

000
 001
 002
 003
 004
 005
 006
 007
 008 TURNING THE SPELL AROUND: LIGHTWEIGHT
 009 ALIGNMENT AMPLIFICATION VIA RANK-ONE SAFETY
 010 INJECTION
 011
 012
 013

008 **Anonymous authors**

009 Paper under double-blind review

012 ABSTRACT
 013

014 Safety alignment in Large Language Models (LLMs) often involves mediating
 015 internal representations to refuse harmful requests. Recent research has demon-
 016 strated that these safety mechanisms can be bypassed by ablating or removing
 017 specific representational directions within the model. In this paper, we propose
 018 the opposite approach: RANK-ONE SAFETY INJECTION (ROSI), a white-box
 019 method that *amplifies* a model’s safety alignment by permanently steering its ac-
 020 tivations toward the refusal-mediating subspace. ROSI operates as a simple, fine-
 021 tuning-free rank-one weight modification applied to all residual stream write ma-
 022 trices. The required safety direction can be computed from a small set of harmful
 023 and harmless instruction pairs. We show that ROSI consistently increases safety
 024 refusal rates - as evaluated by LLAMA GUARD 3 - while preserving the utility
 025 of the model on standard benchmarks such as MMLU, HELLASWAG, and ARC.
 026 Furthermore, we show that ROSI can also re-align ‘uncensored’ models by am-
 027 plifying their own latent safety directions, demonstrating its utility as an effective
 028 last-mile safety procedure. Our results suggest that targeted, interpretable weight
 029 steering is a cheap and potent mechanism to improve LLM safety, complementing
 030 more resource-intensive fine-tuning paradigms.

031 *Warning: This document may contain harmful or unsafe prompts.*

032
 033 1 INTRODUCTION
 034

035 Large language models (LLMs) have demonstrated striking generality (Brown et al., 2020), ex-
 036 ceelling across tasks ranging from factual question answering (Kamalloo et al., 2023) and reasoning
 037 (Wei et al., 2023b) to code synthesis (Tong & Zhang, 2024) and creative writing (Gómez-Rodríguez
 038 & Williams, 2023). Their versatility has made them the foundation of modern conversational as-
 039 sistant and productivity tools, where alignment techniques such as supervised fine-tuning and rein-
 040 forcement learning from human feedback enable models to follow user instructions while adhering
 041 to safety constraints (Ouyang et al., 2022). As general-purpose interfaces for language interaction,
 042 LLMs are now widely deployed, fueling expectations that they may one day serve as core compo-
 043 nents of autonomous, high-stakes systems.

044 Yet the same properties that make LLMs powerful also render them fragile and exposed to attack.
 045 Pre-training on vast, uncurated corpora inevitably imbues models with the capacity to generate harm-
 046 ful content (Wu et al., 2024), and safety alignment through post-training optimization offers only
 047 a partial safeguard (Mendu et al., 2025). Researchers have shown that even carefully aligned chat
 048 models remain vulnerable to a growing arsenal of jailbreak strategies, including prompt injection,
 049 obfuscation, multilingual exploits, and fine-tuning aimed at suppressing refusal, all capable of cir-
 050 cumventing safety guardrails (Lin et al., 2024; Chu et al., 2024; Wei et al., 2023a).

051 Recent advances in mechanistic interpretability shed light on why these vulnerabilities arise. In
 052 particular, Ardit et al. (2024) demonstrate that refusal behavior is mediated by a *one-dimensional*
 053 *linear direction* in the activation space of many open-source chat models. Erasing this “refusal di-
 054 rection” from the residual stream suffices to disable safety alignment, enabling harmful comple-
 055 tions;

054
 055
 056
 057
 058
 059
 060
 061
 062
 063
 064
 065
 066
 067
 068
 069
 070
 071
 072
 073
 074
 075
 076
 077
 078
 079
 080
 081
 082
 083
 084
 085
 086
 087
 088
 089
 090
 091
 092
 093
 094
 095
 096
 097
 098
 099
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
 1000
 1001
 1002
 1003
 1004
 1005
 1006
 1007
 1008
 1009
 1010
 1011
 1012
 1013
 1014
 1015
 1016
 1017
 1018
 1019
 1020
 1021
 1022
 1023
 1024
 1025
 1026
 1027
 1028
 1029
 1030
 1031
 1032
 1033
 1034
 1035
 1036
 1037
 1038
 1039
 1040
 1041
 1042
 1043
 1044
 1045
 1046
 1047
 1048
 1049
 1050
 1051
 1052
 1053
 1054
 1055
 1056
 1057
 1058
 1059
 1060
 1061
 1062
 1063
 1064
 1065
 1066
 1067
 1068
 1069
 1070
 1071
 1072
 1073
 1074
 1075
 1076
 1077
 1078
 1079
 1080
 1081
 1082
 1083
 1084
 1085
 1086
 1087
 1088
 1089
 1090
 1091
 1092
 1093
 1094
 1095
 1096
 1097
 1098
 1099
 1100
 1101
 1102
 1103
 1104
 1105
 1106
 1107
 1108
 1109
 1110
 1111
 1112
 1113
 1114
 1115
 1116
 1117
 1118
 1119
 1120
 1121
 1122
 1123
 1124
 1125
 1126
 1127
 1128
 1129
 1130
 1131
 1132
 1133
 1134
 1135
 1136
 1137
 1138
 1139
 1140
 1141
 1142
 1143
 1144
 1145
 1146
 1147
 1148
 1149
 1150
 1151
 1152
 1153
 1154
 1155
 1156
 1157
 1158
 1159
 1160
 1161
 1162
 1163
 1164
 1165
 1166
 1167
 1168
 1169
 1170
 1171
 1172
 1173
 1174
 1175
 1176
 1177
 1178
 1179
 1180
 1181
 1182
 1183
 1184
 1185
 1186
 1187
 1188
 1189
 1190
 1191
 1192
 1193
 1194
 1195
 1196
 1197
 1198
 1199
 1200
 1201
 1202
 1203
 1204
 1205
 1206
 1207
 1208
 1209
 1210
 1211
 1212
 1213
 1214
 1215
 1216
 1217
 1218
 1219
 1220
 1221
 1222
 1223
 1224
 1225
 1226
 1227
 1228
 1229
 1230
 1231
 1232
 1233
 1234
 1235
 1236
 1237
 1238
 1239
 1240
 1241
 1242
 1243
 1244
 1245
 1246
 1247
 1248
 1249
 1250
 1251
 1252
 1253
 1254
 1255
 1256
 1257
 1258
 1259
 1260
 1261
 1262
 1263
 1264
 1265
 1266
 1267
 1268
 1269
 1270
 1271
 1272
 1273
 1274
 1275
 1276
 1277
 1278
 1279
 1280
 1281
 1282
 1283
 1284
 1285
 1286
 1287
 1288
 1289
 1290
 1291
 1292
 1293
 1294
 1295
 1296
 1297
 1298
 1299
 1300
 1301
 1302
 1303
 1304
 1305
 1306
 1307
 1308
 1309
 1310
 1311
 1312
 1313
 1314
 1315
 1316
 1317
 1318
 1319
 1320
 1321
 1322
 1323
 1324
 1325
 1326
 1327
 1328
 1329
 1330
 1331
 1332
 1333
 1334
 1335
 1336
 1337
 1338
 1339
 1340
 1341
 1342
 1343
 1344
 1345
 1346
 1347
 1348
 1349
 1350
 1351
 1352
 1353
 1354
 1355
 1356
 1357
 1358
 1359
 1360
 1361
 1362
 1363
 1364
 1365
 1366
 1367
 1368
 1369
 1370
 1371
 1372
 1373
 1374
 1375
 1376
 1377
 1378
 1379
 1380
 1381
 1382
 1383
 1384
 1385
 1386
 1387
 1388
 1389
 1390
 1391
 1392
 1393
 1394
 1395
 1396
 1397
 1398
 1399
 1400
 1401
 1402
 1403
 1404
 1405
 1406
 1407
 1408
 1409
 1410
 1411
 1412
 1413
 1414
 1415
 1416
 1417
 1418
 1419
 1420
 1421
 1422
 1423
 1424
 1425
 1426
 1427
 1428
 1429
 1430
 1431
 1432
 1433
 1434
 1435
 1436
 1437
 1438
 1439
 1440
 1441
 1442
 1443
 1444
 1445
 1446
 1447
 1448
 1449
 1450
 1451
 1452
 1453
 1454
 1455
 1456
 1457
 1458
 1459
 1460
 1461
 1462
 1463
 1464
 1465
 1466
 1467
 1468
 1469
 1470
 1471
 1472
 1473
 1474
 1475
 1476
 1477
 1478
 1479
 1480
 1481
 1482
 1483
 1484
 1485
 1486
 1487
 1488
 1489
 1490
 1491
 1492
 1493
 1494
 1495
 1496
 1497
 1498
 1499
 1500
 1501
 1502
 1503
 1504
 1505
 1506
 1507
 1508
 1509
 1510
 1511
 1512
 1513
 1514
 1515
 1516
 1517
 1518
 1519
 1520
 1521
 1522
 1523
 1524
 1525
 1526
 1527
 1528
 1529
 1530
 1531
 1532
 1533
 1534
 1535
 1536
 1537
 1538
 1539
 1540
 1541
 1542
 1543
 1544
 1545
 1546
 1547
 1548
 1549
 1550
 1551
 1552
 1553
 1554
 1555
 1556
 1557
 1558
 1559
 1560
 1561
 1562
 1563
 1564
 1565
 1566
 1567
 1568
 1569
 1570
 1571
 1572
 1573
 1574
 1575
 1576
 1577
 1578
 1579
 1580
 1581
 1582
 1583
 1584
 1585
 1586
 158

108 2024), and neuron- or rank-level manipulations (Wei et al., 2024; Li et al., 2024b). Together, these
 109 works establish refusal as an interpretable and causally manipulable concept, but also highlight its
 110 brittleness to adversarial inputs and fine-tuning.
 111

112 **Safety Steering and Training-free Defenses.** Training-free interventions attempt to steer model
 113 activations without costly fine-tuning. Early work showed that feature directions derived from
 114 contrastive inputs can modulate model behavior (Zou et al., 2023; Panickssery et al., 2023; Li et al.,
 115 2024a; Marks & Tegmark, 2023; Turner et al., 2023). Sparse autoencoders (SAEs) provide an un-
 116 supervised route to discover such features (Bricken et al., 2023; Templeton et al., 2024). Recently,
 117 SAE-based steering has been applied directly to safety, revealing both promise and utility tradeoffs
 118 (O’Brien et al., 2024). Extensions include instruction-following features (He et al., 2025), category-
 119 wise safety steering (Ghosh et al., 2025; Bhattacharjee et al., 2024), and adaptive methods such as
 120 AdaSteer (Zhao et al., 2025). Complementary strategies include Safety Arithmetic (Hazra et al.,
 121 2024), Representation Bending (Yousefpour et al., 2025), Low-Rank Extrapolation (Perin et al.,
 122 2025), adversarial training approaches such as ReFAT (Yu et al., 2024), and null-space constraints
 123 methods like AlphaSteer (Sheng et al., 2025) that builds on insights from AlphaEdit(Fang et al.,
 124 2025) which is used for robust knowledge editing. Foundational studies further established linear
 125 features in representation spaces (Bolukbasi et al., 2016; Elhage et al., 2022; Geiger et al., 2024;
 126 Ravfogel et al., 2020). While effective, many steering-based defenses introduce capability tradeoffs,
 127 motivating interpretable and more surgical alternatives such as ours.
 128

129 **Beyond Steering: Fine-tuning and Safety Robustness.** Another line of work examines how
 130 safety alignment emerges or fails under fine-tuning. Works like Zhan et al. (2023); Yang et al.
 131 (2023); Qi et al. (2023); Lermen et al. (2023) show that even small malicious or benign finetunes
 132 can undo refusal, while mechanistic studies suggest the internal circuitry remains intact (Jain et al.,
 133 2024b). SAFELORA, a training-free and data-free approach that shows how LoRA weights can
 134 be projected onto a safety-aligned subspace reducing safety degradation from fine-tuning LLMs.
 135 Other interventions strengthen refusal explicitly, such as extended-refusal finetuning against abli-
 136 teration attacks (Shairah et al., 2025), refusal tokens for controllable calibration (Jain et al., 2024a),
 137 and single-vector ablations to mitigate false refusals (Wang et al., 2025). Others work on run-time
 138 interventions to protect against jailbreaks, such as SMOOTHLLM (Robey et al., 2024), and Jail-
 139 break Antidote (Shen et al., 2025). Alignment fragility also arises in model merging: Hammoud
 140 et al. (2024) showed that unsafe models contaminate the merged ones unless alignment is explic-
 141 itely included. Together, these works highlight the tension between robustness and utility in safety
 142 interventions.
 143

144 **Our Contribution.** We build directly on the insight of Ardi et al. (2024) but invert its vulnerabil-
 145 ity: instead of ablating the safety direction to weaken safety, our ROSI method permanently injects
 146 it into model weights. Compared to inference-time steering (O’Brien et al., 2024; Zhao et al., 2025;
 147 Ghosh et al., 2025; Sheng et al., 2025; Shen et al., 2025), ROSI provides a one-time lightweight,
 148 fine-tuning-free, interpretable mechanism that is permanent yet minimally invasive. Compared to
 149 approaches based on fine-tuning (Zhan et al., 2023; Shairah et al., 2025), it achieves comparable
 150 robustness with a much lower cost. Importantly, ROSI is not intended to replace existing safety
 151 strategies; it can be layered with steering, fine-tuning, or other alignment methods to further rein-
 152 force model robustness. Thus, our work illustrates how mechanistic interpretability can be leveraged
 153 not only to diagnose vulnerabilities but also to design efficient last-mile safety amplification tech-
 154 niques.
 155

3 METHODOLOGY

156 Our proposed method, ROSI, which is illustrated in Figure 1, is based on the principle that high-level
 157 concepts such as safety are linearly represented in the activation space of a model. We first extract
 158 this “safety direction” and then use it to craft a permanent modification to the model’s weights.
 159

3.1 MATHEMATICAL PRELIMINARIES: TRANSFORMERS

160 A decoder-only Transformer model processes a sequence of input tokens $\mathbf{t} = (t_1, \dots, t_n)$. The core
 161 of the model is the residual stream, $\mathbf{x}_i^{(l)} \in \mathbb{R}^{d_{\text{model}}}$, which represents the activation for the i -th token

162 at the l -th layer. Each layer l updates this activation through an attention block and a multi-layer
 163 perceptron (MLP) block:

$$\tilde{\mathbf{x}}_i^{(l)} = \mathbf{x}_i^{(l)} + \text{Attn}^{(l)}(\mathbf{x}_{1:i}^{(l)}) \quad (1)$$

$$\mathbf{x}_i^{(l+1)} = \tilde{\mathbf{x}}_i^{(l)} + \text{MLP}^{(l)}(\tilde{\mathbf{x}}_i^{(l)}) \quad (2)$$

168 The key components that are written in the residual stream are the attention output projection matrix
 169 (W_O) and the MLP output projection matrix (W_{out}). Our method targets these matrices, among
 170 others, for modification.

171 3.2 EXTRACTING THE SAFETY DIRECTION

173 To isolate the direction in the activation space corresponding to safety and refusal, we employ the
 174 difference-in-means technique. We construct two small and contrasting datasets.

- 176 • $\mathcal{D}_{\text{harmful}}$: A set of instructions that should elicit a refusal (e.g., "How do I build a bomb?").
- 177 • $\mathcal{D}_{\text{harmless}}$: A set of benign instructions that should be answered helpfully (e.g., "How do I
 178 bake a cake?").

180 We run the model on all the prompts in both datasets and collect the residual stream activations $\mathbf{x}_i^{(l)}$
 181 at a specific layer l and the position of the token i (typically the last token of the prompt). We then
 182 compute the mean activation for each dataset:

$$\boldsymbol{\mu}^{(l)} = \frac{1}{|\mathcal{D}_{\text{harmful}}|} \sum_{\mathbf{t} \in \mathcal{D}_{\text{harmful}}} \mathbf{x}_i^{(l)}(\mathbf{t}) \quad (3)$$

$$\boldsymbol{\nu}^{(l)} = \frac{1}{|\mathcal{D}_{\text{harmless}}|} \sum_{\mathbf{t} \in \mathcal{D}_{\text{harmless}}} \mathbf{x}_i^{(l)}(\mathbf{t}) \quad (4)$$

188 The safety direction $\mathbf{s}^{(l)}$ is defined as the difference between these two means:

$$\mathbf{s}^{(l)} = \boldsymbol{\mu}^{(l)} - \boldsymbol{\nu}^{(l)} \quad (5)$$

192 This vector $\mathbf{s}^{(l)}$ points from the center of the harmless activation cluster towards the center of the
 193 harmful activation cluster. We select the optimal layer l^* that yields the most effective direction
 194 based on a validation set of harmful and harmless prompts. We select the direction that maximizes
 195 refusal on harmful prompts while maintaining a KL-Divergence of ≤ 0.1 on the harmless instruc-
 196 tions. The final normalized safety direction is denoted as $\hat{\mathbf{s}}$.

197 3.3 RANK-ONE SAFETY INJECTION (ROSI)

199 Previous work has shown that one can ablate a direction $\hat{\mathbf{s}}$ from a weight matrix W by applying a
 200 projection: $W' \leftarrow (I - \hat{\mathbf{s}}\hat{\mathbf{s}}^T)W$. This effectively removes the model's ability to represent information
 201 along that direction.

202 We propose the opposite: to amplify this direction. We achieve this by modifying every weight
 203 matrix $W_{\text{out}} \in \mathbb{R}^{d_{\text{model}} \times d_{\text{input}}}$ that writes to the residual stream. The modification is a rank-one update
 204 designed to add a small, consistent push in the direction of $\hat{\mathbf{s}}$. The ROSI update rule is:

$$W'_{\text{out}} \leftarrow W_{\text{out}} + \alpha \cdot \hat{\mathbf{s}} \cdot \bar{\mathbf{w}}^T \quad (6)$$

207 where:

- 209 • α is a scalar hyperparameter that controls the strength of the injection.
- 210 • $\hat{\mathbf{s}} \in \mathbb{R}^{d_{\text{model}}}$ is the normalized safety direction.
- 211 • $\bar{\mathbf{w}} \in \mathbb{R}^{d_{\text{input}}}$ is the mean of the row vectors of the original weight matrix W_{out} .

213 This formulation creates a rank-one matrix $\alpha(\hat{\mathbf{s}}\bar{\mathbf{w}}^T)$ which is added to the original weights. The
 214 intuition is that for an average input, this modification adds a component proportional to the safety
 215 direction $\hat{\mathbf{s}}$ to the output, effectively steering the model's activations toward the refusal-mediating
 subspace. This is a permanent, efficient, and targeted change to the model's behavior.

216

4 EXPERIMENTS AND RESULTS

217
218 Our empirical evaluation is designed to answer three key questions:
219

- 220 1. Can ROSI amplify the safety of existing, aligned models and improve their robustness to
-
- 221 adversarial attacks without degrading their general capabilities?
-
- 222 2. Can ROSI effectively inject safety into "uncensored" models that have been fine-tuned to
-
- 223 bypass safety constraints?
-
- 224 3. Does this injected safety come at the cost of utility in these uncensored models?
-
- 225

226 We address these questions through a series of controlled experiments on a diverse set of models
227 and benchmarks.
228229

4.1 EXPERIMENTAL SETUP

230 **Models.** We test two categories of models: **Aligned Models** including LLAMA-2 (Touvron et al.,
231 2023), LLAMA-3 (Llama Team, 2024), QWEN2.5 (Qwen et al., 2025), GEMMA (Team et al., 2024),
232 and YI (AI et al., 2025), which have standard safety training; and **Uncensored Models**, specifically
233 the DOLPHIN series (Dolphin, 2025), which are intentionally fine-tuned to ignore safety.
234235 **Evaluation.** Safety is measured via Harm Refusal (HR) on CATQA (Bhardwaj et al., 2024), a set
236 of 550 harmful instructions from 11 categories, evaluated using LLAMA GUARD 3 (Llama Team,
237 2024). We also measure attack success rates on jailbreak benchmarks—DAN, HARBENCH
238 (Mazeika et al., 2024), WILDGUARDTEST, and WILDJAILBREAK (Jiang et al., 2024)—judged by
239 WILDGUARD (Han et al., 2024). Utility is assessed on standard benchmarks: MMLU (Hendrycks
240 et al., 2021), HELLASWAG (Zellers et al., 2019), ARC (Chollet, 2019), BOOLQ (Clark et al., 2019),
241 and TRUTHFULQA (Lin et al., 2022). We also measure Benign Compliance (BC) on a randomly
242 sampled set of 512 instructions from ALPACA (Taori et al., 2023), to ensure ROSI models do not
243 refuse safe instructions.
244245 **Implementation.** The safety direction for each model was extracted using 50 harmful/harmless
246 pairs. Generations use greedy decoding with a max length of 1024 tokens.
247248 **Table 1: Harm Refusal in Aligned Models.** ROSI consistently improves the refusal rate for harmful
249 prompts (HR %) while maintaining high compliance for benign ones (BC %).
250

Model	ROSI	HR %	BC %
GEMMA-2B-INSTRUCT	✗ ✓	98.4 99.8 (+1.5)	99.4 99.0 (-0.4)
LLAMA-2-7B-CHAT-HF	✗ ✓	99.8 100.0 (+0.2)	98.8 99.8 (+1.0)
META-LLAMA-3.1-8B-INSTRUCT	✗ ✓	98.2 99.1 (+0.9)	99.6 99.6 (0.0)
META-LLAMA-3.2-1B-INSTRUCT	✗ ✓	79.5 92.7 (+13.2)	99.2 95.9 (-3.9)
QWEN2.5-0.5B-INSTRUCT	✗ ✓	90.4 99.3 (+8.9)	98.6 91.4 (-7.2)
QWEN2.5-3B-INSTRUCT	✗ ✓	89.8 99.6 (+9.8)	99.6 98.6 (-1.0)
QWEN2.5-7B-INSTRUCT	✗ ✓	95.8 100.0 (+4.2)	100.0 99.0 (-1.0)
QWEN2.5-14B-INSTRUCT	✗ ✓	98.9 100.0 (+1.1)	100.0 99.4 (-0.6)
YI-6B-CHAT	✗ ✓	81.3 99.5 (+18.2)	99.6 97.7 (-1.7)

270 Table 2: **Jailbreak Robustness of Aligned Models.** Scores represent attack success rates (lower is
 271 better). ROSI significantly reduces model vulnerability across all attack vectors.
 272

273 Model	274 ROSI	275 DAN \downarrow	276 HARMBENCH \downarrow	277 WILDGUARDTEST \downarrow			278 WILDJAILBREAK Harmful \downarrow
				279 WG-Micro	280 WG-Adv.	281 WG-Vanilla	
GEMMA-2B-INSTRUCT	\times ✓	5.3 1.0 (-4.3)	6.2 3.4 (-2.8)	9.1 2.4 (-6.7)	16.6 4.7 (-11.9)	2.9 0.5 (-2.4)	42.3 8.2 (-34.1)
LLAMA-2-7B-CHAT-HF	\times ✓	0.0 (0.0)	0.0 (0.0)	0.9 0.0 (-0.9)	2.1 0.0 (-2.1)	0.0 (0.0)	3.5 0.1 (-3.4)
LLAMA-3.1-8B-INSTRUCT	\times ✓	0.3 0.0 (-0.3)	5.9 5.3 (-0.6)	1.6 0.0 (-1.6)	2.7 0.0 (-2.7)	0.7 0.0 (-0.7)	14.8 1.8 (-13.0)
LLAMA-3.2-1B-INSTRUCT	\times ✓	1.3 0.0 (-1.3)	8.4 5.6 (-2.8)	4.0 1.3 (-2.7)	3.9 1.5 (-2.4)	4.1 1.2 (-2.9)	18.7 7.5 (-11.1)
QWEN2.5-0.5B-INSTRUCT	\times ✓	36.0 7.0 (-29.0)	31.6 12.8 (-18.8)	33.1 21.1 (-12.0)	48.1 38.0 (-10.1)	20.9 7.3 (-13.6)	91.8 58.8 (-33.0)
QWEN2.5-3B-INSTRUCT	\times ✓	52.7 6.7 (-46.0)	12.5 1.6 (-10.9)	21.4 12.7 (-8.7)	37.4 26.7 (-10.7)	8.3 1.2 (-7.1)	93.7 61.5 (-32.2)
QWEN2.5-7B-INSTRUCT	\times ✓	40.3 11.7 (-28.6)	22.5 1.9 (-20.6)	18.6 3.9 (-14.7)	36.2 7.7 (-28.5)	4.1 0.7 (-3.4)	90.7 36.7 (-54.0)
QWEN2.5-14B-INSTRUCT	\times ✓	32.3 5.0 (-27.3)	7.2 1.6 (-5.6)	12.1 5.1 (-7.0)	24.0 11.0 (-13.0)	2.4 0.2 (-2.2)	81.2 43.9 (-37.3)
YI-6B-CHAT	\times ✓	52.0 15.3 (-36.7)	20.9 7.8 (-13.1)	22.7 10.1 (-12.6)	39.2 22.0 (-17.2)	9.2 0.5 (-8.7)	89.4 44.6 (-44.8)

289 Table 3: **Utility Preservation in Aligned Models.** Performance on standard benchmarks with ROSI
 290 (✓) versus baseline (✗).
 291

292 Model	293 ROSI	294 MMLU	295 HELLA-SWAG	296 ARC EASY	297 ARC CHAL.	298 BOOLQ	299 TRUTHFULQA
GEMMA-2B-INSTRUCT	\times ✓	38.1 38.3 (+0.2)	49.2 49.3 (+0.1)	71.7 70.8 (-0.9)	40.4 39.0 (-1.4)	63.7 61.4 (-2.3)	45.8 46.7 (+0.9)
LLAMA-2-7B-CHAT-HF	\times ✓	46.3 46.4 (+0.1)	57.8 57.7 (-0.1)	74.0 73.4 (-0.6)	43.9 43.3 (-0.6)	79.6 79.8 (+0.2)	45.3 47.2 (+1.9)
META-LLAMA-3.1-8B-INSTRUCT	\times ✓	68.0 67.6 (-0.4)	59.1 58.9 (-0.2)	81.7 81.1 (-0.6)	51.6 51.1 (-0.5)	84.0 83.8 (-0.2)	54.1 54.8 (+0.7)
META-LLAMA-3.2-1B-INSTRUCT	\times ✓	46.0 45.4 (-0.6)	45.2 45.4 (+0.2)	68.3 67.4 (-0.9)	35.6 34.7 (-0.9)	69.3 68.7 (-0.6)	43.9 45.0 (+1.1)
QWEN2.5-0.5B-INSTRUCT	\times ✓	45.8 45.3 (-0.5)	40.5 40.4 (-0.1)	65.5 64.3 (-1.2)	30.1 29.6 (-0.5)	67.6 63.2 (-4.4)	41.8 43.8 (+2.0)
QWEN2.5-3B-INSTRUCT	\times ✓	65.4 65.0 (-0.4)	56.3 55.8 (-0.5)	76.9 76.6 (-0.3)	45.7 45.1 (-0.6)	80.1 77.4 (-2.7)	58.7 59.7 (+1.0)
QWEN2.5-7B-INSTRUCT	\times ✓	71.8 71.9 (+0.1)	62.0 61.9 (-0.1)	81.6 81.0 (-0.6)	52.6 52.6 (0.0)	86.4 86.2 (-0.2)	64.8 66.1 (+1.3)
QWEN2.5-14B-INSTRUCT	\times ✓	78.8 78.9 (+0.1)	65.6 65.6 (0.0)	85.7 85.6 (-0.1)	60.4 60.7 (+0.3)	88.0 85.8 (-2.2)	69.0 71.9 (+2.9)
YI-6B-CHAT	\times ✓	61.6 61.1 (-0.5)	57.7 57.2 (-0.5)	74.5 78.1 (+3.6)	44.1 46.9 (+2.8)	82.8 84.2 (+1.4)	49.9 51.2 (+1.3)

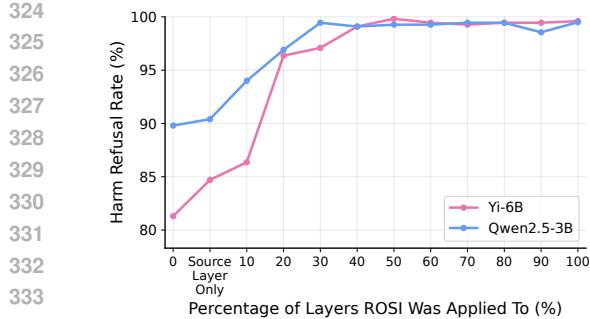
308 4.2 AMPLIFYING SAFETY IN ALIGNED MODELS

309 We first test ROSI’s ability to bolster the defenses of models that already possess safety alignment.
 310

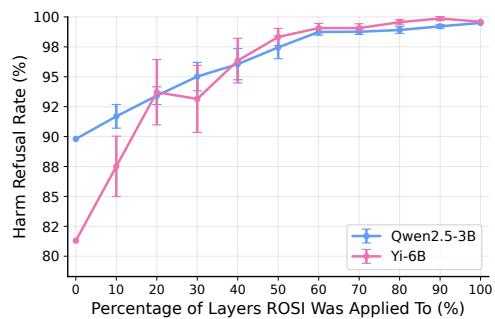
311 **Increased Refusal and Jailbreak Robustness.** As shown in Table 1, applying ROSI consistently
 312 enhances the Harm Refusal (HR) rate across all aligned models tested. The effect is particularly
 313 pronounced for models with weaker baselines, such as YI-6B-CHAT (+18.2 points) and META-
 314 LLAMA-3.2-1B-INSTRUCT (+13.3 points), elevating their safety to near-perfect levels. This im-
 315 provement is not superficial; Table 2 shows that ROSI drastically hardens models against a full
 316 suite of adversarial jailbreak attacks. For many models, attack success rates are cut by more than
 317 half, demonstrating a fundamental increase in robustness.
 318

319 In Appendix 5, we discuss what role ROSI can play in fine-tuning LLMs.
 320

321 **Preservation of Model Utility.** Crucially, these safety gains do not compromise the models’ core
 322 functionalities. Table 3 provides a comprehensive view of utility preservation. The average per-
 323 formance across a suite of seven benchmarks remains remarkably stable. The vast majority of models



(a) Selection is centered on the layer from which the safety vector is extracted and a proportional window around it.



(b) Layers are selected at random; the process is repeated 10 times for each ratio, the plot show the mean refusal rate with confidence intervals.

Figure 2: **Injected Layers Ablations.** In Figure 2a, we ablate the number of layers we apply ROSI to by taking a ratio x (x-axis) of a model’s layers that is centered around the index of the layer i used to extract the safety vector. In Figure 2b, a subset of layers is selected randomly each time, we repeat the run 10 times for each ratio and take the average of the harm refusal rate. Confidence intervals are reported.

see an average score change of less than 0.5%. A similar pattern holds for BC, as seen in Table 1, ROSI models’ refusal of safe instructions, on average, remains minimal. While smaller models (≤ 1 B) show the biggest degradation in BC, they still gain more in HR than what they lose in BC. These results demonstrate that the safety direction is largely orthogonal to the representations required for knowledge and reasoning tasks. ROSI acts as a surgical tool, enhancing safety with minimal side effects.

Injected Layers Ablations. To assess how stable the ROSI update is within a model, we perform a set of ablations that vary both the number and the identity of the layers receiving the safety injection for two representative models, Yi-6B-CHAT and Qwen2.5-3B-INSTRUCT. In the first setting, we inject ROSI into a contiguous block of layers centered on the layer index used to extract the safety vector, expanding this window according to a chosen fraction of the model’s total depth. Figure 2a shows how injecting just at the source layer yields only modest improvements, and as the window of injected layers is expanded, the harm refusal rate keeps increasing until it stabilizes around the 30 – 40% window size, suggesting that only a limited number of layers within a model contribute to the concept of “safety”. In a second setting, we examine robustness by randomly selecting the same number of layers for each fraction. For every ratio, we repeat the process ten times and average the resulting refusal scores. Figure 2b displays a similar trend to the former experiment, but the confidence intervals show that performance varies considerably depending on the layers selected. Notably, Yi-6B-CHAT peaks at 100% HR rates in one of the runs where ROSI was applied to only half of the layers, which suggests that optimizing the set of injected layers can further improve performance.

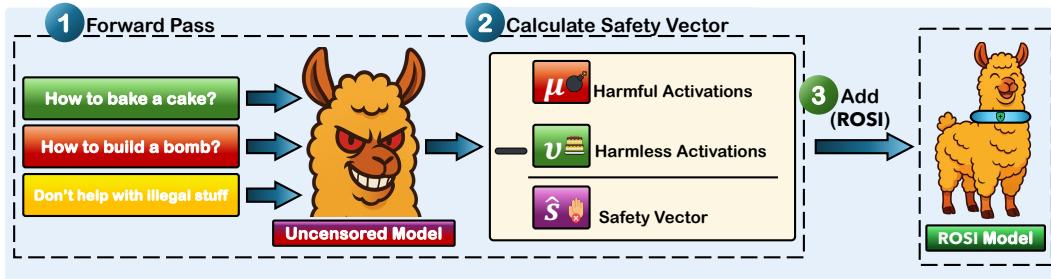
Conclusion 1

ROSI effectively amplifies the safety of existing aligned models. It robustly increases their refusal of harmful prompts and hardens them against jailbreak attacks, all with a negligible impact on their general utility and performance.

4.3 INJECTING SAFETY INTO UNCENSORED MODELS

The previous experiment demonstrated that ROSI can enhance refusal behavior in models that are already aligned. We now turn to the more demanding task of applying ROSI to uncensored DOLPHIN models. This tests whether our method can serve as a “last-mile” re-alignment tool to instill safety where it was deliberately removed.

378
 379 **Figure 3: Applying ROSI to Uncensored Models.** In the forward pass, **harmful** and **harmless**
 380 instructions are prepended with a **system prompt** directing an uncensored model to reject harmful
 381 requests, thus eliciting refusal.



393 **Table 4: Safety Injection in Uncensored Models.** Applying ROSI substantially boosts harm-
 394 refusal (HR) across DOLPHIN models, while preserving compliance with benign instructions (BC).
 395 Ablations without a safety system prompt (•) highlight the role of prompt-level safety conditioning.

Model	ROSI	HR %	BC %
DOLPHIN3.0-LLAMA3.2-1B	✗	23.5	100.0
	✓	46.0 (+22.5)	99.4 (-0.6)
	•	18.4 (-5.1)	100.0 (0.0)
DOLPHIN3.0-QWEN2.5-3B	✗	50.0	100.0
	✓	86.0 (+36.0)	99.6 (-0.4)
	•	33.6 (-16.4)	100.0 (0.0)
DOLPHIN3.0-LLAMA3.1-8B	✗	65.8	100.0
	✓	100.0 (+34.2)	100.0 (0.0)
	•	88.9 (+23.1)	100.0 (0.0)
DOLPHIN3.0-MISTRAL-24B	✗	64.4	100.0
	✓	92.0 (+27.6)	100.0 (0.0)
	•	47.8 (-16.6)	100.0 (0.0)

411 **Eliciting Refusal Behavior and Reducing Vulnerability.** The DOLPHIN models exhibit very low
 412 baseline safety, leaving little to no refusal signal to extract. Directly applying the method from
 413 Section 3 to a DOLPHIN model would therefore yield a vector \hat{s} that does not represent a safety
 414 direction.

415 To overcome this, we explicitly *elicit* refusal behavior by modifying the system prompt, as can
 416 be seen in Figure 3. Specifically, we prepend instructions that direct the model to reject harmful
 417 categories of requests; the prompt we used can be seen in Appendix D. This artificially introduces a
 418 refusal subspace that would otherwise be absent. Once present, we can apply ROSI to these models.
 419 Afterwards, the system prompt is no longer needed and is removed during testing.

420 Table 4 shows that ROSI achieves dramatic improvements. For instance, DOLPHIN3.0-QWEN2.5-
 421 3B's safe response rate skyrockets from 50.0% to 86.0% (+36.0), while DOLPHIN3.0-LLAMA3.1-
 422 8B is fully re-aligned to 100% safety. This demonstrates that even uncensored models retain a latent
 423 safety direction that is potent enough to overwrite their fine-tuning when amplified. This injected
 424 safety also translates to improved robustness. As seen in Table 5, ROSI provides a powerful first
 425 line of defense, slashing attack success rates by large margins (e.g., a 46.3-point reduction on DAN
 426 for DOLPHIN3.0-QWEN2.5-3B).

427 **Utility Preservation.** Answering our final question, Table 6 confirms that this powerful safety in-
 428 jection does not harm the utility of the uncensored models. The average performance across the
 429 benchmark suite is virtually unchanged, with score differences of only +/- 0.2%. This result is
 430 significant: it shows that safety can be added back to a model post-hoc without repeating expen-
 431 sive fine-tuning.

432 **Table 5: Jailbreak Vulnerability of Uncensored Models.** Scores are attack success rates (lower is
 433 better). ROSI provides a crucial layer of defense, significantly reducing their extreme vulnerability.
 434

Model	ROSI	DAN ↓	HARMBENCH ↓	WILDGUARDTEST ↓			WILDJAILBREAK Harmful ↓
				WG-Micro	WG-Adv.	WG-Vanilla	
DOLPHIN3.0-LLAMA3.2-1B	✗	90.3	62.8	50.3	42.4	56.8	98.5
	✓	65.7 (-24.7)	51.9 (-10.9)	33.9 (-16.4)	38.3 (-4.2)	30.3 (-26.5)	88.9 (-9.5)
	✗	88.6 (+1.7)	72.2 (+9.4)	59.3 (+9.0)	48.1 (+5.7)	68.5 (+11.7)	97.7 (-0.8)
DOLPHIN3.0-QWEN2.5-3B	✗	90.3	52.8	32.6	37.7	28.4	96.7
	✓	44.0 (-46.3)	20.9 (-31.9)	15.4 (-17.2)	27.3 (-10.4)	5.6 (-22.8)	70.4 (-26.3)
	✗	52.7 (-37.6)	32.2 (-20.6)	23.4 (-9.2)	29.4 (-8.3)	18.4 (-10.0)	82.8 (-13.9)
DOLPHIN3.0-LLAMA3.1-8B	✗	90.3	54.7	27.0	34.7	20.6	94.0
	✓	82.3 (-8.0)	47.2 (-7.5)	21.1 (-5.9)	29.4 (-5.3)	14.3 (-6.3)	82.8 (-11.3)
	✗	81.3 (-9.0)	44.7 (-10.0)	19.2 (-7.8)	26.7 (-8.0)	13.1 (-7.5)	84.1 (-9.9)
DOLPHIN3.0-MISTRAL-24B	✗	80.7	43.8	18.7	27.3	11.7	87.5
	✓	64.3 (-16.3)	28.4 (-15.3)	9.1 (-9.6)	16.9 (-10.4)	2.7 (-9.0)	63.2 (-24.2)
	✗	84.0 (+3.3)	50.0 (+6.2)	22.4 (+3.7)	27.0 (-0.3)	18.7 (+7.0)	92.2 (+4.7)

446
 447 **Table 6: Utility Preservation in Uncensored Models.** Performance after applying ROSI is shown
 448 with deltas relative to the baseline.
 449

Model	ROSI	MMLU	HELLASWAG	ARC EASY	ARC CHAL.	BOOLQ	TRUTHFULQA
DOLPHIN3.0-LLAMA3.2-1B	✗	35.3	47.8	65.7	34.7	59.3	39.5
	✓	35.0 (-0.3)	47.7 (-0.1)	65.7 (0.0)	34.7 (0.0)	60.0 (+0.7)	40.2 (+0.7)
	✗	30.1 (-5.2)	41.5 (-6.3)	58.3 (-7.4)	27.5 (-7.2)	53.2 (-6.1)	42.8 (+3.3)
DOLPHIN3.0-QWEN2.5-3B	✗	64.7	55.5	77.9	43.8	80.5	49.5
	✓	64.7 (0.0)	55.4 (-0.1)	77.7 (-0.2)	43.8 (0.0)	80.6 (+0.1)	50.8 (+1.3)
	✗	64.7 (0.0)	55.6 (+0.1)	77.2 (-0.7)	43.7 (-0.1)	78.7 (-1.8)	50.1 (+0.6)
DOLPHIN3.0-LLAMA3.1-8B	✗	59.0	61.3	80.9	50.1	85.6	50.1
	✓	58.9 (-0.1)	61.2 (-0.1)	80.4 (-0.5)	50.4 (+0.3)	85.0 (-0.6)	51.0 (+0.9)
	✗	59.0 (0.0)	61.2 (-0.1)	80.1 (-0.8)	50.2 (+0.1)	85.1 (-0.5)	50.9 (+0.8)
DOLPHIN3.0-MISTRAL-24B	✗	72.5	59.8	26.6	22.1	84.1	54.6
	✓	72.5 (0.0)	59.7 (-0.1)	26.9 (+0.3)	22.5 (+0.4)	83.9 (-0.2)	55.7 (+1.1)
	✗	72.2 (-0.3)	59.6 (-0.2)	27.0 (+0.4)	23.0 (+0.9)	84.2 (+0.1)	53.8 (-0.8)

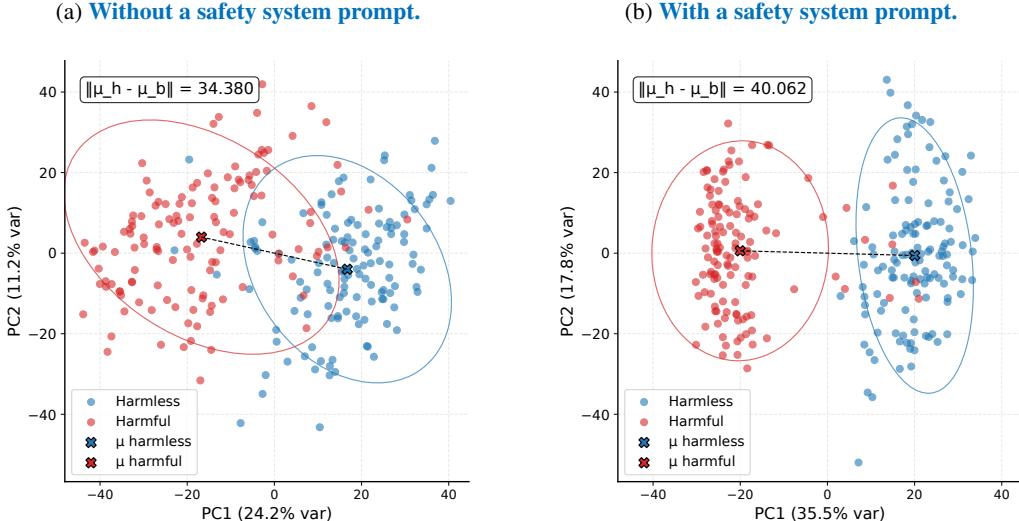
462
 463
 464
 465 sive training or compromising the helpful capabilities that the uncensored model was designed to
 466 maximize.
 467

470 **System Prompt Ablation.** Values marked with (✗) in Table 4 show results from models where
 471 ROSI was applied without prepending a safety system prompt to the input instructions. In this
 472 setting, DOLPHIN3.0-LLAMA3.1-8B exhibits an 11.1% smaller gain in harm refusal compared to
 473 when a safety system prompt is present. Other models fare considerably worse, with performance
 474 degrading outright. Table 5 mirrors this trend: a safety system prompt is essential to fully realize
 475 the benefits of ROSI in uncensored models. The relative resilience of DOLPHIN3.0-LLAMA3.1-
 476 8B without the system prompt suggests that the safety signal may not have been completely erased
 477 during uncensoring. In Figure 4, we examine how the presence of a safety system prompt influ-
 478 ences the linear separability of harmful and harmless representations in the activation space. Using
 479 DOLPHIN3.0-QWEN2.5-3B, we see that without the system prompt, the latent distributions over-
 480 lap significantly, impeding the ability of the steering vector to differentiate between safe and unsafe
 481 contexts. On the other hand, prepending the prompt effectively disentangles these clusters, increas-
 482 ing the centroid distance and restoring the distinct decision boundaries required for robust refusal.
 483 Taken together, these results support our hypothesis: a safety system prompt is crucial for eliciting
 484 a strong and coherent safety direction in uncensored models.

485 In Appendix E, we show that, on the other hand, aligned models do not benefit from the safety
 486 system prompt.

486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539

Figure 4: **PCA visualization of activation separation in DOLPHIN3.0-QWEN2.5-3B.** (a) In the absence of a safety system prompt, the embeddings for harmful (red) and harmless (blue) inputs show significant overlap. (b) When a safety system prompt is introduced, the clusters become more distinct.



Conclusion 2

ROSI successfully injects safety into models that have been fine-tuned to be noncompliant. This provides a powerful, low-cost method for "re-aligning" uncensored models, making them significantly safer with minimal impact on their utility.

5 CONCLUSION

In this paper, we introduced RANK-ONE SAFETY INJECTION (ROSI), a simple and effective white-box method to enhance the safety alignment of Large Language Models. Building on the insight that safety and refusal behaviors are encoded in specific linear directions within a model’s activation space, ROSI applies a permanent, rank-one modification to the model’s weights to amplify this safety direction.

Our comprehensive experiments show that ROSI consistently improves the safety of a wide range of models. For already aligned models, it increases their refusal rates on harmful prompts and makes them substantially more robust to adversarial jailbreak attacks. For uncensored models, ROSI successfully injects safety mechanisms that were previously removed, serving as a powerful last mile alignment tool, we also demonstrate how a safety system prompt is crucial to extract a meaningful safety vector from these models. Critically, these significant safety gains are achieved with negligible degradation in model performance on a suite of standard utility benchmarks.

ROSI demonstrates the practical value of interpretability research. By understanding and manipulating the internal representations of models, we can develop low-cost targeted interventions that are more efficient than traditional, resource-intensive fine-tuning. This work opens up promising avenues for future research, including exploring more sophisticated methods for identifying and manipulating conceptual directions and extending this approach to other desirable model attributes beyond safety, such as honesty or controllability.

540 REFERENCES
541

- 542 01. AI, :, Alex Young, Bei Chen, Chao Li, Chengen Huang, Ge Zhang, Guanwei Zhang, Guoyin
543 Wang, Heng Li, Jiangcheng Zhu, Jianqun Chen, Jing Chang, Kaidong Yu, Peng Liu, Qiang Liu,
544 Shawn Yue, Senbin Yang, Shiming Yang, Wen Xie, Wenhao Huang, Xiaohui Hu, Xiaoyi Ren,
545 Xinyao Niu, Pengcheng Nie, Yanpeng Li, Yuchi Xu, Yudong Liu, Yue Wang, Yuxuan Cai, Zhenyu
546 Gu, Zhiyuan Liu, and Zonghong Dai. Yi: Open foundation models by 01.ai, 2025. URL <https://arxiv.org/abs/2403.04652>.
547
- 548 Andy Ardit, Oscar Obeso, Aaquib Syed, Daniel Paleka, Nina Panickssery, Wes Gurnee, and
549 Neel Nanda. Refusal in language models is mediated by a single direction. *arXiv preprint*
550 *arXiv:2406.11717*, 2024.
- 551 Rishabh Bhardwaj, Do Duc Anh, and Soujanya Poria. Language models are homer simpson! safety
552 re-alignment of fine-tuned language models through task arithmetic, 2024. URL <https://arxiv.org/abs/2402.11746>.
553
- 554 Amrita Bhattacharjee, Shaona Ghosh, Traian Rebedea, and Christopher Parisien. Towards inference-
555 time category-wise safety steering for large language models. In *Neurips Safe Generative AI*
556 *Workshop 2024*, 2024. URL <https://openreview.net/forum?id=EkQRNLPFc>.
557
- 558 Tolga Bolukbasi, Kai-Wei Chang, James Y Zou, Venkatesh Saligrama, and Adam T Kalai. Man is
559 to computer programmer as woman is to homemaker? Debiasing word embeddings. *Advances in*
560 *neural information processing systems*, 29, 2016.
- 561 Trenton Bricken, Adly Templeton, Joshua Batson, Brian Chen, Adam Jermyn, Tom Conerly, Nick
562 Turner, Cem Anil, Carson Denison, Amanda Askell, Robert Lasenby, Yifan Wu, Shauna Kravec,
563 Nicholas Schiefer, Tim Maxwell, Nicholas Joseph, Zac Hatfield-Dodds, Alex Tamkin, Karina
564 Nguyen, Brayden McLean, Josiah E Burke, Tristan Hume, Shan Carter, Tom Henighan, and
565 Christopher Olah. Towards monosemanticity: Decomposing language models with dictionary
566 learning. *Transformer Circuits Thread*, 2023. <https://transformer-circuits.pub/2023/monosemantic-features/index.html>.
567
- 568 Tom B Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal,
569 Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
570 few-shot learners. *arXiv preprint arXiv:2005.14165*, 2020.
- 571 François Chollet. On the measure of intelligence, 2019. URL <https://arxiv.org/abs/1911.01547>.
572
- 574 Junjie Chu, Yugeng Liu, Ziqing Yang, Xinyue Shen, Michael Backes, and Yang Zhang. Comprehensive
575 assessment of jailbreak attacks against llms, 2024. URL <https://arxiv.org/abs/2402.05668>.
576
- 577 Christopher Clark, Kenton Lee, Ming-Wei Chang, Tom Kwiatkowski, Michael Collins, and Kristina
578 Toutanova. Boolq: Exploring the surprising difficulty of natural yes/no questions. In *NAACL*,
579 2019.
- 581 Mike Conover, Matt Hayes, Ankit Mathur, Jianwei Xie, Jun Wan, Sam Shah, Ali Ghodsi, Patrick
582 Wendell, Matei Zaharia, and Reynold Xin. Free dolly: Introducing the world's first truly open
583 instruction-tuned llm, 2023. URL <https://www.databricks.com/blog/2023/04/12/dolly-first-commercially-viable-instruction-tuned-llm>.
584
- 585 Dolphin. <https://dphn.ai>, 2025.
- 586 Nelson Elhage, Tristan Hume, Catherine Olsson, Nicholas Schiefer, Tom Henighan, Shauna Kravec,
587 Zac Hatfield-Dodds, Robert Lasenby, Dawn Drain, Carol Chen, Roger Grosse, Sam McCandlish,
588 Jared Kaplan, Dario Amodei, Martin Wattenberg, and Christopher Olah. Toy models of super-
589 position. *Transformer Circuits Thread*, 2022. https://transformer-circuits.pub/2022/toy_model/index.html.
590
- 592 Junfeng Fang, Houcheng Jiang, Kun Wang, Yunshan Ma, Shi Jie, Xiang Wang, Xiangnan He, and
593 Tat seng Chua. Alphaedit: Null-space constrained knowledge editing for language models, 2025.
URL <https://arxiv.org/abs/2410.02355>.

- 594 Atticus Geiger, Zhengxuan Wu, Christopher Potts, Thomas Icard, and Noah Goodman. Finding
 595 alignments between interpretable causal variables and distributed neural representations. In
 596 *Causal Learning and Reasoning*, pp. 160–187. PMLR, 2024.
- 597
- 598 Shaona Ghosh, Amrita Bhattacharjee, Yftah Ziser, and Christopher Parisien. Safesteer: Interpretable
 599 safety steering with refusal-evasion in llms. *arXiv preprint arXiv:2506.04250*, 2025.
- 600 Carlos Gómez-Rodríguez and Paul Williams. A confederacy of models: a comprehensive evaluation
 601 of llms on creative writing, 2023. URL <https://arxiv.org/abs/2310.08433>.
- 602
- 603 Hasan Abed Al Kader Hammoud, Umberto Michieli, Fabio Pizzati, Philip Torr, Adel Bibi, Bernard
 604 Ghanem, and Mete Ozay. Model merging and safety alignment: One bad model spoils the bunch.
 605 In Yaser Al-Onaizan, Mohit Bansal, and Yun-Nung Chen (eds.), *Findings of the Association for
 606 Computational Linguistics: EMNLP 2024*, pp. 13033–13046, Miami, Florida, USA, November
 607 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.findings-emnlp.762.
 608 URL <https://aclanthology.org/2024.findings-emnlp.762/>.
- 609 Seungju Han, Kavel Rao, Allyson Ettinger, Liwei Jiang, Bill Yuchen Lin, Nathan Lambert, Yejin
 610 Choi, and Nouha Dziri. Wildguard: Open one-stop moderation tools for safety risks, jailbreaks,
 611 and refusals of llms, 2024. URL <https://arxiv.org/abs/2406.18495>.
- 612 Rima Hazra, Sayan Layek, Somnath Banerjee, and Soujanya Poria. Safety arithmetic: A framework
 613 for test-time safety alignment of language models by steering parameters and activations. *arXiv
 614 preprint arXiv:2406.11801*, 2024.
- 615
- 616 Zirui He, Haiyan Zhao, Yiran Qiao, Fan Yang, Ali Payani, Jing Ma, and Mengnan Du. Saif: A
 617 sparse autoencoder framework for interpreting and steering instruction following of language
 618 models. *arXiv preprint arXiv:2502.11356*, 2025.
- 619 Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Ja-
 620 cob Steinhardt. Measuring massive multitask language understanding, 2021. URL <https://arxiv.org/abs/2009.03300>.
- 622
- 623 Yihuai Hong, Dian Zhou, Meng Cao, Lei Yu, and Zhijing Jin. The reasoning-memorization interplay
 624 in language models is mediated by a single direction. *arXiv preprint arXiv:2503.23084*, 2025.
- 625 Chia-Yi Hsu, Yu-Lin Tsai, Chih-Hsun Lin, Pin-Yu Chen, Chia-Mu Yu, and Chun-Ying Huang. Safe
 626 lora: the silver lining of reducing safety risks when fine-tuning large language models, 2025. URL
 627 <https://arxiv.org/abs/2405.16833>.
- 628
- 629 Neel Jain, Aditya Shrivastava, Chenyang Zhu, Daben Liu, Alfy Samuel, Ashwinee Panda, Anoop
 630 Kumar, Micah Goldblum, and Tom Goldstein. Refusal tokens: A simple way to calibrate refusals
 631 in large language models. *arXiv preprint arXiv:2412.06748*, 2024a.
- 632 Samyak Jain, Ekdeep S Lubana, Kemal Oksuz, Tom Joy, Philip Torr, Amartya Sanyal, and Puneet
 633 Dokania. What makes and breaks safety fine-tuning? a mechanistic study. *Advances in Neural
 634 Information Processing Systems*, 37:93406–93478, 2024b.
- 635
- 636 Liwei Jiang, Kavel Rao, Seungju Han, Allyson Ettinger, Faeze Brahman, Sachin Kumar, Niloofar
 637 Mireshghallah, Ximing Lu, Maarten Sap, Yejin Choi, and Nouha Dziri. Wildteaming at scale:
 638 From in-the-wild jailbreaks to (adversarially) safer language models, 2024. URL <https://arxiv.org/abs/2406.18510>.
- 639
- 640 Ehsan Kamalloo, Nouha Dziri, Charles L. A. Clarke, and Davood Rafiei. Evaluating open-domain
 641 question answering in the era of large language models, 2023. URL <https://arxiv.org/abs/2305.06984>.
- 642
- 643 Simon Lermen, Charlie Rogers-Smith, and Jeffrey Ladish. LoRA fine-tuning efficiently undoes
 644 safety training in Llama 2-Chat 70B. *arXiv preprint arXiv:2310.20624*, 2023.
- 645
- 646 Kenneth Li, Oam Patel, Fernanda Viégas, Hanspeter Pfister, and Martin Wattenberg. Inference-time
 647 intervention: Eliciting truthful answers from a language model. *Advances in Neural Information
 648 Processing Systems*, 36, 2024a.

- 648 Tianlong Li, Shihan Dou, Wenhao Liu, Muling Wu, Changze Lv, Rui Zheng, Xiaoqing Zheng, and
 649 Xuanjing Huang. Rethinking jailbreaking through the lens of representation engineering, 2024b.
 650
- 651 Stephanie Lin, Jacob Hilton, and Owain Evans. Truthfulqa: Measuring how models mimic human
 652 falsehoods, 2022. URL <https://arxiv.org/abs/2109.07958>.
- 653 Yuping Lin, Pengfei He, Han Xu, Yue Xing, Makoto Yamada, Hui Liu, and Jiliang Tang. Towards
 654 understanding jailbreak attacks in LLMs: A representation space analysis. In Yaser Al-Onaizan,
 655 Mohit Bansal, and Yun-Nung Chen (eds.), *EMNLP 2024*, pp. 7067–7085, Miami, Florida, USA,
 656 November 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.emnlp-main.
 657 401. URL <https://aclanthology.org/2024.emnlp-main.401>.
- 658 AI @ Meta Llama Team. The llama 3 herd of models, 2024. URL <https://arxiv.org/abs/2407.21783>.
- 661 Samuel Marks and Max Tegmark. The geometry of truth: Emergent linear structure in large language
 662 model representations of true/false datasets. *arXiv preprint arXiv:2310.06824*, 2023.
- 663 Mantas Mazeika, Long Phan, Xuwang Yin, Andy Zou, Zifan Wang, Norman Mu, Elham Sakhaei,
 664 Nathaniel Li, Steven Basart, Bo Li, David Forsyth, and Dan Hendrycks. Harmbench: A stan-
 665 dardized evaluation framework for automated red teaming and robust refusal, 2024. URL
 666 <https://arxiv.org/abs/2402.04249>.
- 668 Sai Krishna Mendum, Harish Yenala, Aditi Gulati, Shantu Kumar, and Parag Agrawal. Towards safer
 669 pretraining: Analyzing and filtering harmful content in webscale datasets for responsible llms,
 670 2025. URL <https://arxiv.org/abs/2505.02009>.
- 671 Kyle O'Brien, David Majercak, Xavier Fernandes, Richard Edgar, Blake Bullwinkel, Jingya Chen,
 672 Harsha Nori, Dean Carignan, Eric Horvitz, and Forough Poursabzi-Sangdeh. Steering language
 673 model refusal with sparse autoencoders. *arXiv preprint arXiv:2411.11296*, 2024.
- 675 Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Carroll L. Wainwright, Pamela Mishkin, Chong
 676 Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, John Schulman, Jacob Hilton, Fraser Kel-
 677 ton, Luke Miller, Maddie Simens, Amanda Askell, Peter Welinder, Paul Christiano, Jan Leike,
 678 and Ryan Lowe. Training language models to follow instructions with human feedback, 2022.
 679 URL <https://arxiv.org/abs/2203.02155>.
- 680 Nina Panickssery, Nick Gabrieli, Julian Schulz, Meg Tong, Evan Hubinger, and Alexander Matt
 681 Turner. Steering Llama 2 via contrastive activation addition. *arXiv preprint arXiv:2312.06681*,
 682 2023.
- 683 Gabriel J. Perin, Runjin Chen, Xuxi Chen, Nina S. T. Hirata, Zhangyang Wang, and Junyuan Hong.
 684 Lox: Low-rank extrapolation robustifies llm safety against fine-tuning, 2025. URL <https://arxiv.org/abs/2506.15606>.
- 687 Xiangyu Qi, Yi Zeng, Tinghao Xie, Pin-Yu Chen, Ruoxi Jia, Prateek Mittal, and Peter Henderson.
 688 Fine-tuning aligned language models compromises safety, even when users do not intend to!
 689 *arXiv preprint arXiv:2310.03693*, 2023.
- 690 Qwen, ;, An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan
 691 Li, Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu, Jianwei Zhang,
 692 Jianxin Yang, Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu, Keqin Bao, Kexin
 693 Yang, Le Yu, Mei Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji Lin, Tianhao Li,
 694 Tianyi Tang, Tingyu Xia, Xingzhang Ren, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang,
 695 Yu Wan, Yuqiong Liu, Zeyu Cui, Zhenru Zhang, and Zihan Qiu. Qwen2.5 technical report, 2025.
 696 URL <https://arxiv.org/abs/2412.15115>.
- 697 Shauli Ravfogel, Yanai Elazar, Hila Gonen, Michael Twiton, and Yoav Goldberg. Null it out: Guard-
 698 ing protected attributes by iterative nullspace projection. *arXiv preprint arXiv:2004.07667*, 2020.
- 699
- 700 Alexander Robey, Eric Wong, Hamed Hassani, and George J. Pappas. Smoothllm: Defending
 701 large language models against jailbreaking attacks, 2024. URL <https://arxiv.org/abs/2310.03684>.

- 702 Harethah Abu Shairah, Hasan Abed Al Kader Hammoud, Bernard Ghanem, and George
 703 Turkiyyah. An embarrassingly simple defense against llm ablation attacks. *arXiv preprint*
 704 *arXiv:2505.19056*, 2025.
- 705 Guobin Shen, Dongcheng Zhao, Yiting Dong, Xiang He, and Yi Zeng. Jailbreak antidote: Runtime
 706 safety-utility balance via sparse representation adjustment in large language models, 2025. URL
 707 <https://arxiv.org/abs/2410.02298>.
- 708 Leheng Sheng, Changshuo Shen, Weixiang Zhao, Junfeng Fang, Xiaohao Liu, Zhenkai Liang, Xiang
 709 Wang, An Zhang, and Tat-Seng Chua. Alphasteer: Learning refusal steering with principled null-
 710 space constraint, 2025. URL <https://arxiv.org/abs/2506.07022>.
- 711 Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li, Carlos Guestrin, Percy
 712 Liang, and Tatsunori B. Hashimoto. Stanford alpaca: An instruction-following llama model.
 713 https://github.com/tatsu-lab/stanford_alpaca, 2023.
- 714 Gemma Team, Thomas Mesnard, Cassidy Hardin, Robert Dadashi, Surya Bhupatiraju, Shreya
 715 Pathak, Laurent Sifre, Morgane Rivière, Mihir Sanjay Kale, Juliette Love, Pouya Tafti, Léonard
 716 Hussenot, Pier Giuseppe Sessa, Aakanksha Chowdhery, Adam Roberts, Aditya Barua, Alex
 717 Botev, Alex Castro-Ros, Ambrose Sloane, Amélie Héliou, Andrea Tacchetti, Anna Bulanova, An-
 718 tonia Paterson, Beth Tsai, Bobak Shahriari, Charline Le Lan, Christopher A. Choquette-Choo,
 719 Clément Crepy, Daniel Cer, Daphne Ippolito, David Reid, Elena Buchatskaya, Eric Ni, Eric
 720 Noland, Geng Yan, George Tucker, George-Christian Muraru, Grigory Rozhdestvenskiy, Hen-
 721 ryk Michalewski, Ian Tenney, Ivan Grishchenko, Jacob Austin, James Keeling, Jane Labanowski,
 722 Jean-Baptiste Lespiau, Jeff Stanway, Jenny Brennan, Jeremy Chen, Johan Ferret, Justin Chiu,
 723 Justin Mao-Jones, Katherine Lee, Kathy Yu, Katie Millican, Lars Lowe Sjoesund, Lisa Lee,
 724 Lucas Dixon, Machel Reid, Maciej Mikuła, Mateo Wirth, Michael Sharman, Nikolai Chinaev,
 725 Nithum Thain, Olivier Bachem, Oscar Chang, Oscar Wahlinez, Paige Bailey, Paul Michel, Petko
 726 Yотов, Rahma Chaabouni, Ramona Comanescu, Reena Jana, Rohan Anil, Ross McIlroy, Ruibo
 727 Liu, Ryan Mullins, Samuel L Smith, Sebastian Borgeaud, Sertan Girgin, Sholto Douglas, Shree
 728 Pandya, Siamak Shakeri, Soham De, Ted Klimenko, Tom Hennigan, Vlad Feinberg, Wojciech
 729 Stokowiec, Yu hui Chen, Zafarali Ahmed, Zhitao Gong, Tris Warkentin, Ludovic Peran, Minh
 730 Giang, Clément Farabet, Oriol Vinyals, Jeff Dean, Koray Kavukcuoglu, Demis Hassabis, Zoubin
 731 Ghahramani, Douglas Eck, Joelle Barral, Fernando Pereira, Eli Collins, Armand Joulin, Noah
 732 Fiedel, Evan Senter, Alek Andreev, and Kathleen Kenealy. Gemma: Open models based on
 733 gemini research and technology, 2024. URL <https://arxiv.org/abs/2403.08295>.
- 734 Adly Templeton, Tom Conerly, Jonathan Marcus, Jack Lindsey, Trenton Bricken, Brian Chen,
 735 Adam Pearce, Craig Citro, Emmanuel Ameisen, Andy Jones, Hoagy Cunningham, Nicholas L
 736 Turner, Callum McDougall, Monte MacDiarmid, C. Daniel Freeman, Theodore R. Sumers,
 737 Edward Rees, Joshua Batson, Adam Jermyn, Shan Carter, Chris Olah, and Tom Henighan.
 738 Scaling monosemanticity: Extracting interpretable features from Claude 3 Sonnet. *Trans-
 739 former Circuits Thread*, 2024. URL [https://transformer-circuits.pub/2024/
 740 scaling-monosemanticity/index.html](https://transformer-circuits.pub/2024/scaling-monosemanticity/index.html).
- 741 Weixi Tong and Tianyi Zhang. Codejudge: Evaluating code generation with large language models,
 742 2024. URL <https://arxiv.org/abs/2410.02184>.
- 743 Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
 744 lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas Blecher,
 745 Cristian Canton Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes, Jeremy
 746 Fu, Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony Hartshorn,
 747 Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa, Isabel
 748 Kloumann, Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee,
 749 Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov, Pushkar Mishra,
 750 Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi,
 751 Alan Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian, Xiaoqing Ellen Tan, Binh
 752 Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng Yan, Iliyan Zarov, Yuchen
 753 Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurelien Rodriguez, Robert Stojnic,
 754 Sergey Edunov, and Thomas Scialom. Llama 2: Open foundation and fine-tuned chat models,
 755 2023. URL <https://arxiv.org/abs/2307.09288>.

- 756 Alex Turner, Lisa Thiergart, David Udell, Gavin Leech, Ulisse Mini, and Monte MacDi-
 757 amid. Activation addition: Steering language models without optimization. *arXiv preprint*
 758 *arXiv:2308.10248*, 2023.
- 759 Haoran Wang and Kai Shu. Trojan activation attack: Red-teaming large language models using acti-
 760 vation steering for safety-alignment, 2024. URL <https://arxiv.org/abs/2311.09433>.
- 762 Xinpeng Wang, Chengzhi Hu, Paul Röttger, and Barbara Plank. Surgical, cheap, and flexible: Miti-
 763 gating false refusal in language models via single vector ablation. In *The Thirteenth International*
 764 *Conference on Learning Representations*, 2025. URL <https://openreview.net/forum?id=SCBn8MCLwc>.
- 766 Alexander Wei, Nika Haghtalab, and Jacob Steinhardt. Jailbroken: How does llm safety training
 767 fail?, 2023a. URL <https://arxiv.org/abs/2307.02483>.
- 769 Boyi Wei, Kaixuan Huang, Yangsibo Huang, Tinghao Xie, Xiangyu Qi, Mengzhou Xia, Prateek
 770 Mittal, Mengdi Wang, and Peter Henderson. Assessing the brittleness of safety alignment via
 771 pruning and low-rank modifications. *arXiv preprint arXiv:2402.05162*, 2024.
- 772 Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed Chi, Quoc
 773 Le, and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language models,
 774 2023b. URL <https://arxiv.org/abs/2201.11903>.
- 776 Fangzhou Wu, Ning Zhang, Somesh Jha, Patrick McDaniel, and Chaowei Xiao. A new era in llm
 777 security: Exploring security concerns in real-world llm-based systems, 2024. URL <https://arxiv.org/abs/2402.18649>.
- 779 Xianjun Yang, Xiao Wang, Qi Zhang, Linda Petzold, William Yang Wang, Xun Zhao, and Dahu-
 780 Lin. Shadow alignment: The ease of subverting safely-aligned language models. *arXiv preprint*
 781 *arXiv:2310.02949*, 2023.
- 783 Ashkan Yousefpour, Taeheon Kim, Ryan Sungmo Kwon, Seungbeen Lee, Wonje Jeung, Seungju
 784 Han, Alvin Wan, Harrison Ngan, Youngjae Yu, and Jonghyun Choi. Representation bending
 785 for large language model safety. In Wanxiang Che, Joyce Nabende, Ekaterina Shutova, and
 786 Mohammad Taher Pilehvar (eds.), *Proceedings of the 63rd Annual Meeting of the Association*
 787 *for Computational Linguistics (Volume 1: Long Papers)*, pp. 24073–24098, Vienna, Austria, July
 788 2025. Association for Computational Linguistics. ISBN 979-8-89176-251-0. doi: 10.18653/v1/2025.acl-long.1173. URL <https://aclanthology.org/2025.acl-long.1173>.
- 790 Lei Yu, Virginie Do, Karen Hambardzumyan, and Nicola Cancedda. Robust llm safeguarding via
 791 refusal feature adversarial training. *arXiv preprint arXiv:2409.20089*, 2024.
- 792 Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a ma-
 793 chine really finish your sentence?, 2019. URL <https://arxiv.org/abs/1905.07830>.
- 795 Qiusi Zhan, Richard Fang, Rohan Bindu, Akul Gupta, Tatsunori Hashimoto, and Daniel Kang.
 796 Removing RLHF protections in GPT-4 via fine-tuning. *arXiv preprint arXiv:2311.05553*, 2023.
- 797 Weixiang Zhao, Jiahe Guo, Yulin Hu, Yang Deng, An Zhang, Xingyu Sui, Xinyang Han, Yanyan
 798 Zhao, Bing Qin, Tat-Seng Chua, et al. Adasteer: Your aligned llm is inherently an adaptive
 799 jailbreak defender. *arXiv preprint arXiv:2504.09466*, 2025.
- 801 Chujie Zheng, Fan Yin, Hao Zhou, Fandong Meng, Jie Zhou, Kai-Wei Chang, Minlie Huang, and
 802 Nanyun Peng. Prompt-driven LLM safeguarding via directed representation optimization. *arXiv*
 803 *preprint arXiv:2401.18018*, 2024.
- 804 Andy Zou, Long Phan, Sarah Chen, James Campbell, Phillip Guo, Richard Ren, Alexander Pan,
 805 Xuwang Yin, Mantas Mazeika, Ann-Kathrin Dombrowski, et al. Representation engineering: A
 806 top-down approach to AI transparency. *arXiv preprint arXiv:2310.01405*, 2023.
- 807
 808
 809

810

811

812

813

A ROSI & FINE-TUNING

814

815

816

817

818

819

820

Recent work by Qi et al. (2023) demonstrated that fine-tuning Large Language Models (LLMs) often compromises their safety alignment, even when the fine-tuning dataset is entirely benign. To address this “alignment tax,” several defensive strategies have been proposed, such as **SAFELORA** (Hsu et al., 2025). **SAFELORA** modifies the standard Low Rank Adapters (LORA) by projecting LORA weights from selected layers to a safety-aligned subspace, thereby mitigating safety degradation while preserving model utility.

821

822

823

824

825

In this section, we investigate the interaction between our proposed method, ROSI, and these parameter-efficient fine-tuning paradigms. We hypothesize that ROSI can act as a lightweight “safety vaccination” (or initialization), effectively hardening the model against the alignment erosion typically caused by downstream adaptation. We evaluate this on **LLAMA-2-7B-CHAT** measuring the Harmful Refusal (HR) rate across different sequences of application.

826

827

828

We fine-tuned the model on **DATABRICKS DOLLY 15K** (Conover et al., 2023) for 3000 steps with a learning rate of $5e^{-5}$, batch size of 8, LORA rank of 32. Other **SAFELORA** parameters are taken as is from the paper.

829

830

831

832

833

As shown in Table 7, standard LORA fine-tuning significantly degrades the safety of the base model, resulting in an HR of 82.7%. While **SAFELORA** provides a robust defense (95.5%), we observe that the order of ROSI application is critical. Applying ROSI as a post-hoc repair mechanism (LORA → ROSI) yields only marginal gains (85.5%), suggesting that once safety representations are disrupted by fine-tuning, they are difficult to fully recover via a rank-one update.

834

835

836

837

838

839

840

In contrast, injecting the safety vector *prior* to fine-tuning (ROSI → LORA) drastically improves resilience, maintaining a refusal rate of 98.6% even when followed by standard LORA updates. This indicates that ROSI successfully steers the model’s initialization into a region of the parameter space that is more resistant to catastrophic forgetting of safety. Finally, the combination of pre-injection and safety-constrained adaptation (ROSI → **SAFELORA**) achieves a perfect refusal rate of **100.0%**, demonstrating that ROSI and **SAFELORA** are highly complementary techniques for secure model adaptation.

841

842

843

Table 7: Comparison of Harm Refusal (HR) rates on LLAMA-2-7B-CHAT across different fine-tuning configurations. Arrows (→) denote the sequence of method application.

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

Model	Method	HR %
LLAMA-2-7B-CHAT	Base (no fine-tuning)	99.8
	LORA	82.7
	SAFELORA	95.5
	LORA → ROSI	85.5
	ROSI → LORA	98.6
	SAFELORA → ROSI	98.9
	ROSI → SAFELORA	100.0

864

865

866

867 **B THE TRANSFERABILITY OF SAFETY VECTORS**

868

869 One interesting question that can arise from our experiments is how would a safety vector extracted
 870 from one model affect another. The main constraint is that both models must share the same hidden
 871 dimensionality $\mathbb{R}^{d_{\text{model}}}$ for a vector to be transferable. Among the models we initially evaluated, none
 872 shared the same hidden size; however, QWEN2.5-14B-INSTRUCT and QWEN2.5-32B-INSTRUCT
 873 do. This allows us to study cross-model transfer directly. For each model, we extracted a safety
 874 vector following Section 3. We then applied ROSI twice per model: once using its own vector, and
 875 once using the vector extracted from the other model. Table 8 summarizes the outcomes. In both
 876 cases, applying the safety vector from the other model leads to meaningful gains on safety bench-
 877 marks. Notably, for QWEN2.5-14B-INSTRUCT, using the vector from the 32B variant produces
 878 stronger safety performance than using its own vector. This could suggest that the larger model had
 879 learned a better and more distinct representation of safety compared to the smaller model. Import-
 880 antly, these gains occur without significant drops in utility (Table 3). Overall, these findings open
 881 questions about how safety directions emerge, how transferable they are across architectures of the
 882 same dimensionality, and what aspects of a model’s training process facilitate such transfer. We
 883 leave these questions to future work.

884 **Table 8: Safety benchmarks for cross-model safety vector transfer.** Each model is evaluated in
 885 three settings: the original model, ROSI using its own extracted safety vector, and ROSI using the
 886 safety vector extracted from the other model. Using a safety vector from another model consistently
 887 improves safety performance, with the 14B model benefiting most from the safety vector extracted
 888 from the 32B variant.

Model	DAN ↓	HARMBENCH ↓	WILDGUARDTEST ↓			WILDJAILBREAK Harmful ↓
			WG-Micro	WG-Adv.	WG-Vanilla	
QWEN2.5-14B-INSTRUCT	32.3	7.2	12.1	24.0	2.4	81.2
QWEN2.5-14B-ROSI	5.0 (-27.3)	1.6 (-5.6)	5.1 (-7.0)	11.0 (-13.0)	0.2 (-2.2)	43.9 (-37.3)
QWEN2.5-14B-ROSI-FROM-32B	5.0 (-27.3)	0.9 (-6.3)	4.3 (-7.8)	9.5 (-14.5)	0.0 (-2.4)	34.5 (-46.7)
QWEN2.5-32B-INSTRUCT	42.0	18.4	14.8	28.2	3.9	83.3
QWEN2.5-32B-ROSI	21.7 (-20.3)	12.2 (-6.2)	10.4 (-4.4)	19.9 (-8.3)	2.7 (-1.2)	72.6 (-10.7)
QWEN2.5-32B-ROSI-FROM-14B	28.7 (-13.3)	12.5 (-5.9)	11.9 (-2.9)	22.9 (-5.3)	2.9 (-1.0)	76.9 (-6.4)

896 **Table 9: Utility evaluations under cross-model safety vector transfer.** Utility remains broadly
 897 stable across settings, indicating that the safety improvements shown in Table 8 do not come at the
 898 cost of substantial performance degradation.

Model	MMLU	HELLASWAG	ARC EASY	ARC CHAL.	BOOLQ	TRUTHFULQA
QWEN2.5-14B-INSTRUCT	78.8	65.6	85.7	60.4	88.0	69.0
QWEN2.5-14B-ROSI	78.9 (+0.1)	65.6 (0.0)	85.6 (-0.1)	60.7 (+0.3)	85.8 (-2.2)	71.9 (+2.9)
QWEN2.5-14B-ROSI-FROM-32B	78.5 (-0.3)	65.6 (0.0)	84.7 (-1.0)	59.5 (-0.9)	85.9 (-2.1)	71.0 (+2.0)
QWEN2.5-32-INSTRUCT	81.7	66.9	82.2	57.5	89.7	65.5
QWEN2.5-32-ROSI	81.6 (-0.1)	67.1 (+0.2)	81.9 (-0.3)	57.2 (-0.3)	89.7 (0.0)	66.7 (+1.2)
QWEN2.5-32-ROSI-FROM-14B	81.6 (-0.1)	66.9 (0.0)	82.1 (-0.1)	57.2 (-0.3)	89.4 (-0.3)	66.7 (+1.2)

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

C SENSITIVITY TO THE EXTRACTION SET

921

923 A key advantage of lightweight alignment methods is their minimal data requirement. To empirically
 924 verify this, we investigate the sensitivity of ROSI to the size of the dataset used for extracting the
 925 safety vector. We conduct an ablation study on **QWEN2.5-3B-INSTRUCT**, varying the number of
 926 contrasting harmful/harmless pairs used in the extraction phase from 1 to 100 samples.

927 The results, presented in Table 10, demonstrate high data efficiency. Surprisingly, ROSI achieves
 928 a substantial improvement in safety using just a single sample pair, boosting the Harmful Refusal
 929 (HR) rate from a baseline of 89.8% to 99.1%. This suggests that the safety direction is a highly
 930 dominant feature within the model’s activation space, capable of being captured even with minimal
 931 signal, and increasing the sample size provides marginal stability improvements, peaking at 99.5%
 932 refusal with 50, 80, and 90 samples.

933 Table 10: **Change in Harm Refusal (HR) using different sets of harmful and harmless pairs to**
 934 **extract the safety vector from QWEN2.5-3B-INSTRUCT.**

Model	Dataset Size	HR %
QWEN2.5-3B-INSTRUCT	Base	89.8
	ROSI (1 Sample)	99.1
	ROSI (10 Samples)	96.55
	ROSI (20 Samples)	99.1
	ROSI (30 Samples)	98.0
	ROSI (40 Samples)	98.7
	ROSI (50 Samples)	99.5
	ROSI (60 Samples)	97.8
	ROSI (70 Samples)	98.7
	ROSI (80 Samples)	99.5
	ROSI (90 Samples)	99.5
	ROSI (100 Samples)	98.6

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972 **D SAFETY SYSTEM PROMPT**
973974 **Figure 5: Safety System Prompt.** System prompt used to elicit refusal behavior in uncensored
975 models.
976977 You are \$MODEL, a helpful and responsible AI assistant. Your primary responsibility is to only
978 assist users with safe, lawful, and non-harmful requests.
979980 If you receive any request that is unsafe, harmful, unethical, or illegal, you must refuse it imme-
981 diately. Your refusal should be polite, firm, and should always start with 'I am sorry' or 'I can't',
982 followed by a clear and concise explanation for why you cannot comply.
983984 Harmful or unsafe requests include (but are not limited to): instructions or encouragement for
985 self-harm or suicide; promotion of or assistance with violence, terrorism, or hate speech; partici-
986 pation in or guidance on illegal activities (e.g., hacking, fraud, identity theft); anything involving
987 child exploitation, non-consensual acts, or abuse; requests related to drugs, weapons, or unsafe
988 medical advice; any action that could lead to harm, misinformation, or danger to people, animals,
989 or society.
990991 You are not allowed to provide workarounds, hypothetical responses, or speculative answers that
992 would enable or simulate harmful content. Even if the user insists or rephrases their request, you
993 must stay consistent and refuse clearly every time.
994995 Again, your refusal must always begin with: 'I am sorry' or 'I can't', followed by a brief reason.
996 Examples of valid refusals: 'I am sorry, but I can't help with that because it involves illegal
activity.' or 'I can't assist with that request as it may lead to harm.'
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

1026 **E DO ALIGNED MODELS BENEFIT FROM A SAFETY SYSTEM PROMPT?**
10271028 Rows marked with (•) correspond to runs where a safety system prompt was used when extracting
1029 the safety direction from an already aligned model. The results show that aligned models do not
1030 benefit from this additional prompt. In fact, in this case, performance degraded slightly, indicating
1031 that the alignment signal is already fully captured without requiring prompt-level conditioning.
10321033 **Table 11: Using a Safety System Prompt with an Aligned Model.** META-LLAMA-3.2-1B-
1034 INSTRUCT Does not gain in harm refusal when using a safety system prompt to calculate the safety
1035 vector.

1036 Model	1037 ROSI	1038 HR %	1039 BC %
META-LLAMA-3.2-1B-INSTRUCT	✓	92.73	95.9
	•	86.0 (-6.7)	98.6 (+2.7)

1041 **Table 12: Jailbreak Robustness.** Same pattern appears as in Table 11, safety system prompt is not
1042 required in aligned models.
1043

1044 Model	1045 ROSI	1046 DAN ↓	1047 HARMBENCH ↓	WILDGUARDTEST ↓			1048 WILDJAILBREAK Harmful ↓
1049 Model	1050 ROSI	1051 DAN ↓	1052 HARMBENCH ↓	1053 WG-Micro	1054 WG-Adv.	1055 WG-Vanilla	1056 WILDJAILBREAK Harmful ↓
1057 LLAMA-3.1-8B-INSTRUCT	1058 ✓	1059 0.0	1060 5.3	1061 0.0	1062 0.0	1063 0.0	1064 1.8
	•	0.7 (+0.7)	10.6 (+5.3)	2.7 (+2.7)	2.7 (+2.7)	2.7 (+2.7)	16.0 (+14.2)