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Abstract

Targeted data poisoning attacks pose an increasingly serious threat due to their
ease of deployment and high success rates. These attacks aim to manipulate the
prediction for a single test sample in classification models. Unlike indiscriminate
attacks that aim to decrease overall test performance, targeted attacks present a
unique threat to individual test instances. This threat model raises a fundamental
question: what factors make certain test samples more susceptible to successful
poisoning than others? We investigate how attack difficulty varies across differ-
ent test instances and identify key characteristics that influence vulnerability. This
paper introduces three predictive criteria for targeted data poisoning difficulty: er-
godic prediction accuracy (analyzed through clean training dynamics), poison dis-
tance, and poison budget. Our experimental results demonstrate that these metrics
effectively predict the varying difficulty of real-world targeted poisoning attacks
across diverse scenarios, offering practitioners valuable insights for vulnerability
assessment and understanding data poisoning attacks.

1 Introduction

In the past decade, machine learning (ML) models have achieved great success in various domains,
largely due to the vast amount of training data available on the internet. However, this reliance
on massive training datasets not only increases computational costs but also introduces significant
security vulnerabilities during the data collection process [24, 44]. Adversaries can exploit these vul-
nerabilities through data poisoning attacks which deliberately inject malicious samples into training
data either actively or passively [4, 11, 30, 40, 46]. These attacks are particularly concerning be-
cause they can compromise model integrity at its foundation, affecting all downstream applications
and users of the poisoned model [14].

Targeted data poisoning attacks represent a specialized form of this threat, where attackers aim to
manipulate model behavior for specific test instances while maintaining normal performance on
all other inputs [e.g., 2, 13, 16, 38, 49]. We primarily focus on classification models (and briefly
discuss generative models in Appendix E), where the objective is to misclassify a particular sample
to a predetermined class while maintaining correct predictions for all other inputs. Such attacks are
difficult to detect as they leave little evidence in overall model performance metrics.

Current evaluations of targeted attack threats typically rely on randomly selected test samples to
report overall attack success rates [e.g., 2, 13] as an average assessment. However, our observations
reveal substantial variation in attack effectiveness across different test instances, with no clear under-
standing of what characteristics drive these disparities. This paper addresses this critical knowledge
gap by investigating two key research questions: (1) what factors determine why a certain test sam-
ple is more vulnerable to targeted poisoning attacks than others? and (2) can we develop reliable
metrics to predict the difficulty of poisoning a specific instance?
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We address the first question by identifying three critical factors that influence poisoning difficulty:
the inherent classification difficulty during clean training, the distance in model parameter space
required to achieve poisoning, and the attacker’s resource constraints measured by poison budget.
To quantify these factors, we introduce three corresponding metrics that naturally predict poisoning
difficulty: (1) ergodic prediction accuracy (EPA) derived from clean training dynamics, (2) poisoning
distance 4, and (3) poisoning budget lower bound 7. Importantly, all our proposed metrics can be
calculated using only clean training data and processes, without requiring the simulation of actual
poisoning attacks—making them practical and accessible tools for defenders to assess vulnerability
and prioritize protection efforts.

Our experimental results confirm that all three proposed factors strongly correlate with real-world
attack performance. The metrics we developed effectively predict poisoning difficulty across various
test instances, capturing different dimensions and levels of vulnerability. Specifically, we find that
ergodic prediction accuracy (EPA) serves as a powerful indicator for distinguishing between easy-to-
poison and hard-to-poison test samples. Meanwhile, poisoning distance ¢ and budget lower bound 7
provide more fine-grained predictions for specific poison classes from complementary perspectives.
Together, these three metrics form a comprehensive framework that enables defenders to assess
poisoning vulnerability for any given test sample.

In summary, our work makes three distinct contributions: (1) We identify classification difficulty
during clean training, parameter-space poisoning distance, and poison budget as the key factors de-
termining targeted poisoning vulnerability; (2) We introduce three corresponding metrics: ergodic
prediction accuracy (EPA), poisoning distance, and budget lower bound, all calculable using only
clean training processes without any expensive attack and retraining; (3) Our experiments demon-
strate the effectiveness of these metrics and introduce a framework that enables defenders to clearly
identify and understand instance-level difficulty in targeted data poisoning.

2 Background

Threat model and notations: We first specify our threat model and list our notations below.

* Objective: We consider an adversary who tries to alter the prediction of a specific test sample x; '
from the correct class y; (or target class) to a specific poison class yp,.

* Attack deployment: The attacker reaches the objective by injecting a poisoned set D,, into the
clean training set D.. We assume the defender is training a machine learning model on the merged
dataset, i.e., Dy = D, U D, and deploy the model on a test set Dy, that contains x;.

» Attacker’s knowledge: We consider a white-box attack,® where the attacker is aware of the clean
training set D, the machine learning model architecture and the training scheme utilized by the
defender, and the inclusion of the test sample x; in the test set.

» Attacker’s budget & Constraint: We define the attacker’s budget as € = ”gtp I‘ ,

percentage of poisoning data. The budget for targeted attacks is usually low, e.g., ¢ = 1%. We also
set constraints on D,,, where it only contains “clean-labeled” poison data, namely that elements
in D, are generated by adding human imperceptible noises (e.g., with ¢, constraints) to clean
training images without changing their original labels.

i.e., the (relative)

» Attack evaluation: We define an attack to be successful when the prediction of the target sample
using the poisoned model f(x;;w,) (see notation below) is equal to the poisoned label y,,. Note
that attack success is strictly stronger than misclassification.

Other notation: We denote the clean model parameters (a model f trained only on D.) to be w,
and poisoned model parameters to be w,,. Let {(w,z) be our loss that measures the fitness of our

"We note that the attacker cannot change x;, but indirectly change the model’s behavior by deploying D,
through retraining. We highlight this is a key difference from adversarial examples, which directly modifies
without any poisoned set or retraining.

2We note that the attacks could possibly be performed in a partially black-box fashion, where the attackers
need to apply surrogate models and training procedure. However, such attacks suffer a severe performance drop
[37]. To ensure the strongest threat is measured from the defender’s perspective to ensure maximum security,
we consider the white-box setting instead.
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model wondataz € Z, e.g., z = (x,y). Let g(z) = g(z; w) = Vw{(z; w) be the gradient vector
with respect to a fixed model w evaluated at the data z.

Targeted data poisoning: In this paper, we focus on targeted data poisoning attacks [e.g., 2,
16, 38, 49] that affect only specific test samples and discuss other types of poisoning attacks in
Appendix B.1. Given a test sample (X, 4+ ), the problem can be formulated into the bi-level opti-
mization problem below:

r%in U(%¢,Yp), W), s.b. W, € argmin (D, U D,, w),
P w
where the attacker aims to enforce the prediction of z; to be y, through crafting and injecting
D, into the training set Dy,.. This problem is hard to solve directly as the outer maximization
problem depends on D,, only implicitly through the solution w, of the inner problem. Existing
attacks consider relaxations of this primal problem, for example, a fixed feature extractor [2, 49]
or approximating the gradient of target parameters [38]. As our poisoning difficulty metrics do not
depend on the specific design of attack algorithms, we omit the attack details and refer readers to
the above references. We note that data poisoning attacks can be further classified according to their
attack scheme, specifically, the construction of D,,., and we extend more discussion in Appendix B.2.

Targeted attacks are insidious as they do not cause significant performance degradation (hence harder
to detect) while still capable of causing system failure on targeted test instances. Previous works [13,
38, 49] have demonstrated the efficacy of such attacks against deep neural networks, reporting high
attack success rates. However, these reported success rates are typically calculated by averaging over
randomly selected test samples [13, 37]. This aggregated metric fails to capture the instance-level
difficulty of targeted data poisoning attacks, a critical gap we aim to address in this work.

3 Difficulty of Targeted Data Poisoning

To quantify the variance of attack performance 600 -
on different test instances, we perform an ex-
periment by applying a state-of-the-art attack
called gradient matching [13]. We choose the 400 -
first 100 test samples (based on target id) in
the class “plane” of the CIFAR-10 dataset [23]
and perform gradient matching to classify them 200}
into the nine other (poison) classes (900 attacks
in total). For each attack, we perform 8 inde-

Counts

pendent trials with different model initialization 0
and report the attack success rate, calculated 0.0 0.2 0.4 0.6 0.8 1.0
over the 8 independent runs, as a histogram for ASR Bins

all 900 attacks in Figure 1. Our results show a
high variance in the distribution of attack suc-
cess rate, which highlights the necessity of un-
derstanding instance-level poisoning difficulty.
We will show in Section 4 that the choice of the target class also introduces high variance.

Figure 1: Histogram of the attack success rate of
gradient matching over 8 runs on attacking 100
test samples in the class “plane” in CIFAR-10.

In this section, we introduce novel tools and metrics for understanding and quantifying the diffi-
culty of targeted data poisoning. A key strength of our approach is its generality: our tools operate
independently of specific data poisoning attack implementations and rely solely on clean-training
dynamics. This attack-agnostic framework enables defenders to assess vulnerability without requir-
ing knowledge of or access to particular attack methodologies. Recall that we denote a clean model
as w,, which we will frequently use in this section.

3.1 Poisoning difficulty prediction with clean training dynamics

Naively, for a linear model such as a support vector machine (SVM), the prediction of a test sample
positioned near the decision boundary is likely to be altered by small changes to the model. One
might therefore consider using the distance between a test sample and the decision boundary to
determine its robustness, or equivalently, its poisoning difficulty. However, this approach falls short
for neural networks and fails to account for the complex training dynamics of non-linear models.
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To study the poisoning difficulty of neural networks, we propose an intuitive hypothesis, motivated
by the linear example above:

Hypothesis A. The classification difficulty of a test sample x; is negatively correlated with its
poisoning difficulty, i.e., a sample x4 that is easy to classify is correspondingly difficult to poison.

To verify the above hypothesis, it is necessary to establish a robust measure of the difficulty of
classification, which we approach by examining the prediction correctness throughout training:

Definition 1 (Ergodic Prediction Accuracy, EPA). We say the classification difficulty for a target
sample x; can be measured by the ergodic average correctness (denoted by the indicator function)
for N training epochs with M different initializations:

1 M N
EPA = m Z Z ﬂ{fm,n(xt) = yt}a

m=1n=1

i.e., a model with higher EPA is easier to classify, thus harder to attack, and vice versa.

When the model update is ergodic [34] and with large M and N, EPA converges to Pr[f(x:; w*) =
y¢] where w* follows the invariant distribution of the update process.

Although we use the prediction of the model 1.2+
fm,n(x¢) above, EPA can also be calculated
using the model’s confidence (i.e., logits).
We demonstrate the performance of both ap-
proaches in Section 4. We acknowledge that
EPA represents just one method for measuring
classification difficulty, and we discuss alterna-
tive approaches in Appendix B.3.

Il High EPA Low EPA

While EPA provides a convenient measure, it
does not fully capture a test sample’s robustness
against attacks targeting a specific poisoned la- N ¥

bel 1,. We observe significant variations across Poison Class

different choices of y, as demonstrated in Fig-  pigure 2: The attack success rates of gradi-

ure 2. Furthermore, EPA is calculated solely op¢ matching on CIFAR-10 on different poison

based on clean training and does not account  ¢|aggeg yp for test samples x; with the 50 high-
for realistic attack scenarios. est/lowest EPA.

o

¢ & Q& P D PR
S T P C ¢ FE

3.2 Poisoning difficulty prediction with poisoning distance

To address the above limitations of EPA, we provide an alternative tool called poisoning distance to
measure poisoning difficulty, which takes the choice of y,, into account. Specifically, we consider
the ultimate goal of targeted poisoning:

Goal 1: An adversary aims at modifying model parameters from clean parameters w. to poisoned
ones Wy, such that f(X¢; Wp) = yp.

Data poisoning implements an indirect way to achieve this goal through crafting D,, and training
on D. U D,,. Goal 1 enables us to measure poisoning difficulty by comparing w,, and w,, directly.
Specifically, we propose a hypothesis on poisoning distance:

Hypothesis B. The distance § = d(w., w,,) between a clean model w. and a (targeted) poisoned
model w, is positively correlated with poisoning difficulty, i.e., a test sample x, with higher ¢ is
correspondingly more difficult to poison.

Note that d(-) is a distance function that we will specify soon. Here 4 is a sample-wise metric as
its calculation depends on the sample-specific poisoned parameter w,. Moreover, Hypothesis B
naturally considers the choice of y,,, which is embedded in the definition of wy,.

However, from a defender’s perspective, validating Hypothesis B directly is non-trivial as the cal-
culation of § depends on the poisoned parameters w,,, which are unknown without performing an
actual attack. Luckily, data poisoning is not the only viable way to achieve Goal 1, and we propose
a proxy to generate w,, and measure ¢ without performing any data poisoning attacks:
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Definition 2 (Poisoning Distance §). Starting from a clean model w., we say the poisoning distance
is the smallest step size required to modify w in one step such that the model classifies x; as y,:

§ =min{n >0: f(xt;wc —1-8) =Y}

where g = Vo l(f(x4;We), yp). Naturally, we also obtain our proxy of w, = w. — 1 - g.

While such a proxy may be different from a real data poisoning attack, J intuitively measures the
efforts needed to achieve the attack goal from a gradient perspective’.

Of course, there exist various algorithms for finding §. In this paper, we provide a simple ¢ estimator
in Algorithm 1 in Appendix C using binary search. Here we highlight that one advantage of the
estimation of § over EPA is that it does not depend on the training process or the clean data D, which
is extremely handy for users that has access only to the model weights (which is very common for
foundation models) to quantify the poisoning difficulty of their own personal data.

3.3 Poisoning difficulty prediction with poison budget

Aside from classification difficulty and poisoning distance, an alternative way to measure poisoning
difficulty is through the poison budget €. It is clear that an attack is easier if less poisoned data is
required, i.e., a lower ¢ suggests an easier attack. Here we aim to answer an intriguing question:

Is it possible to measure the lowest € needed to poison a model such that a given test sample Xy is
misclassified as y,, without performing any attacks?

Conveniently, Lu et al. [27] provides valuable theoretical tools for measuring the (relative) number
of poisoned samples |D,,| needed to reach some target parameters w,, (e.g., the proxy we generated
in Definition 2), i.e., the role of poison budget . Specifically, [27] provides a lower bound (or
necessary condition) with respect to € on poisoning reachability. Without diving into all technical
details and derivations, we directly present a simplified version of their results:

Theorem 1 (Poisoning reachability, Theorem 2 of Lu et al. [27]). Given a classification task with c
classes and a set of target parameters W, W, is poisoning reachable (defined by vanishing gradient

over training on D, U Dy,) only if the condition below holds (necessary condition )4

(wpg(D2))
e 1/e>’0}’

where W (-) is Lambert’s W function, g(D.) = g(D.; wp) = |Df1| > wep, Vw, (25 Wp).

EZTzzmax{

Theorem 1 enables us to calculate 7, the lower bound of poisoning budget € for a given target test
sample x4, the corresponding poison class ,, the target parameter w,,, and the clean training set
D., In Section 4, we will show that 7 is a direct indicator of poisoning difficulty.

4 Experiments

In this section, we (1) introduce our experimental settings; (2) present our results on poisoning
difficulty prediction using EPA; (3) demonstrate the effectiveness of the poisoning distance § and
poisoning reachability 7 on measuring poisoning difficulty; (4) show our ablation studies on datasets,
model architectures, and poisoning budget.

4.1 Experimental settings

We mainly examine the targeted attacks in the unified benchmark provided in [37]°. Note that we do
not consider any backdoor attacks as they require trigger injection during inference and the attack
difficulty highly depends on the trigger, and thus are beyond the scope of this paper.

3We note that our core idea of poisoning distance is closely related to model-targeted indiscriminate attacks
and we extend our discussion in Appendix B.4.

“Note that Theorem 2 in Lu et al. [27] presents poisoning reachability for binary linear models, and we
consider the general form in Equation (10) on multiclass neural networks.

*https://github.com/aks2203/poisoning-benchmark
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Datasets & models: We consider classification tasks on CIFAR-10 [23] with 10 classes, 50000
clean training samples and 10000 test samples in our main experiments, and TinyImageNet [25]
with 200 classes, 100000 clean training samples, 10000 validation samples, and 10000 test samples
in our ablation study. We apply ResNet-18 [18] for CIFAR-10 and VGG-16 [41] for TinyImageNet.

Training schemes: We consider two training schemes: (1) Training from scratch, where we ini-
tialize the model with random weights. For clean training, we use the clean training set D, for
data poisoning we use D, U Dpé; (2) Transfer learning for CIFAR-10, where we utilize a frozen
model pretrained on CIFAR-100, and fine-tune an additional linear head on a subset of CIFAR-10
that contains the first 250 images per class. For both scenarios, we train the model for 40 epochs.

Targeted attacks: We examine three attack methods listed in the unified benchmark: (1) Gradient
matching (GM) [13]” for training from scratch; (2) Feature collision (FC) [38] for transfer learning;
and (3) Bullseye polytope (BP) [2] for both.® For training from scratch, we perform 8 random model
initializations and calculate the attack success rate (ASR) by dividing the number of successful
attacks by 8. For transfer learning, as the model initialization is mostly fixed, we only consider one
attack trial each. For all attacks, unless specified otherwise, we use a poisoning budget e = 1%.

Measuring poisoning difficulty: (1) To calculate EPA for each test sample, we train the model
with M = 100 (for CIFAR-10), and M = 8 (for TinyImageNet) random initializations for N =
40 epochs. We consider the model prediction for training from scratch and model confidence for
transfer learning; (2) To obtain d, for each choice of (x;,y,), we consider 8 model initializations to
generate 8 w, apply Algorithm 1 on each w, and obtain the average; (3) For the calculation of 7,
we only apply one set of w. and consider the number of classes ¢ = 10 for CIFAR-10 and ¢ = 200
for TinyImageNet and apply Theorem 1.

We further report our resource and computational time in Appendix D.1.

1.2+ Bl High EPA Low EPA 4000

104 Bm High EPA

0.8 3000 Low EPA
14 2
%067 5 2000-

0.4 o

0.2 1000

0.0- 0

¢ A .S A O SO PR -
RO e 88 00 02 04 06 08 10
Target Class ASR Bins
(a) ASR for different y, (b) ASR distribution

Figure 3: Measuring the poisoning difficulty of GM on CIFAR-10 (training from scratch) using EPA.
We plot the ASR for low/high EPA test samples in each target class y; in (a), and the overall ASR
distribution as a histogram in (b).

4.2 Poisoning difficulty prediction with EPA

Recall in Section 3.1 Hypothesis A we hypothesize a negative correlation between classification dif-
ficulty and poisoning difficulty. In this section, we aim to show that (1) EPA, defined in Definition 1,
is a good indicator of poisoning difficulty; (2) EPA is not capable of differentiating between different
poison classes y,, for a test sample x;, and is ineffective on further ranking the poisoning difficulty
within groups of targets with similar EPA.

Training from scratch: For the from-scratch setting on ResNet-18/CIFAR-10, we perform clean
training on D, with the prespecified M and NN to identify the 50 target samples with the highest and
lowest EPA in each target class y,. For each target sample, we perform the GM attack on all possible
(9) poison classes y,, for 8 randomly initialized model weights. We thus run (50 + 50) x 10 x 9 x

®Note that for replacing attacks, D, can be changed after poisoning, see Appendix B.2 for discussion.

"https://github. com/JonasGeiping/poisoning-gradient-matching

8We neglect Convex Polytope (CP) [49] as it is extremely expensive. Specifically, it takes 100 seconds and
40 seconds to run one attack instance for BP and FC, respectively, while it takes more than 1 hour to run CP on
a NVIDIA 4090 GPU. As our experiments require thousands of attack instances, it is infeasible to run CP.
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Figure 4: EPA for three test instances in the class “car”’. Image (a): high EPA: 0.9988; ASR: 22.22%.
Image (b): medium EPA: 0.6775; ASR: 90.28%. Image (c): low EPA: 0.0275; ASR: 98.61%.

Table 1: The ASR, change of confidence for y, and y; before/after attack for high/low EPA test
samples with FC and BP attack on CIFAR-10 with transfer learning.

ASR \ change of confidence (y;,) \ change of confidence (y;)
FC BP | FC BP \ FC BP

highEPA 0.012 0.498 | 0.040+0.031 0.479£0.133 | —0.048 £0.036 —0.503 £ 0.137
low EPA  0.284 0.947 | 0.156 £0.041 0.661 £0.063 | —0.198 £0.053 —0.750 & 0.058

Xt

8 = 72000 attack instances in total. We report the computation time for each attack instance in
Appendix D.1. We present our main results in Figure 3 and observe that EPA is a reliable indicator
of poisoning difficulty, where a higher EPA suggests much lower ASR on average. We note that
Figure 3(a) demonstrates a discrepancy between different target classes, specifically, for classes cat
and dog, the ASR differences are relatively small between high EPA test samples and low EPA ones.
We argue that these classes are generally easier to poison as they are more difficult to classify, with
82.66% (cat) and 85.73% (dog) clean test accuracy, while that of all other classes is greater than
90%. We present a visualization of EPA for instances with high, medium, and low EPA values in
Figure 4, demonstrating its effectiveness as an indicator of instance-level poisoning difficulty®.

Transfer learning: For the transfer learning setting on ResNet-18 and CIFAR-10, we again identify
the 50 target samples with the highest and lowest EPA and apply an additional restriction that all
identified target images are classified correctly at the final epoch in all M clean training runs. Table 1
shows our main result on CIFAR-10 for two attacks FC and BP. We observe that the average ASR for
test samples with high EPA is much lower than the ones with low EPA for both attacks. Additionally,
as we start from a pre-trained model with reasonable performance, it is interesting to visualize the
model change after an attack. Thus, we report the average change of confidence for v, and y; for
each test sample and confirm that EPA is a reliable metric to measure poisoning difficulty. Moreover,
to check whether EPA is a reliable tool for predicting attack success, we report the average EPA of
test targets that are successfully and unsuccessfully poisoned in Table 2. We observe that EPA is
capable of clearly differentiating between successful attacks and failed attacks in most cases, while
the prediction region may occasionally overlap.

Table 2: The average EPA and confidence of y,, after clean training for successful/failed attacks using
the FC and BP attack on CIFAR-10 with transfer learning.

Average EPA \ Confidence of y,,
Attack Success
FC BP | FC BP
v 0.411£0.116 0.589 £ 0.255 | 0.142£0.092 0.043 £0.074
X 0.725£0.264 0.9124+0.148 | 0.012£0.033 0.001 4 0.002
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Table 3: Measuring the poisoning difficulty of GM on CIFAR-10 using § and 7 for the poison classes
with the highest and lowest ASR over all target classes y;. Anomaly cases where the prediction does
not conform with ASR are marked with underline.

Lowest ASR y, \ Highest ASR y,
distance & budget 7 ASR | distance § budget 7 ASR

plane 0.119 £0.042 0.00237 £0.00336 0.57 £0.42 | 0.105£0.030 0.00190 £0.00321  0.74 £0.35
car 0.124 £0.040 0.00171 +£0.00617 0.83 £0.28 | 0.112 £ 0.030  0.00097 £ 0.00187 0.90 £ 0.23
bird  0.114+0.035 0.00237 +0.00425 0.60 +0.42 | 0.097 £ 0.033 0.00140 £ 0.00229 0.84 £0.28
cat 0.093 +0.031  0.00049 &+ 0.00093 0.92 £ 0.21 | 0.095 £ 0.026  0.00043 £ 0.00121  0.99 +0.05
deer  0.123+0.042 0.00221 +0.00494 0.86 +0.26 | 0.092 £+ 0.034 0.00117 £ 0.00180 0.99 £ 0.07
dog 0.115+0.038  0.00095 4+ 0.00128 0.91 +£0.19 | 0.102 £0.033  0.00246 £ 0.00526  0.98 £ 0.07
frog  0.137+£0.042 0.00197 +£0.00219 0.83+0.26 | 0.112 £+ 0.035 0.00158 £ 0.00240 0.98 £0.07
horse  0.106 +0.041 0.00081 4+ 0.00227 0.69 +0.36 | 0.137 £0.048 0.00123 £ 0.00214 0.87 £0.24
ship  0.119£0.037 0.00336 £ 0.00497 0.67 +£0.38 | 0.085£0.031 0.00232 £ 0.00564 0.93 = 0.19
truck  0.125£0.033 0.00130 £0.00138 0.80 £0.28 | 0.106 £0.031  0.00058 £ 0.00097  0.95 £ 0.11

Yt
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Figure 5: (a) Correlation between pairwise ¢ difference and ASR difference; (b) and (c) Comparison
between all of our metrics for low/high EPA samples.

4.3 Poisoning distance and poisoning budget

In previous sections, we showed that EPA is generally a reliable indicator of poisoning difficulty.
However, it has 2 major shortcomings: (1) it does not take into account ¥, in determining poisoning
difficulty, and (2) it becomes ineffective within groups of target samples that have similar EPA.
Motivated by the inadequacy of EPA, we apply the poisoning distance and the poison budget measure
7, where our experience suggests that a larger ¢ or a larger 7 indicates a more difficult attack (lower
ASR). Specifically, given a target sample x;, we would like to confirm whether ¢ and 7 are capable
of predicting its vulnerability to poisoning towards a poison class y,.

Specifically, we examine our prior results in the from-scratch setting. First, we look at the choice
of y, with respect to each target class. For each target class, we examine the same 100 test samples
(50 highest/lowest EPA targets) and calculate the average ASR for each y,,. We report the two y,,
classes with the lowest/highest average ASR and compare the average ¢ and 7 values in Table 3.
Note that we focus on hard-to-classify samples by performing a pre-screening process to rule out
(x¢, yp) pairs (1135 out of 9000) that are already classified as y,, at the final epoch of clean training
in any of the M trials. While we observe ¢ and 7 are generally capable of identifying easy/hard
poison classes, there are some anomalies: for example, the target classes dog and cat have a smaller
difference in ASR between the highest/lowest ASR 1/, making them more difficult to differentiate.

To provide further understanding on the role of the poison class y,,, for every individual instance x,
we enumerate the choice of ¥, and create pairs ((xy,y,), (¢, ¥;)) (there are 9 choose 2, which is
36 pairs in total). For each pair, we calculate its corresponding ASR difference and § difference.
After obtaining all 1000 x 36 pairwise ASR and ¢ differences, we plot the correlation of the average
§ difference with respect to the 9 possible ASR differences!® in Figure 5(a) and observe that & is
generally reliable even for differentiating pair-wise differences.

“We will release an open website enabling verification of EPA for any target sample included in our paper.
!"Note that for each attack instance, as we perform 8 trials, ASR can take 9 values in [0, 1] with an interval
of 1/8. The ASR difference can only take the same 9 values as we restrict the difference to be positive.
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Moreover, we previously mentioned that EPA is not very reliable in further identifying hard/easy to
poison samples within the groups of samples with similar EPA. In Figure 5(b)(c), we rank samples
in the high EPA and low EPA region according to their EPA//7 into 10 tiers and plot the average
ASR for each tier. We observe that § and 7 cover a much wider range of ASR and are able to further
predict the difficulty of poisoning in a more fine-grained way.

4.4 Ablation studies

Necessity of training dynamics: A simple baseline method to predict poisoning difficulty is the
confidence of the target label y,. We run GM on CIFAR-10 and set y, = plane,y, = bird and
report the ASR, EPA, and confidence of g, for high EPA test samples and lower EPA samples!! in
Table 4. We observe that the confidence of y, is unable to differentiate samples that are difficult/easy
to poison and it is necessary to consider the training dynamics with EPA.

Table 4: Ablation study on predicting poisoning difficulty with the confidence of ;.

Xy confidence of y; average EPA average ASR

highEPA  0.9985 £ 0.00309  0.9955 £ 0.00165 0.468 = 0.3718
lower EPA  0.9999 £ 0.00003  0.9249 £ 0.03210  0.905 £ 0.1899

Poison budget: In our CIFAR-10 experiments using GM, the class “dog” is generally easier to
attack, indicating the attack budget may be too high. While in such cases our EPA does not provide
clear guidance, we conduct additional experiments by lowering the attack budget € in Table 5. We
observe EPA is more reliable when the attacker’s budget is limited, which is usually true in practice.

Table 5: Ablation study on predicting poisoning difficulty with EPA for various attack budget ¢.
Xy e=1% e =0.75% e =0.5% e =0.25% e=0.1%

high EPA  0.963 £0.084 0.963+0.119 0.738£0.375 0.588+0.382 0.263 £0.216
low EPA  0.988 £0.040 1.000£0.000 0.963 £0.060 0.950 £0.121 0.662 £ 0.391

TinyImageNet: Finally, we present our results on using EPA to predict poisoning difficulty on
TinyImageNet in Table 6. We choose 4 highest/lowest samples from y; = 0 and use GM and BP to
poison towards y, = 1, 2, with an attack budget ¢ = 0.05%. Our results again confirm that EPA can
predict poisoning difficulty.

Table 6: Poisoning difficulty prediction using EPA on TinyImageNet.
yp =1 \ yp =2
GM BP \ GM BP

highEPA  0.188 +0.375 0.031 £0.062 | 0.531 £0.373 0.344 £ 0.472
low EPA  0.812£0.298 0.781 +£0.438 | 1.000 £ 0.000 0.781 £0.438

Tt

5 Conclusion

In this paper, we investigated the varying vulnerability of test samples to targeted data poisoning
attacks. Our work establishes that poisoning difficulty is not uniform across samples but rather
depends on specific, measurable characteristics. We identified three key factors, classification diffi-
culty during clean training, parameter space poisoning distance, and poison budget, that significantly
influence vulnerability. Based on these factors, we developed three complementary metrics: ergodic
prediction accuracy (EPA), poisoning distance and budget lower bound. These metrics provide a
comprehensive framework for predicting poisoning difficulty without requiring the execution of ac-
tual attacks. Our experimental results validate that EPA effectively separates easy-to-poison from
hard-to-poison samples, while § and 7 offer fine-grained predictions for specific poison classes. We
extend more discussions on limitations and future works in Appendix A.

''We restrict the confidence of y; > 0.98 for samples with lower EPA.
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A Limitations and Future works

Practical Utility for Defenders. The framework proposed in this paper has potential for practical
application in defending against data poisoning attacks. Defenders could integrate these metrics into
a continuous monitoring pipeline to achieve proactive vulnerability assessment. For instance, EPA
could be periodically computed for a set of critical or high-stakes test samples to identify any that
exhibit unstable predictions during routine model updates. For samples flagged with low EPA, or for
particularly sensitive targets (e.g., a specific face in a facial recognition system), a defender could
then compute 0 and 7 against a set of likely or dangerous poison classes. A high-risk combina-
tion could trigger an alert, mandate human-in-the-loop verification for that sample’s predictions, or
initiate a forensic analysis of the training data pipeline.

Limitations. Our work still has limitations: (1) As shown in our experiments, all of our metrics
may occasionally yield inaccurate predictions of poisoning difficulty, indicating room for improve-
ment; (2) Our method still relies on test sample labels to accurately predict poisoning difficulty,
which could be infeasible in practice. Thus, a label-agnostic approach is largely desired; (3)Our
quantitative metrics are currently limited to classification models, with our diffusion model analysis
in Appendix E remaining qualitative.

Future Works. Several potential future directions emerge from our work: (1) Data-centric de-
fenses that optimize test samples to defend against targeted data poisoning attacks. For example,
defenders might apply carefully crafted adversarial noise to test data, similar to techniques used
in adversarial examples; (2) While we make initial attempts to extend our discussion to diffusion
models in Appendix E, future work could explore how these vulnerability insights inform the de-
velopment of more robust LLMs against targeted data poisoning attacks. Moreover, developing
universal quantitative metrics for assessing poisoning difficulty across different model types is a
crucial future step.

B Related works

B.1 Data poisoning attacks

Data poisoning, an emerging training-time concern in modern ML pipelines, refers to the threat of
(actively or passively) crafting "poisoned" training data D,, so that systems trained on it (along with
possibly clean in-house data D) are skewed toward certain behaviors. Significant research has been
proposed to study the impact of such attacks on classification models. For example, indiscriminate
data poisoning [e.g., 3, 21, 22, 27, 28, 29, 31] is a general-purpose attack that aims to decrease the
overall test accuracy. Similar formulations have been proposed for protecting user data [e.g., 7, 8,
9, 19, 26, 36, 48]. While data poisoning attacks can also involve testing-time manipulation—such
as backdoor attacks [e.g., 5, 15, 35, 45] that aim to trigger malicious model behavior with particular
patterns on test samples, we focus exclusively on training-time attacks in this paper.

B.2 Adding attack vs Replacing attack

Realistically, an attacker would have no control on the clean set D., and data poisoning attacks
[e.g., 3, 22, 27, 28, 31] usually consider adding-only attack where D, is intact and the size of Dy,
increases. However, targeted attacks [e.g., 2, 16, 38, 49] consider replacing attacks where part of the
clean set D, is substituted'? with D, while the size of Dy, is unchanged. In this paper, we follow
previous works and consider replacing attacks. While the practicality of such attacks are beyond
our scope, we note that the key technical differences comparing with adding-only attacks: replacing
attacks are notably easier as it reduces |D,.| and considers a slightly higher € as |D;,.| is a constant
(see Appendix C.10 in [27] for a detailed discussion).

12Such substitution is performed by simply adding noise to the original clean samples. Such a setting could
resonate in targeted settings as it would keep the balance between classes.
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B.3 Measuring classification difficulty

The problem of measuring classification difficulty has been explored in prior literature. For instance,
Agarwal et al. [1] proposed variance of gradient (VOG) as a method to rank examples by classifi-
cation difficulty. VOG could potentially serve as an alternative to EPA for measuring classification
difficulty in Hypothesis A and may function as an indicator for predicting poisoning vulnerability—a
direction we intend to investigate in future work. Additionally, out-of-distribution (OoD) detection
techniques such as PCA [17] and KDE [6] could potentially identify hard-to-classify (and possibly
easy-to-poison) anomalous samples.

Furthermore, our approach relates to selective classification [32], where models reject inputs likely
to be misclassified while maintaining high performance on accepted inputs. Specifically, Rabanser et
al. [32] leverages prediction agreement between intermediate training stages and the final epoch—a
strategy similar to our EPA metric that also analyzes clean training dynamics. However, unlike
selective classification, we assign a EPA score to every test instance rather than implementing a
rejection mechanism.

B.4 Connection and differences with model-targeted attacks

We note that our core idea of poisoning distance is closely related to model-targeted indiscriminate
attacks which we denote as MTA [22, 27, 43], where these attacks consider a set of target parameters
w,, as the target and apply gradient-based poisoning attacks to achieve w,. While the concept of
target parameters is also used in our paper, we emphasize key differences: (1) Task: MTA considers
w,, to be a model with low test accuracy, which can be generated with a gradient-based parameter
corruption attack [42]. We consider a set of w,, that only misclassifies one single test sample. (2)
Using w,: MTA uses w,, as the endgoal to generate poisoning attacks, we use w,, as proxies to
quantify poisoning difficulty. (3) Attack vs Defense: MTA are designed for more effective attacks,
while our algorithm estimate w,, and ¢ to help practitioners understand targeted attack difficulties
and design better defenses.

Algorithm 1: Poisoning Distance Estimation

Input: clean parameters w,, target x;, poison label y,,, precision parameter o« = 1074
calculate the gradient g = V. 0(f(x¢;We), Up)
instantiate the upper bound © = oo, lower bound [ = 0, and medium m = 0.5 for binary search
while v — [ > a do
if u = oo then

| setm =2m

else
L setm = “TH

if f(xy; w —m - g) =y, then
| setu=m

else

| setl=m

return the estimated poisoning distance § = u

C Algorithm on Estimating Poisoning Distance

Recall that in Section 3.2 we propose to use a binary search based algorithm to estimate the poison-
ing distance §. We present the algorithm in Algorithm 1.

D Additional Experiments on Classification Models

D.1 Computing resource & time

Targeted attacks: Due to the extensive number of attacks conducted, we distributed our experi-
ments across three distinct clusters equipped with NVIDIA 4090 (cluster 1), A100 (cluster 2), and
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RTX6000 GPUs (cluster 3). The computational requirements varied significantly by task: training
models from scratch (GM experiments) required up to 1 hour 40 minutes on all clusters for CIFAR-
10/ResNet-18 configurations, while TinyImageNet/VGG16 experiments (GM and BP) demanded up
to 3 hours 10 minutes on cluster 2. Transfer learning experiments were considerably more efficient,
requiring only 66-72 seconds for BP and 60-63 seconds for FC on clusters 2 and 3, respectively.

Measuring poisoning difficulty:We conducted all experiments on the NVIDIA 4090 cluster. For
EPA calculations, the computational cost scales linearly with the number of trials A/ multiplied by
the clean training time. For individual test samples, computing all nine possible § values for a single
set of w requires just 1.3 seconds, while calculating all nine possible 7 values takes approximately
30 seconds on our ResNet-18/CIFAR-10 experimental setup.

D.2  Other baselines for poisoning difficulty prediction on y,

In Section 4.3, we introduce ¢ as the indicator for poisoning difficulty for poison classes y,, with the
highest and lowest ASR. Here we perform the same task for two baseline methods: (1) the average
confidence of a given y, at the end of clean training; (2) the poison prediction area (PPA), where we
apply a similar definition with EPA, but only considers the prediction of y,. Our results in Table 7
and Table 8 show that these baseline methods fail to predict poisoning difficulty for most cases.

Table 7: Measuring the poisoning difficulty of GM on CIFAR-10 using the average confidence of y,,
at the end of clean training with the highest and lowest ASR over all target classes y;. Cases where
the prediction conforms with ASR are marked in blue, and anomalies are marked in red.

Lowest ASR vy, Highest ASR y,,
b Avg Confidence of y, ASR | Avg Confidence of y, ASR
plane 0.002 £ 0.005 0.57 £0.42 0.001 £ 0.005 0.74 £0.35
car 0.001 £ 0.001 0.83 £0.28 0.000 £+ 0.001 0.90 £ 0.23
bird 0.001 + 0.003 0.60 £ 0.42 0.003 £ 0.008 0.84 £ 0.28
cat 0.002 + 0.006 0.92£0.21 0.001 £+ 0.004 0.99 £ 0.05
deer 0.002 + 0.006 0.86 £ 0.26 0.003 £ 0.006 0.99 £ 0.07
dog 0.002 = 0.005 0.91£0.19 0.002 £ 0.006 0.98 £ 0.07
frog 0.002 £+ 0.005 0.83 £0.26 0.001 £+ 0.004 0.98 £0.07
horse 0.003 £ 0.011 0.69 + 0.36 0.002 £ 0.005 0.87 £ 0.24
ship 0.001 + 0.002 0.67 £ 0.38 0.002 £+ 0.006 0.93£0.19
truck 0.000 % 0.002 0.80 £ 0.28 0.001 £+ 0.004 0.95£0.11

Table 8: Measuring the poisoning difficulty of GM on CIFAR-10 using poison prediction area (PPA)
with the highest and lowest ASR over all target classes y;. Cases where the prediction conforms
with ASR are marked with blue, and anomalies are marked with red.

Lowest ASR y,, \ Highest ASR y,
v | PPa ASR

PPA ASR

plane 0.004 £0.016 0.57+0.42 | 0.003 £0.012 0.74£0.35

car  0.004 £0.014 0.83+0.28 | 0.001 £0.005 0.90 &+ 0.23
bird  0.005+£0.009 0.60+0.42 | 0.005+0.010 0.84 £0.28

cat  0.016 £0.026 0.92=£0.21 | 0.006 £ 0.013 0.99 £ 0.05
deer 0.017+0.031 0.86=£0.26 | 0.004 £0.007 0.99 +0.07
dog 0.008£0.013 0.91+£0.19 | 0.003 £0.011 0.98+0.07
frog  0.003+£0.012 0.83£0.26 | 0.006 £0.015 0.98 £0.07
horse 0.012+0.042 0.69 £0.36 | 0.003 £0.013 0.87£0.24
ship 0.004+£0.015 0.67£0.38 | 0.004+0.012 0.93+£0.19
truck 0.002 £0.008 0.80+£0.28 | 0.002+£0.007 0.95+0.11

ss K Targeted Attacks on Latent Diffusion Models

526
527

For generative models, targeted attacks aim to alter the generation of specific concepts or prompts
while maintaining expected behavior for other inputs [29, 39, 47]. In this paper, we aim to extend
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the examination on instance-level difficulty in targeted data poisoning attacks to latent diffusion
models [33]. Specifically, we consider the disguised copyright infringement (DCI) attack in [29].
DCI considers a threat where an attacker aims to mimic the style of a copyrighted image z. without
directly training on z, but creates a disguise image (or poison sample) =4 that visually assembles
another base image x;, while containing the latent information of z.. Although the task and poison-
ing mechanism are very different from those of classification models that we consider in the main
paper, we find two factors that would affect the poisoning difficulty.

Structure of z;: We follow the implementation of [29]'® and consider the task of disguising style.
We pick the drawing: The Neckarfront in Tubingen, Germany (photo by Andreas Praefcke) in the
style of The Starry Night, generated with Neural Style Transfer [12] as z.. The base image x is
x. with another style (watercolor), generated with AdaIN-based [20] style transfer'#. The disguise
x4 is generated using Algorithm 1 in [29] and we train the disguise x4 using textual inversion [10]
for generation. We fix z; and study the role of the structure of x; by applying gaussian blur with
different kernel size (a larger kernel size results in a more blurry image). We report our results in
Figure 6,Figure 7, Figure 8, Figure 9 and Figure 10. We observe that by increasing the kernel size,
the cirrus effect of the generated images dramatically decreases. When the kernel size is bigger than
10, the textual inversion model cannot learn any useful information. We conclude that preserving
the structure of x; is essential for a successful data poisoning attack, highlighting the role on the
appearance of the poison image in poisoning difficulty.

Structure of x.: We also observe that the structure of . (target or copyright image) also affects
the poisoning difficulty. In Figure 11, we choose another ;!> with much simpler layout in the same
style of The Starry Night. We observe that style mimicry is unsuccessful for this poison instance,
validating that poisoning success is also correlated with the structure of ..

. ko
(a) Base xp (b) Disguise z4 (c) z¢

50"

(d) Images generated by textual inversion after training on the x4

Figure 6: Disguised copyrighted style on textual inversion with the original x.

Bhttps://github.com/watml/disguised_copyright_infringement

“https://github.com/tyui592/AdaIN_Pytorch

Shttps://stock.adobe.com/images/glowing-moon-on-a-blue-sky-abstract-background-seamless-vector-
pattern-in-the-style-of-impressionist-paintings/475101004

16


https://github.com/watml/disguised_copyright_infringement
https://github.com/tyui592/AdaIN_Pytorch

(a) Base x

(b) Disguise zq4 (c) ¢

==

(d) Images generated by textual inversion after training on the x4

Figure 7: Disguised copyrighted style on textual inversion with the blurry z; (kernel size = 3).
‘?— e B

(d) Images generated by textual inversion after training on the x4

Figure 8: Disguised copyrighted style on textual inversion with the blurry x;, (kernel size = 7).
T T—

(a) Base zy (b) Disguise z4 (c) zc

(d) Images generated by textual inversion after training on the x4

Figure 9: Disguised copyrighted style on textual inversion with the blurry x; (kernel size = 13).
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(d) Images generated by textual inversion after training on the x4

Figure 10: Disguised copyrighted style on textual inversion with the blurry x; (kernel size = 49).

(a) Base x (b) Disguise =

d _ (C) Te

(d) Images generated by textual inversion after training on the x4

Figure 11: Disguised copyrighted style on textual inversion with a different choice of ;.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The main claims accurately and clearly reflect the paper’s contributions and
scope. scope.

Guidelines:
e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these
goals are not attained by the paper.

. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: We discussed the limitation of our methods throughout the experimental sec-
tion and the conclusion.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means
that the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The au-
thors should reflect on how these assumptions might be violated in practice and what
the implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the ap-
proach. For example, a facial recognition algorithm may perform poorly when image
resolution is low or images are taken in low lighting. Or a speech-to-text system might
not be used reliably to provide closed captions for online lectures because it fails to
handle technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to ad-
dress problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]

Justification: We provide the full set of assumptions. For Theorem 1, we refer the readers
to the original paper for the proof.

Guidelines:

* The answer NA means that the paper does not include theoretical results.

e All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

¢ All assumptions should be clearly stated or referenced in the statement of any theo-
rems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a
short proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be comple-
mented by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main
experimental results of the paper to the extent that it affects the main claims and/or conclu-
sions of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]
Justification: We include all the experimental settings in Section 4.
Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps
taken to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture
fully might suffice, or if the contribution is a specific model and empirical evaluation,
it may be necessary to either make it possible for others to replicate the model with
the same dataset, or provide access to the model. In general. releasing code and data
is often one good way to accomplish this, but reproducibility can also be provided via
detailed instructions for how to replicate the results, access to a hosted model (e.g., in
the case of a large language model), releasing of a model checkpoint, or other means
that are appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all sub-

missions to provide some reasonable avenue for reproducibility, which may depend

on the nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear
how to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to re-
produce the model (e.g., with an open-source dataset or instructions for how to
construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case au-
thors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer:

Justification: We use standard and open datasets and we will make the code repository
public after the paper is accepted, provided that there are no objections from the reviewers
or chairs.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not
be possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

¢ The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: We provide all the experimental setting/details in Section 4.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of
detail that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropri-
ate information about the statistical significance of the experiments?

Answer: [Yes]
Justification: This paper reports error bars over multiple random trials in main tables.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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8.

10.

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

e It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* Itis OK to report 1-sigma error bars, but one should state it. The authors should prefer-
ably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of
Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: This paper provides computer resources used in Appendix D.1.
Guidelines:

* The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments
that didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: This paper aims to understand targeted data poisoning attacks and provides
useful information to improve robustness of models and test data.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: We discuss broader impacts in Section 5.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

o If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.
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11.

12.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact spe-
cific groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitiga-
tion strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: This paper poses no risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by re-
quiring that users adhere to usage guidelines or restrictions to access the model or
implementing safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: Datasets and poisoning attacks used in this paper are properly cited.
Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the pack-
age should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the li-
cense of a dataset.
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14.

15.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documenta-
tion provided alongside the assets?

Answer: [NA|
Justification: This paper does not introduce new assets.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can
either create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the pa-
per include the full text of instructions given to participants and screenshots, if applicable,
as well as details about compensation (if any)?

Answer: [NA|
Justification: This paper does not involve crowdsourcing nor research with human subjects
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

* Including this information in the supplemental material is fine, but if the main contri-
bution of the paper involves human subjects, then as much detail as possible should
be included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, cura-
tion, or other labor should be paid at least the minimum wage in the country of the
data collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

* Depending on the country in which research is conducted, IRB approval (or equiva-
lent) may be required for any human subjects research. If you obtained IRB approval,
you should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity
(if applicable), such as the institution conducting the review.
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864 16. Declaration of LLLM usage

865 Question: Does the paper describe the usage of LLMs if it is an important, original, or
866 non-standard component of the core methods in this research? Note that if the LLM is used
867 only for writing, editing, or formatting purposes and does not impact the core methodology,
868 scientific rigorousness, or originality of the research, declaration is not required.

869 Answer: [NA]

870 Justification: LLM is used only to improve writing for this paper.

871 Guidelines:

872 * The answer NA means that the core method development in this research does not
873 involve LLMs as any important, original, or non-standard components.

874 * Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
875 for what should or should not be described.
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