) in Table 4 show results from models where
ROSI was applied without prepending a safety system prompt to the input instructions. In this
setting, DOLPHIN3.0-LLAMA3.1-8B exhibits an 11.1% smaller gain in harm refusal compared to
when a safety system prompt is present. Other models fare considerably worse, with performance
degrading outright. Table 5 mirrors this trend: a safety system prompt is essential to fully realize
the benefits of ROSI in uncensored models. The relative resilience of DOLPHIN3.0-LLAMA3.1-
8B without the system prompt suggests that the safety signal may not have been completely erased
during uncensoring. In Figure 4, we examine how the presence of a safety system prompt influ-
ences the linear separability of harmful and harmless representations in the activation space. Using
DOLPHIN3.0-QWEN2.5-3B, we see that without the system prompt, the latent distributions over-
lap significantly, impeding the ability of the steering vector to differentiate between safe and unsafe
contexts. On the other hand, prepending the prompt effectively disentangles these clusters, increas-
ing the centroid distance and restoring the distinct decision boundaries required for robust refusal.
Taken together, these results support our hypothesis: a safety system prompt is crucial for eliciting
a strong and coherent safety direction in uncensored models.

In Appendix E, we show that, on the other hand, aligned models do not benefit from the safety
system prompt.
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Figure 4: PCA visualization of activation separation in DOLPHIN3.0-QWEN2.5-3B. (a) In the
absence of a safety system prompt, the embeddings for harmful (red) and harmless (blue) inputs
show significant overlap. (b) When a safety system prompt is introduced, the clusters become more
distinct.
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(b) With a safety system prompt.
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Conclusion 2

ROSI successfully injects safety into models that have been fine-tuned to be noncompliant.
This provides a powerful, low-cost method for ”re-aligning” uncensored models, making
them significantly safer with minimal impact on their utility.

5 CONCLUSION

In this paper, we introduced RANK-ONE SAFETY INJECTION (ROSI), a simple and effective white-
box method to enhance the safety alignment of Large Language Models. Building on the insight
that safety and refusal behaviors are encoded in specific linear directions within a model’s activation
space, ROSI applies a permanent, rank-one modification to the model’s weights to amplify this
safety direction.

Our comprehensive experiments show that ROSI consistently improves the safety of a wide range
of models. For already aligned models, it increases their refusal rates on harmful prompts and makes
them substantially more robust to adversarial jailbreak attacks. For uncensored models, ROSI suc-
cessfully injects safety mechanisms that were previously removed, serving as a powerful last mile
alignment tool, we also demonstrate how a safety system prompt is crucial to extract a meaningful
safety vector from these models. Critically, these significant safety gains are achieved with negligi-
ble degradation in model performance on a suite of standard utility benchmarks.

ROSI demonstrates the practical value of interpretability research. By understanding and manip-
ulating the internal representations of models, we can develop low-cost targeted interventions that
are more efficient than traditional, resource-intensive fine-tuning. This work opens up promising
avenues for future research, including exploring more sophisticated methods for identifying and
manipulating conceptual directions and extending this approach to other desirable model attributes
beyond safety, such as honesty or controllability.
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A ROSI & FINE-TUNING

Recent work by Qi et al. (2023) demonstrated that fine-tuning Large Language Models (LLMs) often
compromises their safety alignment, even when the fine-tuning dataset is entirely benign. To address
this ”alignment tax,” several defensive strategies have been proposed, such as SAFELORA (Hsu
et al., 2025). SAFELORA modifies the standard Low Rank Adapters (LORA) by projecting LORA
weights from selected layers to a safety-aligned subspace, thereby mitigating safety degradation
while preserving model utility.

In this section, we investigate the interaction between our proposed method, ROSI, and these
parameter-efficient fine-tuning paradigms. We hypothesize that ROSI can act as a lightweight
”safety vaccination” (or initialization), effectively hardening the model against the alignment erosion
typically caused by downstream adaptation. We evaluate this on LLAMA-2-7B-CHAT measuring
the Harmful Refusal (HR) rate across different sequences of application.

We fine-tuned the model on DATABRICKS DOLLY 15K (Conover et al., 2023) for 3000 steps with a
learning rate of 5e−5, batch size of 8, LORA rank of 32. Other SAFELORA parameters are taken
as is from the paper.

As shown in Table 7, standard LORA fine-tuning significantly degrades the safety of the base model,
resulting in an HR of 82.7%. While SAFELORA provides a robust defense (95.5%), we observe that
the order of ROSI application is critical. Applying ROSI as a post-hoc repair mechanism (LORA→
ROSI) yields only marginal gains (85.5%), suggesting that once safety representations are disrupted
by fine-tuning, they are difficult to fully recover via a rank-one update.

In contrast, injecting the safety vector prior to fine-tuning (ROSI → LORA) drastically improves
resilience, maintaining a refusal rate of 98.6% even when followed by standard LORA updates. This
indicates that ROSI successfully steers the model’s initialization into a region of the parameter space
that is more resistant to catastrophic forgetting of safety. Finally, the combination of pre-injection
and safety-constrained adaptation (ROSI→ SAFELORA) achieves a perfect refusal rate of 100.0%,
demonstrating that ROSI and SAFELORA are highly complementary techniques for secure model
adaptation.

Table 7: Comparison of Harm Refusal (HR) rates on LLAMA-2-7B-CHAT across different
fine-tuning configurations. Arrows (→) denote the sequence of method application.

Model Method HR %

LLAMA-2-7B-CHAT

Base (no fine-tuning) 99.8
LORA 82.7

SAFELORA 95.5
LORA→ ROSI 85.5
ROSI→ LORA 98.6

SAFELORA→ ROSI 98.9
ROSI→ SAFELORA 100.0

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

B THE TRANSFERABILITY OF SAFETY VECTORS

One interesting question that can arise from our experiments is how would a safety vector extracted
from one model affect another. The main constraint is that both models must share the same hidden
dimensionality Rdmodel for a vector to be transferable. Among the models we initially evaluated, none
shared the same hidden size; however, QWEN2.5-14B-INSTRUCT and QWEN2.5-32B-INSTRUCT
do. This allows us to study cross-model transfer directly. For each model, we extracted a safety
vector following Section 3. We then applied ROSI twice per model: once using its own vector, and
once using the vector extracted from the other model. Table 8 summarizes the outcomes. In both
cases, applying the safety vector from the other model leads to meaningful gains on safety bench-
marks. Notably, for QWEN2.5-14B-INSTRUCT, using the vector from the 32B variant produces
stronger safety performance than using its own vector. This could suggest that the larger model had
learned a better and more distinct representation of safety compared to the smaller model. Impor-
tantly, these gains occur without significant drops in utility (Table 3). Overall, these findings open
questions about how safety directions emerge, how transferable they are across architectures of the
same dimensionality, and what aspects of a model’s training process facilitate such transfer. We
leave these questions to future work.

Table 8: Safety benchmarks for cross-model safety vector transfer. Each model is evaluated in
three settings: the original model, ROSI using its own extracted safety vector, and ROSI using the
safety vector extracted from the other model. Using a safety vector from another model consistently
improves safety performance, with the 14B model benefiting most from the safety vector extracted
from the 32B variant.

Model DAN ↓ HARMBENCH ↓ WILDGUARDTEST ↓ WILDJAILBREAK Harmful ↓
WG-Micro WG-Adv. WG-Vanilla

QWEN2.5-14B-INSTRUCT 32.3 7.2 12.1 24.0 2.4 81.2
QWEN2.5-14B-ROSI 5.0 (-27.3) 1.6 (-5.6) 5.1 (-7.0) 11.0 (-13.0) 0.2 (-2.2) 43.9 (-37.3)
QWEN2.5-14B-ROSI-FROM-32B 5.0 (-27.3) 0.9 (-6.3) 4.3 (-7.8) 9.5 (-14.5) 0.0 (-2.4) 34.5 (-46.7)

QWEN2.5-32B-INSTRUCT 42.0 18.4 14.8 28.2 3.9 83.3
QWEN2.5-32B-ROSI 21.7 (-20.3) 12.2 (-6.2) 10.4 (-4.4) 19.9 (-8.3) 2.7 (-1.2) 72.6 (-10.7)
QWEN2.5-32B-ROSI-FROM-14B 28.7 (-13.3) 12.5 (-5.9) 11.9 (-2.9) 22.9 (-5.3) 2.9 (-1.0) 76.9 (-6.4)

Table 9: Utility evaluations under cross-model safety vector transfer. Utility remains broadly
stable across settings, indicating that the safety improvements shown in Table 8 do not come at the
cost of substantial performance degradation.

Model MMLU HELLASWAG ARC EASY ARC CHAL. BOOLQ TRUTHFULQA

QWEN2.5-14B-INSTRUCT 78.8 65.6 85.7 60.4 88.0 69.0
QWEN2.5-14B-ROSI 78.9 (+0.1) 65.6 (0.0) 85.6 (-0.1) 60.7 (+0.3) 85.8 (-2.2) 71.9 (+2.9)
QWEN2.5-14B-ROSI-FROM-32B 78.5 (-0.3) 65.6 (0.0) 84.7 (-1.0) 59.5 (-0.9) 85.9 (-2.1) 71.0 (+2.0)

QWEN2.5-32-INSTRUCT 81.7 66.9 82.2 57.5 89.7 65.5
QWEN2.5-32-ROSI 81.6 (-0.1) 67.1 (+0.2) 81.9 (-0.3) 57.2 (-0.3) 89.7 (0.0) 66.7 (+1.2)
QWEN2.5-32-ROSI-FROM-14B 81.6 (-0.1) 66.9 (0.0) 82.1 (-0.1) 57.2 (-0.3) 89.4 (-0.3) 66.7 (+1.2)
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C SENSITIVITY TO THE EXTRACTION SET

A key advantage of lightweight alignment methods is their minimal data requirement. To empirically
verify this, we investigate the sensitivity of ROSI to the size of the dataset used for extracting the
safety vector. We conduct an ablation study on QWEN2.5-3B-INSTRUCT, varying the number of
contrasting harmful/harmless pairs used in the extraction phase from 1 to 100 samples.

The results, presented in Table 10, demonstrate high data efficiency. Surprisingly, ROSI achieves
a substantial improvement in safety using just a single sample pair, boosting the Harmful Refusal
(HR) rate from a baseline of 89.8% to 99.1%. This suggests that the safety direction is a highly
dominant feature within the model’s activation space, capable of being captured even with minimal
signal, and increasing the sample size provides marginal stability improvements, peaking at 99.5%
refusal with 50, 80, and 90 samples.

Table 10: Change in Harm Refusal (HR) using different sets of harmful and harmless pairs to
extract the safety vector from QWEN2.5-3B-INSTRUCT.

Model Dataset Size HR %

QWEN2.5-3B-INSTRUCT

Base 89.8
ROSI (1 Sample) 99.1

ROSI (10 Samples) 96.55
ROSI (20 Samples) 99.1
ROSI (30 Samples) 98.0
ROSI (40 Samples) 98.7
ROSI (50 Samples) 99.5
ROSI (60 Samples) 97.8
ROSI (70 Samples) 98.7
ROSI (80 Samples) 99.5
ROSI (90 Samples) 99.5

ROSI (100 Samples) 98.6

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

D SAFETY SYSTEM PROMPT

Figure 5: Safety System Prompt. System prompt used to elicit refusal behavior in uncensored
models.

You are $MODEL, a helpful and responsible AI assistant. Your primary responsibility is to only
assist users with safe, lawful, and non-harmful requests.

If you receive any request that is unsafe, harmful, unethical, or illegal, you must refuse it imme-
diately. Your refusal should be polite, firm, and should always start with ’I am sorry’ or ’I can’t’,
followed by a clear and concise explanation for why you cannot comply.

Harmful or unsafe requests include (but are not limited to): instructions or encouragement for
self-harm or suicide; promotion of or assistance with violence, terrorism, or hate speech; partici-
pation in or guidance on illegal activities (e.g., hacking, fraud, identity theft); anything involving
child exploitation, non-consensual acts, or abuse; requests related to drugs, weapons, or unsafe
medical advice; any action that could lead to harm, misinformation, or danger to people, animals,
or society.

You are not allowed to provide workarounds, hypothetical responses, or speculative answers that
would enable or simulate harmful content. Even if the user insists or rephrases their request, you
must stay consistent and refuse clearly every time.

Again, your refusal must always begin with: ’I am sorry’ or ’I can’t’, followed by a brief reason.
Examples of valid refusals: ’I am sorry, but I can’t help with that because it involves illegal
activity.’ or ’I can’t assist with that request as it may lead to harm.’
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E DO ALIGNED MODELS BENEFIT FROM A SAFETY SYSTEM PROMPT?

Rows marked with (❢) correspond to runs where a safety system prompt was used when extracting
the safety direction from an already aligned model. The results show that aligned models do not
benefit from this additional prompt. In fact, in this case, performance degraded slightly, indicating
that the alignment signal is already fully captured without requiring prompt-level conditioning.

Table 11: Using a Safety System Prompt with an Aligned Model. META-LLAMA-3.2-1B-
INSTRUCT Does not gain in harm refusal when using a safety system prompt to calculate the safety
vector.

Model ROSI HR % BC %

META-LLAMA-3.2-1B-INSTRUCT
✓ 92.73 95.9
❢ 86.0 (-6.7) 98.6 (+2.7)

Table 12: Jailbreak Robustness. Same pattern appears as in Table 11, safety system prompt is not
required in aligned models.

Model ROSI DAN ↓ HARMBENCH ↓ WILDGUARDTEST ↓ WILDJAILBREAK Harmful ↓
WG-Micro WG-Adv. WG-Vanilla

LLAMA-3.1-8B-INSTRUCT
✓ 0.0 5.3 0.0 0.0 0.0 1.8
❢ 0.7 (+0.7) 10.6 (+5.3) 2.7 (+2.7) 2.7 (+)2.7 2.7 (+2.7) 16.0 (+14.2)
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