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ABSTRACT

Neural networks might exhibit weak robustness against input perturbations within
the learning distribution and become more severe for distributional shifts or data
outside the distribution. For their safer use, robustness certificates provide formal
guarantees to the stability of the prediction in the vicinity of the input. However,
the relationship between correctness and certified robustness remains unclear. In
this work, we investigate the unexpected outcomes of verification methods applied
to piecewise linear classifiers for clean, perturbed, in- and out-of-distribution sam-
ples. In our experiments, we conduct a thorough analysis for image classification
tasks and show that robustness certificates are strongly correlated with prediction
correctness for in-distribution data. In addition, we provide a theoretical demon-
stration that formal verification methods robustly certify samples sufficiently far
from the training distribution. These results are integrated with an experimental
analysis and demonstrate their weakness compared to standard out-of-distribution
detection methods.

1 INTRODUCTION

Building reliable artificial intelligence systems requires systematic methods for assessing their qual-
ity to gain confidence in their correctness or to identify possible failures. In general, neural net-
works are non-robust against geometric perturbations and are easily fooled by precisely calculated
adversarial attacks (Biggio et al., 2013; Szegedy et al., 2014). For these reasons, relying solely on
model’s prediction is not sufficient to ensure safe results. The problem of adversarial attacks has
been addressed in the literature with a variety of defense mechanisms, divided into empirical and
provable defenses. Empirical defenses aim to improve the robustness of the model through training
with adversarial samples (Goodfellow et al., 2015; Carlini & Wagner, 2017; Madry et al., 2017; An-
driushchenko et al., 2020). However, robustness comes at the expense of accuracy (Yang et al., 2020;
Jovanovic et al., 2021), and there is absolutely no guarantee that the model will behave correctly in
the event of new, unseen attacks. To overcome this problem, formal verification methods, e.g. Relu-
plex (Katz et al., 2017), are proposed to increase the trustworthiness of a prediction by assuring its
stability in the vicinity of the input. Formal verification methods are subsequently divided into exact
or complete (Katz et al., 2017; Bunel et al., 2018; Lu & Kumar, 2020; Xu et al., 2020; Wang et al.,
2021) and approximate or incomplete (Zhang et al., 2018; Dvijotham et al., 2018; Gehr et al., 2018;
Müller et al., 2021; 2022; Wang et al., 2021). To give an intuition of how incomplete verification
works, consider a convex space constructed around the input and then propagate it through the non-
linearity of the network. At the output layer, the resulting shape is certified as robust if it is entirely
contained inside the same predicted class, without crossing any decision boundary.

Motivation. The aim of this work is to understand how robustness certificates can be used at op-
erational time, i.e., when the labels are not given. In this context, robustness certificates (or formal
verification methods) ensure the stability of the prediction in the vicinity of the input for a prede-
fined perturbation. But what does this mean in practice? Can we trust the prediction or not? If not,
how much does this increase our confidence in correctness? Can we use certified robustness as an
additional safety metric? Why should we use robustness certificates, given that a misclassified or
out-of-distribution sample can be robustly certified? In our analysis we want to explore how to re-
late certifiable robustness to correctness at operational time. For this reason, we evaluate robustness
certificates on both in- and out-of-distribution cases.
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Previous literature has mainly focused on improving robustness verification in qualitative or quanti-
tative terms. For example, increasing the number of certified samples within the correctly classified
ones, or speeding up the verification process (Wang et al., 2021; Müller et al., 2021; 2022). Another
line explores the tension between adversarial robustness and accuracy from an empirical (Yang et al.,
2020; Liu et al., 2020a) or provable (Jovanovic et al., 2021; Müller et al., 2022) training perspec-
tive. The purpose is to emphasize how these training methods increase robustness at the expense of
network accuracy and how to mitigate this tradeoff. In this line, common benchmarks (Hendrycks
& Dietterich, 2018; Croce et al., 2021; Wu et al., 2022) relate correctness with robustness only for
correctly classified samples.
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Figure 1: Bi-dimensional visualization of
ℓ∞-norm robustness certificates for ID (•, •)
& OOD (•) samples.

In this paper, we examine it through another perspec-
tive. We evaluate certified robustness independently of
the classification results. Specifically, we address the fol-
lowing questions. The first is certified and correctly
classified (•, • in Figure 1). Can we guarantee that a
certified test sample has been classified correctly? This
question wants to clarify if it possible to verify whether
a test sample is classified correctly or not. And if there
exists an optimal adversarial budget for achieving a good
trade-off between accuracy and robustness. The second
is In- or Out-Of-Distribution (ID or OOD) (• in Fig-
ure 1). Given an OOD sample that gets high confidence
(i.e., is not detected by standard OOD detectors), there
are two possible outcomes: certified or not certified. If
the number of certified OOD samples is greater than the
number of certified ID samples, then we cannot safely use

formal verification methods. So, the question arise: can we detect if a test sample is from a different
distribution with respect to the training distribution? Is it possible to verify whether a test sample is
ID or OOD?

Approach. To answer these questions, we evaluate robustness certificates with two metrics: the
Area Under the Receiver Operating characteristic curve (AUROC or AUC) Davis & Goadrich (2006)
and the False Positive Rate computed at 95% of true positives (FPR95). In our study, the Receiver
Operating Characteristic (ROC) curve is constructed by varying the size of the convex set computed
around the input sample. To give an example, if we consider an ℓ∞-norm certificate computed
around an input x, the verification will search through an adversarial example x̃ where the difference
∥x− x̃∥∞ is at maximum ϵ, with ϵ as predefined condition. Thus, increasing ϵ will likely produce
an adversarial example and fail the robustness verification. The ROC curve is than constructed by
varying ϵ and considering different definitions of the True Positive Rate (TPR) and False Positive
Rate (FPR) differently according to the different scenarios: in- and out-of-distribution.

Since verification methods solve a complex optimization problem, they turn out to be relatively slow.
For this reason, our results are constrained to ReLU networks with convolutional or fully connected
layers. On the one hand, ReLU activation allows for more accurate verification, i.e. the convex
relaxation is relatively more precise (Gehr et al., 2018). On the other hand, the small size of the
evaluated models allows for shorter verification times.

Main contribution. In this work, we conduct an in-depth analysis on in- and out-of-distribution
data for various networks and certificate types, e.g. geometric or norm-based. To the best of our
knowledge, this is the first work that investigates the practical utility of robustness certificates on ID
and OOD data.
Our core contributions are summarized as follows:

• First evaluation on the relationship between correctness and certified robustness for clean
and perturbed ID and OOD samples. We empirically show that the number of certified
samples is directly related to the accuracy of the network and that robustness certificates
are a powerful safety metric for ID data.

• Extensive evaluation of verification methods on various data sets, networks, training pro-
cedures and certification types.

• Formal proof that robustness certificates are valid for samples sufficiently far from the
training distribution in case of piecewise linear classifiers, e.g. ReLU networks. In the task
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of OOD detection, we show that the performance of verification methods is relatively lower
than standard OOD detection approaches on normally and adversarially trained networks,
and significantly lower for networks trained with OOD samples.

2 BACKGROUND & RELATED WORK

We define a neural network by a function f : Rd → R|K| which maps input samples x ∈ Rd

to output y ∈ R|K|, where K = {1, . . . ,K} is the set of K classes. We assume a feedforward
architecture composed by affine transformations, f (l)(x) = W lσ(l−1)(x) + b(l), for l = 1, . . . , L,
and followed by ReLU activation functions, σ(k)(x) = max{0, f (k)(x)}, for k = 1, . . . , L − 1. In
the end, the resulting classifier is obtained as composition of pre- and post-activations, i.e. f (L)(x) =
W (L)σL−1(x) + b(L). In addition, we define all network parameters (W (l), b(l)) as θ.

Adversarial robustness. Adversarial robustness refers to a model’s ability to resist being fooled.
Formally, given an input x ∈ Rd, an adversary is allowed to choose any point from a convex set
S(x) ⊆ Rd. The classifier is certifiably robust for this input x if the predicted class remains un-
changed, i.e. argmaxj fj(x̃) = argmaxj fj(x), ∀x̃ ∈ S(x). The set S(x) can be defined for
different specifications, e.g. ℓp-norm perturbation (Wong & Kolter, 2018), geometric transforma-
tions (Balunovic et al., 2019), randomized smoothing (Cohen et al., 2019) and others. To reduce the
vulnerability of the network against adversarially perturbed inputs, the common approach is to train
it according to the following min-max optimization problem:

min
θ

E(x,y)∼Din max
x̃∈S(x)

L(f(x̃), y).

In the other minimization, we consider training f on an ID dataset Din, while in the inner maximiza-
tion we look for the maximum value of the loss function L that may give us an adversarial sample.
As the inner maximization problem results intractable, most of the existing methods rely on approx-
imations. For example, Projected Gradient Descent (PGD) (Madry et al., 2017) and Fast Gradient
Sign Method (FGSM) (Goodfellow et al., 2015) are commonly used techniques for improving ro-
bustness of a neural network, accomplished by generating adversarial examples and retraining the
network with corrected labels.

Robustness certificate. As previously mentioned, a neural network f is certifiably robust for
the input x ∈ Rd if the prediction for all perturbed versions remains unchanged. Although an
adversarially-trained network is robust to attacks created during training, it may still be vulnerable
to unseen new attacks. To overcome this problem, formal verification methods model the previous
statement as a mathematical optimization problem:

min
x̃, t

{fk(x̃)− ft(x̃) | x̃ ∈ S(x) , t ∈ K \ {k}} ,

where we denote by k the predicted class for x, i.e. k = argmaxj fj(x). We observe that op-
timization explores the difference by comparing the outputs of the neural network to predict any
class other than the initially predicted one. If the result is positive, we certify the input sample as
robust in S(x). Otherwise, there exists an input that misleads the prediction of the network and the
certification fails.

Convex relaxation. To reduce the runtime of the verification process, convex relaxation propagates
the input set S(x) through the network producing lower and upper bounds at every layer. This speeds
up the entire verification but sacrifices exactness, resulting in a lower bound at the output layer:

f
k
(x̃)− f t(x̃) ≤ f∗

k (x̃)− f∗
t (x̃),

where f∗ denotes the optimal result of the verification, and f , f the lower and upper bounds, respec-
tively. Current state-of-the-art methods, e.g. GPUPoly (Müller et al., 2021) or β-CROWN (Wang
et al., 2021), parallelize the computation and propagation of boundaries on the GPU.

Robust OOD detection. OOD detection means to determine whether a sample comes from a
learned distribution or not. Formal robustness guarantees for low network confidence on OOD sam-
ples has been recently investigated. This involves verifying that a predictor assigns low values to
all labels for OOD inputs within a defined neighborhood. This challenge may seem straightforward
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when using current methods such as softmax calibration (Hendrycks & Gimpel, 2017), ODIN (Liang
et al., 2018), or Mahalanobis (Lee et al., 2018), but as highlighted in Hein et al. (2019), ReLU net-
works, i.e. networks with fully connected, convolutional, or residual layers, produce arbitrarily high
confidence predictions far from the training data.

To overcome this problem, recent contributions have proposed mathematical guarantees to reduce
the confidence far from the training distribution. An early approach of Meinke & Hein (2020)
integrates the softmax layer with density estimators based on Gaussian mixture models to distin-
guish between ID and OOD. Although they achieve similar OOD detection performance as previous
approaches, e.g. Outlier Exposure (OE) (Hendrycks et al., 2019), they can guarantee decreasing
confidence far from the training distribution. In this direction, Bitterwolf et al. (2020) propose a
training approach which uses interval bound propagation (IBP) to derive a provable upper bound
on the maximal confidence of the network in a ℓ∞-norm of ϵ around a given point. This procedure
leads to classifiers with pointwise guarantees even for near-OOD samples, but IBP produces loose
bounds that cause a drop in network accuracy. Recently, Meinke et al. (2021) combine a binary dis-
criminator to distinguish between ID and OOD together with previous approaches to preserve high
clean accuracy while providing adversarial OOD guarantees. Although they achieve state-of-the-art
performance in different OOD metrics and test distributions, the results are not yet useful in practice
as most are still below 50%.

Most of the existing literature focuses on improving empirical robustness to adversarial attacks in-
side (Goodfellow et al., 2015; Carlini & Wagner, 2017; Madry et al., 2017) and outside (Hein et al.,
2019; Bitterwolf et al., 2020; Meinke & Hein, 2020; Meinke et al., 2021) the distribution or on for-
mally demonstrating network stability in the input neighborhood (Gopinath et al., 2018; Balunovic
et al., 2019; Wang et al., 2021; Müller et al., 2022; 2021). Another line of work deals with the trade-
off between accuracy and robustness from a training perspective (Yang et al., 2020; Jovanovic et al.,
2021; Liu et al., 2020a) or on specific benchmarks (Hendrycks & Dietterich, 2018; Croce et al.,
2021; Wu et al., 2022). Unlike these, in this work we evaluate how robustness certificates relate to
accuracy on ID samples and how they perform on OOD samples.

3 IN-DISTRIBUTION ANALYSIS

Here, we evaluate formal verification methods for distinct networks, perturbation types and train-
ings. For this purpose, a benchmark analysis is conducted on clean and perturbed in-distribution
data to determine the amount of samples that were successfully Certified and Correctly classified
(CC) and those that were Certified but Incorrectly classified (CI). In this analysis, we want to deter-
mine if incorrectly classified samples will be robustly certified or not. In the end, if the ratio of false
positives is sufficiently lower or close to zero, we can confidently rely on the robustness verification
process as an indicator for correct classification, otherwise not.

Table 1: Summary of the metrics.
# of Samples Certified Correct (CC) Certified Incorrect (CI)

Total (N ) CCR = CC/N CIR = CI/N
Relative TPR = CC/C FPR = CI/I

Assuming that we do not process inputs that
cannot be verified and instead rely on a fallback
strategy - such as a query to an expert - we can
calculate the remaining performance and error
rate for the samples actually processed by the

model. Following Henne et al. (2020), in Table 1 we present similar evaluation metrics. We define
the Certified Correct Ratio (CCR) and Certified Incorrect Ratio (CIR) as the number of CC and CI
over the total number of samples N , respectively. Similarly, we call the ratio of CC over the total
number of correctly classified samples C as TPR, and the ratio of CI over the total number of in-
correctly classified samples I as FPR. Thus, with CC and CI, we graphically show the performance
of robustness certificates for increasing certification range, while with TPR and FPR, we calculate
AUC as an evaluation metric. To certify the robustness for geometric and norm-based perturbations
we select the convex verifier GPUPoly (Müller et al., 2021).

3.1 ASSESSMENT ON UNPERTURBED SAMPLES

Geometric robustness. In this context, we utilize DeepG (Balunovic et al., 2019) to compute the
linear inequality constraints around the set of geometrically transformed images. In this experiment,

4



Under review as a conference paper at ICLR 2023

we consider clean (unperturbed) test samples and three geometric perturbations: rotation, shearing
and scaling.
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Figure 2: Comparison of network architectures and
training methods for varying angles of rotation. We run
robustness certificates on 1000 clean samples of the first
10 classes of the GTSRB test set.

In Figure 2, we show a comparison between ar-
chitectures in terms of percentage of CCR and
CIR for increasing rotation values. In the re-
sults, we obtain a comparable difference be-
tween CCR and CIR for small perturbation in-
tervals, which remains relatively constant by in-
creasing the range. The long computation time
to generate the convex set for each rotation in-
terval did not allow for a wide range of points.
Here, we graphically show the relationship be-
tween robustly certified samples and accuracy.
In the end, the goal is to find a certified inter-
val value that decreases CIR while maintaining
a high CCR and thus reliability in certification.

The non-rectilinear behavior of the curves
should be attributed to the sampling procedure
in DeepG (Balunovic et al., 2019). This is in-

herent in the way of how boundaries are constructed around the geometric perturbation. Before
computing the linear inequalities, DeepG operates Monte Carlo sampling to produce geometrically
manipulated images inside the given range. In the case of affine transformations, an interpolation
method is needed to reinsert the manipulated pixel into the image grid, and due to its non-linear
behavior, sampling is required. In the context of DeepG, the number of samples (1000) used for the
LP solver and the tolerance (0.01) in Lipschitz optimization were constant for increased perturbation
values. Additional experiments are presented in Appendix A.1.
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Figure 3: ROC curves of network archi-
tectures and training methods for varying ϵ
of ℓ∞-norm based robustness certificates on
4800 samples of the first 10 classes of the
GTSRB test set.

Norm-based robustness. Here, we evaluate ℓ∞-norm ro-
bustness certificates for clean test samples, i.e. S(x) =
{x̃ ∈ Rd | ∥x− x̃∥∞ ≤ ϵ, ϵ ≥ 0}. In Figure 3, we
plot the ROC curve for each network with 400 ϵ values
between zero and 0.2, where ϵ is defined as adversarial
perturbation budget. The curve starts from the right hand
side for ϵ equal to zero, and increasingly moves to the left
hand side. We see that for small CIR∼0.02, the CCR∼0.8
remains surprisingly high. Within this range, the ROC of
Conv-Plain stays mostly higher than that of Conv-PGD.
We can associate this result to the fact that the plain model
has higher accuracy (92.7) with respect to the adversari-
ally trained one (90.8). In contrast, MLP6x[100], while
having a slightly higher accuracy, leads to lower ROC
than MLP4x[50]. This highlights that larger fully con-
nected models are less likely to be certified and reduce the performance of robustness certificates.
We show CCR and CIR curves and ROC curves of TPR & FPR in Figure 7 in Appendix A.2.

3.2 ASSESSMENT ON PERTURBED SAMPLES (DISTRIBUTIONAL SHIFT)

Here, we test geometrically manipulated in-distribution samples (or distributional shifts). To this
end, we run each network on perturbed samples and evaluate the verification results for the predicted
class. Testing neural networks for distributional shifts, practically assesses their use for real-world
applications.

In Table 2, we show the results of AUCs for different networks and perturbations. The ROC curves
are approximately estimated with 400 ϵ values between 0 and 0.02, i.e. 20% of maximum adversarial
budget, which push the amount of certified samples to zero for all tests and models. Similarly to the
previous section, TPR and FPR (used to generate ROC curves) are calculated with ℓ∞-norm robust-
ness certificates. In our analysis, we observe that the accuracy on perturbed test sets has decreased
and similarly AUC decreased by the same amount. Convolutional networks maintains higher AUCs
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Table 2: AUC / ACC: Comparison between plain and perturbed test samples. The ROCs were calculated with
ℓ∞-norm robustness certificates by varying ϵ. Random perturbation sizes inside the defined ranges are applied
to the 4800 test samples of the first 10 classes of the GTSRB test set.

Perturbation Conv-PGD Conv-Plain MLP6x[100] MLP4x[50]
Type Size AUC ACC AUC ACC AUC ACC AUC ACC

Unperturbed - 87.7 90.8 85.7 92.7 75.8 85.4 81.4 84.8
Gaussian Blur K = 3, σ ∈ [1, 2] 82.4 85.7 79.7 91.7 69.3 80.2 66.9 77.9
Rotation [−30◦,+30◦] 77.2 71.9 69.0 63.8 66.5 59.7 70.4 59.0
Scaling [0.1, 1] 54.4 38.6 50.9 38.6 49.6 24.9 53.1 27.4

with respect to fully connected models and Conv-PGD achieves the best results besides its lower
accuracy. Since adversarial training of ℓ∞-norm samples helps the same kind of verification, the
more certified true positives, the higher the AUC will be.

Both metrics followed a similar trend, enhancing the relationship between accuracy and certified
robustness. This result is intended to state that distributional shifts (or perturbed ID samples) are as
difficult to verify as the network’s generalization ability is lower. This is independent of the train-
ing procedure. Despite the fact that adversarially-trained networks obtain higher AUCs than plain
models (mirroring the results for unperturbed samples), the AUC of adversarially-trained networks
decreases analogously with respect to accuracy. Validating the fact that accuracy is correlated with
robustness.

Discussion. We summarize the analysis on clean and perturbed ID samples by pointing out that
robustness is strongly related to accuracy. This is visible in Figure 3, where increasing the certifi-
cation range reduces both correctly and incorrectly classified samples. Luckily, we obtain more CC
than CI samples for small perturbation budgets, showing that robustness certificates are a powerful
safety metric for ID data. To give a numerical example, if the accuracy decreases by ∼11% (from
90% to 80%), the error rate drops of ∼75% (from 8% to 2%). We obtained similar results for both
types of certification (geometric and norm-based). Therefore, similar conclusion can be derived
for others verification and training methods as well, e.g. randomised smoothing. In short, the more
certification-inclined a network is, the better we can use verification methods as metric to distinguish
between correctly and incorrectly classified samples.

4 OUT-OF-DISTRIBUTION ANALYSIS

Motivation Hein et al. (2019) demonstrated that piecewise linear classifiers held high confidence for
samples outside the training distribution and post-processing techniques for softmax scores are not
able to reduce this confidence. This is an inherent problem of the network architecture that further
leads to the incorrect use of formal verifiers. A crucial issue on the adoption of such methods is that
OOD samples not only yield high confidence, but are easily verifiable and get certified as correct. In
this section, we theoretically show that robustness certificates hold for samples sufficiently far from
the training distribution. Then, we support our findings with numerical results on OOD test samples.

4.1 THEORETICAL ANALYSIS

Here, we formally show that robustness certificates are always valid for piecewise linear classifiers
and for samples sufficiently far from the training distribution. This finding is a derivation of the more
general result demonstrated in Hein et al. (2019), so let us introduce some definitions necessary for
the main proof. We briefly recall the definition of continuous piecewise affine classifiers (Arora et al.,
2018), which applies to feedforward neural networks with piecewise affine activation functions, e.g.
ReLU, and linear at the output layer.

Definition 4.1. A function f : Rd → R is called piecewise affine if there exists a finite set of
polytopes {Qr}Mr=1 (referred to as linear regions of f ) such that ∪M

r=1Qr = Rd and f is an affine
function when restricted to every Qr.

This definition applies to all layers performing linear mappings, e.g. fully connected, convolutional,
residual layers, skip connections and further maximum and average pooling. Specifically, given a
classifier f : Rd → RK , where K is the number of classes, Definition 4.1 applies to each component
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fi : Rd → R and all K components (fi)Ki=1 have the same set of linear regions. We further extend
the definition of ReLU networks as piecewise linear classifiers with the fact that all linear regions
are polytopes and thus convex sets (Hein et al., 2019).
Lemma 4.1 (Hein et al. (2019)). Let {Qr}Rr=1 be the set of convex polytopes where the ReLU-
classifier f : Rd → RK is an affine function, meaning for every k ∈ {1, . . . , R} and x ∈ Qk there
exists V k ∈ RK×d and ck ∈ RK such that f(x) = V kx + ck. Thus, for any x ∈ Rd \ {0} there
exists α ∈ R with α > 0 and r ∈ {1, . . . , R} such that βx ∈ Qr for all β ≥ α.

Given Lemma 4.1, we can state our result.
Theorem 4.1. Let ∪M

r=1Qr = Rd and f(x) = V rx + ar be the piecewise affine representation of
the output of a ReLU network on Qr. If V r does not contain identical rows for all r = 1, . . . , R,
then for almost any x ∈ Rd \ {0}, there exists α ∈ R with α > 0 and a predicted class k ∈ K such
that:

min
z,t

{fk(z)− ft(z) | z ∈ S(αx), t ∈ K \ {k}} > 0,

holds for S(αx) ⊂ Qr.

The proof is given in Appendix B. The main consequence of this theorem consists in the fact that
the surrounding of infinitely many samples far enough from the training distribution would be easily
certified as robust. As already noted in Hein et al. (2019), the constraint on V r is very weak. On
the other side, the fact that S(αx) ⊂ Qr is not straightforward, since the definition of S(x) may vary
depending on the type of certificate one is interested in.
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Figure 4: Given a single input αx, we com-
pute the robustness certificate based on the
ℓ∞-norm for increasing α. As noted, α and
ϵ are linearly correlated.

In Figure 4, we show the relationship between α and ϵ for
ℓ∞-norm robustness certificates, where ϵ is the adversar-
ial budget, i.e. S(αx) = {x̃ ∈ Rd | ∥αx− x̃∥∞ ≤ ϵ, ϵ ≥
0}. We display the maximum ϵ value for which the certifi-
cate holds for increasing α. One can note that this settings
is unlikely in practice as all the images are normalized to
be inside the interval [0, 1]d and therefore ϵ ∈ [0, 1]. Be-
sides this, we theoretically demonstrate that samples far
enough from the training distribution are expected to be
certified and that the certification range augments with the
distance.

This is a major problem for the practical use of robustness certificates, since samples are likely to
be certified quite far from the training distribution. Hence, the use of formal verification methods
suggests integration with OOD detectors.

4.2 EXPERIMENTAL ANALYSIS

In this section, we conduct experiments on OOD samples for different datasets, networks and train-
ing methods. The aim is to evaluate the performance of robustness certificates in detecting whether
a sample is in- or out-of-distribution. To this end, we compare the convex verifier GPUPoly (Müller
et al., 2021) against standard OOD detection methods: MaxSoftmax (Hendrycks & Gimpel, 2017),
ODIN (Liang et al., 2018), Mahalanobis (Lee et al., 2018) and Energy (Liu et al., 2020b). We ran
all methods on the entire test set except GPUPoly, which was executed only on the first 1000 test
samples. This is due to the incredibly long run time of validating a large amount of samples for a
large range of ϵ values. The ROC curve for GPUPoly has been computed by varying the adversarial
budget ϵ. Here, we consider as true positives all certified samples from the ID test set, and as false
positives all certified samples from the OOD test set. We define 4 000 ϵ values equidistant between
0 and 0.2, i.e. 20% of maximum adversarial budget, which push the amount of certified samples to
zero for all tests and models. As an example, verifying 1 000 images on our largest network (31360
neurons) with GPUPoly takes about 20 minutes per single ϵ. We conduct our experiments on a
Nvidia GPU RTX 3090.

Grayscale Category. In Table 3, we show the results on grayscale datasets, where we use MNIST
as ID dataset. Given the limited size of the models, PGD and FGSM attacks prevent convergence
during training, so we evaluate only Plain, OE and Randomized trained networks in this analysis.
In case of OE, we consider two datasets: OrganAMNIST and FMNIST. As might be expected,
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Table 3: Grayscale Category: Comparison between standard OOD detection methods and robustness cer-
tificates of ℓ∞-norm: GPUPoly(ℓ∞) (Müller et al., 2021). We report the clean accuracy (ACC) on the in-
distribution (ID) dataset: MNIST. All methods were executed on all samples in the test set except GPUPoly,
which was executed on the first 1000 test samples. In the context of GPUPoly, AUC and FPR95 are computed
by varying the adversarial budget ϵ.

Network/ ID: MNIST Method EMNIST (letters) KMNIST FMNIST
Training ACC AUC↑ FPR95↓ AUC↑ FPR95↓ AUC↑ FPR95↓

MLP6x[200]/
Plain 98.0

MaxSoftmax (Hendrycks & Gimpel, 2017) 87.3 43.8 91.8 32.1 88.8 40.5
ODIN (Liang et al., 2018) 89.1 35.6 93.0 26.0 91.2 32.5
Mahalanobis (Lee et al., 2018) 89.2 47.4 91.8 38.8 92.8 40.6
Energy (Liu et al., 2020b) 87.3 45.0 92.6 32.4 89.6 40.5
GPUPoly(ℓ∞) (Müller et al., 2021) 81.3 61.9 86.4 51.0 76.1 62.0

MLP6x[200]/
OE (OrganAMNIST) 97.9

MaxSoftmax (Hendrycks & Gimpel, 2017) 90.6 38.6 98.2 8.7 97.9 12.4
ODIN (Liang et al., 2018) 90.7 36.2 98.1 8.4 98.2 10.1
Mahalanobis (Lee et al., 2018) 90.5 39.7 97.0 15.1 97.3 12.2
Energy (Liu et al., 2020b) 90.5 39.0 98.1 9.3 97.4 14.1
GPUPoly(ℓ∞) (Müller et al., 2021) 82.3 55.0 92.1 31.0 87.7 45.0

MLP6x[200]/
OE (FMINST) 98.2

MaxSoftmax (Hendrycks & Gimpel, 2017) 97.0 11.7 99.8 0.8 - -
ODIN (Liang et al., 2018) 96.5 13.7 99.8 0.9 - -
Mahalanobis (Lee et al., 2018) 96.1 15.7 99.7 1.4 - -
Energy (Liu et al., 2020b) 96.9 12.3 99.8 0.9 - -
GPUPoly(ℓ∞) (Müller et al., 2021) 89.7 29.3 94.1 25.2 - -

ConvSmall/
Plain 98.8

MaxSoftmax (Hendrycks & Gimpel, 2017) 79.3 61.1 85.5 51.4 85.7 58.1
ODIN (Liang et al., 2018) 80.0 60.1 85.3 51.8 85.0 59.1
Mahalanobis (Lee et al., 2018) 91.4 38.9 92.0 43.1 91.9 43.2
Energy (Liu et al., 2020b) 80.5 57.7 85.3 51.9 83.5 64.2
GPUPoly(ℓ∞) (Müller et al., 2021) 81.9 48.3 87.1 39.4 78.3 64.6

ConvSmall/
Randomized (σ = 0.1) 98.7

MaxSoftmax (Hendrycks & Gimpel, 2017) 73.5 73.0 87.4 48.0 81.3 65.9
ODIN (Liang et al., 2018) 73.5 72.5 86.9 49.7 79.6 67.7
Mahalanobis (Lee et al., 2018) 91.6 38.7 89.7 54.1 82.7 61.0
Energy (Liu et al., 2020b) 75.2 68.6 87.3 47.8 79.9 69.0
GPUPoly(ℓ∞) (Müller et al., 2021) 84.8 50.3 90.2 39.6 82.4 58.9

networks trained with OE perform significantly better than those trained with Plain or Randomized.
The results with FMNIST as OOD training set compared to OrganAMNIST are surprisingly close
to optimum in KMNIST for all standard OOD detection methods.

In the context of GPUPoly, we observe better results compared to other methods for convolutional
networks in the KMNIST dataset, and definitely lower results for fully connected models. On the
one hand, GPUPoly struggles to certify samples in distribution, leading to inferior results than stan-
dard OOD detection methods. On the other hand, for FPR at 95% of true positives, we obtain
more certified OOD samples, empirically validating the hypothesis that verification methods easily
certified samples far enough from the training distribution. The hardness of verifying OE trained
networks should be related to the slightly thinner decision boundaries induced during the training
procedure. Surprisingly, the randomized trained convolutional network performed slightly better
than its plain counterpart. In appendix C.1, we report the ROC curves for convolutional networks.

Table 4: RGB Category: Comparison between standard OOD detection methods and GPUPoly(ℓ∞) (Müller
et al., 2021) for different training methods of the ConvMed network. We report the clean accuracy (ACC) on
the in-distribution (ID) dataset: GTSRB. In the context of GPUPoly, the AUC and FPR95 are computed by
varying the adversarial budget ϵ of the ℓ∞-norm based robustness.

Training ID: GTSRB Method CIFAR10 CIFAR100 SVHN
ACC AUC↑ FPR95↓ AUC↑ FPR95↓ AUC↑ FPR95↓

OE (ImageNet (C)) 83.3

MaxSoftmax (Hendrycks & Gimpel, 2017) 97.9 0.6 97.9 1.0 97.7 2.5
ODIN (Liang et al., 2018) 99.9 0.4 97.9 0.8 97.7 2.4
Mahalanobis (Lee et al., 2018) 97.8 0.5 97.7 1.1 97.3 1.7
Energy (Liu et al., 2020b) 97.7 0.6 97.7 0.9 97.5 2.7
GPUPoly(ℓ∞) (Müller et al., 2021) 18.9 99.3 20.1 99.2 34.2 97.3

FGSM (ϵ = 1/255) 84.1

MaxSoftmax (Hendrycks & Gimpel, 2017) 61.4 94.7 64.0 93.0 77.1 81.2
ODIN (Liang et al., 2018) 66.9 81.9 69.5 78.4 80.9 64.0
Mahalanobis (Lee et al., 2018) 62.8 83.2 63.6 82.9 81.9 61.9
Energy (Liu et al., 2020b) 62.2 95.8 65.1 94.1 76.2 87.3
GPUPoly(ℓ∞) (Müller et al., 2021) 57.9 95.1 60.5 95.0 70.4 90.7

PGD (ϵ = 1/255) 81.4

MaxSoftmax (Hendrycks & Gimpel, 2017) 58.1 96.0 58.7 92.9 83.7 69.5
ODIN (Liang et al., 2018) 64.0 85.1 63.2 80.4 88.2 47.7
Mahalanobis (Lee et al., 2018) 73.8 75.1 68.1 79.1 89.0 44.7
Energy (Liu et al., 2020b) 54.1 97.9 55.2 95.6 80.0 78.1
GPUPoly(ℓ∞) (Müller et al., 2021) 55.4 95.5 58.2 93.8 70.3 90.5

Randomized (σ = 0.1) 83.7

MaxSoftmax (Hendrycks & Gimpel, 2017) 61.6 94.8 62.6 92.6 83.5 71.0
ODIN (Liang et al., 2018) 67.1 82.9 67.6 79.9 87.4 51.8
Mahalanobis (Lee et al., 2018) 65.6 80.6 64.0 83.1 88.2 47.1
Energy (Liu et al., 2020b) 60.9 95.3 62.3 93.2 81.7 76.4
GPUPoly(ℓ∞) (Müller et al., 2021) 60.4 92.1 62.7 91.3 72.0 86.9
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RGB Category. Here, we test two convolutional networks of different sizes: ConvSmall and Con-
vMed, trained on two ID datasets: GTSRB and CIFAR10. In general, the clean accuracy is remark-
ably low compared to state-of-the-art models, and slightly lower for adversarially trained networks
than for plain models, but it is aligned with related work on verification methods (see, e.g., (Müller
et al., 2021; 2022)).

In Table 4, we show the results for the ConvMed model. In this setting, we trained each network
on all 43 classes of the GTSRB dataset. As a consequence, we obtain lower accuracy with respect
to the models of section 3 trained on just the first 10 classes. Similarly to the grayscale category,
standard OOD detection methods perform likewise. In the case of OE, GPUPoly certifies more
OOD than ID samples, drawing the AUC below the random guess value of 0.5. On the one side,
adversarial training procedures, such as PGD, FGSM and randomized, do not seem to help the
verification process, resulting in substandard performance for GPUPoly. On the other side, standard
OOD detection methods are slightly affected.

0.0 0.2 0.4 0.6 0.8 1.0
FPR

0.0
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Figure 5: Comparison of ROC curves
for standard OOD detection methods and
GPUPoly on SVHN dataset. We consider
the ConvMed model trained with OE on
the GTSRB as ID and ImageNet cropped as
OOD training sets.

In Figure 5, we show the ROC curve of ConvMed trained
with OE on the GTSRB as ID and ImageNet cropped
as OOD training sets and tested on SVHN. As noted,
GPUPoly certifies more OOD than ID samples. We dis-
cuss this behavior and affiliate it with a couple of reasons.
First, OE induces an irregular gradient that leads the ver-
ification process to fail in the case of both ID and OOD
samples. This decreases the number of robustness cer-
tified samples, and affects TPR and FPR equally. Sec-
ond, OE reduces the accuracy on ID samples, leaving
more stable gradients and a larger prediction space for
OOD samples. This augments the number of OOD cer-
tified samples, and increases the FPR. In the end, this
experiment empirically validates the theoretical results
discussed above. Additional results are shown in Ap-
pendix C.

Discussion. In this analysis, we have shown that robust-
ness certificates perform similarly than standard OOD detection methods for adversarially-trained
networks, both on grayscale and RGB images. The results are completely different for networks
trained with OE, where the ROC is lower than the random guess. This highlights the problematic
nature of formal verification methods in easily certifying OOD samples for networks trained to be
OOD aware. Hence, the use of robustness certificates on piecewise linear classifiers needs to be
complemented with additional safety measures.

5 CONCLUSION

In this paper, we explored the robustness of ReLU networks through an in-depth analysis of clean
and perturbed samples inside and outside the distribution. We used convex verification methods to
robustly certify the network prediction. By varying the adversarial perturbation budget ϵ, we con-
structed ROC curves. In our in-distribution analysis, we showed that there is a strong correlation
between certified robustness and accuracy for clean and perturbed samples. In this context, formal
verification methods prove to be a useful error-reduction metric leading to an overall increase in
reliability. Completely different are the results for the OOD analysis, where robustness certificates
demonstrate their unreliability compared to standard OOD detection methods. In such analysis, we
proved theoretically that samples far enough from the training distribution are easily certified for
ReLU classifiers. In our experiments, we validate the theoretical findings through an extensive anal-
ysis. The results suggest the addition of OOD detection measures for the practical use of robustness
certificates in real applications.

In the end, verification methods can be a piece of the puzzle toward trustworthy AI. As a future
perspective, it would be interesting to combine these methods with standard OOD detection methods
in a useful way. However, it is still unclear how to distinguish between the two for a given sample.
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A EXTENSION TO THE IN-DISTRIBUTION ANALYSIS.

Table 5: Networks trained on the first ten classes of the GTSRB
dataset. The accuracy is computed on 4800 test samples.

Network Architecture Activation Training ACC # Neurons
MLP4x[50] 4 FC ReLU Plain 84.8 210
MLP6x[100] 6 FC ReLU Plain 85.4 610
Conv 2 Conv. & 2 FC ReLU Plain/PGD 92.7/90.8 4852

Architectures & Training We train
a total of four neural networks on
the first ten classes of the GT-
SRB dataset (Houben et al., 2013).
Two Fully Connected (FC) Multi-
layer Perceptron (MLP): MLP4x[50]
and MLP6x[100] normally trained (plain), and two convolutional neural networks: one trained with
PGD (Madry et al., 2017) attacks (ℓ∞-norm attacks with ϵ = 0.01 for a maximum of 40 steps),
and the other normally trained, which are denoted as Conv-PGD and Conv-Plain, respectively. The
clean accuracy (ACC) and other parameters are reported in Table 5. To achieve higher accuracy with
such small networks we reduced the number of classes to 10 to decrease the amount of features to
be learned by the network.

A.1 GEOMETRIC ROBUSTNESS

Here, we report further geometric robustness certificates of the GTSRB test set. In Figure 6, we show
results for shearing and scaling. In this experiment, we fed each network with clean test samples. As
previously discussed, the ratio between CCR and CIR reflects the network’s accuracy. Differently
from rotations, shearing and scaling result to be less prone to be certified. The lower part of the
graph highlights the erratic behavior of FPR, attributable to DeepG’s sampling procedure.
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Figure 6: Comparison of network architectures and training methods for shearing and scaling. The robustness
certificates are computed on 1000 samples of the first 10 classes of the GTSRB test set.

A.2 NORM-BASED ROBUSTNESS

In Figure 7a, we show the percentage of verified samples for increasing ϵ of the ℓ∞-norm, where ϵ
is defined as adversarial perturbation budget. As noted, convolutional neural networks yield better
results with respect to fully connected ones and Conv-PGD turns out to be the best. In addition, we
see that for very small ϵ ∼ 0.003, the ∼ 1% of CI is comparatively very small respect to the ∼ 75%
of CC for Conv-Plain. Instead, at ∼ 2% of CI we have ∼ 50% of CC for fully connected models.

In Figure 7b, we plot the ROC curves for TPR and FPR. We observe that the ROC of Conv-PGD
remains mostly higher than that of Conv-Plain. We attribute this result to the fact that adversarially
trained networks are more easily certifiable than simple models, which leads to generally higher
TPR results. Similarly to the case of CCR & CIR curves, MLP6x[100] demonstrates to be less
prone to be certified and results in lower AUC with respect to MLP4x[50].

B PROOF OF THEOREM 4.1

Theorem 4.1 Let ∪M
r=1Qr = Rd and f(x) = V lx + al be the piecewise affine representation of

the output of a ReLU network, then for almost any x ∈ Rd, there exists α ∈ R with α > 0 and a
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Figure 7: Comparison of network architectures and training methods for varying ϵ of ℓ∞-norm based robustness
certificates on 4800 samples of the first 10 classes of the GTSRB test set.

predicted class k ∈ K such that:
min
z,t

{fk(z)− ft(z) | z ∈ S(αx), t ∈ K \ {k}} > 0,

holds for S(αx) ⊂ Qr.

Proof. By Lemma 4.1, there exists a region Qr, with r ∈ {1, . . . , R} and β > 0 such that for all
α ≥ β we have αx ∈ Qr. Given that S(αx) ⊂ Qr and since z ∈ S(αx) we have that z ∈ Qr. Let
f(z) = V rz + ar be the affine form of the ReLU classifier f on Qr. Let k∗ = argmaxk⟨vrk, z⟩,
where vrk is the k-th row of V r. Given the fact that V r does not has identical rows, i.e. vrl ̸= vrm for
l ̸= m, the maximum is unique up to zero. If the maximum is unique, it holds for sufficiently large
α ≥ β:

⟨vrk∗ , z⟩+ ark∗ − ⟨vrt , z⟩ − art > 0, ∀t ∈ K \ {k∗}.

C EXTENSION TO THE OUT-OF-DISTRIBUTION EXPERIMENTAL ANALYSIS.

Datasets. In order to obtain a more comprehensive and fair evaluation, we consider two categories of
image datasets: grayscale and RGB. In the grayscale category we place datasets with grayscale im-
ages of size 28x28: MNIST (LeCun, 1998), EMNIST (Cohen et al., 2017), KMNIST (i.e. Kuzushiji-
MNIST Clanuwat et al. (2018)) and FMNIST (i.e., Fashion-MNIST Xiao et al. (2017)). In the RGB,
we have RGB images of size 32x32: CIFAR10/100 (Krizhevsky et al., 2009), SVHN (Sermanet
et al., 2012) and GTSRB (Houben et al., 2013). In addition, we utilize OrganAMNIST from MedM-
NIST (Yang et al., 2021) and ImageNet Cropped (C) (Deng et al., 2009) for training OOD aware
models. For each category, we normalise all datasets by the same mean and standard deviation of
the ID training set.

Table 6: Networks architectures for each dataset category.
Category Input Network Architecture Activation # Neurons
Grayscale 28x28x1 MLP6x[200] 6 FC ReLU 1 000

ConvSmall 2 Conv. & 2 FC ReLU 3 604

RGB 32x32x3 ConvSmall 2 Conv. & 2 FC ReLU 4 852
ConvMed 5 Conv. & 3 FC ReLU 6 756

Architectures & Training. In Ta-
ble 6, we describe the network ar-
chitectures, activation type and num-
ber of neurons for each dataset cat-
egory. Evaluation is carried out on
different training procedures. Net-
works trained only with clean training data are called Plain. Adversarially trained networks are
PGD (Madry et al., 2017) or FGSM (Goodfellow et al., 2015), where ϵ is the adversarial pertur-
bation budget. Randomized are networks trained with randomized smoothing (Cohen et al., 2019)
where σ is the standard deviation. Lastly, OE stands for Outlier Exposure (Hendrycks et al., 2019),
where we insert the OOD training set in parentheses.

Analysis. Here, we extend our evaluation of robustness certificates for OOD detection. Below, we
show ROC curves and other results for different trainings, networks and datasets. As previously
mentioned, GPUPoly is used with ℓ∞-norm robustness certificates and a range of 4 000 values of ϵ
between 0 and 0.2. Instead, all other methods uses a range of 10e5 for the threshold.
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C.1 GRAYSCALE CATEGORY EXTENSION
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Figure 8: ConvSmall - ID:MNIST Comparison of ROC curves for OOD detection methods on KMNIST,
EMNIST datasets. GPUPoly is used with ℓ∞ robustness certificates and a range of 4000 values of ϵ between 0
and 0.2. All other methods uses a range of 10e5 for the threshold.

In Figure 8, we report the ROC curves for convolutional networks trained normally and with ran-
domized smoothing on the MNIST dataset. We observe that GPUPoly(ℓ∞) perform relatively better
than standard OOD detection methods on EMNIST and KMNIST.

C.2 COLORED CATEGORY EXTENSION

In Figure 9, we show the ROC curves for the ConvMed model trained with OE (ImageNet cropped),
PGD and randomized smoothing. In the context of OE, we clearly see that the ROC curves of
GPUPoly are below the average value of 0.5. Besides his average performance on PGD and ran-
domized trained networks, the results graphically demonstrate that OOD samples are more likely to
be certified than ID samples for OOD aware networks.

Table 7: Colored Datasets: Comparison between standard OOD detection methods and robustness certificates
of ℓ∞-norm: GPUPoly(ℓ∞) (Müller et al., 2021). We report the clean accuracy (ACC) on the in-distribution
(ID) dataset: CIFAR10. In the context of GPUPoly, the AUC and FPR95 are computed by varying the adver-
sarial power ϵ.

Network/ ID: CIFAR10 Method CIFAR100 GTSRB SVHN
Training ACC AUC↑ FPR95↓ AUC↑ FPR95↓ AUC↑ FPR95↓

ConvSmall/
Plain 58.0

Mahalanobis 54.9 93.2 82.4 51.4 89.8 41.9
Softmax 63.0 90.3 74.1 75.6 75.4 85.8
ODIN 63.3 90.3 75.6 68.6 82.4 70.0
Energy 64.5 90.4 69.6 91.4 69.2 96.1
GPUPoly(ℓ∞) 58.3 91.3 62.1 91.4 65.8 91.2

ConvMed/
FGSM (ϵ = 1/255) 57.3

Mahalanobis 57.7 92.4 77.7 65.5 88.0 55.2
Softmax 64.8 89.7 70.1 80.9 69.9 90.2
ODIN 65.3 89.1 68.0 86.2 77.2 78.5
Energy 64.3 90.5 70.3 85.6 64.5 96.2
GPUPoly(ℓ∞) 58.8 95.1 64.4 92.2 66.0 93.3

ConvMed/
PGD (ϵ = 1/255) 56.1

Mahalanobis 57.6 92.4 80.4 57.4 91.5 41.3
Softmax 64.7 89.8 75.6 77.5 66.3 92.1
ODIN 64.9 89.9 75.2 69.1 79.2 73.9
Energy 64.1 90.8 70.8 89.9 59.0 98.1
GPUPoly(ℓ∞) 58.4 92.1 66.2 89.7 68.0 90.3
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(c) SVHN - OE(ImageNet cropped)
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(d) CIFAR10 - PGD (ϵ = 1/255)
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(e) CIFAR100 - PGD (ϵ = 1/255)
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(g) CIFAR10 - Randomized (σ = 0.1)
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(h) CIFAR100 - Randomized (σ = 0.1)
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Figure 9: ConvMed - ID: GTSRB. Comparison of ROC curves for OOD detection methods on CIFAR10/100
and SVHN datasets. GPUPoly is used with ℓ∞ robustness certificates and a range of 4 000 values of ϵ between
zero and 0.2. All other methods uses a range of 10e5 for the threshold.

In Table 7, we report the results for the RGB category with CIFAR10 as ID dataset. In this eval-
uation, we compare PGD, FGSM and normally trained convolutional networks. Similarly to the
networks trained on the GTSRB dataset, we observe similar performances as standard OOD detec-
tion methods. As previously mentioned, the accuracy is generally low compared to state-of-the-art
networks, but is aligned with related work on verification methods (Müller et al., 2021; 2022).
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Figure 10: ConvSmall - ID: CIFAR10. Comparison of ROC curves for standard OOD detection methods and
GPUPoly on CIFAR100, GTSRB and SVHN datasets.

In Figure 10 and Figure 11, we report the ROC curves for ConvSmall and ConvMed, respectively.
All networks are trained with CIFAR10 as ID dataset.
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(a) CIFAR100 - FGSM (ϵ = 1/255)
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(b) GTSRB - FGSM (ϵ = 1/255)
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(c) SVHN - FGSM (ϵ = 1/255)
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(d) CIFAR100 - PGD (ϵ = 1/255)
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(e) GTSRB - PGD (ϵ = 1/255)
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Figure 11: ConvMed - ID: CIFAR10. Comparison of ROC curves for standard OOD detection methods and
GPUPoly on CIFAR100, GTSRB and SVHN datasets.
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