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Abstract

We develop an approach to efficiently adapt
transformer layers, driven by an objective of
optimization stability and broad applicability.
Unlike existing methods which adopt either
simple heuristics or inefficient discrete opti-
mization methods for token sampling, we craft
a lightweight soft token merging system that
maintains end-to-end differentiability while
maintaining good task performance. To com-
pensate for the potential information loss, we
design a novel token inflation module to max-
imize functionality preservation across differ-
ent transformer blocks. Experimental results
across vision-only, language-only, and vision-
language tasks show that our method achieves
comparable accuracies while saving consider-
able computation costs for both training and
inference. We demonstrate that these gains
translate into real wall-clock speedups.

1 Introduction

Large-scale transformer, dramatically scaling up
network size into the billions of parameter regime,
has recently revolutionized natural language pro-
cessing (NLP) (Vaswani et al., 2017; Devlin et al.,
2019; Brown et al., 2020; Zaheer et al., 2020;
Raffel et al., 2020), computer vision (CV) (Doso-
vitskiy et al., 2021; Touvron et al., 2021; Jiang
et al., 2021) and multimodal applications (Radford
et al., 2021; Kim et al., 2021; Chen et al., 2023d,c).
However, the size of these models imposes pro-
hibitive computation and memory consumption
for both pretraining and downstream finetuning,
hence motivates techniques that offer cheaper al-
ternatives (Li et al., 2020; Gupta et al., 2021; Bon-
darenko et al., 2021; Kim and Hassan, 2020) to full-
scale training and inference procedure. Exemplify-
ing this situation, the desire to minimize compute
and memory requirements has led to the develop-
ment of token sparsification techniques, allowing
large-scale transformer layers to skip computations
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Figure 1: Transformer adaption with soft token merging
strategies. Different from (a) which relies on discrete
token selection strategy, our soft merging scheme (b)
aggregates the tokens efficiently while maintaining end-
to-end differentiability. Consequently, ours yields not
only (c) better fitting power during training but also (d)
more robust generalization capability.

while maintaining comparable task performance
through token pruning (Hou et al., 2022; Kong
et al., 2022; Xu et al., 2022; Yao et al., 2023; Xu
et al., 2023) or merging (Ryoo et al., 2021; Bolya
et al., 2022; Cao et al., 2023; Nawrot et al., 2023;
Pietruszka et al., 2022).

Our approach incorporates these ideas, but
extends the scope of applicability to various
transformer-based architectures in both CV, NLP
and multimodal tasks, within the context of pre-
training, fully finetuning and parameter-efficient
adaptation. Rather than making a discrete decision
as to which token to bypass transformer layers, we
propose the idea of soft token merging. Our con-
tribution is to do so in a manner that tokens are
merged while maintaining the end-to-end differen-
tiability, saving compute by leveraging intermedi-
ate slim tokens processed by the transformer blocks
without any architectural modification.

As a common practice, token reduction yields a
quadratic overall efficiency improvement w.r.t to-



ken length, than training a transformer with full to-
kens. The general design of transformer layers sug-
gests possible compatibility between the tokenized
representations and architectural configuration, i.e.
trainable weight parameters are invariant with the
token length. This facilitates the desire to main-
tain sparsified tokens and unchanged transformer
architectures. Competing recent efforts, draw inspi-
ration from the observation that a subset of tokens
may suffice the discriminative or generation tasks,
In particular, token dropping (Hou et al., 2022; Yao
et al., 2023; Xu et al., 2023) splits the computation
from an intermediate layer and then aggregates the
full-length token in the top layer to save computa-
tion. DyViT (Rao et al., 2021) adopts an attention
masking strategy and auxiliary discrete optimiza-
tion strategy (e.g. gumbel softmax tricks (Jang
et al., 2016)) to differentiably prune tokens pro-
gressively. Kong et al. (2022); Xu et al. (2022)
follows a similar strategy, adopting the masking
strategy during training, which may not yield prac-
tical acceleration during training. The above dis-
crete selection strategy, shown in Figure 1(a) is a
common paradigm for most existing methods. Fur-
thermore, these progressive token pruning methods
are designed based on the nature of redundancy
of visual tokens in ViT architectures, which may
not directly apply to general transformer blocks for
generation tasks. (e.g. machine translation).

In this paper, we develop a token merging frame-
work around the principles of efficient optimization,
offering end-to-end differentiability and maximum
information preservation. Figure 1(b) illustrates
key differences with prior work. Our core contribu-
tions are:

* Efficient Soft Token Merging: We propose a
merging scheme accounting for the tokens ag-
gregation based on the attentive information pro-
vided by themselves. This auxiliary system is
computationally invariant to token length and
can quickly adapt to long sequence tasks.

* Inflation with Information Preservation: The
full token length is recovered through an infla-
tion module, to preserve the information across
different transformer blocks without affecting
efficiency.

* Better Performance and Broad Applicability:
Our method not only saves the compute but also
yields excellent generalization accuracy, with
the flexibility in choosing different trade-offs
between efficiency and accuracy. Furthermore,
adopting a merging scheme instead of masking

strategy provides acceleration in terms of wall-
clock training time. We demonstrate results on
image classification, machine translation and vi-
sual question answering tasks, across a diverse
set of transformer architectures.

2 Related Work

Token Pruning Given the property of transform-
ers in processing arbitrary token length, several
token pruning methods (Rao et al., 2021; Kong
et al., 2022; Xu et al., 2022; Liang et al., 2022; Xu
et al., 2023) have been proposed to progressively re-
ducing the number of tokens for efficient inference.
For example, DyViT (Rao et al., 2021) proposes
a MLP predictor to dynamically sample tokens,
which is trained with continuous relaxation (Jang
et al., 2016) and knowledge distillation (Hinton
et al., 2015). IdleViT (Xu et al., 2023) selects a
subset of the image tokens in computations while
bypassing the rest of tokens. These approaches
are dynamic which does not directly support batch-
ing for efficient implementation. As such, a mask-
ing scheme is adopted which impairs training effi-
ciency. However, our unique design that facilitates
hardware-friendly implementation and broad appli-
cation distinguishes our approach from these works.
More importantly, our approach demonstrates an
elegant optimization scheme with end-to-end dif-
ferentiability, merely trained with task loss.

Token Merging Some other works (Ryoo et al.,
2021; Bolya et al., 2022; Cao et al., 2023; Nawrot
et al., 2023; Pietruszka et al., 2022) instead focus
on merging tokens for efficient transformers. To-
kenLearner (Ryoo et al., 2021) adopts an MLP to
mine important tokens in visual data hence reduc-
ing the number of tokens. ToMe (Bolya et al., 2022)
reduces the number of tokens in a transformer grad-
ually by partitioning and merging tokens in each
block. PuMer (Cao et al., 2023) combines token
pruning and merging works into a token re-duction
framework suitable for Vision-Language models.
Token pooling approaches (Nawrot et al., 2023;
Pietruszka et al., 2022) average the encoded repre-
sentations for efficient self-attention computation.
Although token merging methods and our algo-
rithm share the same spirit of generating efficient
transformers through merging, ours gains applica-
bility and performance with the dedicated design
choice and optimization strategy.

Parameter-Efficient Fine-Tuning Parameter-
Efficient Fine-Tuning (PEFT) (Houlsby et al., 2019;



Hu et al., 2022; Tang et al., 2023; Chen et al.,
2023b; Yang et al., 2023; Valipour et al., 2023)
adds new parameters to frozen large pre-trained
LLM, enabling efficient tuning on a new training
dataset. LoRA (Hu et al., 2022) is an improved
PEFT method in which two matrices with lower
rank are fine-tuned, approximating original matri-
ces. This fine-tuned LoRA adapter is then used for
accurate inference. Our approach not only supports
fully fine-tuning but also has the flexibility in serv-
ing as an add-on to LoRA for a more paratermeter-
efficient tuning scheme.

3 Method

Figure 2 illustrates the overall architecture of our
system, which adapts the general transformer layer
with input-dependent soft token merging and infla-
tion with weighted replication. Given full-length
tokens, our goal is to find the best token merging
rule for a pre-defined transformer-based architec-
ture, such that a smaller number of tokens is used,
without incurring a decrease in task accuracy. Treat-
ing the task of finding this rule as a search problem
is intractable due to the nature of binary selection
optimization. Learning a mask over the tokens
also presents problems, namely the difficulty of
converting this mask into binary decisions, which
would require inefficient auxiliary optimization dur-
ing training. We therefore leverage self-attentive
methods to derive the soft token merging schemes
that encourage partial token usage with minimum
loss in accuracy. Towards this end, we introduce
the soft token merging system (Sec. 3.1) and token
inflation module (Sec. 3.1), learning to dynami-
cally reconfigure the token processing paths in a
self-conditioned manner, which is compatible with
different kinds of tuning approaches (Sec. 3.3).

3.1 Soft Token Merging

Input Attentive Module We introduce an end-
to-end trainable module to score the encoded rep-
resentations, which only passes a reduced number
of tokens to the transformer block according to
the merging window size p (p = 2 as a motivat-
ing example in Figure 8(a)). Given an input of p
tokens X = {z1, x2, ..., z, } € RP*9, we first nor-
malize and project it with trainable transformation
matrices W, Wi € R<?";

Q=XWy, K=XWg (1)

where Q, K € RP*? and d’ is set as d/2 in our
implementation. We calculate the score matrix s

from informative g and k as

T
Vd

Since @ and K encode the context information
of tokens, S is input-dependent, which is a sim-
ple way to derive the importance factor for each
individual token. Note that different from Rao
et al. (2021) which uses an MLP module to pre-
dict the scores, the additional trainable parameters
Wq, Wi of our input attentive module are invari-
ant to token lengths. Such a design is parameter
efficient especially when sequence length scales up,
e.g. for long texts or very high-resolution images.

S = softmax ( ) € RPXP 2)

Token-wise Weighted Sum  Given the score ma-
trix S indicating the importance factor for each
token, one may directly view it as the probability
for sparse token sampling. However, this makes
the problem computationally intractable due to the
combinatorial nature of binary states. To make
the token sampling space continuous and the op-
timization feasible, Dy ViT (Rao et al., 2021) bor-
row the concept of learning by continuation (Wu
et al., 2019; Xie et al., 2020) and adopt the Gumbel-
Softmax (Jang et al., 2016) trick. This still leads
to inefficient and unstable optimization, where an
additional fine-tuning stage involving knowledge
distillation is designed to bridge the performance
gap(Rao et al., 2021). To address this issue, we
simply merge the tokens through learned weighted
sum to maintain end-to-end differentiability, as de-
picted in Figure 8(b). We calculate the score for
each candidate token as:

_ 1
S = [81,52, ...,Sp] = ;) ZS@j (3)

1, 7 denotes the index along the first (token) axis of
Q and K, respectively. We then obtain the merged
token as:

12
==Y sjz; 4)

x’ is fed into the transformer block to achieve
quadratic computational efficiency in terms of both
time and memory:

y = FEN(MHA (z')) 5)

where FFN and MHA denote feed-forward net-
works and multi-head attention in a transformer
block, respectively.
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Figure 2: System overview. The proposed framework consists of two components (a): input-attentive soft token
merging and (b): token inflation with replication. The input-attentive module is designed to build up data-dependent
score matrices from input tokens of each transformer layer, serving as the importance factors for merging individual
tokens through weighted sum. Merged tokens are then fed through (pretrained) transformer layer (multi-head
attention + feed forward networks) with reduced computational complexity. The processed tokens are then inflated
to original length through replication and rescaling for information preservation across different transformer blocks.
All modules are end-to-end trainable, which are optimized by the task loss.

3.2 Inflation with Weighted Replication

Our goal is to efficiently adapt transformer archi-
tecture for various tasks. For a discriminative task
(e.g. ViT for image classification) where only a sin-
gle token is used in cross-entropy loss, tokens can
be eliminated at certain blocks and never get sam-
pled. However for generation tasks (e.g. encoder-
decoder architecture for machine translation), it is
crucial to maintain the token length during the inter-
action with the cross-attention layer of the decoder.
To achieve general applicability, we propose a sim-
ple yet effective inflation scheme with weighted
token replication. With computational cost savings
already obtained, it’s free to first clone the replicate
y to y’ with the original length. We then re-use the
soft merging scores S with gradient detached to
construct the inflated tokens ¥:

9 = X + 4y’ © detached(S) (6)

where © is the Hadamard product and « is used in
skip connection for maximum information preser-
vation. Note that in practice detaching the gradients
of S is crucial for the optimization stability, we
provide detailed justification in the experimental
section. Alg. 1 summarizes our soft token merging
system.

3.3 Optimization

All the proposed modules can be trained in an end-
to-end manner with only a task loss function. We
provide three different tuning modes to accommo-
date various transformer applications: (1) Training
the model from randomly initialized weights, (2)
Given a pre-trained transformer model, we inject
our token merging system without any architectural
change due to the token length invariant property,

Algorithm 1 : Soft Token Merging

Input: Full-length tokens x.
Output: Trained model 0
Initialize: Model weights 6, depth L.
for =1toL do
Merge X into =’ using Eq. 1- 4.
Process merged @’ to y using Eq. 5.
Inflate ¢ to 9 using Eq. 6.
Assign X = g for next layer.
end for
Back-propagate with task loss and update 6.

and (3) One also has the flexibility to incorporate
LoRA for more parameter-efficient tuning.

4 Experiments

We evaluate our approach on image-only, language-
only and vision-language tasks with variants of
transformer architectures. Specifically, we con-
duct both pretraining and evaluation on ImageNet-
1K (Deng et al., 2009) for image classifica-
tion, finetuning on wmt_t2t_ende_v@03 from se-
qio ! for machine translation, and finetuning on
VQAV2 (Goyal et al., 2017) and STVQA (Biten
et al., 2019) for visual question answering.

Implementation Details For ImageNet-1K im-
age classification, we validate our approach on the
ViT-S/16 variant (Dosovitskiy et al., 2021) and
follows the settings (Beyer et al., 2022) which
yields significantly better performance: We use
global average-pooling (GAP) instead of a class
token. We adopt the learned position embeddings
instead of fixed 2D sin-cos ones. We also intro-

"https://github.com/google/seqio



duce RandAugment (Cubuk et al., 2020) (level 10)
and Mixup (Zhang et al., 2018) (probability 0.2).
We implement the baseline model in Jax (Brad-
bury et al., 2018) and train it with Adam (Kingma
and Ba, 2015), an initial learning rate of 0.001,
weight decay of 0.0001 for 300 epochs on TPUv3-
16 node. We choose to merge every two tokens
and inject the token merging system into 4-th layer
to achieve a favorably good trade-off between ac-
curacy and efficiency. To compare with different
dynamic token pruning methods implemented in
Pytorch (Paszke et al., 2019), we also follow the
setting in (Rao et al., 2021; Xu et al., 2023) and
select the DeiT-S (12 Layers) (Touvron et al., 2021)
and LV-VIiT-S (16 layers) (Jiang et al., 2021) as the
backbones. We finetune both models for 30 epochs
on 2 NVIDIA V100 GPUs.

For machine translation, we use the T5X code-
base® and adopt the pre-trained small and base
models on C4 (Raffel et al., 2020), denoted as
t5_small and t5_base respectively. t5_small
and t5_base are both encoder-decoder architec-
tures with 8 and 12 attention blocks. We finetune
each model onwmt_t2t_ende_v@03 to perform the
downstream machine translation tasks. Batch size
is 1500 and we use 4000 warm up iterations. For
each model, we use a maximum sequence length
of 256 and a batch size of 128 sequences. We train
with Adafactor (Shazeer and Stern, 2018) for 20k
iterations, a base learning rate of 0.001 and warmup
steps of 1,000 on TPUv3-16 node.

For VQA tasks, we train the recently proposed
PaLI-5B model (Chen et al., 2023c) (detailed in
Appendix section A.3) on VQA tasks under both
fully fine-tuning and LoRA tuning settings. The
image resolution is 812 x 812 with a patch size of
14 x 14, resulting in 3364 visual tokens. We apply
our token merging on visual tokens output from the
pre-trained ViT and set p as 2 for all variants. For
both fine-tuning settings, we use the batch size of
128 and train with Adafactor for 500k iterations on
TPUv3-16 node. The dropout rate is set as 0.1. For
fully fine-tuning, the initial learning is 1e* while
for LoRA with rank of 16, it’s 3e~5. We also eval-
uate our approach in a lightweight vision-language
model ViLT (0.11B, 12 Layers) (Kim et al., 2021).
We implement our method in Pytorch, follow the
setting in PuMer (Cao et al., 2023) to compare
with DyViT (Rao et al., 2021), ToMe (Bolya et al.,
2022) and PuMer (Cao et al., 2023). For a fair

Zhttps://github.com/google-research/t5x

comparison, we adapt different configurations of
merging position / to generate our model with sim-
ilar FLOPs with all competitors and evaluate the
accuracy/throughput trade-off on a single NVIDIA
1080Ti GPU.

Table 1: Comparison with DyViT* on ImageNet for
ViT-S/16 training from scratch over 5 random seeds.

Method Top-1 Acc(%) Params(M) FLOPs(G)

Original  80.1+0.24 23.8 4.6
DyViT* 76.4£0.31 30.9 6.1
Ours ~ 793+0.18 240 ~ 29

Table 2: Comparisons on ImageNet for fine-tuning DeiT-
S. For each competing algorithm, the table reports Top-1
accuracy (%), FLOPs and inference throughput (imgs/s)
from respective papers. We run our method over 5
random seeds.

Method Top-1 Acc(%) FLOPs(G) Infer Tput.(imgs/s)

Original ~ 79.8(-0.0) 4.6 2477
IdleViT  79.0(-0.8) 2.4 4072
DyViT  77.5(-2.3) 22 5147
EViT 78.5(-1.3) 2.3 3383
Evo-ViT  77.7(-2.1) 2.4 3173
ATS 78.2(-1.6) 2.3 2352
Ours  ~ 793+0.1(-0.5 23 4566

4.1 Results on ImageNet-1K Classification

ViT-S/16 Table 1 shows results in terms of test
accuracy, trainable parameters, and training cost
calculated based on overall FLOPs. We compare
with a variant of DyViT (Rao et al., 2021), which is
trained from scratch for 300 epochs. Note that addi-
tional trainable parameters of MLP prediction mod-
ule and computational training overhead of mask-
ing implementation are counted. Ours achieves bet-
ter test accuracy than DyViT, which suggests our
soft merging method benefits the optimization pro-
cess and yields better generalization performance
than gumbel-softmax for sampling. Moreover, our
input attentive module is lightweight and token
length-invariant, which only introduces negligible
parameters (0.2M) while the MLP prediction mod-
ule in DyViT is 7.1M. The masking scheme in
DyViT does not eliminate tokens during training,
which yields more computational costs than train-
ing a ViT-S/16 with full-length tokens.

DeiT-S We also compare our approach with
ATS (Fayyaz et al., 2022), Evo-ViT (Xu et al,,
2022), EViT (Liang et al., 2022), DyViT (Rao
et al., 2021) and IdleViT (Xu et al., 2023) on DeiT-
S fine-tuning. We set the token-kept ratio k €



[0.8,0.7,0.6,0.5] to generate different model con-
figurations as in the respective papers. For our ap-
proach, we inject soft merging into [ € [7, 6,5, 4]-
th transformer block to obtain similar FLOPs as
the above competitors. Results in Table 2 show
that ours (I = 4) achieves not only better test accu-
racy but also faster inference throughput than those
competitors (k = 0.5). This suggests that even
without auxiliary knowledge distillation loss, our
soft token merging provides more generalization
capability during optimization than merely drop-
ping the tokens. Figure 6 shows that ours yields
the best accuracy and efficiency trade-offs across
all configurations. Our method (I = 4) achieves
better performance than the original DeiT-S while
saving 24% FLOPs, suggesting that token merging
might have an additional regularizing effect dur-
ing fine-tuning. We also report more comparisons
in terms of accuracy and throughput in Appendix
section A.1 across different model configurations.

LV-ViT-S For LV-VIiT-S fine-tuning, we compare
our method with DyViT and IdleViT. Figure 4
shows a similar trend that ours bests accuracy-
FLOPs trade-off. Appendix Table A.2 details the
numbers under different model configurations.
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Figure 3: ImageNet-1K Top-1 accuracy-FLOPs trade-
off comparison on DeiT-S fine-tuning. Ours consistently
perform better than all ViT token pruning competitors.

4.2 Results on Machine Translation

We validate our approach on WMT machine trans-
lation task. Applying ViT token competitors to
the encoder-decoder transformer architecture is
nontrivial due to their domain-specific design of
discrete optimization. As such, we only design
variants of our method for self-comparison. As
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Figure 4: ImageNet-1K Top-1 accuracy-FLOPs trade-
off comparison on LV-ViT-S fine-tuning. Ours consis-
tently perform better than all competitors.

Table 3: Results of t5-small and t5-base on WMT ma-
chine translation task. The table reports BLEU score
(%), training, and inference FLOPs (G) for both variants
of our approach w/wo token inflation.

Method BLEU (%) Train/Infer FLOPs(G)
T5-small 22.940.27 134.9/3.3
Ours-w-inflat ~ 21.6+0.21 ~  ~ 121.9/3.1
Ours-wo-inflat  19.1£0.12 115.0/3.0
T5-base 24.3+0.29 417.1/51.7
Ours-w-inflat ~ 23.6+0.22 ~ 355.4/494 =~
Ours-wo-inflat  21.2+0.19 331.6/ 46.9

shown in Table 3, our method generalizes well
to the encoder-decoder transformers TS5-small and
T5-base. We also validate that inflating tokens
drastically improves BLEU at a reasonable cost
during training and inference. This suggests that in-
formation preservation is a necessity for language
generation when encoded representations interact
with the target tokens in cross-attention layers.

4.3 Results on Visual Question Answering

We demonstrate the applicability of our approach to
the multimodal application, visual question answer-
ing (VQA). We choose the backbone architecture
of PaLLI-5B, and fine-tune on VQAv2 and STVQA
datasets. Since the resolution of the input image is
812 x 812, PaLLI-5B takes the visual tokens scaling
up to 3, 364. We merge the encoded tokens from a
frozen pre-trained ViT without inflation since we
only need the high-level visual concepts in this lan-
guage generation task. The results in Table 4 show
that in the context of fully fine-tuning, our approach
achieves comparable accuracies while maintaining



Table 4: Results of PaLI-5B fully fine-tuning and LoRA
on VQAV2 and STVQA. We report accuracy (%), train-
ing (sequences/s), and inference (tokens/s) throughputs.

Method Accuracy (%) 1 Train/Infer Tput. 1
Dataset: VQAv2

Full-ft. 81.74+0.20 72.0/154.7

Ours-Full-ft 81.4+0.17 108.5/180.3

LoRA™ 7994021 7 74.0/1546

Ours-LoRA 79.940.18 115.4/179.1
Dataset: STVQA

Full-ft. 77.54+0.28 67.3/128.5

Ours-Full-ft 76.6+0.21 99.3/144.7

LoRA™ 778£0.18 ¢ 69.3/1285

Ours-LoRA 77.3£0.16 105.3/144.1

Table 5: Results of ViLT on VQAv2. The table reports
accuracy (%), inference throughput acceleration (x)
from respective papers. We run our method over 3
random seeds.

Method Accuracy (%) 1 Infer Tput. 1
Original. 69.5 1x

DyViT 67.9 1.75x%
ToMe 68.4 1.79x
PuMer 68.9 1.76 x

Ours  691+f01 1.76x

a wall-clock acceleration. LoRA, as a parameter-
efficient tuning approach, accelerates the training
a bit without improving the inference speed. In-
corporating LoRA, ours not only drastically saves
training costs but also speeds up inference while
maintaining comparable accuracies.

We also evaluate our approach by training an-
other VL model ViLT. Following the settings in
PuMer, we configure all methods with similar
speedup and compare the accuracy over 3 runs. As
shown in Table 5, our approach outperforms these
competitors, which demonstrates the effectiveness
of our design choices.

4.4 Analysis

Abalation Study We show the effects of turning
off each of our modifications to our full optimiza-
tion process (1) Full method described in Alg. 1.
(2) wo-inflat.: we don’t apply inflation to merged
tokens. (3) wo-detach: we don’t detach the gra-
dients of the score matrix in Eq. 6. We conduct
experiments using both ViT-S/16 on ImageNet and
T5-small on WMT. As shown in Table 6, removing
token inflation can improve the performance of ViT-
S/16 by providing a subset of tokens encoded with
high-abstraction visual concepts in the discrimina-

tive task. Detaching gradients of the score matrix is
a necessity in stabilizing the optimization process
for both architectures. We also see that both infla-
tion and gradient detach are designed and woven
to accomplish the empirical leap in the language
generation task. In Figure 5(b) and 5(c), red curve
and yellow curve also demonstrate that token in-
flation consistently improves BLEU score for both
t5-small and t5-base across different model FLOPs.

Comparison with Random Baseline In Fig-
ure 5(a), for ViT-S/16 on ImageNet-1K, we com-
pare models obtained by (1) uniform pruning: a
naive predefined pruning method that prunes the
same percentage of dimension d in each layer, (2)
ours: variants of our method by setting different
merging positions [/, and our method outperforms
uniform pruning, demonstrating that token merg-
ing maintains higher generalization capacity than
architectural pruning. In addition to the uniform
pruning baseline, we also compare with a random
merging baseline to further separate the contribu-
tion of the intrinsic property of token sparsification
and soft merging method. Specifically, this random
baseline replaces the procedure for merging entries
of S in Eq. 4. Instead of using merging scores
derived from the learned S, it samples randomly
from a uniform distribution and then normalizes
the sum to 1. As shown in Figure 5 (random merg-
ing), ours consistently performs much better than
this random baseline. These results, as well as the
more sophisticated baselines in uniform pruning,
demonstrate the effectiveness of our approach.

Table 6: Ablation study on inflation and gradient detach
components on ImageNet-1K and WMT.

Variant ViT-S/16 (%) 1 T5-small (%) 1

Full 78.440.15 (+0.0)  22.940.27 (+0.0)
wo-inflat.  79.34+0.18 (+0.9)  21.6£0.21 (-1.3)
wo-detach  75.340.10 (-3.1) 13.240.10 (-9.7)

Table 7: Ours still yields reasonable performance for
both vision and language tasks with merging window
size p enlarged to 4.

ViT-S/16 T5-small

Method Train Test Train BLEU

ethod FL.OPS(G) | Ace.(%) 1FLOPs(G) | (%) +
Original 46  80.1+024 1349 229
Rand. (p=2) 2.8  77.14024 1202  18.1
Rand. (p=4) 1.9  76.0+028 1154 157
Ours (p = 2) 29  79340.18 1219 216
Ours (p = 4) 20 7814012 1170 193
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Figure 5: Performance/FLOPs trade-offs for different variants of ViT-S/16, T5-small, and T5-base architectures. We

report the results of all variants over 5 random seeds.

Table 8: Comparison with trainable token pooling. Ours
has best performance consistently.

ViT-S/16
Train Test
Method FLOPs(G) | Acc (%) 1
Original 4.6 80.11+0.24
Trainable Pooling (I = 4) 2.9 78.04+0.16
Ours (I = 4) 2.9 79.3+0.18
Trainable Pooling (I = 6) 3.2 78.8+0.14
Ours (I = 6) 33 79.7+0.14

Investigation on Merging/Inflation Position
Different from dynamic token pruning approaches
which set token-kept ratios & for different model
configurations, our approach realizes the flexibil-
ity by injecting merging and inflation modules at
different layer positions /. Appendix section A.4
illustrates this strategy. Figure 5 investigates the
performance-FLOPs trade-off curves of different
variants by alternating [. Our approach not only
bests accuracy among all baselines, but also ap-
pears to be more robust over different FLOPs.

Investigation on Merging Window Size The de-
sign of merging window size p gains the flexibility
to explore more trade-offs between training budgets
and test performance. Appendix section A.5 illus-
trates this strategy. Table 7 show the results for ours
and random baselines, each generates trade-offs be-
tween train costs and test accuracy by alternating
the window sizes (p € {2,4}). Ours consistently
outperforms random baselines. Even with a large
window size p = 4, ours still yields reasonable ac-
curacy, demonstrating that the regularization effect
of ours benefits generalization performance.

Connection with Trainable Pooling
(Pietruszka et al., 2022) proposes an atten-
tion sparsification approach by learning to select

the most informative token representations,
focusing on long document summarization task,
denoted as trainable pooling. Both introduce
elegant optimization schemes with end-to-end
differentiability, guided by merely task losses.
However, ours explicitly learns self-attentive
scores for token reduction without any modifica-
tion to the pre-defined transformer layers (attention
mechanism, architectural configuration). We
generalize (Pietruszka et al., 2022) to ViT-S/16
on ImageNet-1K classification by adopting
cross-attention for trainable visual token pooling at
l € {4,6}. As shown in Table 8, ours consistently
yields better performance.

5 Conclusion

We tackle a set of optimization challenges in token
merging and invent a corresponding set of tech-
niques, including soft token merging, inflation with
information preservation, and parameter-efficient
tuning to address these challenges. Each of these
techniques can be viewed as ‘add-ons’ to an origi-
nal part for training transformers into a correspond-
ing one that accounts for accuracy-efficiency trade-
offs. There is a detailed analysis of these add-ons
and a guiding principle governing the formulation
of each computational module. Together, they ac-
celerate training and inference without impairing
model accuracy — a result that uniquely separates
our approach from competitors. In light of the
success of our current strategy, it is interesting to
subject the proposed merging system to extremely
long text or video sequence tasks as a future inves-
tigation. For example, incorporating our approach
with Chen et al. (2023a) to fine-tune a pre-trained
LLM with an interpolated longer context window
to improve efficiency while maintaining the ex-
treme exploration capability.
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A Appendix

We further compare ours and recently proposed
progressive token pruning approaches on Deit-
S by showing additional Top-1 accuracy on
ImageNet-1K, FLOPs, and inference throughput.
Table 9, 10, 11 and 12 demonstrate that our ap-
proach outperforms all the competitors consistently.

Table 9: Comparisons on ImageNet for fine-tuning DeiT-
S. For competing methods, we set the token kept ratio
as 0.4 while for our approach the merging position [ are
set as 3.

Method Top-1 Acc(%) FLOPs(G) Infer Tput.(imgs/s)

IdleViT 78.4 2.1 4363
DyViT 76.0 1.9 5741
EViT 77.6 2.0 3717
Evo-ViT 77.5 2.1 3548
ATS 76.4 2.0 2580
Ours 787 20 4343

A.1 More results in DeiT-S

Table 10: Comparisons on ImageNet for fine-tuning
DeiT-S. For competing methods, we set the token kept
ratio as 0.6 while for our approach the merging position
[ are set as 5.

Method Top-1 Acc(%) FLOPs(G) Infer Tput.(imgs/s)

IdleViT 79.3 2.7 3693
DyViT 785 2.5 4474
EViT 78.9 2.6 3045
Evo-ViT 780 2.6 2998
ATS 78.9 2.7 2229
Ours 796 27 4002

Table 11: Comparisons on ImageNet for fine-tuning
DeiT-S. For competing methods, we set the token kept
ratio as 0.7 while for our approach the merging position
[ are set as 6.

Method Top-1 Acc(%) FLOPs(G) Infer Tput.(imgs/s)

IdleViT 79.6 3.1 3361
DyViT 793 3.0 3390
EViT 79.5 3.0 2621
Evo-ViT 782 3.0 2606
ATS 79.2 3.1 2161
Ours 797 31 3408

A.2 More results in LV-ViT-S

We detail the number in Figure 4 in terms of Top-1
accuracy and FLOPs, as shown in Table 13, 14, 15

12

Table 12: Comparisons on ImageNet for fine-tuning
DeiT-S. For competing methods, we set the token kept
ratio as 0.8 while for our approach the merging position
[ are setas 7.

Method Top-1 Acc(%) FLOPs(G) Infer Tput.(imgs/s)

IdleViT 79.9 35 3031
DyViT 79.6 34 3405
EViT 79.8 35 2286
Evo-ViT 78.4 35 2293
ATS 79.6 3.4 2036
Ours 799 35 3321

and 16. We additionally provide inference through-
put to demonstrate the wall-clock acceleration.

Table 13: Comparisons on ImageNet for fine-tuning LV-
ViT-S. For competing methods, we set the token kept
ratio as 0.8 while for our approach the merging position
[ are setas 7.

Method Top-1 Acc(%) FLOPs(G) Infer Tput.(imgs/s)

IdleViT 83.2 5.1 855
DyViT 83.2 5.1 958
Ous 83 50 970

Table 14: Comparisons on ImageNet for fine-tuning LV-
ViT-S. For competing methods, we set the token kept
ratio as 0.7 while for our approach the merging position
[ are set as 6.

Method Top-1 Acc(%) FLOPs(G) Infer Tput.(imgs/s)

IdleViT  83.1 45 938
DyViT 83.0 4.6 1077
Ours 832 45 1002~

A.3 Details of PaLI-5B (Chen et al., 2023c¢)

Different from VILT (Kim et al., 2021) which
jointly pass the linear projected image patches and
text tokens to a multimodal transformer architec-
ture, PaLLI-5B first encodes the image into visual to-
kens with 2B SigLIP ViT (contrastively pretrained
parameters) (Zhai et al., 2023) and passes the vi-
sual tokens together with text query tokens to a 3B
encoder-decoder UL2 transformer (Tay et al., 2023)
that generates a text output. In the experiments, we
use 812 x 812 image resolution to demonstrate the
efficiency and effectiveness of our token merging
approach.

A4 Illustration of Merging Position /

Different from existing progressive token pruning
works, our system facilitates different trade-off con-



Table 15: Comparisons on ImageNet for fine-tuning LV-
ViT-S. For competing methods, we set the token kept
ratio as 0.6 while for our approach the merging position
[ are set as 5.

Method Top-1 Acc(%) FLOPs(G) Infer Tput.(imgs/s)

‘ Image

*){ ViT-G/14 }—)

IdleViT 82.9 4.0 1040
DyViT 82.6 42 1206
Ours ~ ~ ~ 83.0 40 T T~ 1188 =~~~

Table 16: Comparisons on ImageNet for fine-tuning
DeiT-S. For competing methods, we set the token kept
ratio as 0.5 while for our approach the merging position
[ are set as 4.

Method Top-1 Acc(%) FLOPs(G) Infer Tput.(imgs/s)

IdleViT 82.6 3.6 1131
DyViT 82.0 3.7 1321
Ours ~ ~ ~ 828 35 7 1378 =

figurations via injecting the merging module to a
different transformer block, depicted as merging
position [ in Figure 7. The merging position [ ef-
fectively adapts the portion of transformer blocks
that take reduced tokens, hence realizing different
efficiency and accuracy trade-offs.

A.5 Illustration of Merging Window Size p

As shown in Figure 8, we illustrate the merging
score matrices with different window size. Our ap-
proach has the flexibility in aggregating p local to-
kens into one with self-attentive importance scores,
which is beneficial in maintaining reasonable task
performance even with a large p.

uL2
Transformer

uL2
Transformer
Decoder

Encoder

Generated
Text

Text ——> Tokenizer ——>

Figure 6: Overview of PaLI-5B.

Our Merging System

I-th
Transformer Block

-1 l

Figure 7: Illustration of applying our merging system to
position [.

(a) Merge p = 2 tokens to 1 (b) Merge p = 4 tokens to 1

Figure 8: Illustration of different merging window sizes.
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