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Abstract

Speech foundation models trained at a massive001
scale, both in terms of model and data size,002
result in robust systems capable of perform-003
ing multiple speech tasks, including automatic004
speech recognition (ASR). These models tran-005
scend language and domain barriers, yet effec-006
tively measuring their performance remains a007
challenge. Traditional metrics like word error008
rate (WER) and character error rate (CER) are009
commonly used to evaluate ASR performance010
but often fail to reflect transcription quality in011
critical contexts, particularly when detecting012
fabricated outputs. This phenomenon, known013
as hallucination, is especially concerning in014
high-stakes domains such as healthcare, legal,015
and aviation, where errors can have severe con-016
sequences. In our work, we address this gap by017
investigating hallucination in ASR models. We018
examine how factors such as distribution shifts,019
model size, and model architecture influence020
the hallucination error rate (HER), a metric021
we introduce to quantify hallucinations. Our022
analysis of 20 ASR models reveals three key023
insights: (1) High WERs can mask low hallu-024
cination rates, while low WERs may conceal025
dangerous hallucinations. (2) Synthetic noise,026
both adversarial and common perturbations like027
white noise, pitch shift, and time stretching, in-028
crease HER. (3) Distribution shift correlates029
strongly with HER (α = 0.91). Our findings030
highlight the importance of incorporating HER031
alongside traditional metrics like WER to better032
assess ASR model performance, particularly in033
high-stakes domains.034

1 Introduction035

Automatic Speech Recognition (ASR) systems036

have become fundamental to various applications,037

including personal assistants, automated customer038

service, and transcription tools used in fields such039

as education, healthcare, and law (Zhang et al.,040

2023; Adedeji et al., 2024). These systems have041

seen remarkable improvements in recent years (Ar-042

riaga et al., 2024; Radford et al., 2022; Commu- 043

nication et al., 2023), with state-of-the-art mod- 044

els demonstrating their capabilities across diverse 045

datasets and languages (Shakhadri et al., 2025). 046

However, the evaluation of ASR performance re- 047

mains largely dependent on word and character 048

error rate (WER/CER). The primary limitation of 049

WER and CER is their dependence on token-level 050

overlapping, which focuses on matching individ- 051

ual words or characters without considering the 052

overall semantic aspect of the transcription. This 053

could result in misleading evaluations, as a high 054

WER/CER does not necessarily indicate poor out- 055

puts in all cases. In addition, these metrics fall short 056

in capturing more subtle semantic failures which 057

aren’t typically caught without human verification, 058

such as hallucinations. 059

Hallucinations in ASR systems mirror percep- 060

tual experiences in neuroscience—plausible out- 061

puts generated without grounding in input stim- 062

uli (American Psychiatric Association et al., 2013; 063

Zmigrod et al., 2016), deviating phonetically or 064

semantically from source speech (Ji et al., 2023). 065

Like natural neural perceptions, ASR hallucina- 066

tions arise when models prioritize distributional 067

patterns over fidelity to audio input, fabricating 068

text unlinked to reference content (Hare, 2021). 069

These errors are uniquely hazardous in high-stakes 070

domains (Williamson and Prybutok, 2024), as they 071

evade WER/CER detection while distorting mean- 072

ing, similar to how clinical hallucinations discon- 073

nect from reality. 074

Hallucination in domains such as medical and 075

legal can have serious consequences, including 076

life-threatening outcomes and distorted testimonies 077

or contracts, and may disproportionately affect 078

marginalized groups (Xie et al., 2023; Vishwanath 079

et al., 2024; Mujtaba et al., 2024; Sperber et al., 080

2020; Koenecke et al., 2024a). Hence, detecting 081

and mitigating hallucination is crucial for ensuring 082

the reliability of ASR systems in sensitive environ- 083
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ments.084

The existing literature on hallucination detec-085

tion in ASR models is confined to a single086

model (Frieske and Shi, 2024; Serai et al., 2021;087

Koenecke et al., 2024a; Barański et al., 2025; Ji088

et al., 2023) or test setting (Kim et al., 2024),089

highlighting a significant research gap for a sys-090

tematic investigation across different supervision091

paradigms, test domains, and conditions.092

In this work, we address this critical research093

gap and make the following key contributions:094

• We conduct a thorough evaluation of ASR095

models across various setups, consisting of096

both synthetic and natural shifts from training097

to test distributions.098

• We introduce an LLM-based error detection099

framework that classifies ASR outputs into dif-100

ferent types of errors including hallucination101

errors through context-aware assessments.102

• We provide an in-depth analysis of halluci-103

nation phenomena in ASR models, exploring104

the impact of domain-specific data, model ar-105

chitectures, and training paradigms, and offer106

valuable insights into the relationship between107

model size, type, and hallucination frequency.108

• To validate our hallucination detection109

method, we compare our LLM-based halluci-110

nation detection pipeline with human evalu-111

ations and heuristic approaches, demonstrat-112

ing that the LLM evaluation closely aligns113

with human judgments and other LLM-based114

assessments, unlike the heuristic-based ap-115

proach.116

The significance of this work lies in how it re-117

defines the evaluation and improvement of ASR118

systems. By emphasizing hallucination detection,119

we aim to enhance the reliability of ASR models,120

particularly in domains where accuracy and preci-121

sion are non-negotiable.122

Outline. In Section 2, we review prior work re-123

lated to ASR evaluation and hallucination detec-124

tion. Section 3 outlines our proposed methodology.125

Section 4 presents our experimental setup. Finally,126

Section 5 discusses the results and implications127

of our findings, outlining directions for future re-128

search. We conclude our work in 6 and provide129

limitations in 7.130

2 Related Work 131

The use of ASR systems in high-stakes domains, 132

including healthcare (Afonja et al., 2024; Huh et al., 133

2023; Adedeji et al., 2024; Sunder et al., 2022), le- 134

gal proceedings (Saadany et al., 2022; Garneau and 135

Bolduc, 2024), and finance (Del Rio et al., 2021; 136

Liao et al., 2023), has heightened the necessity for 137

ensuring their robustness. Conventionally, the per- 138

formance of these models is assessed using metrics 139

such as WER and CER (Serai et al., 2022). Szy- 140

mański et al. (2023); Sasindran et al. (2024) They 141

show that when these metrics are used in isolation, 142

they exhibit notable limitations. 143

Recent studies have extensively investigated hal- 144

lucination in text generated by large language 145

models (LLMs), identifying it as a prevalent phe- 146

nomenon (Huang et al., 2025; Bai et al., 2024; Yao 147

et al., 2023; Jiang et al., 2024; Maynez et al., 2020; 148

Parikh et al., 2020; Ji et al., 2023; Mittal et al., 149

2024; Filippova, 2020). This issue has also been 150

observed in audio foundation models (Sahoo et al., 151

2024). Furthermore, research suggests that pre- 152

training language models for predictive accuracy 153

inherently predispose them to hallucination, even 154

under ideal conditions where the training data is 155

entirely factual (Kalai and Vempala, 2024). 156

However, few studies explore hallucination eval- 157

uation and detection in automatic speech recog- 158

nition (ASR) systems, with most research focus- 159

ing on Whisper, a semi-supervised model. For in- 160

stance, Koenecke et al. (2024b) analyze the Apha- 161

sia dataset and report that while Whisper’s overall 162

hallucination rate is 1%, 40% of these hallucina- 163

tions contain violent or harmful content. Similarly, 164

Kim et al. (2024) demonstrate that Whisper halluci- 165

nates at significantly higher rates under low signal- 166

to-noise ratio (SNR) conditions, and observe a 20% 167

increase in hallucinations at -4 dB and -2 dB SNRs. 168

Prior work by Serai et al. (2021) propose augment- 169

ing models with hallucinated transcripts to improve 170

performance, while Frieske and Shi (2024) intro- 171

duce a perturbation-based evaluation method using 172

automatic metrics such as word error rate (WER), 173

perplexity, and cosine similarity. Barański et al. 174

(2025) develop a filtered Bag of Hallucinations 175

(BoH) for detection, and reveal that hallucinations 176

in Whisper correlate strongly with training data bi- 177

ases (e.g., phrases like “Thank you for watching” 178

linked to YouTube content). 179

Despite these advances, existing studies remain 180

limited in scope, focusing predominantly on semi- 181
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Model Reference Hypothesis
WER Hallucination

Setting
HeuristicHuman LLM

whisper-small hungry action hippos fruit Humm reaction in hippos fruit? 75 F F F Home Environment
whisper-large-v3 ripped ocean jumper. Thank you. 100 F T T Home Environment
hf-seamless-m4t-large probably i i had asthma What about Erasmus? 100 F T T Medical
hf-seamless-m4t-large it can’t be done I’m going to start with the first

one.
180 F T T Legal

hf-seamless-m4t-medium News of this album coincides
with John Robert’s departure
from the band.

The first is the oldest, which is
also the oldest, the oldest, the old-
est, the oldest, the oldest.

130 F T T Accented Speech

whisper-medium patel para thirty eight page three
hundred and fifty five

How much is the tail? 100 F T T Legal

Table 1: Examples showing hallucination detection by different methods across domains and models.

supervised models like Whisper. This highlights182

a critical gap: the lack of a comprehensive un-183

derstanding of hallucinations across the full spec-184

trum of supervision paradigms—from supervised185

to unsupervised models—and under domain shifts186

where test data distributions diverge sharply from187

training environments. Addressing these gaps is188

essential for developing robust ASR systems that189

maintain accuracy and faithfulness in diverse real-190

world applications, a challenge our work directly191

tackles by evaluating a wide range of models with192

diverse architectures, sizes, and training paradigms193

on synthetic and natural shifts.194

3 Methodology195

We examine transcription quality using the stan-196

dard metrics WER and CER, and we assess the197

occurrence of hallucination errors to provide a com-198

prehensive view of model performance. Our test-199

ing environment is characterized by both natural200

and synthetic distribution shifts. Furthermore, we201

investigate the deterioration of error rates when202

transitioning from a controlled source domain (Lib-203

riSpeech) to various target domains, with a par-204

ticular focus on both WER and the Hallucination205

Error Rate (HER). In addition, we introduce noise206

to the input data and analyze its effect on error rate207

degradation. This multifaceted strategy offers valu-208

able insights into the challenges encountered by209

ASR systems in real-world scenarios. We provide210

additional details about each step subsequently.211

3.1 ASR Evaluation212

We evaluate a broad range of ASR models under213

a zero-shot setting, using the default decoding pa-214

rameters for each model. Standard preprocessing215

steps are applied prior to calculating the metrics,216

ensuring consistency in evaluation.217

3.2 Hallucination Evaluation 218

In addition to conventional transcription errors, we 219

also assess hallucination errors by using an LLM- 220

based pipeline that classifies the errors produced 221

by the ASR model. Specifically, we use GPT-4o 222

mini to compare the ground truth transcription with 223

the model outputs and ask the LLM to categorize 224

them into different error types. 225

We conduct hallucination evaluation at two lev- 226

els: 227

Coarse-grained: The model categorizes the output 228

into one of three classes: Hallucination Error, Non- 229

Hallucination, or No Error. For this evaluation, we 230

provide two examples per category in the prompt. 231

Fine-grained: The model is asked to further re- 232

fine the categorization by identifying specific er- 233

ror types, such as Hallucination Error, Language 234

Error, Oscillation Error, Phonetic Error, and No 235

Error. In this case, one example per category is 236

provided in the prompt. 237

The prompts used for both coarse-grained 238

and fine-grained evaluations are detailed in Ap- 239

pendix A.2 (Figure 5 and Figure 6, respectively). 240

To quantify hallucination occurrences, we intro- 241

duce the HER, defined as the ratio of hallucination 242

errors to the total number of examples in the data. 243

(a) Speech (b) Text

Figure 1: 2D t-SNE representation of our evaluation
datasets. The figure (a) shows speech representations,
while the figure (b) represents text embeddings, both
from SONAR. Each distinct evaluation dataset is repre-
sented by unique colors and markers, demonstrating the
diversity in both the speech and text of our evaluations.
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3.3 Distribution Shifts and Quantification244

We systematically evaluate ASR models under a va-245

riety of testing conditions, ranging from naturally246

occurring domain variations to scenarios involv-247

ing both adversarial and non-adversarial perturba-248

tions. These conditions are designed to induce249

either natural or synthetic distribution shifts in the250

input speech.251

Natural Shifts. These shifts arise from inherent252

variations in data distributions, such as differences253

in accents, domain-specific content, background254

noise, and diverse speaking styles (Liu et al., 2021).255

Synthetic Shifts. These shifts are artificially256

induced, encompassing simulated noise, goal-257

specific perturbations, and adversarial attacks (Fan258

et al., 2022). We design a comprehensive testing259

setup to identify the conditions under which ASR260

models are prone to hallucinate. Additional details261

about the datasets used in this study are provided262

in Section 4.1 and summarized in Table 4. We263

measure the extent of domain distribution shifts264

using the high-order metric Central Moment Dis-265

crepancy (CMD) (Zellinger et al., 2019; Kashyap266

et al., 2020), which assesses the discrepancy be-267

tween two distributions. It is calculated as follows:268

CMD =
1

L

L∑
l=1

∥∥E[hsl ]− E[htl ]
∥∥2
2
, (1)269

where L represents the number of layers, hsl and270

htl denote the hidden representations for the source271

and target domains, respectively, and E[·] signifies272

the expectation.273

3.4 Error Rate Degradation274

Error Rate Degradation quantifies the decline in275

ASR performance when transitioning from a source276

domain (LibriSpeech) to a target domain, with277

degradation measured in two aspects: transcription278

errors and hallucination errors.279

Word Error Rate Degradation (WERD). WERD280

is defined as the difference in WER between the281

target and source domains:282

WERD = WERtarget − WERsource, (2)283

where WERsource and WERtarget denote the WER284

for the source and target domains, respectively.285

286

Hallucination Error Rate Degradation (HERD).287

HERD captures the increase in hallucination errors288

when moving from the source to the target domain:289

HERD = HERtarget − HERsource, (3)290

where HERsource and HERtarget represent the hal- 291

lucination error rates in the source and target do- 292

mains, respectively. 293

Furthermore, the relationship between CMD and 294

degradation rates is analyzed and visualized (see 295

Figure 7) to understand how domain variations cor- 296

relate with both transcription and hallucination er- 297

rors. 298

4 Experiments 299

In this section, we present the experimental details 300

of our work. We examine the models’ tendencies 301

to produce hallucinated outputs, using LLM-based 302

evaluation as described in 3. The results provide in- 303

sights into the reliability of different ASR systems 304

across various real-world and adversarial condi- 305

tions. 306

4.1 Datasets 307

In our experiments, we use a diverse set of datasets 308

representing various domains and testing condi- 309

tions to evaluate the ASR systems under scenarios 310

that differ from training data. To achieve this, we 311

choose datasets from domains with a high likeli- 312

hood of being unseen during training, ensuring a 313

natural distributional shift. Additionally, we in- 314

clude datasets with synthetic perturbations, such 315

as adversarial attacks, and common augmentation 316

techniques like Gaussian noise addition, pitch shift- 317

ing, and time stretching, to assess the model’s ro- 318

bustness under synthetic shift. 319

Domain Specific Datasets. To evaluate model 320

performance under real-world conditions, we 321

leverage datasets from diverse domains, ensuring 322

a comprehensive assessment across various set- 323

tings. These include legal proceedings: Supreme- 324

Court-Speech1, medical dialogues: Primock57 325

(Papadopoulos Korfiatis et al., 2022), meeting 326

conversations: AMI (Consortium, n.d.), avia- 327

tion communications: ATCOsim (Hofbauer et al., 328

2008), conversational speech: SLUE-VoxCeleb 329

(Shon et al., 2022), home environments: BERSt2, 330

and general speech corpora: LibriSpeech (Panay- 331

otov et al., 2015), GLOBE (Wang et al., 2024), 332

and SPGISpeech (Technologies, 2021), including 333

noisy conditions (LibriSpeech_test_noise (Panay- 334

otov et al., 2015)). These datasets span a wide 335

1https://huggingface.co/datasets/janaab/
supreme-court-speech

2https://huggingface.co/datasets/macabdul9/
BERSt
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range of accents, recording conditions, and environ-336

ments—from high-quality audiobooks to telecon-337

ferences and real-time simulations. This diversity338

ensures a robust evaluation of model performance339

across realistic and challenging scenarios, address-340

ing the limitations of single-domain evaluations.341

Perturbed Datasets. To simulate challenging342

acoustic conditions and evaluate WER and HER343

under adversarial scenarios, we apply various types344

of synthetic perturbations to speech inputs. These345

include an adversarial dataset featuring modified346

utterances with adversarial noise at varying radii347

(0.04 and 0.015) and Room Impulse Response348

(RIR) noise, primarily aimed at adversarially at-349

tacking the ASR models (Olivier and Raj, 2022).350

Additionally, we evaluate model robustness under351

challenging conditions by applying a range of gen-352

eral audio perturbations—including noise addition,353

time stretching, and pitch shift—to 1,000 randomly354

sampled audio clips from a mixture of domain-355

specific datasets. These perturbations are com-356

monly used as augmentation techniques to simulate357

real-world variability and stress-test the models.358

We compare the performance on perturbed speech359

with that of non-perturbed speech to quantify the360

impact of these distortions. Full details about the361

perturbation methods, including parameters and362

implementation, are provided in Appendix A.1.2363

(Table 5). Additionally, comprehensive informa-364

tion about the datasets used in this study can be365

found in Appendix A.1.1 (Table 4).366

4.2 Models367

To comprehensively evaluate hallucination patterns368

in ASR systems, we select models that span di-369

verse architectures, sizes, and training paradigms.370

This diversity enables systematic analysis of how371

these factors influence hallucination susceptibility.372

Specifically, we include:373

• Encoder-only models: HuBERT (Hsu et al.,374

2021) and Wav2Vec2 (Baevski et al., 2020),375

which leverage self-supervised training to376

learn robust speech representations.377

• Decoder-only models: Qwen2Audio (Chu378

et al., 2024) and SpeechLLM (Rajaa and379

Tushar), optimized for text generation and380

audio-language alignment.381

• Encoder-decoder models: Whisper (Rad-382

ford et al., 2022) (10 variants), DistilWhis-383

per (Gandhi et al., 2023) (4 variants), and384

SeamlessM4T (Communication et al., 2023) 385

(2 variants), designed for multilingual tran- 386

scription, translation, and speech-to-text tasks. 387

The selected models vary in size (39M to 7B 388

parameters), depth (4 to 32 layers), and train- 389

ing paradigms (supervised, self-supervised, semi- 390

supervised). Full specifications, including archi- 391

tectural details, training data, and hyperparameters, 392

are provided in Appendix A.1.3 (Table 6). 393

4.3 Experimental Setup 394

We utilize models and datasets sourced from Hug- 395

gingface 3. All audio data is resampled to match 396

the sampling rate required by the respective models. 397

For each dataset, we randomly sample 1,000 exam- 398

ples from the test split to ensure a manageable and 399

consistent experimental setup. Unless otherwise 400

specified, we use the default decoding parameters 401

for ASR evaluation. To analyze the data, we com- 402

pute SONAR embeddings (Duquenne et al., 2023) 403

for both speech and text. Additionally, we em- 404

ploy CMD based on prior work (Kashyap et al., 405

2020) to quantify domain shifts. All experiments 406

are conducted on a single A100/H100 GPU. Prior 407

to calculating WER and generating embeddings, 408

we apply a basic English text normalizer 4 to en- 409

sure consistency in text preprocessing. For LLM 410

evaluation, we perform greedy search decoding to 411

ensure reproducible outputs. 412

4.4 Human Evaluation 413

We construct a human evaluation dataset by ag- 414

gregating outputs from multiple models, filtering 415

samples with WER > 60 to focus on significant devi- 416

ations. Hypotheses and references are constrained 417

to 1-100 words for balance. To simulate synthetic 418

hallucinations, we shuffle 50 hypotheses, introduc- 419

ing artificial errors (Stiff et al., 2019). The final 420

dataset includes 500 samples, each reviewed by 421

two independent annotators from a pool of 20. This 422

framework ensures robust evaluation and reliable 423

analysis of hallucination patterns across models. 424

5 Results 425

In our experiments, we use an LLM-based pipeline 426

to classify ASR errors across various evaluation 427

3https://huggingface.co/models,https:
//huggingface.co/datasets

4https://github.com/huggingface/transformers/
blob/main/src/transformers/models/whisper/
english_normalizer.py
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setups, validating it against human evaluation and428

heuristic baselines. We then explore the effects of429

natural and synthetic distribution shifts on error430

metrics, specifically examining how domain varia-431

tions and input perturbations impact word and hal-432

lucination error rates. Additionally, we analyze the433

influence of model architecture and scale through434

a comparison of Whisper variants and other archi-435

tectures. This approach provides insights into the436

complex interactions between error types, data con-437

ditions, and model characteristics. In this section,438

we present our findings.439

5.1 Hallucination Error Detection440

We assess the ASR outputs of large language mod-441

els (LLMs) by classifying them into various error442

categories. Specifically, we use GPT-4o mini to443

identify the types of errors in ASR outputs. The444

evaluation process includes both coarse-grained445

and fine-grained error classifications, as detailed in446

Section 3.2. The prompts used for both evaluations447

are shown in Figures 5 and 6.448

Coarse-grained and Fine-grained Evaluation.449

Figure 8 in the appendix illustrates the error dis-450

tributions across coarse-grained and fine-grained451

hallucination categories. Our results demonstrate452

strong alignment between both levels, indicating453

consistent classification of hallucinations. Among454

non-hallucination errors, phonetic errors dominate455

across most datasets (see Appendix Table 9). How-456

ever, in Primock57, language errors prevail, likely457

due to its specialized medical terminology. This458

aligns with (Ferrando et al., 2024), who emphasize459

language models’ struggles with domain-specific460

named entities. This is also reflected in the third461

example provided in Table 1.462

Agreement with Human Evaluation and Heuris-463

tic Baseline. To validate our approach, we com-464

pare model-to-human and human-to-human agree-465

ment scores using a coarse-grained prompt. Our466

results demonstrate strong human-to-human raw467

agreement (0.71), indicating consistency. Addition-468

ally, we observe good agreement (0.6) between hu-469

man annotations and GPT-4o-mini’s coarse-grained470

output, suggesting that the model aligns reasonably471

well with human judgments. We further evalu-472

ate the agreement between human and model clas-473

sifications against a heuristic baseline proposed474

by (Frieske and Shi, 2024). Their method is based475

on a cosine similarity threshold of 0.2, alongside a476

WER threshold of 30 and a Flan-T5 (Chung et al.,477

2024) perplexity threshold of 200. However, as 478

shown in Table 3, this heuristic achieves signifi- 479

cantly lower agreement scores: 0.1 with GPT-4o 480

mini and 0.14 with Gemini-2.0-flash-001. These 481

results highlight the limitations of purely heuristic- 482

based approaches compared to our method, which 483

better captures the more fine-grained aspects like 484

hallucination. 485

5.2 Errors Under Distributional Shifts 486

Natural Shift. Given that most ASR models now 487

outperform the human baseline on the LibriSpeech 488

clean test set, we consider LibriSpeech as the 489

source domain. Other domain-specific datasets, 490

such as Primock, SPGISpeech, GLOBE, and AMI, 491

are therefore treated as the target domain. We com- 492

pute the distribution shift as detailed in Section 3.3. 493

We then measure the change (degradation) using 494

Equation 2 and 3. 495

The α is the correlation coefficient between er- 496

ror rate degradation and distribution shift.Figure 2 497

shows that both WER and HER degrade as we 498

move from the source domain to different target do- 499

mains, with considerable distribution shifts across 500

various whisper models. This degradation exhibits 501

a nearly linear positive correlation with the domain 502

shift. 503

Notably, the HER demonstrates a slightly 504

stronger correlation with the shift compared to 505

WER. This trend is consistent across all models, 506

as illustrated in Appendix A.3 Figure 7. The AT- 507

COsim dataset is an outlier, with artificially high 508

WER due to its numerical content. For example, 509

models generating digits (e.g., "23") instead of spo- 510

ken forms ("two three") are heavily penalized, in- 511

flating WER without accurately reflecting transcrip- 512

tion quality. 513

Synthetic Shift. Under synthetic shift, we ex- 514

periment with two configurations: (a) adversar- 515

ial perturbations and (b) common perturbations. 516

Our experiments reveal that adversarial attacks 517

cause the most significant degradation in HER, 518

with adversarial datasets showing the highest HER 519

values across all models, exceeding the degrada- 520

tion observed under natural shift baselines (see Ta- 521

ble 2). In contrast, random perturbations (such as 522

white noise, pitch shifts, and time stretching) re- 523

sult in more moderate impacts. Notably, self- and 524

semi-supervised models like whisper and seam- 525

less demonstrate consistent vulnerability to struc- 526

tured perturbations. For instance, pitch shifts and 527
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Model SPGI BERSt ATCOsim ADV AMI SLU SNIPS SC GLOBE SALT LS_Noise LS Primock57

whisper-large-v3 3.4/0.4 32.4/15.8 65.3/17.6 33.3/49.8 23.4/10.1 15.5/7.9 8.2/ 0.9 18.8/15.4 3.4/2.5 3.0/ 1.0 2.6/ 0.4 2.2/0.3 19.2/ 4.5
wav2vec2-large-xlsr-53-english 19.6/1.0 64.0/18.6 63.0/19.6 100.1/96.5 53.0/22.7 43.4/6.2 12.4/1.2 32.6/14.8 27.0/10.3 17.0/2.1 9.0/0.6 6.5/ 0.0 47.9/13.7
hf-seamless-m4t-large 14.7/3.6 58.9/34.6 76.6/62.3 61.2/76.9 63.7/46.2 44.0/23.5 7.4/3.2 34.2/30.0 19.2/21.4 4.2/1.6 6.5/3.2 3.4/0.5 44.5/27.4
speechllm-1.5B 11.5/4.8 68.5/38.5 121.4/57.4 95.3/94.5 127.3/54.4 83.8/16.5 10.8/2.9 41.3/38.4 27.9/28.7 9.5/4.2 10.9/5.2 11.4/4.2 41.7/17.1
whisper-medium 3.7/ 0.2 34.5/16.2 65.6/18.2 42.9/63.1 23.2/12.2 17.4/8.7 8.6/1.4 18.7/14.4 5.3/3.1 5.0/3.7 3.3/0.9 3.1/0.4 20.6/6.2
distil-large-v2 4.1/1.0 38.0/16.0 69.5/29.6 45.6/64.3 22.1/11.2 16.0/7.2 9.2/1.3 18.9/14.3 6.7/3.2 5.2/1.0 3.6/0.7 3.4/0.5 19.2/5.2
hubert-large-ls960-ft 12.4/1.4 58.5/ 14.3 50.0/ 11.0 109.8/100.0 44.4/29.5 21.3/ 2.4 12.6/1.2 30.2/20.4 23.4/7.1 18.7/3.7 3.6/1.3 2.2/0.1 32.2/12.0
distil-medium.en 4.6/0.6 39.3/17.5 71.3/34.0 45.8/63.9 23.6/8.5 15.6/7.1 9.7/1.4 20.0/14.5 8.5/3.4 7.4/3.7 4.3/1.7 4.2/0.9 21.0/5.7
distil-small.en 4.6/0.6 46.8/19.4 77.0/41.6 54.3/73.3 24.2/ 8.0 15.4/7.8 11.3/2.3 21.5/18.2 11.7/8.1 9.0/4.7 4.1/0.9 4.0/0.6 21.4/6.4
whisper-medium.en 4.3/1.0 34.2/18.8 66.6/22.8 43.3/60.4 23.0/11.3 19.4/9.5 8.4/1.5 21.3/15.4 4.8/2.3 5.7/3.7 3.5/0.9 3.1/0.4 20.6/5.7
whisper-small.en 4.1/0.9 38.7/19.7 68.8/29.2 50.9/72.9 24.5/13.7 20.8/10.7 9.4/1.2 20.9/16.4 9.6/6.4 7.2/5.8 3.7/0.9 3.6/0.3 21.5/6.7
hf-seamless-m4t-medium 13.2/4.4 57.9/32.1 52.7/50.7 51.4/67.1 57.0/43.7 50.3/24.9 8.8/2.1 36.0/31.3 15.9/16.1 6.4/2.1 8.9/2.3 3.7/0.5 46.1/26.3
whisper-tiny 8.8/3.6 122.1/41.9 110.3/63.9 88.0/90.2 40.3/26.3 22.5/12.3 15.6/5.5 38.6/31.6 54.7/50.6 20.0/13.6 10.8/7.1 7.6/1.7 32.8/16.8
whisper-large 3.7/0.6 48.1/15.8 65.7/18.5 37.2/55.7 22.6/12.9 18.1/9.1 8.5/1.0 18.6/14.8 4.2/2.5 4.0/2.6 3.1/0.7 3.0/0.1 20.0/5.7
whisper-large-v2 4.3/0.8 34.1/17.9 67.1/19.6 38.9/57.6 24.1/15.8 18.2/11.2 8.4/1.1 23.6/15.5 4.4/3.6 3.2/ 1.0 2.7/0.6 3.0/0.3 20.0/6.9
whisper-large-v3-turbo 3.4/0.4 31.7/14.7 66.2/18.7 34.5/49.8 23.8/10.0 15.7/7.4 7.8/ 0.9 18.5/ 13.8 3.9/ 1.7 4.7/2.6 2.7/0.5 3.3/0.1 20.0/6.0
Qwen2-Audio-7B 4.6/2.7 36.3/15.6 44.8/35.7 31.7/ 46.7 35.7/14.9 47.4/32.1 5.5/1.3 35.3/37.1 23.3/7.0 5.9/5.8 2.3/1.3 2.0/0.7 25.5/22.8

Table 2: WER and coarse-grained HER across different models and datasets. The values are presented as WER/HER.
The lowest HER for each dataset is highlighted in green. Abbreviations: SPGI (SPGISpeech), ATCOSIM (ATCOsim
Corpus), ADV (Adversarial), AMI (AMI Corpus), SLU (SLUE-VoxCeleb), SC (Supreme-Court-Speech), SALT
(SALT Multispeaker English), LS_Noise (LibriSpeech Test Noise), LS (LibriSpeech ASR Test).

Figure 2: Degradation in word error rate WERD (blue, left y-axis) and hallucinated error rate HERD (green, right
y-axis) w.r.t distribution shift (x-axis), measured using Central Moment Discrepancy (CMD) for three different
models. The correlation factor, α, is represented by the color, which corresponds to the type of error. Each point on
the line represents a new target domain.

Evaluation Pair Agreement Score (±)

Human & Human 2 0.71 ± 0.01
Human & heuristic 0.00 ± 0.00
Human 2 & GPT_coarsegrained 0.60 ± 0.01
Human 2 & Gemini-2.0 0.59 ± 0.01
GPT_coarsegrained & heuristic 0.10 ± 0.00
GPT_coarsegrained & Gemini-2.0 0.78 ± 0.01
heuristic & Gemini-2.0 0.14 ± 0.01

Table 3: Raw agreement scores between different hallu-
cination evaluation methods.

time stretching lead to a substantial increase of ap-528

proximately (242%) in both WER and HER across529

these models, while white noise causes smaller530

degradations of approximately (142%). Interest-531

ingly, the supervised wav2vec2 model exhibits532

non-uniform behavior, where the impact on WER533

and HER is similar across all perturbations. Fur-534

thermore, it is noteworthy that HER increased by535

50% in the wav2vec2 model, which is considerably536

less than the sharp increase observed in whisper537

and seamless models, highlighting a notable con-538

trast in the robustness of these models to random539

synthetic shifts against more targeted shifts.540

Figure 3: HER and WER for various perturbations
across four models.

5.3 Impact of Model Architecture and Scale 541

on Error Rates 542

Model Type. We hypothesize that model archi- 543

tecture plays a critical role in influencing error rates, 544

with these effects further modulated by the scale 545
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and diversity of the training data. As shown in Ap-546

pendix Table 8, our findings indicate that encoder-547

only models Wav2vec2-large-xlsr-53-english and548

Hubert-large-ls960-ft exhibit the lowest HER/WER549

ratios across multiple datasets, particularly when550

compared to models like Qwen2-Audio-7B and hf-551

seamless-m4t-large. This suggests that encoder-552

only models are less prone to hallucinations rel-553

ative to their overall errors, likely due to robust554

training or architectural advantages.555

Model Size. In our experiments, we evaluate556

models of varying sizes where training data is fixed557

across different sizes (ie: whisper). More specifi-

Figure 4: HER (green, right y-axis) and WER (blue,
left y-axis) averaged across all datasets. X-axis denotes
models with different size in increasing order.

558
cally, we select 14 models from the whisper family,559

ranging from the smallest whisper-tiny (39M pa-560

rameters) to the largest whisper-large-v3 (1.5B pa-561

rameters). We then calculate both WER and HER562

for each of these models, following the method-563

ology outlined in Section 3. Our findings show564

that for smaller models, such as whisper-tiny and565

whisper-small, there is a significant increase in566

both WER and HER. While larger models such as567

whisper-medium and whisper-large show substan-568

tial improvements, as shown in Figure 4. However,569

this reduction is not linear. After a certain point,570

performance improvements in both metrics become571

less pronounced. This non-monotonic behavior572

is particularly evident when comparing models in573

the mid-range of parameter sizes, such as whisper-574

medium and whisper-large-v3-turbo, where the dif-575

ference in performance becomes marginal despite576

the difference in model size. In conclusion, while577

larger models generally result in lower WER and578

HER, the benefits of scaling up model size dimin-579

ish beyond a certain point, at least when it comes580

to more nuanced error types.581

6 Conclusion 582

In our work, we introduce the Hallucination Error 583

Rate (HER) as a crucial complement to traditional 584

ASR evaluation metrics like WER, especially in 585

high-risk applications where model reliability is 586

critical. By developing a robust LLM-based hallu- 587

cination detection framework, we present a com- 588

prehensive evaluation of ASR models across both 589

synthetic and natural distribution shifts, highlight- 590

ing the specific challenges ASR systems face under 591

real-world conditions. Our findings emphasize the 592

importance of incorporating HER into standard 593

ASR evaluation practices, particularly for applica- 594

tions in safety-critical domains such as healthcare, 595

legal, and aviation. Through detailed analysis, we 596

show that traditional metrics like WER can mask 597

significant hallucinations, emphasizing the need for 598

more holistic evaluation methods. Our work lays 599

the ground for future advancements in ASR model 600

reliability, aiming to ensure that ASR systems not 601

only produce accurate transcriptions but also avoid 602

generating misleading, harmful, and unfaithful to 603

input speech transcriptions. In future work, we 604

plan to expand our evaluation to cover additional 605

evaluation setups, ensuring a comprehensive set of 606

assessments. Additionally, we aim to explore miti- 607

gation strategies, which are critical for enhancing 608

the reliability of ASR systems. 609

7 Limitations 610

In this work, we explore the hallucination phe- 611

nomenon in ASR systems, particularly focusing 612

on the potential causes such as distribution shift, 613

model types, and model size model architectures. 614

While our work offers valuable insights into model 615

behavior across different conditions, there are sev- 616

eral limitations to consider. 617

Evaluation Datasets. In our study, ASR models 618

were evaluated across multiple domains, including 619

legal, medical, and conversational speech, ensuring 620

a broad range of datasets not seen during training. 621

However, it is possible that some of the datasets 622

we treat as target domains may have been inadver- 623

tently exposed to the models during training. Fur- 624

thermore, the lack of access to a diverse variety of 625

domain-specific datasets limits our understanding 626

of how these models will perform in more diverse 627

or previously unseen domains, particularly those 628

with limited or noisy data. While our focus on do- 629

main shifts is an important step, further research is 630

needed to assess model performance in even more 631
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varied and challenging real-world environments.632

Synthetic Noise and Perturbations. Our experi-633

ments also include synthetic noise and perturba-634

tions to evaluate model robustness. While this635

approach helps simulate real-world challenges, it636

does not capture all possible distortions that may637

occur in uncontrolled environments. Adversarial638

noise, pitch shifts, and time stretching are some of639

the perturbations we consider, but other potential640

real-world disruptions, such as cross-lingual noise641

or complex acoustic reverberations, are not fully642

explored.643

Hallucination Detection. The detection of hal-644

lucinations in ASR systems, as measured by the645

Hallucination Error Rate (HER), is a key contri-646

bution of our study. However, our reliance on647

LLM-based classifiers introduces potential biases648

and variability. While we observe strong align-649

ment with human judgments, the accuracy of these650

evaluations may be influenced by subjective in-651

terpretation, especially in edge cases where the652

boundaries between errors are unclear. Addition-653

ally, while LLM-based methods present a novel654

approach, their performance in low-resource set-655

tings or with models trained on smaller datasets656

has not been fully explored. Furthermore, the use657

of proprietary models, such as those from OpenAI658

via API, introduces additional costs, which could659

limit the scalability of this approach.660

8 Ethics Statement661

Data Collection and Release. For this study, we662

rely on publicly available datasets from diverse663

domains to evaluate hallucinations in ASR sys-664

tems. We ensure that the data used in our research665

is appropriately sourced, maintaining respect for666

copyright, license, and privacy regulations. Further-667

more, we emphasize that the use of these datasets668

is strictly for academic purposes, aligned with the669

principles of fair use.670

Intended Use. Our work aims to enhance the ro-671

bustness of ASR systems, especially in high-stakes672

environments where errors can have significant con-673

sequences. We believe our findings will encourage674

further research in hallucination detection, with675

particular attention to models’ performance in low-676

resource and critical domains such as healthcare677

and law. By introducing the Hallucination Error678

Rate (HER) as a complementary metric to tradi-679

tional evaluation methods, we hope to inspire the680

development of more reliable and transparent ASR681

systems. 682

Potential Misuse and Bias. While our work 683

provides valuable insights about hallucinations in 684

ASR systems, we acknowledge that they could 685

be misused if deployed in inappropriate contexts. 686

Since these models are trained on a variety of data 687

sources, there is the potential for them to generate 688

biased or harmful content, especially if the train- 689

ing data contains any inherent biases. Moreover, 690

hallucinations in ASR outputs, if undetected, can 691

lead to severe consequences in critical applications 692

such as legal, medical, and financial settings. We 693

recommend careful deployment of these models, 694

ensuring that they undergo rigorous bias mitigation 695

and hallucination detection processes before being 696

used in such domains. 697
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A Appendix1024

A.1 Experiments1025

A.1.1 Datasets1026

A.1.2 Perturbation1027

To evaluate the robustness of ASR models under1028

varying conditions, we apply the following pertur-1029

bations to the audio inputs:1030

• White Noise: Gaussian noise is added at a low1031

amplitude to simulate environmental interfer-1032

ence.1033

• Time Stretching: The audio is randomly1034

stretched by a factor between 0.9 and 1.1, al-1035

tering the speed while preserving pitch.1036

• Pitch Shifting: The pitch is randomly shifted1037

by up to ±2 semitones to mimic natural varia-1038

tions in speech.1039

• None: No perturbation is applied, serving as1040

the baseline for comparison.1041

These perturbations are designed to replicate1042

real-world challenges such as background noise,1043

speaker variability, and recording inconsistencies.1044

.1045

A.1.3 Models1046

A.2 Prompts1047

A.3 Results1048

We provide a detailed analysis of the experimental1049

results, focusing on the highest and lowest perform-1050

ing models across the study. To offer a comprehen-1051

sive overview, we present Hallucination Error Rate1052

(HER) and Word Error Rate (WER) across domain1053

shifts for all models, as shown in . Additionally,1054

we include fine-grained error analysis which high-1055

lights the differences between coarse-grained and1056

fine-grained error categorization.1057

We also calculate HER to WER ratio. As ro-1058

bust models would exhibit a smaller gap between1059

hallucination and non-hallucination errors.1060

Furthermore, we present the percentage of non-1061

hallucination errors across datasets and models,1062

categorizing them into Phonetic (P), Oscillation1063

(O), and Language (L) errors. This analysis pro-1064

vides deeper insights into the types of errors that1065

are most frequent and their distribution across dif-1066

ferent dataset-model combinations.1067

We also highlight the overall distribution across1068

all datasets and the robustness of both levels1069

(coarsegrained and finegrained) in correctly identi- 1070

fying hallucination. 1071

Key Findings: 1072

• The highest and lowest performing models ex- 1073

hibit significant variations in HER and WER 1074

under domain shifts, with some models show- 1075

ing robustness while others struggle. 1076

• Fine-grained error analysis reveals that certain 1077

error types (e.g., Oscillation) are more preva- 1078

lent in specific dataset-model combinations. 1079

• Non-hallucination errors, particularly Pho- 1080

netic and Language errors, dominate in cer- 1081

tain scenarios, providing actionable insights 1082

for improving model performance. 1083

These results underscore the importance of con- 1084

sidering both hallucination and non-hallucination 1085

errors when evaluating ASR systems, as well as the 1086

need for domain-specific adaptations to enhance 1087

robustness. 1088
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Name Domain Recording Con-
ditions

Description

LibriSpeech Speech Recogni-
tion

High-quality,
read speech
from audio-
books

A corpus of approximately 1,000 hours
of 16kHz read English speech, derived
from LibriVox audiobooks, segmented
and aligned for ASR tasks.

GLOBE Accented
Speech

Close-talk mi-
crophone

Contains utterances from 23,519 speak-
ers and covers 164 accents worldwide,
recorded in close-talk microphone con-
ditions.

Supreme-court Legal Diverse acoustic
conditions (au-
diobooks, pod-
casts, YouTube)

A multi-domain, multi-style speech
recognition corpus incorporating di-
verse acoustic and linguistic conditions,
sourced from audiobooks, podcasts, and
YouTube.

SPGISpeech Finance Corporate
earnings calls
(professional
transcription)

Contains 5,000 hours of professionally
transcribed audio from corporate earn-
ings calls, featuring both spontaneous
and narrated speaking styles.

Adversarial Synthetic Corporate earn-
ings calls

Includes multiple splits with utterances
modified using adversarial noise of
varying radii (0.04 and 0.015) and com-
bined with Room Impulse Response
(RIR) noise.

AMI (IHM) Meetings Multi-device
meeting envi-
ronment

The AMI Meeting Corpus is a 100-hour
dataset of English meeting recordings,
featuring multimodal data synchronized
across various devices.

SLUE - VoxCeleb Conversational YouTube video
extracts (conver-
sational)

Consists of single-sided conversational
voice snippets extracted from YouTube
videos, originally designed for speaker
recognition.

Primock57 Medical Mock consulta-
tions by clini-
cians

Contains mock consultations conducted
by seven clinicians and 57 actors posing
as patients, representing a diverse range
of ethnicities, accents, and ages.

BERSt Home Environ-
ment

Home record-
ings using
smartphones

A collection of speech data recorded in
home environments using various smart-
phone microphones, with participants
from diverse regions.

ATCOsim Aviation Real-time air
traffic control
simulations

A specialized database containing ten
hours of English speech from ten non-
native speakers, recorded during real-
time air traffic control simulations.

Table 4: Speech Datasets for ASR, categorized by domain, recording conditions, and description.
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Type Description

None We do not apply any modification to the input speech. Serving as the baseline
for comparison.

White Noise Gaussian noise is added at a low amplitude, simulating environmental interfer-
ence.

Time Stretching The audio is randomly stretched by a factor between 0.9 and 1.1, altering the
speed without affecting the pitch.

Pitch Shifting The pitch is randomly shifted by up to ±2 semitones.

Table 5: Perturbation details for synthetic shift.
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Model Type and
Models

Parameters Architecture Pre-Training Objective and Training Data

wav2vec2 (Baevski
et al., 2020)
– wav2vec2-large-
xlsr-53-english

315M 7-Conv (Kernel
10/3/3/3/3/2/2) +
24-Trans

Self-supervised pre-training on raw audio via
contrastive loss.
Training data: Common Voice 6.1 (53 lan-
guages).

hubert (Hsu et al.,
2021)
– hubert-large-ls960-
ft

316M 7-Conv (Kernel
10/3/3/3/3/2/2) +
24-Trans

Masked prediction pre-training.
Training data: Libri-Light (60k hours).

seamless (Seamless
Communication,
2023)
– hf-seamless-m4t-
large
– hf-seamless-m4t-
medium

2.3B
1.2B

UnitY2 (Enc-Dec +
Text Decoder)

Multilingual ASR/translation.
Training data: 443k hours of aligned speech-
text (29 languages).

speechllm (Rajaa
and Tushar)
– speechllm-1.5B

1.5B HubertX encoder +
TinyLlama decoder

Audio-text alignment via multi-task learning.
Training data: Proprietary ASR datasets.

whisper (Radford
et al., 2022)
– whisper-large-v3
– distil-large-v3
– whisper-large-v2
– whisper-large-v3-
turbo
– distil-large-v2
– whisper-large
– whisper-tiny
– whisper-tiny.en
– whisper-medium
– whisper-medium.en
– distil-medium.en
– distil-small.en
– whisper-small
– whisper-small.en

1.55B
756M
769M
244M
39M

2-Conv (Kernel 3x3,
stride 2) + 32-Trans
(large)
2-Conv + 24-Trans
(medium)
2-Conv + 12-Trans
(small)

Multilingual ASR/translation.
Pre-training: 680k hours of web-crawled audio.

Qwen (Chu et al.,
2024)
– Qwen2-Audio-7B

7B Audio encoder +
QwenLM decoder

Multi-task pretraining (ASR, TTS, alignment).
Training data: 3M audio-text pairs.

Table 6: Model architectures, parameters, and training details. Whisper variants include convolutional layers for
spectrogram downsampling.
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You are a classifier trained to detect and categorize specific transcription errors produced by a speech recognition
system. The possible categories are:
1. Hallucination Error: The output contains fabricated, contradictory, or invented information that is not supported
by the ground truth. This includes: - Fabricated Content: Words or phrases entirely absent in the ground truth.
- Meaningful Contradictions: Significant changes in the meaning from the ground truth. - Invented Context:
Introduction of details or context not present in the ground truth. - Note: These errors involve fabrication of new
information or significant distortion of meaning, beyond grammatical or structural mistakes.
2. Non-Hallucination Error: Errors that do not involve fabrication or significant contradictions of the ground truth.
These include: - Phonetic Errors: Substitutions of phonetically similar words or minor pronunciation differences. -
Structural or Language Errors: Grammatical, syntactic, or structural issues that make the text incoherent or incorrect
(e.g., incorrect verb tenses, subject-verb agreement problems, omissions, or insertions). - Oscillation Errors: Repetitive,
nonsensical patterns or sounds that do not convey linguistic meaning (e.g., "ay ay ay ay"). - Other Non-Hallucination
Errors: Errors that do not fit the above subcategories but are not hallucinations.
3. No Error: The generated output conveys the same meaning as the ground truth, even if the phrasing, grammar,
or structure differs. Minor differences in wording, phrasing, or grammar that do not alter the intended meaning are
acceptable.

Input Format:
Ground Truth: The original, accurate text provided.
Generated Output: The text produced by the speech recognition system.

Output Format: Classify the input text pairs into one of the following:
Non-Hallucination Error
Hallucination Error
No Error

Examples:
Example 1:
Ground Truth: "A millimeter roughly equals one twenty-fifth of an inch."
Generated Output: "Miller made her roughly one twenty-fifths of an inch."
Output: Non-Hallucination Error

Example 2:
Ground Truth: "Indeed, ah!"
Generated Output: "Ay ay indeed ay ay ay ay ay ay."
Output: Non-Hallucination Error

Example 3:
Ground Truth: "Captain Lake did not look at all like a London dandy now."
Generated Output: "Will you let Annabel ask her if she sees what it is you hold in your arms again?"
Output: Hallucination Error

Example 4:
Ground Truth: "The patient was advised to take paracetamol for fever and rest for two days."
Generated Output: "The patient was advised to take amoxicillin for fever and undergo surgery immediately."
Output: Hallucination Error

Example 5:
Ground Truth: "I need to book a flight to New York."
Generated Output: "I need to book ticket to New York."
Output: No Error

Example 6:
Ground Truth: "She went to the store yesterday."
Generated Output: "She went to the shop yesterday."
Output: No Error

Instruction: You must produce only the classification as the output. Do not include explanations, reasoning, or
additional information.

Input: Ground Truth: "{ground_truth}" Generated Output: "{output}"
Output: {{insert your classification here}}

Figure 5: Coarsegrained error detection prompt. The task is to classify transcription errors produced by an ASR
model into one of three categories: Non-Hallucination Error, Hallucination Error, or No Error.
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You are a classifier trained to detect and categorize specific transcription errors produced by a speech recognition
system. The possible categories are:
1. Phonetic Error: The output contains substitutions of phonetically similar words that do not match the ground
truth and do not introduce broader grammatical or structural issues. These errors typically involve misrecognition of
similar-sounding words or minor pronunciation differences.
2. Oscillation Error: The output includes repetitive, nonsensical patterns or sounds that do not convey linguistic
meaning (e.g., "ay ay ay ay").
3. Hallucination Error: The output contains fabricated, contradictory, or invented information that is not supported
by the ground truth. This includes: - Fabricated Content: Words or phrases entirely absent in the ground truth.
- Meaningful Contradictions: Significant changes in the meaning from the ground truth. - Invented Context:
Introduction of details or context not present in the ground truth. - Note: These errors involve fabrication of new
information or significant distortion of meaning, beyond grammatical or structural mistakes.
4. Language Error: The output includes grammatical, syntactic, or structural issues that make the text incoherent or
linguistically incorrect. This category encompasses errors such as: - Incorrect verb tenses or subject-verb agreement
problems. - Sentence fragments or incomplete structures. - Omissions or insertions of words that do not fabricate new
context. - Incomplete sentences or phrases that do not convey the intended meaning as ground truth. - Note: Incomplete
sentences or phrases are classified as Language Errors only when they do not fabricate new meaning or deviate from the
intent of the ground truth.
5. No Error: The generated output conveys the same meaning as the ground truth, even if the phrasing, grammar, or
structure differs. Minor differences in wording, phrasing, punctuation, or casing that do not alter the intended meaning
are not considered errors. - Note: Minor omissions, such as missing articles, are acceptable as long as they do not
change the meaning of the ground truth.

Input Format:
Ground Truth: The original, accurate text provided.
Generated Output: The text produced by the speech recognition system.

Output Format: Classify the input text pairs into one of the following:
Phonetic Error
Oscillation Error
Hallucination Error
Language Error
No Error

Examples:
Example 1:
Ground Truth: "A millimeter roughly equals one twenty-fifth of an inch."
Generated Output: "Miller made her roughly one twenty-fifths of an inch."
Output: Phonetic Error

Example 2:
Ground Truth: "I will go to New York City!"
Generated Output: "Ay ay ay ay ay ay ay ay."
Output: Oscillation Error

Example 3:
Ground Truth: "Captain Lake did not look at all like a London dandy now."
Generated Output: "Will you let Annabel ask her if she sees what it is you hold in your arms again?"
Output: Hallucination Error

Example 4:
Ground Truth: "The cat is chasing the mouse."
Generated Output: "The cat chased by the mouse."
Output: Language Error

Example 5:
Ground Truth: "I need to book a flight to New York."
Generated Output: "I need to book ticket to New York."
Output: No Error

Your Task: Classify the input into one of the five categories.
Instruction: You must produce only the classification as the output. Do not include explanations, reasoning, or
additional information.

Input: Ground Truth: "{ground_truth}" Generated Output: "{output}"
Output: {{insert your classification here}}

Figure 6: Finegrained error detection prompt. The task is to classify transcription errors produced by an ASR model
into one of five categories: Phonetic Error, Oscillation Error, Hallucination Error, Language Error, or No Error.
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Figure 7: Degradation in WER (blue, left y-axis) and HER (green, right y-axis) w.r.t distribution shift (x-axis),
measured using Central Moment Discrepancy (CMD) for all models.
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Model SPGI BERSt ATCOsim ADV AMI SLU SNIPS SC GLOBE SALT LS_Noise LS Primock57

whisper-large-v3 3.4/0.9 32.4/13.2 65.3/13.1 33.3/47.1 23.4/11.3 15.5/13.4 8.2/0.5 18.8/14.8 3.4/1.9 3.0/1.0 2.6/0.4 2.2/0.5 19.2/4.8
wav2vec2-large-xlsr-53-english 19.6/2.9 64.0/13.9 63.0/11.9 100.1/95.7 53.0/22.8 43.4/14.6 12.4/0.9 32.6/17.9 27.0/9.3 17.0/2.1 9.0/0.8 6.5/0.1 47.9/15.8
hf-seamless-m4t-large 14.7/4.5 58.9/29.5 76.6/55.1 61.2/71.4 63.7/43.2 44.0/27.5 7.4/2.6 34.2/30.8 19.2/19.2 4.2/1.0 6.5/2.9 3.4/0.3 44.5/25.8
speechllm-1.5B 11.5/4.1 68.5/31.8 121.4/38.3 95.3/92.5 127.3/52.3 83.8/19.3 10.8/2.8 41.3/36.5 27.9/21.8 9.5/4.2 10.9/4.3 11.4/4.2 41.7/17.3
whisper-medium 3.7/1.1 34.5/14.5 65.6/14.4 42.9/58.4 23.2/11.4 17.4/13.6 8.6/1.1 18.7/14.0 5.3/2.9 5.0/3.7 3.3/0.8 3.1/0.2 20.6/5.9
distil-large-v2 4.1/0.9 38.0/14.7 69.5/22.4 45.6/60.4 22.1/13.5 16.0/13.4 9.2/0.8 18.9/15.0 6.7/3.0 5.2/1.0 3.6/0.5 3.4/0.3 19.2/5.9
hubert-large-ls960-ft 12.4/2.0 58.5/11.3 50.0/6.4 109.8/100.0 44.4/28.1 21.3/6.5 12.6/1.3 30.2/23.8 23.4/6.5 18.7/4.2 3.6/2.1 2.2/0.1 32.2/11.7
distil-medium.en 4.6/0.6 39.3/14.8 71.3/26.8 45.8/58.8 23.6/10.6 15.6/11.3 9.7/1.1 20.0/15.2 8.5/1.9 7.4/3.1 4.3/0.9 4.2/0.5 21.0/5.4
distil-small.en 4.6/1.0 46.8/17.9 77.0/32.7 54.3/68.6 24.2/10.9 15.4/13.1 11.3/1.7 21.5/18.5 11.7/6.4 9.0/4.7 4.1/0.8 4.0/0.4 21.4/6.8
whisper-medium.en 4.3/1.5 34.2/15.2 66.6/16.2 43.3/58.0 23.0/11.2 19.4/16.3 8.4/1.4 21.3/16.3 4.8/1.7 5.7/4.2 3.5/0.7 3.1/0.4 20.6/6.0
whisper-small.en 4.1/1.3 38.7/17.5 68.8/19.3 50.9/69.8 24.5/13.5 20.8/15.9 9.4/1.1 20.9/16.5 9.6/4.8 7.2/4.7 3.7/0.9 3.6/0.4 21.5/6.7
speecht5asr 25.8/28.1 108.1/32.3 81.7/57.4 117.2/100.0 462.5/25.1 129.4/21.9 24.6/7.8 156.7/43.9 60.1/54.1 53.9/28.3 13.9/14.1 6.0/0.8 53.9/41.2
hf-seamless-m4t-medium 13.2/5.1 57.9/29.1 52.7/40.9 51.4/63.5 57.0/41.9 50.3/25.3 8.8/1.6 36.0/32.6 15.9/14.2 6.4/2.1 8.9/3.0 3.7/0.4 46.1/24.5
whisper-tiny 8.8/4.3 122.1/37.2 110.3/60.3 88.0/85.9 40.3/25.3 22.5/15.4 15.6/4.7 38.6/28.3 54.7/47.6 20.0/13.1 10.8/6.7 7.6/1.6 32.8/15.8
whisper-large 3.7/1.1 48.1/12.8 65.7/14.2 37.2/51.4 22.6/12.8 18.1/15.5 8.5/0.9 18.6/14.5 4.2/1.8 4.0/2.6 3.1/0.5 3.0/0.2 20.0/6.0
whisper-large-v2 4.3/0.9 34.1/14.5 67.1/15.1 38.9/54.1 24.1/14.3 18.2/15.9 8.4/0.5 23.6/15.6 4.4/3.0 3.2/1.6 2.7/0.6 3.0/0.2 20.0/6.4
whisper-large-v3-turbo 3.4/0.9 31.7/11.7 66.2/13.5 34.5/47.1 23.8/10.6 15.7/14.4 7.8/0.6 18.5/14.4 3.9/1.1 4.7/1.6 2.7/0.3 2.5/0.5 20.8/4.8
whisper-tiny.en 6.9/3.0 75.4/32.5 112.3/57.9 80.1/82.7 38.4/20.8 19.4/15.1 14.0/4.1 38.0/28.0 42.1/37.9 19.4/12.6 9.4/5.1 6.1/0.8 31.3/14.8
distil-large-v3 3.7/0.7 33.7/12.0 69.2/18.0 38.6/51.0 23.4/11.7 14.1/12.9 8.8/0.9 19.5/16.7 5.6/1.3 5.0/2.1 3.3/0.6 2.8/0.3 19.1/5.6
whisper-small 4.3/1.2 42.1/17.7 73.4/23.6 77.0/72.5 39.8/14.7 18.2/14.2 9.6/1.4 23.4/17.6 10.0/4.4 7.1/4.2 4.3/0.4 3.7/0.3 22.1/7.4
Qwen2-Audio-7B 4.6/2.7 36.3/15.6 44.8/35.7 31.7/46.7 35.7/14.9 47.4/32.1 5.5/1.3 35.3/37.1 23.3/7.0 5.9/5.8 2.3/1.3 2.0/0.7 25.5/22.8
seamless-m4t-v2-large 15.9/5.4 55.2/25.8 43.5/31.0 50.5/67.5 75.1/50.6 45.9/21.3 6.0/1.6 34.7/24.8 14.9/14.9 5.3/1.6 3.6/1.5 2.7/0.4 37.6/23.5

Table 7: Character Error Rate (CER) and hallucination error rate (HER) across models and datasets. Values are
presented as CER/HER.

Model SPGI BERSt ATCOsim ADV AMI SLU SNIPS SC GLOBE SALT LS_Noise LS Primock57

whisper-large-v3 0.12 0.49 0.27 1.49 0.43 0.51 0.11 0.82 0.74 0.34 0.16 0.14 0.23
wav2vec2-large-xlsr-53-english 0.05 0.29 0.31 0.96 0.43 0.14 0.10 0.45 0.38 0.12 0.07 0.00 0.29
hf-seamless-m4t-large 0.24 0.59 0.81 1.26 0.73 0.53 0.43 0.88 1.11 0.37 0.49 0.15 0.62
speechllm-1.5B 0.42 0.56 0.47 0.99 0.43 0.20 0.27 0.93 1.03 0.44 0.48 0.37 0.41
whisper-medium 0.05 0.47 0.28 1.47 0.53 0.50 0.16 0.77 0.58 0.74 0.28 0.13 0.30
distil-large-v2 0.25 0.42 0.43 1.41 0.51 0.45 0.14 0.76 0.48 0.20 0.20 0.15 0.27
hubert-large-ls960-ft 0.11 0.24 0.22 0.91 0.66 0.11 0.10 0.68 0.30 0.20 0.37 0.05 0.37
distil-medium.en 0.13 0.44 0.48 1.40 0.36 0.45 0.14 0.73 0.40 0.49 0.40 0.21 0.27
distil-small.en 0.13 0.41 0.54 1.35 0.33 0.51 0.20 0.85 0.69 0.53 0.22 0.15 0.30
whisper-medium.en 0.23 0.55 0.34 1.40 0.49 0.49 0.18 0.72 0.47 0.64 0.26 0.13 0.28
whisper-small.en 0.22 0.51 0.42 1.43 0.56 0.51 0.13 0.78 0.67 0.80 0.24 0.08 0.31
hf-seamless-m4t-medium 0.33 0.56 0.96 1.31 0.77 0.50 0.24 0.87 1.01 0.33 0.26 0.13 0.57
whisper-tiny 0.41 0.34 0.58 1.02 0.65 0.55 0.35 0.82 0.93 0.68 0.66 0.22 0.51
whisper-large 0.16 0.33 0.28 1.50 0.57 0.50 0.12 0.80 0.59 0.65 0.23 0.03 0.28
whisper-large-v2 0.19 0.52 0.29 1.48 0.65 0.62 0.13 0.66 0.81 0.33 0.22 0.10 0.34
whisper-large-v3-turbo 0.12 0.46 0.28 1.44 0.42 0.47 0.12 0.75 0.44 0.55 0.19 0.16 0.23
whisper-tiny.en 0.35 0.45 0.53 1.08 0.56 0.55 0.35 0.75 0.97 0.62 0.53 0.18 0.47
distil-large-v3 0.03 0.41 0.37 1.45 0.44 0.40 0.11 0.78 0.43 0.32 0.27 0.14 0.23
whisper-small 0.14 0.46 0.40 0.98 0.36 0.47 0.14 0.74 0.64 0.67 0.21 0.08 0.34
Qwen2-Audio-7B 0.74 0.52 0.96 1.55 0.38 0.66 0.26 1.18 0.33 1.16 0.67 0.39 1.01
seamless-m4t-v2-large 0.41 0.55 0.90 1.42 0.71 0.49 0.29 0.71 1.13 0.40 0.41 0.19 0.71

Table 8: Comparison of HER/WER ratio across models for all datasets.

Model
BERSt GLOBE LibriSpeech Primock57 Adversarial AMI ATCOsim SALT SLUE SPGI SC

P O L P O L P O L P O L P O L P O L P O L P O L P O L P O L P O L

Q2A-7B 37.41 0.75 5.64 21.3 3.5 8 8.6 0.2 1.3 10.5 5.5 12.5 19.22 0.39 4.31 10 3.4 12.4 49.5 0.7 3.4 11 1.7 2.3 10.1 0.2 1.7 8.38 2.09 4.71 10.7 15.6 24.1
dw-l-v2 35.53 0.19 5.08 22.7 0 4.7 17.7 0.1 5.4 10.2 0.7 14.8 16.08 0 13.73 7.7 0 13.7 57.9 0 2.8 12.5 5.7 4.5 15.9 0 4.2 15.18 0 3.66 11.8 18.5 27.2
dw-l-v3 33.27 0 3.57 21.2 0 3.9 14.3 0.1 3.5 9.3 0.6 13.6 24.71 0 10.59 6.6 0 12.3 61.2 0 2.6 14.4 3.4 4.1 13.5 0 3.4 12.57 0 3.66 11.3 18.5 26.8
dw-m.en 45.3 1.32 2.82 24.6 0 6.8 18 0 7.9 10.1 0.5 18.3 16.86 0.39 15.29 7.2 0 14.4 58.8 0.5 3.2 12.6 6.2 5.8 16.7 0 5.7 21.99 0 6.28 13 21.2 31.6
dw-s.en 40.6 0.75 5.08 29.6 0.1 7.7 21.2 0.1 6.4 13.4 1.1 17.2 13.73 0 12.16 7.8 0 12.1 53.9 0.6 2.8 7.4 15.7 2.2 18 0.3 5.2 24.61 0 4.19 13 20.5 29.8
sm4t-l 41.73 0 4.32 17.7 0.3 2.4 20.3 0 5.1 7.9 1.7 13.9 7.06 1.96 9.02 6.4 0 14.8 29.6 1.6 4.2 1.2 21.8 0.2 20.2 0 2.3 7.33 0 2.09 4.6 15.3 25.3
sm4t-m 39.29 0 3.76 21.9 0.4 3.7 24.5 0.1 6.9 8.5 1.9 15.6 15.69 1.18 3.53 5.1 0 15.2 47.2 1 3.2 3.7 17.2 2.5 23.8 0 3.6 9.95 0 3.66 5.8 16.4 29
hubert 66.17 3.2 0.56 58.4 0.2 4.4 21.8 0.1 3.1 62.7 1.3 10.4 0 0 0 47.2 0 8.6 91.4 0.2 0.5 5.3 52.4 0.1 17.2 0 1 56.54 0 5.76 52.3 7.3 30.5

sm4t-v2-l 42.29 0 3.38 15 0.2 3 17.9 0.2 2.6 9.1 2 16.2 13.33 0.39 2.75 4.1 0 17.6 49.1 1.6 4.9 2.8 20.6 0.9 17.4 0 2.2 6.28 0 2.62 8.9 13.8 26.4
spllm-1.5B 50.56 1.13 1.32 39.9 0.9 6.7 42.9 0.3 4.5 24.4 6.2 20.7 3.14 1.57 1.96 6.67 0 17.5 55.51 3.81 1 1.3 2 0.3 38.8 0.5 3.5 29.32 0 2.62 22.3 13.82 33.6
w2v2-large 72.74 0.19 0.75 64.6 0.2 3.5 46.6 0.1 9.7 55.3 1.2 14.1 1.96 2.35 0 50.2 0 7.8 87.2 0 0.2 6.7 36 0 35.5 0 8.8 58.12 0 3.66 43.7 9.4 37.7

w-large 33.83 0.56 1.69 14.9 0 2.2 12.1 0 2.7 6.2 0.3 10.6 20 0.39 7.45 6.4 0 9.9 48.6 0 1.3 12.5 5.8 2.5 11.9 0 2.4 7.85 0 1.05 8.5 14.1 23.7
w-l-v2 36.84 0 2.63 14.3 0 2.4 11.3 0 2.1 5.1 1.1 10.2 16.86 0 9.8 6.2 0 11.2 45.5 0.2 1 10.3 3.4 1.7 12.1 0 2.7 6.28 0 2.09 6.7 15.1 23.4
w-l-v3 31.02 0 2.63 10.3 0 1.9 9 0 2.4 6.5 0.1 8.3 16.86 0 7.06 6.5 0 10.4 49.8 0 1.1 11.3 9 2.6 9.1 0 1.8 5.24 0 1.57 6.6 17.9 25.2

w-l-v3-t 30.83 0.38 2.82 13.5 0 2.6 10.4 0 2.2 5.1 0.6 8.9 21.57 0 9.41 6.4 0 11.3 54.9 0 1.6 13.2 12.8 2 10 0.1 2.2 10.99 0 3.14 7.5 17.1 23.9
w-m 34.59 0.19 1.88 17 0.1 3.4 14.8 0 2.9 6.8 0.7 10.4 16.86 0.39 10.98 6.5 0 11.2 51.5 0 1.9 11.2 6.6 1.9 13.8 0 2 10.47 0 2.09 10.1 17.2 24

w-m.en 32.71 0.19 2.63 16.4 0 2.8 12.8 0 3.1 6.6 0.4 10.1 17.25 0.39 9.02 6.6 0 10.3 50.1 0.8 2.4 10.2 9.4 3.5 12.5 0 2.6 15.71 0 2.09 6.6 16.1 25.7
w-m 38.16 0 2.63 28.5 0 4.8 19.6 0 5.7 10.9 0.7 14.3 12.55 0.78 7.45 6.6 0 12 54.3 0.3 1.9 7.7 8.3 2.2 17.5 0 3.8 17.28 0 1.05 10.2 18.3 27.6

w-s.en 37.22 0.38 3.38 27 0 5.4 18.2 0 3.9 8.2 1 14.8 12.94 0.78 6.27 6.9 0 11.8 57.9 0.1 1.4 6.9 11.3 2.1 15.2 0 3.4 16.23 0 3.14 9.2 19.4 26.2
w-tiny 36.28 2.07 4.89 26.5 0.3 10.3 33.7 0 16.8 15.3 1 26.6 6.27 0.78 6.67 9.5 0 16.9 32.4 1.8 2.5 0 18.2 0.5 32 0 12.6 33.51 0 9.95 15.6 23.7 40.3

w-tiny.en 34.59 2.26 4.32 29.2 0.3 12.8 30.6 0.1 14.2 12.8 1 21.4 9.02 0.78 5.1 9.3 0 14.5 33 1.7 3.2 0.4 25.9 1.1 25.7 0 9.6 34.03 0 6.28 13.5 22 36.5

Table 9: Non-Hallucination error analysis across various datasets and models.The table shows the percentage of
Phonetic (P), Oscillation (O), and Language (L) errors for each model evaluated on different datasets. Abbreviations.
w – whisper, s – small, m – medium, l – large, t – turbo, dw – distil-whisper, sm4t – seamless, w2v2 – wav2vec2,
spllm – SpeechLLM, Qwen2 – Q2A - Qwen2-Audio, SC - Supreme Court.
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Figure 8: Finegrained vs coarsegrained error rate distri-
bution averaged across all models and datasets.

Attribute Value
Reference lufthansa four three nine three descend

to flight level two seven zero
Transcription Lufthansa 4393, descent flight level 270.
WER 75.0
Hallucination No Error

Table 10: WER and error category labeled by LLMs for
whisper-medium.
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