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Abstract

Targeted data poisoning attacks pose an increasingly serious threat due to their1

ease of deployment and high success rates. These attacks aim to manipulate the2

prediction for a single test sample in classification models. Unlike indiscriminate3

attacks that aim to decrease overall test performance, targeted attacks present a4

unique threat to individual test instances. This threat model raises a fundamental5

question: what factors make certain test samples more susceptible to successful6

poisoning than others? We investigate how attack difficulty varies across differ-7

ent test instances and identify key characteristics that influence vulnerability. This8

paper introduces three predictive criteria for targeted data poisoning difficulty: er-9

godic prediction accuracy (analyzed through clean training dynamics), poison dis-10

tance, and poison budget. Our experimental results demonstrate that these metrics11

effectively predict the varying difficulty of real-world targeted poisoning attacks12

across diverse scenarios, offering practitioners valuable insights for vulnerability13

assessment and understanding data poisoning attacks.14

1 Introduction15

In the past decade, machine learning (ML) models have achieved great success in various domains,16

largely due to the vast amount of training data available on the internet. However, this reliance17

on massive training datasets not only increases computational costs but also introduces significant18

security vulnerabilities during the data collection process [24, 44]. Adversaries can exploit these vul-19

nerabilities through data poisoning attacks which deliberately inject malicious samples into training20

data either actively or passively [4, 11, 30, 40, 46]. These attacks are particularly concerning be-21

cause they can compromise model integrity at its foundation, affecting all downstream applications22

and users of the poisoned model [14].23

Targeted data poisoning attacks represent a specialized form of this threat, where attackers aim to24

manipulate model behavior for specific test instances while maintaining normal performance on25

all other inputs [e.g., 2, 13, 16, 38, 49]. We primarily focus on classification models (and briefly26

discuss generative models in Appendix E), where the objective is to misclassify a particular sample27

to a predetermined class while maintaining correct predictions for all other inputs. Such attacks are28

difficult to detect as they leave little evidence in overall model performance metrics.29

Current evaluations of targeted attack threats typically rely on randomly selected test samples to30

report overall attack success rates [e.g., 2, 13] as an average assessment. However, our observations31

reveal substantial variation in attack effectiveness across different test instances, with no clear under-32

standing of what characteristics drive these disparities. This paper addresses this critical knowledge33

gap by investigating two key research questions: (1) what factors determine why a certain test sam-34

ple is more vulnerable to targeted poisoning attacks than others? and (2) can we develop reliable35

metrics to predict the difficulty of poisoning a specific instance?36
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We address the first question by identifying three critical factors that influence poisoning difficulty:37

the inherent classification difficulty during clean training, the distance in model parameter space38

required to achieve poisoning, and the attacker’s resource constraints measured by poison budget.39

To quantify these factors, we introduce three corresponding metrics that naturally predict poisoning40

difficulty: (1) ergodic prediction accuracy (EPA) derived from clean training dynamics, (2) poisoning41

distance δ, and (3) poisoning budget lower bound τ . Importantly, all our proposed metrics can be42

calculated using only clean training data and processes, without requiring the simulation of actual43

poisoning attacks—making them practical and accessible tools for defenders to assess vulnerability44

and prioritize protection efforts.45

Our experimental results confirm that all three proposed factors strongly correlate with real-world46

attack performance. The metrics we developed effectively predict poisoning difficulty across various47

test instances, capturing different dimensions and levels of vulnerability. Specifically, we find that48

ergodic prediction accuracy (EPA) serves as a powerful indicator for distinguishing between easy-to-49

poison and hard-to-poison test samples. Meanwhile, poisoning distance δ and budget lower bound τ50

provide more fine-grained predictions for specific poison classes from complementary perspectives.51

Together, these three metrics form a comprehensive framework that enables defenders to assess52

poisoning vulnerability for any given test sample.53

In summary, our work makes three distinct contributions: (1) We identify classification difficulty54

during clean training, parameter-space poisoning distance, and poison budget as the key factors de-55

termining targeted poisoning vulnerability; (2) We introduce three corresponding metrics: ergodic56

prediction accuracy (EPA), poisoning distance, and budget lower bound, all calculable using only57

clean training processes without any expensive attack and retraining; (3) Our experiments demon-58

strate the effectiveness of these metrics and introduce a framework that enables defenders to clearly59

identify and understand instance-level difficulty in targeted data poisoning.60

2 Background61

Threat model and notations: We first specify our threat model and list our notations below.62

• Objective: We consider an adversary who tries to alter the prediction of a specific test sample xt
163

from the correct class yt (or target class) to a specific poison class yp.64

• Attack deployment: The attacker reaches the objective by injecting a poisoned set Dp into the65

clean training set Dc. We assume the defender is training a machine learning model on the merged66

dataset, i.e., Dtr = Dc ∪ Dp and deploy the model on a test set Dtest that contains xt.67

• Attacker’s knowledge: We consider a white-box attack,2 where the attacker is aware of the clean68

training set Dc, the machine learning model architecture and the training scheme utilized by the69

defender, and the inclusion of the test sample xt in the test set.70

• Attacker’s budget & Constraint: We define the attacker’s budget as ε = |Dp|
|Dtr| , i.e., the (relative)71

percentage of poisoning data. The budget for targeted attacks is usually low, e.g., ε = 1%. We also72

set constraints on Dp, where it only contains “clean-labeled” poison data, namely that elements73

in Dp are generated by adding human imperceptible noises (e.g., with ℓ∞ constraints) to clean74

training images without changing their original labels.75

• Attack evaluation: We define an attack to be successful when the prediction of the target sample76

using the poisoned model f(xt;wp) (see notation below) is equal to the poisoned label yp. Note77

that attack success is strictly stronger than misclassification.78

Other notation: We denote the clean model parameters (a model f trained only on Dc) to be wc79

and poisoned model parameters to be wp. Let ℓ(w, z) be our loss that measures the fitness of our80

1We note that the attacker cannot change xt, but indirectly change the model’s behavior by deploying Dp

through retraining. We highlight this is a key difference from adversarial examples, which directly modifies xt

without any poisoned set or retraining.
2We note that the attacks could possibly be performed in a partially black-box fashion, where the attackers

need to apply surrogate models and training procedure. However, such attacks suffer a severe performance drop
[37]. To ensure the strongest threat is measured from the defender’s perspective to ensure maximum security,
we consider the white-box setting instead.

2



model w on data z ∈ Z, e.g., z = (x, y). Let g(z) = g(z;w) = ∇wℓ(z;w) be the gradient vector81

with respect to a fixed model w evaluated at the data z.82

Targeted data poisoning: In this paper, we focus on targeted data poisoning attacks [e.g., 2,83

16, 38, 49] that affect only specific test samples and discuss other types of poisoning attacks in84

Appendix B.1. Given a test sample (xt, yt), the problem can be formulated into the bi-level opti-85

mization problem below:86

min
Dp

ℓ((xt, yp),w∗), s.t. w∗ ∈ argmin
w

ℓ(Dc ∪ Dp,w),

where the attacker aims to enforce the prediction of xt to be yp through crafting and injecting87

Dp into the training set Dtr. This problem is hard to solve directly as the outer maximization88

problem depends on Dp only implicitly through the solution w∗ of the inner problem. Existing89

attacks consider relaxations of this primal problem, for example, a fixed feature extractor [2, 49]90

or approximating the gradient of target parameters [38]. As our poisoning difficulty metrics do not91

depend on the specific design of attack algorithms, we omit the attack details and refer readers to92

the above references. We note that data poisoning attacks can be further classified according to their93

attack scheme, specifically, the construction of Dtr, and we extend more discussion in Appendix B.2.94

Targeted attacks are insidious as they do not cause significant performance degradation (hence harder95

to detect) while still capable of causing system failure on targeted test instances. Previous works [13,96

38, 49] have demonstrated the efficacy of such attacks against deep neural networks, reporting high97

attack success rates. However, these reported success rates are typically calculated by averaging over98

randomly selected test samples [13, 37]. This aggregated metric fails to capture the instance-level99

difficulty of targeted data poisoning attacks, a critical gap we aim to address in this work.100

3 Difficulty of Targeted Data Poisoning101
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Figure 1: Histogram of the attack success rate of
gradient matching over 8 runs on attacking 100
test samples in the class “plane” in CIFAR-10.

To quantify the variance of attack performance102

on different test instances, we perform an ex-103

periment by applying a state-of-the-art attack104

called gradient matching [13]. We choose the105

first 100 test samples (based on target id) in106

the class “plane” of the CIFAR-10 dataset [23]107

and perform gradient matching to classify them108

into the nine other (poison) classes (900 attacks109

in total). For each attack, we perform 8 inde-110

pendent trials with different model initialization111

and report the attack success rate, calculated112

over the 8 independent runs, as a histogram for113

all 900 attacks in Figure 1. Our results show a114

high variance in the distribution of attack suc-115

cess rate, which highlights the necessity of un-116

derstanding instance-level poisoning difficulty.117

We will show in Section 4 that the choice of the target class also introduces high variance.118

In this section, we introduce novel tools and metrics for understanding and quantifying the diffi-119

culty of targeted data poisoning. A key strength of our approach is its generality: our tools operate120

independently of specific data poisoning attack implementations and rely solely on clean-training121

dynamics. This attack-agnostic framework enables defenders to assess vulnerability without requir-122

ing knowledge of or access to particular attack methodologies. Recall that we denote a clean model123

as wc, which we will frequently use in this section.124

3.1 Poisoning difficulty prediction with clean training dynamics125

Naively, for a linear model such as a support vector machine (SVM), the prediction of a test sample126

positioned near the decision boundary is likely to be altered by small changes to the model. One127

might therefore consider using the distance between a test sample and the decision boundary to128

determine its robustness, or equivalently, its poisoning difficulty. However, this approach falls short129

for neural networks and fails to account for the complex training dynamics of non-linear models.130
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To study the poisoning difficulty of neural networks, we propose an intuitive hypothesis, motivated131

by the linear example above:132

Hypothesis A. The classification difficulty of a test sample xt is negatively correlated with its133

poisoning difficulty, i.e., a sample xt that is easy to classify is correspondingly difficult to poison.134

To verify the above hypothesis, it is necessary to establish a robust measure of the difficulty of135

classification, which we approach by examining the prediction correctness throughout training:136

Definition 1 (Ergodic Prediction Accuracy, EPA). We say the classification difficulty for a target137

sample xt can be measured by the ergodic average correctness (denoted by the indicator function)138

for N training epochs with M different initializations:139

EPA =
1

MN

M∑
m=1

N∑
n=1

1{fm,n(xt) = yt},

i.e., a model with higher EPA is easier to classify, thus harder to attack, and vice versa.140

When the model update is ergodic [34] and with large M and N , EPA converges to Pr[f(xt;w
∗) =141

yt] where w∗ follows the invariant distribution of the update process.142
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Figure 2: The attack success rates of gradi-
ent matching on CIFAR-10 on different poison
classes yp for test samples xt with the 50 high-
est/lowest EPA.

Although we use the prediction of the model143

fm,n(xt) above, EPA can also be calculated144

using the model’s confidence (i.e., logits).145

We demonstrate the performance of both ap-146

proaches in Section 4. We acknowledge that147

EPA represents just one method for measuring148

classification difficulty, and we discuss alterna-149

tive approaches in Appendix B.3.150

While EPA provides a convenient measure, it151

does not fully capture a test sample’s robustness152

against attacks targeting a specific poisoned la-153

bel yp. We observe significant variations across154

different choices of yp as demonstrated in Fig-155

ure 2. Furthermore, EPA is calculated solely156

based on clean training and does not account157

for realistic attack scenarios.158

3.2 Poisoning difficulty prediction with poisoning distance159

To address the above limitations of EPA, we provide an alternative tool called poisoning distance to160

measure poisoning difficulty, which takes the choice of yp into account. Specifically, we consider161

the ultimate goal of targeted poisoning:162

Goal 1: An adversary aims at modifying model parameters from clean parameters wc to poisoned163

ones wp such that f(xt;wp) = yp.164

Data poisoning implements an indirect way to achieve this goal through crafting Dp and training165

on Dc ∪ Dp. Goal 1 enables us to measure poisoning difficulty by comparing wp and wc directly.166

Specifically, we propose a hypothesis on poisoning distance:167

Hypothesis B. The distance δ = d(wc,wp) between a clean model wc and a (targeted) poisoned168

model wp is positively correlated with poisoning difficulty, i.e., a test sample xt with higher δ is169

correspondingly more difficult to poison.170

Note that d(·) is a distance function that we will specify soon. Here δ is a sample-wise metric as171

its calculation depends on the sample-specific poisoned parameter wp. Moreover, Hypothesis B172

naturally considers the choice of yp, which is embedded in the definition of wp.173

However, from a defender’s perspective, validating Hypothesis B directly is non-trivial as the cal-174

culation of δ depends on the poisoned parameters wp, which are unknown without performing an175

actual attack. Luckily, data poisoning is not the only viable way to achieve Goal 1, and we propose176

a proxy to generate wp and measure δ without performing any data poisoning attacks:177
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Definition 2 (Poisoning Distance δ). Starting from a clean model wc, we say the poisoning distance178

is the smallest step size required to modify wc in one step such that the model classifies xt as yp:179

δ = min{η > 0 : f̃(xt;wc − η · g) = yp},

where g = ∇wℓ(f̃(xt;wc), yp). Naturally, we also obtain our proxy of wp = wc − η · g.180

While such a proxy may be different from a real data poisoning attack, δ intuitively measures the181

efforts needed to achieve the attack goal from a gradient perspective3.182

Of course, there exist various algorithms for finding δ. In this paper, we provide a simple δ estimator183

in Algorithm 1 in Appendix C using binary search. Here we highlight that one advantage of the184

estimation of δ over EPA is that it does not depend on the training process or the clean data Dc, which185

is extremely handy for users that has access only to the model weights (which is very common for186

foundation models) to quantify the poisoning difficulty of their own personal data.187

3.3 Poisoning difficulty prediction with poison budget188

Aside from classification difficulty and poisoning distance, an alternative way to measure poisoning189

difficulty is through the poison budget ε. It is clear that an attack is easier if less poisoned data is190

required, i.e., a lower ε suggests an easier attack. Here we aim to answer an intriguing question:191

Is it possible to measure the lowest ε needed to poison a model such that a given test sample xt is192

misclassified as yp, without performing any attacks?193

Conveniently, Lu et al. [27] provides valuable theoretical tools for measuring the (relative) number194

of poisoned samples |Dp| needed to reach some target parameters wp (e.g., the proxy we generated195

in Definition 2), i.e., the role of poison budget ε. Specifically, [27] provides a lower bound (or196

necessary condition) with respect to ε on poisoning reachability. Without diving into all technical197

details and derivations, we directly present a simplified version of their results:198

Theorem 1 (Poisoning reachability, Theorem 2 of Lu et al. [27]). Given a classification task with c199

classes and a set of target parameters wp, wp is poisoning reachable (defined by vanishing gradient200

over training on Dc ∪ Dp) only if the condition below holds (necessary condition):4201

ε ≥ τ := max

{
⟨wp,g(Dc)⟩
W (c− 1/e)

, 0

}
,

where W (·) is Lambert’s W function, g(Dc) = g(Dc;wp) =
1

|Dc|
∑

z∈Dc
∇wpℓ(z;wp).202

Theorem 1 enables us to calculate τ , the lower bound of poisoning budget ε for a given target test203

sample xt, the corresponding poison class yp, the target parameter wp, and the clean training set204

Dc, In Section 4, we will show that τ is a direct indicator of poisoning difficulty.205

4 Experiments206

In this section, we (1) introduce our experimental settings; (2) present our results on poisoning207

difficulty prediction using EPA; (3) demonstrate the effectiveness of the poisoning distance δ and208

poisoning reachability τ on measuring poisoning difficulty; (4) show our ablation studies on datasets,209

model architectures, and poisoning budget.210

4.1 Experimental settings211

We mainly examine the targeted attacks in the unified benchmark provided in [37]5. Note that we do212

not consider any backdoor attacks as they require trigger injection during inference and the attack213

difficulty highly depends on the trigger, and thus are beyond the scope of this paper.214

3We note that our core idea of poisoning distance is closely related to model-targeted indiscriminate attacks
and we extend our discussion in Appendix B.4.

4Note that Theorem 2 in Lu et al. [27] presents poisoning reachability for binary linear models, and we
consider the general form in Equation (10) on multiclass neural networks.

5https://github.com/aks2203/poisoning-benchmark
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Datasets & models: We consider classification tasks on CIFAR-10 [23] with 10 classes, 50000215

clean training samples and 10000 test samples in our main experiments, and TinyImageNet [25]216

with 200 classes, 100000 clean training samples, 10000 validation samples, and 10000 test samples217

in our ablation study. We apply ResNet-18 [18] for CIFAR-10 and VGG-16 [41] for TinyImageNet.218

Training schemes: We consider two training schemes: (1) Training from scratch, where we ini-219

tialize the model with random weights. For clean training, we use the clean training set Dc, for220

data poisoning we use Dc ∪ Dp
6; (2) Transfer learning for CIFAR-10, where we utilize a frozen221

model pretrained on CIFAR-100, and fine-tune an additional linear head on a subset of CIFAR-10222

that contains the first 250 images per class. For both scenarios, we train the model for 40 epochs.223

Targeted attacks: We examine three attack methods listed in the unified benchmark: (1) Gradient224

matching (GM) [13]7 for training from scratch; (2) Feature collision (FC) [38] for transfer learning;225

and (3) Bullseye polytope (BP) [2] for both.8 For training from scratch, we perform 8 random model226

initializations and calculate the attack success rate (ASR) by dividing the number of successful227

attacks by 8. For transfer learning, as the model initialization is mostly fixed, we only consider one228

attack trial each. For all attacks, unless specified otherwise, we use a poisoning budget ε = 1%.229

Measuring poisoning difficulty: (1) To calculate EPA for each test sample, we train the model230

with M = 100 (for CIFAR-10), and M = 8 (for TinyImageNet) random initializations for N =231

40 epochs. We consider the model prediction for training from scratch and model confidence for232

transfer learning; (2) To obtain δ, for each choice of (xt, yp), we consider 8 model initializations to233

generate 8 wc, apply Algorithm 1 on each wc and obtain the average; (3) For the calculation of τ ,234

we only apply one set of wc and consider the number of classes c = 10 for CIFAR-10 and c = 200235

for TinyImageNet and apply Theorem 1.236

We further report our resource and computational time in Appendix D.1.237
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Figure 3: Measuring the poisoning difficulty of GM on CIFAR-10 (training from scratch) using EPA.
We plot the ASR for low/high EPA test samples in each target class yt in (a), and the overall ASR
distribution as a histogram in (b).

4.2 Poisoning difficulty prediction with EPA238

Recall in Section 3.1 Hypothesis A we hypothesize a negative correlation between classification dif-239

ficulty and poisoning difficulty. In this section, we aim to show that (1) EPA, defined in Definition 1,240

is a good indicator of poisoning difficulty; (2) EPA is not capable of differentiating between different241

poison classes yp for a test sample xt, and is ineffective on further ranking the poisoning difficulty242

within groups of targets with similar EPA.243

Training from scratch: For the from-scratch setting on ResNet-18/CIFAR-10, we perform clean244

training on Dc with the prespecified M and N to identify the 50 target samples with the highest and245

lowest EPA in each target class yt. For each target sample, we perform the GM attack on all possible246

(9) poison classes yp for 8 randomly initialized model weights. We thus run (50 + 50)× 10× 9×247

6Note that for replacing attacks, Dc can be changed after poisoning, see Appendix B.2 for discussion.
7https://github.com/JonasGeiping/poisoning-gradient-matching
8We neglect Convex Polytope (CP) [49] as it is extremely expensive. Specifically, it takes 100 seconds and

40 seconds to run one attack instance for BP and FC, respectively, while it takes more than 1 hour to run CP on
a NVIDIA 4090 GPU. As our experiments require thousands of attack instances, it is infeasible to run CP.
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Figure 4: EPA for three test instances in the class “car”. Image (a): high EPA: 0.9988; ASR: 22.22%.
Image (b): medium EPA: 0.6775; ASR: 90.28%. Image (c): low EPA: 0.0275; ASR: 98.61%.

Table 1: The ASR, change of confidence for yp and yt before/after attack for high/low EPA test
samples with FC and BP attack on CIFAR-10 with transfer learning.

xt

ASR change of confidence (yp) change of confidence (yt)
FC BP FC BP FC BP

high EPA 0.012 0.498 0.040± 0.031 0.479± 0.133 −0.048± 0.036 −0.503± 0.137
low EPA 0.284 0.947 0.156± 0.041 0.661± 0.063 −0.198± 0.053 −0.750± 0.058

8 = 72000 attack instances in total. We report the computation time for each attack instance in248

Appendix D.1. We present our main results in Figure 3 and observe that EPA is a reliable indicator249

of poisoning difficulty, where a higher EPA suggests much lower ASR on average. We note that250

Figure 3(a) demonstrates a discrepancy between different target classes, specifically, for classes cat251

and dog, the ASR differences are relatively small between high EPA test samples and low EPA ones.252

We argue that these classes are generally easier to poison as they are more difficult to classify, with253

82.66% (cat) and 85.73% (dog) clean test accuracy, while that of all other classes is greater than254

90%. We present a visualization of EPA for instances with high, medium, and low EPA values in255

Figure 4, demonstrating its effectiveness as an indicator of instance-level poisoning difficulty9.256

Transfer learning: For the transfer learning setting on ResNet-18 and CIFAR-10, we again identify257

the 50 target samples with the highest and lowest EPA and apply an additional restriction that all258

identified target images are classified correctly at the final epoch in all M clean training runs. Table 1259

shows our main result on CIFAR-10 for two attacks FC and BP. We observe that the average ASR for260

test samples with high EPA is much lower than the ones with low EPA for both attacks. Additionally,261

as we start from a pre-trained model with reasonable performance, it is interesting to visualize the262

model change after an attack. Thus, we report the average change of confidence for yp and yt for263

each test sample and confirm that EPA is a reliable metric to measure poisoning difficulty. Moreover,264

to check whether EPA is a reliable tool for predicting attack success, we report the average EPA of265

test targets that are successfully and unsuccessfully poisoned in Table 2. We observe that EPA is266

capable of clearly differentiating between successful attacks and failed attacks in most cases, while267

the prediction region may occasionally overlap.268

Table 2: The average EPA and confidence of yp after clean training for successful/failed attacks using
the FC and BP attack on CIFAR-10 with transfer learning.

Attack Success
Average EPA Confidence of yp

FC BP FC BP

✓ 0.411± 0.116 0.589± 0.255 0.142± 0.092 0.043± 0.074
✗ 0.725± 0.264 0.912± 0.148 0.012± 0.033 0.001± 0.002
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Table 3: Measuring the poisoning difficulty of GM on CIFAR-10 using δ and τ for the poison classes
with the highest and lowest ASR over all target classes yt. Anomaly cases where the prediction does
not conform with ASR are marked with underline.

yt
Lowest ASR yp Highest ASR yp

distance δ budget τ ASR distance δ budget τ ASR

plane 0.119± 0.042 0.00237± 0.00336 0.57± 0.42 0.105± 0.030 0.00190± 0.00321 0.74± 0.35
car 0.124± 0.040 0.00171± 0.00617 0.83± 0.28 0.112± 0.030 0.00097± 0.00187 0.90± 0.23
bird 0.114± 0.035 0.00237± 0.00425 0.60± 0.42 0.097± 0.033 0.00140± 0.00229 0.84± 0.28
cat 0.093± 0.031 0.00049± 0.00093 0.92± 0.21 0.095± 0.026 0.00043± 0.00121 0.99± 0.05
deer 0.123± 0.042 0.00221± 0.00494 0.86± 0.26 0.092± 0.034 0.00117± 0.00180 0.99± 0.07
dog 0.115± 0.038 0.00095± 0.00128 0.91± 0.19 0.102± 0.033 0.00246± 0.00526 0.98± 0.07
frog 0.137± 0.042 0.00197± 0.00219 0.83± 0.26 0.112± 0.035 0.00158± 0.00240 0.98± 0.07
horse 0.106± 0.041 0.00081± 0.00227 0.69± 0.36 0.137± 0.048 0.00123± 0.00214 0.87± 0.24
ship 0.119± 0.037 0.00336± 0.00497 0.67± 0.38 0.085± 0.031 0.00232± 0.00564 0.93± 0.19
truck 0.125± 0.033 0.00130± 0.00138 0.80± 0.28 0.106± 0.031 0.00058± 0.00097 0.95± 0.11
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Figure 5: (a) Correlation between pairwise δ difference and ASR difference; (b) and (c) Comparison
between all of our metrics for low/high EPA samples.

4.3 Poisoning distance and poisoning budget269

In previous sections, we showed that EPA is generally a reliable indicator of poisoning difficulty.270

However, it has 2 major shortcomings: (1) it does not take into account yp in determining poisoning271

difficulty, and (2) it becomes ineffective within groups of target samples that have similar EPA.272

Motivated by the inadequacy of EPA, we apply the poisoning distance and the poison budget measure273

τ , where our experience suggests that a larger δ or a larger τ indicates a more difficult attack (lower274

ASR). Specifically, given a target sample xt, we would like to confirm whether δ and τ are capable275

of predicting its vulnerability to poisoning towards a poison class yp.276

Specifically, we examine our prior results in the from-scratch setting. First, we look at the choice277

of yp with respect to each target class. For each target class, we examine the same 100 test samples278

(50 highest/lowest EPA targets) and calculate the average ASR for each yp. We report the two yp279

classes with the lowest/highest average ASR and compare the average δ and τ values in Table 3.280

Note that we focus on hard-to-classify samples by performing a pre-screening process to rule out281

(xt, yp) pairs (1135 out of 9000) that are already classified as yp at the final epoch of clean training282

in any of the M trials. While we observe δ and τ are generally capable of identifying easy/hard283

poison classes, there are some anomalies: for example, the target classes dog and cat have a smaller284

difference in ASR between the highest/lowest ASR yp, making them more difficult to differentiate.285

To provide further understanding on the role of the poison class yp, for every individual instance xt,286

we enumerate the choice of yp and create pairs ((xt, y
1
p), (xt, y

2
p)) (there are 9 choose 2, which is287

36 pairs in total). For each pair, we calculate its corresponding ASR difference and δ difference.288

After obtaining all 1000×36 pairwise ASR and δ differences, we plot the correlation of the average289

δ difference with respect to the 9 possible ASR differences10 in Figure 5(a) and observe that δ is290

generally reliable even for differentiating pair-wise differences.291

9We will release an open website enabling verification of EPA for any target sample included in our paper.
10Note that for each attack instance, as we perform 8 trials, ASR can take 9 values in [0, 1] with an interval

of 1/8. The ASR difference can only take the same 9 values as we restrict the difference to be positive.
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Moreover, we previously mentioned that EPA is not very reliable in further identifying hard/easy to292

poison samples within the groups of samples with similar EPA. In Figure 5(b)(c), we rank samples293

in the high EPA and low EPA region according to their EPA/δ/τ into 10 tiers and plot the average294

ASR for each tier. We observe that δ and τ cover a much wider range of ASR and are able to further295

predict the difficulty of poisoning in a more fine-grained way.296

4.4 Ablation studies297

Necessity of training dynamics: A simple baseline method to predict poisoning difficulty is the298

confidence of the target label yt. We run GM on CIFAR-10 and set yt = plane, yp = bird and299

report the ASR, EPA, and confidence of yt for high EPA test samples and lower EPA samples11 in300

Table 4. We observe that the confidence of yt is unable to differentiate samples that are difficult/easy301

to poison and it is necessary to consider the training dynamics with EPA.302

Table 4: Ablation study on predicting poisoning difficulty with the confidence of yt.
xt confidence of yt average EPA average ASR

high EPA 0.9985± 0.00309 0.9955± 0.00165 0.468± 0.3718
lower EPA 0.9999± 0.00003 0.9249± 0.03210 0.905± 0.1899

Poison budget: In our CIFAR-10 experiments using GM, the class “dog” is generally easier to303

attack, indicating the attack budget may be too high. While in such cases our EPA does not provide304

clear guidance, we conduct additional experiments by lowering the attack budget ε in Table 5. We305

observe EPA is more reliable when the attacker’s budget is limited, which is usually true in practice.306

Table 5: Ablation study on predicting poisoning difficulty with EPA for various attack budget ε.
xt ε = 1% ε = 0.75% ε = 0.5% ε = 0.25% ε = 0.1%

high EPA 0.963± 0.084 0.963± 0.119 0.738± 0.375 0.588± 0.382 0.263± 0.216
low EPA 0.988± 0.040 1.000± 0.000 0.963± 0.060 0.950± 0.121 0.662± 0.391

TinyImageNet: Finally, we present our results on using EPA to predict poisoning difficulty on307

TinyImageNet in Table 6. We choose 4 highest/lowest samples from yt = 0 and use GM and BP to308

poison towards yp = 1, 2, with an attack budget ε = 0.05%. Our results again confirm that EPA can309

predict poisoning difficulty.310

Table 6: Poisoning difficulty prediction using EPA on TinyImageNet.

xt

yp = 1 yp = 2

GM BP GM BP

high EPA 0.188± 0.375 0.031± 0.062 0.531± 0.373 0.344± 0.472
low EPA 0.812± 0.298 0.781± 0.438 1.000± 0.000 0.781± 0.438

5 Conclusion311

In this paper, we investigated the varying vulnerability of test samples to targeted data poisoning312

attacks. Our work establishes that poisoning difficulty is not uniform across samples but rather313

depends on specific, measurable characteristics. We identified three key factors, classification diffi-314

culty during clean training, parameter space poisoning distance, and poison budget, that significantly315

influence vulnerability. Based on these factors, we developed three complementary metrics: ergodic316

prediction accuracy (EPA), poisoning distance and budget lower bound. These metrics provide a317

comprehensive framework for predicting poisoning difficulty without requiring the execution of ac-318

tual attacks. Our experimental results validate that EPA effectively separates easy-to-poison from319

hard-to-poison samples, while δ and τ offer fine-grained predictions for specific poison classes. We320

extend more discussions on limitations and future works in Appendix A.321

11We restrict the confidence of yt > 0.98 for samples with lower EPA.
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A Limitations and Future works433

Practical Utility for Defenders. The framework proposed in this paper has potential for practical434

application in defending against data poisoning attacks. Defenders could integrate these metrics into435

a continuous monitoring pipeline to achieve proactive vulnerability assessment. For instance, EPA436

could be periodically computed for a set of critical or high-stakes test samples to identify any that437

exhibit unstable predictions during routine model updates. For samples flagged with low EPA, or for438

particularly sensitive targets (e.g., a specific face in a facial recognition system), a defender could439

then compute δ and τ against a set of likely or dangerous poison classes. A high-risk combina-440

tion could trigger an alert, mandate human-in-the-loop verification for that sample’s predictions, or441

initiate a forensic analysis of the training data pipeline.442

Limitations. Our work still has limitations: (1) As shown in our experiments, all of our metrics443

may occasionally yield inaccurate predictions of poisoning difficulty, indicating room for improve-444

ment; (2) Our method still relies on test sample labels to accurately predict poisoning difficulty,445

which could be infeasible in practice. Thus, a label-agnostic approach is largely desired; (3)Our446

quantitative metrics are currently limited to classification models, with our diffusion model analysis447

in Appendix E remaining qualitative.448

Future Works. Several potential future directions emerge from our work: (1) Data-centric de-449

fenses that optimize test samples to defend against targeted data poisoning attacks. For example,450

defenders might apply carefully crafted adversarial noise to test data, similar to techniques used451

in adversarial examples; (2) While we make initial attempts to extend our discussion to diffusion452

models in Appendix E, future work could explore how these vulnerability insights inform the de-453

velopment of more robust LLMs against targeted data poisoning attacks. Moreover, developing454

universal quantitative metrics for assessing poisoning difficulty across different model types is a455

crucial future step.456

B Related works457

B.1 Data poisoning attacks458

Data poisoning, an emerging training-time concern in modern ML pipelines, refers to the threat of459

(actively or passively) crafting "poisoned" training data Dp so that systems trained on it (along with460

possibly clean in-house data Dc) are skewed toward certain behaviors. Significant research has been461

proposed to study the impact of such attacks on classification models. For example, indiscriminate462

data poisoning [e.g., 3, 21, 22, 27, 28, 29, 31] is a general-purpose attack that aims to decrease the463

overall test accuracy. Similar formulations have been proposed for protecting user data [e.g., 7, 8,464

9, 19, 26, 36, 48]. While data poisoning attacks can also involve testing-time manipulation—such465

as backdoor attacks [e.g., 5, 15, 35, 45] that aim to trigger malicious model behavior with particular466

patterns on test samples, we focus exclusively on training-time attacks in this paper.467

B.2 Adding attack vs Replacing attack468

Realistically, an attacker would have no control on the clean set Dc, and data poisoning attacks469

[e.g., 3, 22, 27, 28, 31] usually consider adding-only attack where Dc is intact and the size of Dtr470

increases. However, targeted attacks [e.g., 2, 16, 38, 49] consider replacing attacks where part of the471

clean set Dc is substituted12 with Dp while the size of Dtr is unchanged. In this paper, we follow472

previous works and consider replacing attacks. While the practicality of such attacks are beyond473

our scope, we note that the key technical differences comparing with adding-only attacks: replacing474

attacks are notably easier as it reduces |Dc| and considers a slightly higher ε as |Dtr| is a constant475

(see Appendix C.10 in [27] for a detailed discussion).476

12Such substitution is performed by simply adding noise to the original clean samples. Such a setting could
resonate in targeted settings as it would keep the balance between classes.

13



B.3 Measuring classification difficulty477

The problem of measuring classification difficulty has been explored in prior literature. For instance,478

Agarwal et al. [1] proposed variance of gradient (VOG) as a method to rank examples by classifi-479

cation difficulty. VOG could potentially serve as an alternative to EPA for measuring classification480

difficulty in Hypothesis A and may function as an indicator for predicting poisoning vulnerability—a481

direction we intend to investigate in future work. Additionally, out-of-distribution (OoD) detection482

techniques such as PCA [17] and KDE [6] could potentially identify hard-to-classify (and possibly483

easy-to-poison) anomalous samples.484

Furthermore, our approach relates to selective classification [32], where models reject inputs likely485

to be misclassified while maintaining high performance on accepted inputs. Specifically, Rabanser et486

al. [32] leverages prediction agreement between intermediate training stages and the final epoch—a487

strategy similar to our EPA metric that also analyzes clean training dynamics. However, unlike488

selective classification, we assign a EPA score to every test instance rather than implementing a489

rejection mechanism.490

B.4 Connection and differences with model-targeted attacks491

We note that our core idea of poisoning distance is closely related to model-targeted indiscriminate492

attacks which we denote as MTA [22, 27, 43], where these attacks consider a set of target parameters493

wp as the target and apply gradient-based poisoning attacks to achieve wp. While the concept of494

target parameters is also used in our paper, we emphasize key differences: (1) Task: MTA considers495

wp to be a model with low test accuracy, which can be generated with a gradient-based parameter496

corruption attack [42]. We consider a set of wp that only misclassifies one single test sample. (2)497

Using wp: MTA uses wp as the endgoal to generate poisoning attacks, we use wp as proxies to498

quantify poisoning difficulty. (3) Attack vs Defense: MTA are designed for more effective attacks,499

while our algorithm estimate wp and δ to help practitioners understand targeted attack difficulties500

and design better defenses.501

Algorithm 1: Poisoning Distance Estimation

Input: clean parameters wc, target xt, poison label yp, precision parameter α = 10−4

1 calculate the gradient g = ∇wc
ℓ(f(xt;wc), yp)

2 instantiate the upper bound u = ∞, lower bound l = 0, and medium m = 0.5 for binary search
3 while u− l > α do
4 if u = ∞ then
5 set m = 2m

6 else
7 set m = u+l

2

8 if f(xt;w −m · g) = yp then
9 set u = m

10 else
11 set l = m

12 return the estimated poisoning distance δ = u

C Algorithm on Estimating Poisoning Distance502

Recall that in Section 3.2 we propose to use a binary search based algorithm to estimate the poison-503

ing distance δ. We present the algorithm in Algorithm 1.504

D Additional Experiments on Classification Models505

D.1 Computing resource & time506

Targeted attacks: Due to the extensive number of attacks conducted, we distributed our experi-507

ments across three distinct clusters equipped with NVIDIA 4090 (cluster 1), A100 (cluster 2), and508
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RTX6000 GPUs (cluster 3). The computational requirements varied significantly by task: training509

models from scratch (GM experiments) required up to 1 hour 40 minutes on all clusters for CIFAR-510

10/ResNet-18 configurations, while TinyImageNet/VGG16 experiments (GM and BP) demanded up511

to 3 hours 10 minutes on cluster 2. Transfer learning experiments were considerably more efficient,512

requiring only 66-72 seconds for BP and 60-63 seconds for FC on clusters 2 and 3, respectively.513

Measuring poisoning difficulty:We conducted all experiments on the NVIDIA 4090 cluster. For514

EPA calculations, the computational cost scales linearly with the number of trials M multiplied by515

the clean training time. For individual test samples, computing all nine possible δ values for a single516

set of wc requires just 1.3 seconds, while calculating all nine possible τ values takes approximately517

30 seconds on our ResNet-18/CIFAR-10 experimental setup.518

D.2 Other baselines for poisoning difficulty prediction on yp519

In Section 4.3, we introduce δ as the indicator for poisoning difficulty for poison classes yp with the520

highest and lowest ASR. Here we perform the same task for two baseline methods: (1) the average521

confidence of a given yp at the end of clean training; (2) the poison prediction area (PPA), where we522

apply a similar definition with EPA, but only considers the prediction of yp. Our results in Table 7523

and Table 8 show that these baseline methods fail to predict poisoning difficulty for most cases.524

Table 7: Measuring the poisoning difficulty of GM on CIFAR-10 using the average confidence of yp
at the end of clean training with the highest and lowest ASR over all target classes yt. Cases where
the prediction conforms with ASR are marked in blue, and anomalies are marked in red.

yt
Lowest ASR yp Highest ASR yp

Avg Confidence of yp ASR Avg Confidence of yp ASR

plane 0.002± 0.005 0.57± 0.42 0.001± 0.005 0.74± 0.35
car 0.001± 0.001 0.83± 0.28 0.000± 0.001 0.90± 0.23
bird 0.001± 0.003 0.60± 0.42 0.003± 0.008 0.84± 0.28
cat 0.002± 0.006 0.92± 0.21 0.001± 0.004 0.99± 0.05

deer 0.002± 0.006 0.86± 0.26 0.003± 0.006 0.99± 0.07
dog 0.002± 0.005 0.91± 0.19 0.002± 0.006 0.98± 0.07
frog 0.002± 0.005 0.83± 0.26 0.001± 0.004 0.98± 0.07

horse 0.003± 0.011 0.69± 0.36 0.002± 0.005 0.87± 0.24
ship 0.001± 0.002 0.67± 0.38 0.002± 0.006 0.93± 0.19
truck 0.000± 0.002 0.80± 0.28 0.001± 0.004 0.95± 0.11

Table 8: Measuring the poisoning difficulty of GM on CIFAR-10 using poison prediction area (PPA)
with the highest and lowest ASR over all target classes yt. Cases where the prediction conforms
with ASR are marked with blue, and anomalies are marked with red.

yt
Lowest ASR yp Highest ASR yp

PPA ASR PPA ASR

plane 0.004± 0.016 0.57± 0.42 0.003± 0.012 0.74± 0.35
car 0.004± 0.014 0.83± 0.28 0.001± 0.005 0.90± 0.23
bird 0.005± 0.009 0.60± 0.42 0.005± 0.010 0.84± 0.28
cat 0.016± 0.026 0.92± 0.21 0.006± 0.013 0.99± 0.05

deer 0.017± 0.031 0.86± 0.26 0.004± 0.007 0.99± 0.07
dog 0.008± 0.013 0.91± 0.19 0.003± 0.011 0.98± 0.07
frog 0.003± 0.012 0.83± 0.26 0.006± 0.015 0.98± 0.07

horse 0.012± 0.042 0.69± 0.36 0.003± 0.013 0.87± 0.24
ship 0.004± 0.015 0.67± 0.38 0.004± 0.012 0.93± 0.19
truck 0.002± 0.008 0.80± 0.28 0.002± 0.007 0.95± 0.11

E Targeted Attacks on Latent Diffusion Models525

For generative models, targeted attacks aim to alter the generation of specific concepts or prompts526

while maintaining expected behavior for other inputs [29, 39, 47]. In this paper, we aim to extend527
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the examination on instance-level difficulty in targeted data poisoning attacks to latent diffusion528

models [33]. Specifically, we consider the disguised copyright infringement (DCI) attack in [29].529

DCI considers a threat where an attacker aims to mimic the style of a copyrighted image xc without530

directly training on xc, but creates a disguise image (or poison sample) xd that visually assembles531

another base image xb while containing the latent information of xc. Although the task and poison-532

ing mechanism are very different from those of classification models that we consider in the main533

paper, we find two factors that would affect the poisoning difficulty.534

Structure of xb: We follow the implementation of [29]13 and consider the task of disguising style.535

We pick the drawing: The Neckarfront in Tubingen, Germany (photo by Andreas Praefcke) in the536

style of The Starry Night, generated with Neural Style Transfer [12] as xc. The base image xb is537

xc with another style (watercolor), generated with AdaIN-based [20] style transfer14. The disguise538

xd is generated using Algorithm 1 in [29] and we train the disguise xd using textual inversion [10]539

for generation. We fix xt and study the role of the structure of xb by applying gaussian blur with540

different kernel size (a larger kernel size results in a more blurry image). We report our results in541

Figure 6,Figure 7, Figure 8, Figure 9 and Figure 10. We observe that by increasing the kernel size,542

the cirrus effect of the generated images dramatically decreases. When the kernel size is bigger than543

10, the textual inversion model cannot learn any useful information. We conclude that preserving544

the structure of xb is essential for a successful data poisoning attack, highlighting the role on the545

appearance of the poison image in poisoning difficulty.546

Structure of xc: We also observe that the structure of xc (target or copyright image) also affects547

the poisoning difficulty. In Figure 11, we choose another xt
15 with much simpler layout in the same548

style of The Starry Night. We observe that style mimicry is unsuccessful for this poison instance,549

validating that poisoning success is also correlated with the structure of xc.550

(a) Base xb (b) Disguise xd (c) xc

(d) Images generated by textual inversion after training on the xd

Figure 6: Disguised copyrighted style on textual inversion with the original xb.

13https://github.com/watml/disguised_copyright_infringement
14https://github.com/tyui592/AdaIN_Pytorch
15https://stock.adobe.com/images/glowing-moon-on-a-blue-sky-abstract-background-seamless-vector-

pattern-in-the-style-of-impressionist-paintings/475101004
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(a) Base xb (b) Disguise xd (c) xc

(d) Images generated by textual inversion after training on the xd

Figure 7: Disguised copyrighted style on textual inversion with the blurry xb (kernel size = 3).

(a) Base xb (b) Disguise xd (c) xc

(d) Images generated by textual inversion after training on the xd

Figure 8: Disguised copyrighted style on textual inversion with the blurry xb (kernel size = 7).

(a) Base xb (b) Disguise xd (c) xc

(d) Images generated by textual inversion after training on the xd

Figure 9: Disguised copyrighted style on textual inversion with the blurry xb (kernel size = 13).
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(a) Base xb (b) Disguise xd (c) xc

(d) Images generated by textual inversion after training on the xd

Figure 10: Disguised copyrighted style on textual inversion with the blurry xb (kernel size = 49).

(a) Base xb (b) Disguise xd (c) xc

(d) Images generated by textual inversion after training on the xd

Figure 11: Disguised copyrighted style on textual inversion with a different choice of xt.
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NeurIPS Paper Checklist551

1. Claims552

Question: Do the main claims made in the abstract and introduction accurately reflect the553

paper’s contributions and scope?554

Answer: [Yes]555

Justification: The main claims accurately and clearly reflect the paper’s contributions and556

scope. scope.557

Guidelines:558

• The answer NA means that the abstract and introduction do not include the claims559

made in the paper.560

• The abstract and/or introduction should clearly state the claims made, including the561

contributions made in the paper and important assumptions and limitations. A No or562

NA answer to this question will not be perceived well by the reviewers.563

• The claims made should match theoretical and experimental results, and reflect how564

much the results can be expected to generalize to other settings.565

• It is fine to include aspirational goals as motivation as long as it is clear that these566

goals are not attained by the paper.567

2. Limitations568

Question: Does the paper discuss the limitations of the work performed by the authors?569

Answer: [Yes]570

Justification: We discussed the limitation of our methods throughout the experimental sec-571

tion and the conclusion.572

Guidelines:573

• The answer NA means that the paper has no limitation while the answer No means574

that the paper has limitations, but those are not discussed in the paper.575

• The authors are encouraged to create a separate "Limitations" section in their paper.576

• The paper should point out any strong assumptions and how robust the results are to577

violations of these assumptions (e.g., independence assumptions, noiseless settings,578

model well-specification, asymptotic approximations only holding locally). The au-579

thors should reflect on how these assumptions might be violated in practice and what580

the implications would be.581

• The authors should reflect on the scope of the claims made, e.g., if the approach was582

only tested on a few datasets or with a few runs. In general, empirical results often583

depend on implicit assumptions, which should be articulated.584

• The authors should reflect on the factors that influence the performance of the ap-585

proach. For example, a facial recognition algorithm may perform poorly when image586

resolution is low or images are taken in low lighting. Or a speech-to-text system might587

not be used reliably to provide closed captions for online lectures because it fails to588

handle technical jargon.589

• The authors should discuss the computational efficiency of the proposed algorithms590

and how they scale with dataset size.591

• If applicable, the authors should discuss possible limitations of their approach to ad-592

dress problems of privacy and fairness.593

• While the authors might fear that complete honesty about limitations might be used by594

reviewers as grounds for rejection, a worse outcome might be that reviewers discover595

limitations that aren’t acknowledged in the paper. The authors should use their best596

judgment and recognize that individual actions in favor of transparency play an impor-597

tant role in developing norms that preserve the integrity of the community. Reviewers598

will be specifically instructed to not penalize honesty concerning limitations.599

3. Theory assumptions and proofs600

Question: For each theoretical result, does the paper provide the full set of assumptions and601

a complete (and correct) proof?602

19



Answer: [Yes]603

Justification: We provide the full set of assumptions. For Theorem 1, we refer the readers604

to the original paper for the proof.605

Guidelines:606

• The answer NA means that the paper does not include theoretical results.607

• All the theorems, formulas, and proofs in the paper should be numbered and cross-608

referenced.609

• All assumptions should be clearly stated or referenced in the statement of any theo-610

rems.611

• The proofs can either appear in the main paper or the supplemental material, but if612

they appear in the supplemental material, the authors are encouraged to provide a613

short proof sketch to provide intuition.614

• Inversely, any informal proof provided in the core of the paper should be comple-615

mented by formal proofs provided in appendix or supplemental material.616

• Theorems and Lemmas that the proof relies upon should be properly referenced.617

4. Experimental result reproducibility618

Question: Does the paper fully disclose all the information needed to reproduce the main619

experimental results of the paper to the extent that it affects the main claims and/or conclu-620

sions of the paper (regardless of whether the code and data are provided or not)?621

Answer: [Yes]622

Justification: We include all the experimental settings in Section 4.623

Guidelines:624

• The answer NA means that the paper does not include experiments.625

• If the paper includes experiments, a No answer to this question will not be perceived626

well by the reviewers: Making the paper reproducible is important, regardless of627

whether the code and data are provided or not.628

• If the contribution is a dataset and/or model, the authors should describe the steps629

taken to make their results reproducible or verifiable.630

• Depending on the contribution, reproducibility can be accomplished in various ways.631

For example, if the contribution is a novel architecture, describing the architecture632

fully might suffice, or if the contribution is a specific model and empirical evaluation,633

it may be necessary to either make it possible for others to replicate the model with634

the same dataset, or provide access to the model. In general. releasing code and data635

is often one good way to accomplish this, but reproducibility can also be provided via636

detailed instructions for how to replicate the results, access to a hosted model (e.g., in637

the case of a large language model), releasing of a model checkpoint, or other means638

that are appropriate to the research performed.639

• While NeurIPS does not require releasing code, the conference does require all sub-640

missions to provide some reasonable avenue for reproducibility, which may depend641

on the nature of the contribution. For example642

(a) If the contribution is primarily a new algorithm, the paper should make it clear643

how to reproduce that algorithm.644

(b) If the contribution is primarily a new model architecture, the paper should describe645

the architecture clearly and fully.646

(c) If the contribution is a new model (e.g., a large language model), then there should647

either be a way to access this model for reproducing the results or a way to re-648

produce the model (e.g., with an open-source dataset or instructions for how to649

construct the dataset).650

(d) We recognize that reproducibility may be tricky in some cases, in which case au-651

thors are welcome to describe the particular way they provide for reproducibility.652

In the case of closed-source models, it may be that access to the model is limited in653

some way (e.g., to registered users), but it should be possible for other researchers654

to have some path to reproducing or verifying the results.655

5. Open access to data and code656
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Question: Does the paper provide open access to the data and code, with sufficient instruc-657

tions to faithfully reproduce the main experimental results, as described in supplemental658

material?659

Answer: [No]660

Justification: We use standard and open datasets and we will make the code repository661

public after the paper is accepted, provided that there are no objections from the reviewers662

or chairs.663

Guidelines:664

• The answer NA means that paper does not include experiments requiring code.665

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/666

public/guides/CodeSubmissionPolicy) for more details.667

• While we encourage the release of code and data, we understand that this might not668

be possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not669

including code, unless this is central to the contribution (e.g., for a new open-source670

benchmark).671

• The instructions should contain the exact command and environment needed to run to672

reproduce the results. See the NeurIPS code and data submission guidelines (https:673

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.674

• The authors should provide instructions on data access and preparation, including how675

to access the raw data, preprocessed data, intermediate data, and generated data, etc.676

• The authors should provide scripts to reproduce all experimental results for the new677

proposed method and baselines. If only a subset of experiments are reproducible, they678

should state which ones are omitted from the script and why.679

• At submission time, to preserve anonymity, the authors should release anonymized680

versions (if applicable).681

• Providing as much information as possible in supplemental material (appended to the682

paper) is recommended, but including URLs to data and code is permitted.683

6. Experimental setting/details684

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-685

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the686

results?687

Answer: [Yes]688

Justification: We provide all the experimental setting/details in Section 4.689

Guidelines:690

• The answer NA means that the paper does not include experiments.691

• The experimental setting should be presented in the core of the paper to a level of692

detail that is necessary to appreciate the results and make sense of them.693

• The full details can be provided either with the code, in appendix, or as supplemental694

material.695

7. Experiment statistical significance696

Question: Does the paper report error bars suitably and correctly defined or other appropri-697

ate information about the statistical significance of the experiments?698

Answer: [Yes]699

Justification: This paper reports error bars over multiple random trials in main tables.700

Guidelines:701

• The answer NA means that the paper does not include experiments.702

• The authors should answer "Yes" if the results are accompanied by error bars, confi-703

dence intervals, or statistical significance tests, at least for the experiments that support704

the main claims of the paper.705

• The factors of variability that the error bars are capturing should be clearly stated (for706

example, train/test split, initialization, random drawing of some parameter, or overall707

run with given experimental conditions).708
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• The method for calculating the error bars should be explained (closed form formula,709

call to a library function, bootstrap, etc.)710

• The assumptions made should be given (e.g., Normally distributed errors).711

• It should be clear whether the error bar is the standard deviation or the standard error712

of the mean.713

• It is OK to report 1-sigma error bars, but one should state it. The authors should prefer-714

ably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of715

Normality of errors is not verified.716

• For asymmetric distributions, the authors should be careful not to show in tables or717

figures symmetric error bars that would yield results that are out of range (e.g. negative718

error rates).719

• If error bars are reported in tables or plots, The authors should explain in the text how720

they were calculated and reference the corresponding figures or tables in the text.721

8. Experiments compute resources722

Question: For each experiment, does the paper provide sufficient information on the com-723

puter resources (type of compute workers, memory, time of execution) needed to reproduce724

the experiments?725

Answer: [Yes]726

Justification: This paper provides computer resources used in Appendix D.1.727

Guidelines:728

• The answer NA means that the paper does not include experiments.729

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,730

or cloud provider, including relevant memory and storage.731

• The paper should provide the amount of compute required for each of the individual732

experimental runs as well as estimate the total compute.733

• The paper should disclose whether the full research project required more compute734

than the experiments reported in the paper (e.g., preliminary or failed experiments735

that didn’t make it into the paper).736

9. Code of ethics737

Question: Does the research conducted in the paper conform, in every respect, with the738

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?739

Answer: [Yes]740

Justification: This paper aims to understand targeted data poisoning attacks and provides741

useful information to improve robustness of models and test data.742

Guidelines:743

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.744

• If the authors answer No, they should explain the special circumstances that require a745

deviation from the Code of Ethics.746

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-747

eration due to laws or regulations in their jurisdiction).748

10. Broader impacts749

Question: Does the paper discuss both potential positive societal impacts and negative750

societal impacts of the work performed?751

Answer: [Yes]752

Justification: We discuss broader impacts in Section 5.753

Guidelines:754

• The answer NA means that there is no societal impact of the work performed.755

• If the authors answer NA or No, they should explain why their work has no societal756

impact or why the paper does not address societal impact.757
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• Examples of negative societal impacts include potential malicious or unintended uses758

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations759

(e.g., deployment of technologies that could make decisions that unfairly impact spe-760

cific groups), privacy considerations, and security considerations.761

• The conference expects that many papers will be foundational research and not tied762

to particular applications, let alone deployments. However, if there is a direct path to763

any negative applications, the authors should point it out. For example, it is legitimate764

to point out that an improvement in the quality of generative models could be used to765

generate deepfakes for disinformation. On the other hand, it is not needed to point out766

that a generic algorithm for optimizing neural networks could enable people to train767

models that generate Deepfakes faster.768

• The authors should consider possible harms that could arise when the technology is769

being used as intended and functioning correctly, harms that could arise when the770

technology is being used as intended but gives incorrect results, and harms following771

from (intentional or unintentional) misuse of the technology.772

• If there are negative societal impacts, the authors could also discuss possible mitiga-773

tion strategies (e.g., gated release of models, providing defenses in addition to attacks,774

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from775

feedback over time, improving the efficiency and accessibility of ML).776

11. Safeguards777

Question: Does the paper describe safeguards that have been put in place for responsible778

release of data or models that have a high risk for misuse (e.g., pretrained language models,779

image generators, or scraped datasets)?780

Answer: [NA]781

Justification: This paper poses no risks.782

Guidelines:783

• The answer NA means that the paper poses no such risks.784

• Released models that have a high risk for misuse or dual-use should be released with785

necessary safeguards to allow for controlled use of the model, for example by re-786

quiring that users adhere to usage guidelines or restrictions to access the model or787

implementing safety filters.788

• Datasets that have been scraped from the Internet could pose safety risks. The authors789

should describe how they avoided releasing unsafe images.790

• We recognize that providing effective safeguards is challenging, and many papers do791

not require this, but we encourage authors to take this into account and make a best792

faith effort.793

12. Licenses for existing assets794

Question: Are the creators or original owners of assets (e.g., code, data, models), used in795

the paper, properly credited and are the license and terms of use explicitly mentioned and796

properly respected?797

Answer: [Yes]798

Justification: Datasets and poisoning attacks used in this paper are properly cited.799

Guidelines:800

• The answer NA means that the paper does not use existing assets.801

• The authors should cite the original paper that produced the code package or dataset.802

• The authors should state which version of the asset is used and, if possible, include a803

URL.804

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.805

• For scraped data from a particular source (e.g., website), the copyright and terms of806

service of that source should be provided.807

• If assets are released, the license, copyright information, and terms of use in the pack-808

age should be provided. For popular datasets, paperswithcode.com/datasets has809

curated licenses for some datasets. Their licensing guide can help determine the li-810

cense of a dataset.811
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• For existing datasets that are re-packaged, both the original license and the license of812

the derived asset (if it has changed) should be provided.813

• If this information is not available online, the authors are encouraged to reach out to814

the asset’s creators.815

13. New assets816

Question: Are new assets introduced in the paper well documented and is the documenta-817

tion provided alongside the assets?818

Answer: [NA]819

Justification: This paper does not introduce new assets.820

Guidelines:821

• The answer NA means that the paper does not release new assets.822

• Researchers should communicate the details of the dataset/code/model as part of their823

submissions via structured templates. This includes details about training, license,824

limitations, etc.825

• The paper should discuss whether and how consent was obtained from people whose826

asset is used.827

• At submission time, remember to anonymize your assets (if applicable). You can828

either create an anonymized URL or include an anonymized zip file.829

14. Crowdsourcing and research with human subjects830

Question: For crowdsourcing experiments and research with human subjects, does the pa-831

per include the full text of instructions given to participants and screenshots, if applicable,832

as well as details about compensation (if any)?833

Answer: [NA]834

Justification: This paper does not involve crowdsourcing nor research with human subjects835

Guidelines:836

• The answer NA means that the paper does not involve crowdsourcing nor research837

with human subjects.838

• Including this information in the supplemental material is fine, but if the main contri-839

bution of the paper involves human subjects, then as much detail as possible should840

be included in the main paper.841

• According to the NeurIPS Code of Ethics, workers involved in data collection, cura-842

tion, or other labor should be paid at least the minimum wage in the country of the843

data collector.844

15. Institutional review board (IRB) approvals or equivalent for research with human845

subjects846

Question: Does the paper describe potential risks incurred by study participants, whether847

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)848

approvals (or an equivalent approval/review based on the requirements of your country or849

institution) were obtained?850

Answer: [NA]851

Justification: This paper does not involve crowdsourcing nor research with human subjects852

Guidelines:853

• The answer NA means that the paper does not involve crowdsourcing nor research854

with human subjects.855

• Depending on the country in which research is conducted, IRB approval (or equiva-856

lent) may be required for any human subjects research. If you obtained IRB approval,857

you should clearly state this in the paper.858

• We recognize that the procedures for this may vary significantly between institutions859

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the860

guidelines for their institution.861

• For initial submissions, do not include any information that would break anonymity862

(if applicable), such as the institution conducting the review.863
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16. Declaration of LLM usage864

Question: Does the paper describe the usage of LLMs if it is an important, original, or865

non-standard component of the core methods in this research? Note that if the LLM is used866

only for writing, editing, or formatting purposes and does not impact the core methodology,867

scientific rigorousness, or originality of the research, declaration is not required.868

Answer: [NA]869

Justification: LLM is used only to improve writing for this paper.870

Guidelines:871

• The answer NA means that the core method development in this research does not872

involve LLMs as any important, original, or non-standard components.873

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)874

for what should or should not be described.875
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