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Abstract

We develop an approach to efficiently adapt001
transformer layers, driven by an objective of002
optimization stability and broad applicability.003
Unlike existing methods which adopt either004
simple heuristics or inefficient discrete opti-005
mization methods for token sampling, we craft006
a lightweight soft token merging system that007
maintains end-to-end differentiability while008
maintaining good task performance. To com-009
pensate for the potential information loss, we010
design a novel token inflation module to max-011
imize functionality preservation across differ-012
ent transformer blocks. Experimental results013
across vision-only, language-only, and vision-014
language tasks show that our method achieves015
comparable accuracies while saving consider-016
able computation costs for both training and017
inference. We demonstrate that these gains018
translate into real wall-clock speedups.019

1 Introduction020

Large-scale transformer, dramatically scaling up021

network size into the billions of parameter regime,022

has recently revolutionized natural language pro-023

cessing (NLP) (Vaswani et al., 2017; Devlin et al.,024

2019; Brown et al., 2020; Zaheer et al., 2020;025

Raffel et al., 2020), computer vision (CV) (Doso-026

vitskiy et al., 2021; Touvron et al., 2021; Jiang027

et al., 2021) and multimodal applications (Radford028

et al., 2021; Kim et al., 2021; Chen et al., 2023d,c).029

However, the size of these models imposes pro-030

hibitive computation and memory consumption031

for both pretraining and downstream finetuning,032

hence motivates techniques that offer cheaper al-033

ternatives (Li et al., 2020; Gupta et al., 2021; Bon-034

darenko et al., 2021; Kim and Hassan, 2020) to full-035

scale training and inference procedure. Exemplify-036

ing this situation, the desire to minimize compute037

and memory requirements has led to the develop-038

ment of token sparsification techniques, allowing039

large-scale transformer layers to skip computations040
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Figure 1: Transformer adaption with soft token merging
strategies. Different from (a) which relies on discrete
token selection strategy, our soft merging scheme (b)
aggregates the tokens efficiently while maintaining end-
to-end differentiability. Consequently, ours yields not
only (c) better fitting power during training but also (d)
more robust generalization capability.

while maintaining comparable task performance 041

through token pruning (Hou et al., 2022; Kong 042

et al., 2022; Xu et al., 2022; Yao et al., 2023; Xu 043

et al., 2023) or merging (Ryoo et al., 2021; Bolya 044

et al., 2022; Cao et al., 2023; Nawrot et al., 2023; 045

Pietruszka et al., 2022). 046

Our approach incorporates these ideas, but 047

extends the scope of applicability to various 048

transformer-based architectures in both CV, NLP 049

and multimodal tasks, within the context of pre- 050

training, fully finetuning and parameter-efficient 051

adaptation. Rather than making a discrete decision 052

as to which token to bypass transformer layers, we 053

propose the idea of soft token merging. Our con- 054

tribution is to do so in a manner that tokens are 055

merged while maintaining the end-to-end differen- 056

tiability, saving compute by leveraging intermedi- 057

ate slim tokens processed by the transformer blocks 058

without any architectural modification. 059

As a common practice, token reduction yields a 060

quadratic overall efficiency improvement w.r.t to- 061
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ken length, than training a transformer with full to-062

kens. The general design of transformer layers sug-063

gests possible compatibility between the tokenized064

representations and architectural configuration, i.e.065

trainable weight parameters are invariant with the066

token length. This facilitates the desire to main-067

tain sparsified tokens and unchanged transformer068

architectures. Competing recent efforts, draw inspi-069

ration from the observation that a subset of tokens070

may suffice the discriminative or generation tasks,071

In particular, token dropping (Hou et al., 2022; Yao072

et al., 2023; Xu et al., 2023) splits the computation073

from an intermediate layer and then aggregates the074

full-length token in the top layer to save computa-075

tion. DyViT (Rao et al., 2021) adopts an attention076

masking strategy and auxiliary discrete optimiza-077

tion strategy (e.g. gumbel softmax tricks (Jang078

et al., 2016)) to differentiably prune tokens pro-079

gressively. Kong et al. (2022); Xu et al. (2022)080

follows a similar strategy, adopting the masking081

strategy during training, which may not yield prac-082

tical acceleration during training. The above dis-083

crete selection strategy, shown in Figure 1(a) is a084

common paradigm for most existing methods. Fur-085

thermore, these progressive token pruning methods086

are designed based on the nature of redundancy087

of visual tokens in ViT architectures, which may088

not directly apply to general transformer blocks for089

generation tasks. (e.g. machine translation).090

In this paper, we develop a token merging frame-091

work around the principles of efficient optimization,092

offering end-to-end differentiability and maximum093

information preservation. Figure 1(b) illustrates094

key differences with prior work. Our core contribu-095

tions are:096

• Efficient Soft Token Merging: We propose a097

merging scheme accounting for the tokens ag-098

gregation based on the attentive information pro-099

vided by themselves. This auxiliary system is100

computationally invariant to token length and101

can quickly adapt to long sequence tasks.102

• Inflation with Information Preservation: The103

full token length is recovered through an infla-104

tion module, to preserve the information across105

different transformer blocks without affecting106

efficiency.107

• Better Performance and Broad Applicability:108

Our method not only saves the compute but also109

yields excellent generalization accuracy, with110

the flexibility in choosing different trade-offs111

between efficiency and accuracy. Furthermore,112

adopting a merging scheme instead of masking113

strategy provides acceleration in terms of wall- 114

clock training time. We demonstrate results on 115

image classification, machine translation and vi- 116

sual question answering tasks, across a diverse 117

set of transformer architectures. 118

2 Related Work 119

Token Pruning Given the property of transform- 120

ers in processing arbitrary token length, several 121

token pruning methods (Rao et al., 2021; Kong 122

et al., 2022; Xu et al., 2022; Liang et al., 2022; Xu 123

et al., 2023) have been proposed to progressively re- 124

ducing the number of tokens for efficient inference. 125

For example, DyViT (Rao et al., 2021) proposes 126

a MLP predictor to dynamically sample tokens, 127

which is trained with continuous relaxation (Jang 128

et al., 2016) and knowledge distillation (Hinton 129

et al., 2015). IdleViT (Xu et al., 2023) selects a 130

subset of the image tokens in computations while 131

bypassing the rest of tokens. These approaches 132

are dynamic which does not directly support batch- 133

ing for efficient implementation. As such, a mask- 134

ing scheme is adopted which impairs training effi- 135

ciency. However, our unique design that facilitates 136

hardware-friendly implementation and broad appli- 137

cation distinguishes our approach from these works. 138

More importantly, our approach demonstrates an 139

elegant optimization scheme with end-to-end dif- 140

ferentiability, merely trained with task loss. 141

Token Merging Some other works (Ryoo et al., 142

2021; Bolya et al., 2022; Cao et al., 2023; Nawrot 143

et al., 2023; Pietruszka et al., 2022) instead focus 144

on merging tokens for efficient transformers. To- 145

kenLearner (Ryoo et al., 2021) adopts an MLP to 146

mine important tokens in visual data hence reduc- 147

ing the number of tokens. ToMe (Bolya et al., 2022) 148

reduces the number of tokens in a transformer grad- 149

ually by partitioning and merging tokens in each 150

block. PuMer (Cao et al., 2023) combines token 151

pruning and merging works into a token re-duction 152

framework suitable for Vision-Language models. 153

Token pooling approaches (Nawrot et al., 2023; 154

Pietruszka et al., 2022) average the encoded repre- 155

sentations for efficient self-attention computation. 156

Although token merging methods and our algo- 157

rithm share the same spirit of generating efficient 158

transformers through merging, ours gains applica- 159

bility and performance with the dedicated design 160

choice and optimization strategy. 161

Parameter-Efficient Fine-Tuning Parameter- 162

Efficient Fine-Tuning (PEFT) (Houlsby et al., 2019; 163
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Hu et al., 2022; Tang et al., 2023; Chen et al.,164

2023b; Yang et al., 2023; Valipour et al., 2023)165

adds new parameters to frozen large pre-trained166

LLM, enabling efficient tuning on a new training167

dataset. LoRA (Hu et al., 2022) is an improved168

PEFT method in which two matrices with lower169

rank are fine-tuned, approximating original matri-170

ces. This fine-tuned LoRA adapter is then used for171

accurate inference. Our approach not only supports172

fully fine-tuning but also has the flexibility in serv-173

ing as an add-on to LoRA for a more paratermeter-174

efficient tuning scheme.175

3 Method176

Figure 2 illustrates the overall architecture of our177

system, which adapts the general transformer layer178

with input-dependent soft token merging and infla-179

tion with weighted replication. Given full-length180

tokens, our goal is to find the best token merging181

rule for a pre-defined transformer-based architec-182

ture, such that a smaller number of tokens is used,183

without incurring a decrease in task accuracy. Treat-184

ing the task of finding this rule as a search problem185

is intractable due to the nature of binary selection186

optimization. Learning a mask over the tokens187

also presents problems, namely the difficulty of188

converting this mask into binary decisions, which189

would require inefficient auxiliary optimization dur-190

ing training. We therefore leverage self-attentive191

methods to derive the soft token merging schemes192

that encourage partial token usage with minimum193

loss in accuracy. Towards this end, we introduce194

the soft token merging system (Sec. 3.1) and token195

inflation module (Sec. 3.1), learning to dynami-196

cally reconfigure the token processing paths in a197

self-conditioned manner, which is compatible with198

different kinds of tuning approaches (Sec. 3.3).199

3.1 Soft Token Merging200

Input Attentive Module We introduce an end-201

to-end trainable module to score the encoded rep-202

resentations, which only passes a reduced number203

of tokens to the transformer block according to204

the merging window size p (p = 2 as a motivat-205

ing example in Figure 8(a)). Given an input of p206

tokens X = {x1,x2, ...,xp} ∈ Rp×d, we first nor-207

malize and project it with trainable transformation208

matrices WQ,WK ∈ Rd×d′ :209

Q = XWQ,K = XWK (1)210

where Q,K ∈ Rp×d′ and d′ is set as d/2 in our211

implementation. We calculate the score matrix s212

from informative q and k as 213

S = softmax(
QKT

√
d′

) ∈ Rp×p (2) 214

Since Q and K encode the context information 215

of tokens, S is input-dependent, which is a sim- 216

ple way to derive the importance factor for each 217

individual token. Note that different from Rao 218

et al. (2021) which uses an MLP module to pre- 219

dict the scores, the additional trainable parameters 220

WQ,WK of our input attentive module are invari- 221

ant to token lengths. Such a design is parameter 222

efficient especially when sequence length scales up, 223

e.g. for long texts or very high-resolution images. 224

Token-wise Weighted Sum Given the score ma- 225

trix S indicating the importance factor for each 226

token, one may directly view it as the probability 227

for sparse token sampling. However, this makes 228

the problem computationally intractable due to the 229

combinatorial nature of binary states. To make 230

the token sampling space continuous and the op- 231

timization feasible, DyViT (Rao et al., 2021) bor- 232

row the concept of learning by continuation (Wu 233

et al., 2019; Xie et al., 2020) and adopt the Gumbel- 234

Softmax (Jang et al., 2016) trick. This still leads 235

to inefficient and unstable optimization, where an 236

additional fine-tuning stage involving knowledge 237

distillation is designed to bridge the performance 238

gap(Rao et al., 2021). To address this issue, we 239

simply merge the tokens through learned weighted 240

sum to maintain end-to-end differentiability, as de- 241

picted in Figure 8(b). We calculate the score for 242

each candidate token as: 243

S = [s1, s2, ..., sp] =
1

p

p∑
i=1

Si,j (3) 244

i, j denotes the index along the first (token) axis of 245

Q and K, respectively. We then obtain the merged 246

token as: 247

x′ =
1

p

p∑
j=1

sjxj (4) 248

x′ is fed into the transformer block to achieve 249

quadratic computational efficiency in terms of both 250

time and memory: 251

y = FFN(MHA(x′)) (5) 252

where FFN and MHA denote feed-forward net- 253

works and multi-head attention in a transformer 254

block, respectively. 255
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Figure 2: System overview. The proposed framework consists of two components (a): input-attentive soft token
merging and (b): token inflation with replication. The input-attentive module is designed to build up data-dependent
score matrices from input tokens of each transformer layer, serving as the importance factors for merging individual
tokens through weighted sum. Merged tokens are then fed through (pretrained) transformer layer (multi-head
attention + feed forward networks) with reduced computational complexity. The processed tokens are then inflated
to original length through replication and rescaling for information preservation across different transformer blocks.
All modules are end-to-end trainable, which are optimized by the task loss.

3.2 Inflation with Weighted Replication256

Our goal is to efficiently adapt transformer archi-257

tecture for various tasks. For a discriminative task258

(e.g. ViT for image classification) where only a sin-259

gle token is used in cross-entropy loss, tokens can260

be eliminated at certain blocks and never get sam-261

pled. However for generation tasks (e.g. encoder-262

decoder architecture for machine translation), it is263

crucial to maintain the token length during the inter-264

action with the cross-attention layer of the decoder.265

To achieve general applicability, we propose a sim-266

ple yet effective inflation scheme with weighted267

token replication. With computational cost savings268

already obtained, it’s free to first clone the replicate269

y to y′ with the original length. We then re-use the270

soft merging scores S with gradient detached to271

construct the inflated tokens ŷ:272

ŷ = X + y′ ⊙ detached(S) (6)273

where ⊙ is the Hadamard product and x is used in274

skip connection for maximum information preser-275

vation. Note that in practice detaching the gradients276

of S is crucial for the optimization stability, we277

provide detailed justification in the experimental278

section. Alg. 1 summarizes our soft token merging279

system.280

3.3 Optimization281

All the proposed modules can be trained in an end-282

to-end manner with only a task loss function. We283

provide three different tuning modes to accommo-284

date various transformer applications: (1) Training285

the model from randomly initialized weights, (2)286

Given a pre-trained transformer model, we inject287

our token merging system without any architectural288

change due to the token length invariant property,289

Algorithm 1 : Soft Token Merging

Input: Full-length tokens x.
Output: Trained model θ
Initialize: Model weights θ, depth L.
for l = 1 to L do

Merge X into x′ using Eq. 1- 4.
Process merged x′ to y using Eq. 5.
Inflate y′ to ŷ using Eq. 6.
Assign X = ŷ for next layer.

end for
Back-propagate with task loss and update θ.

and (3) One also has the flexibility to incorporate 290

LoRA for more parameter-efficient tuning. 291

4 Experiments 292

We evaluate our approach on image-only, language- 293

only and vision-language tasks with variants of 294

transformer architectures. Specifically, we con- 295

duct both pretraining and evaluation on ImageNet- 296

1K (Deng et al., 2009) for image classifica- 297

tion, finetuning on wmt_t2t_ende_v003 from se- 298

qio 1 for machine translation, and finetuning on 299

VQAv2 (Goyal et al., 2017) and STVQA (Biten 300

et al., 2019) for visual question answering. 301

Implementation Details For ImageNet-1K im- 302

age classification, we validate our approach on the 303

ViT-S/16 variant (Dosovitskiy et al., 2021) and 304

follows the settings (Beyer et al., 2022) which 305

yields significantly better performance: We use 306

global average-pooling (GAP) instead of a class 307

token. We adopt the learned position embeddings 308

instead of fixed 2D sin-cos ones. We also intro- 309

1https://github.com/google/seqio
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duce RandAugment (Cubuk et al., 2020) (level 10)310

and Mixup (Zhang et al., 2018) (probability 0.2).311

We implement the baseline model in Jax (Brad-312

bury et al., 2018) and train it with Adam (Kingma313

and Ba, 2015), an initial learning rate of 0.001,314

weight decay of 0.0001 for 300 epochs on TPUv3-315

16 node. We choose to merge every two tokens316

and inject the token merging system into 4-th layer317

to achieve a favorably good trade-off between ac-318

curacy and efficiency. To compare with different319

dynamic token pruning methods implemented in320

Pytorch (Paszke et al., 2019), we also follow the321

setting in (Rao et al., 2021; Xu et al., 2023) and322

select the DeiT-S (12 Layers) (Touvron et al., 2021)323

and LV-ViT-S (16 layers) (Jiang et al., 2021) as the324

backbones. We finetune both models for 30 epochs325

on 2 NVIDIA V100 GPUs.326

For machine translation, we use the T5X code-327

base2 and adopt the pre-trained small and base328

models on C4 (Raffel et al., 2020), denoted as329

t5_small and t5_base respectively. t5_small330

and t5_base are both encoder-decoder architec-331

tures with 8 and 12 attention blocks. We finetune332

each model on wmt_t2t_ende_v003 to perform the333

downstream machine translation tasks. Batch size334

is 1500 and we use 4000 warm up iterations. For335

each model, we use a maximum sequence length336

of 256 and a batch size of 128 sequences. We train337

with Adafactor (Shazeer and Stern, 2018) for 20k338

iterations, a base learning rate of 0.001 and warmup339

steps of 1,000 on TPUv3-16 node.340

For VQA tasks, we train the recently proposed341

PaLI-5B model (Chen et al., 2023c) (detailed in342

Appendix section A.3) on VQA tasks under both343

fully fine-tuning and LoRA tuning settings. The344

image resolution is 812× 812 with a patch size of345

14× 14, resulting in 3364 visual tokens. We apply346

our token merging on visual tokens output from the347

pre-trained ViT and set p as 2 for all variants. For348

both fine-tuning settings, we use the batch size of349

128 and train with Adafactor for 500k iterations on350

TPUv3-16 node. The dropout rate is set as 0.1. For351

fully fine-tuning, the initial learning is 1e−4 while352

for LoRA with rank of 16, it’s 3e−5. We also eval-353

uate our approach in a lightweight vision-language354

model ViLT (0.11B, 12 Layers) (Kim et al., 2021).355

We implement our method in Pytorch, follow the356

setting in PuMer (Cao et al., 2023) to compare357

with DyViT (Rao et al., 2021), ToMe (Bolya et al.,358

2022) and PuMer (Cao et al., 2023). For a fair359

2https://github.com/google-research/t5x

comparison, we adapt different configurations of 360

merging position l to generate our model with sim- 361

ilar FLOPs with all competitors and evaluate the 362

accuracy/throughput trade-off on a single NVIDIA 363

1080Ti GPU. 364

Table 1: Comparison with DyViT* on ImageNet for
ViT-S/16 training from scratch over 5 random seeds.

Method Top-1 Acc(%) Params(M) FLOPs(G)

Original 80.1±0.24 23.8 4.6
DyViT* 76.4±0.31 30.9 6.1
Ours 79.3±0.18 24.0 2.9

Table 2: Comparisons on ImageNet for fine-tuning DeiT-
S. For each competing algorithm, the table reports Top-1
accuracy (%), FLOPs and inference throughput (imgs/s)
from respective papers. We run our method over 5
random seeds.

Method Top-1 Acc(%) FLOPs(G) Infer Tput.(imgs/s)

Original 79.8(-0.0) 4.6 2477
IdleViT 79.0(-0.8) 2.4 4072
DyViT 77.5(-2.3) 2.2 5147
EViT 78.5(-1.3) 2.3 3383
Evo-ViT 77.7(-2.1) 2.4 3173
ATS 78.2(-1.6) 2.3 2352
Ours 79.3±0.1 (-0.5) 2.3 4566

4.1 Results on ImageNet-1K Classification 365

ViT-S/16 Table 1 shows results in terms of test 366

accuracy, trainable parameters, and training cost 367

calculated based on overall FLOPs. We compare 368

with a variant of DyViT (Rao et al., 2021), which is 369

trained from scratch for 300 epochs. Note that addi- 370

tional trainable parameters of MLP prediction mod- 371

ule and computational training overhead of mask- 372

ing implementation are counted. Ours achieves bet- 373

ter test accuracy than DyViT, which suggests our 374

soft merging method benefits the optimization pro- 375

cess and yields better generalization performance 376

than gumbel-softmax for sampling. Moreover, our 377

input attentive module is lightweight and token 378

length-invariant, which only introduces negligible 379

parameters (0.2M) while the MLP prediction mod- 380

ule in DyViT is 7.1M. The masking scheme in 381

DyViT does not eliminate tokens during training, 382

which yields more computational costs than train- 383

ing a ViT-S/16 with full-length tokens. 384

DeiT-S We also compare our approach with 385

ATS (Fayyaz et al., 2022), Evo-ViT (Xu et al., 386

2022), EViT (Liang et al., 2022), DyViT (Rao 387

et al., 2021) and IdleViT (Xu et al., 2023) on DeiT- 388

S fine-tuning. We set the token-kept ratio k ∈ 389
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[0.8, 0.7, 0.6, 0.5] to generate different model con-390

figurations as in the respective papers. For our ap-391

proach, we inject soft merging into l ∈ [7, 6, 5, 4]-392

th transformer block to obtain similar FLOPs as393

the above competitors. Results in Table 2 show394

that ours (l = 4) achieves not only better test accu-395

racy but also faster inference throughput than those396

competitors (k = 0.5). This suggests that even397

without auxiliary knowledge distillation loss, our398

soft token merging provides more generalization399

capability during optimization than merely drop-400

ping the tokens. Figure 6 shows that ours yields401

the best accuracy and efficiency trade-offs across402

all configurations. Our method (l = 4) achieves403

better performance than the original DeiT-S while404

saving 24% FLOPs, suggesting that token merging405

might have an additional regularizing effect dur-406

ing fine-tuning. We also report more comparisons407

in terms of accuracy and throughput in Appendix408

section A.1 across different model configurations.409

LV-ViT-S For LV-ViT-S fine-tuning, we compare410

our method with DyViT and IdleViT. Figure 4411

shows a similar trend that ours bests accuracy-412

FLOPs trade-off. Appendix Table A.2 details the413

numbers under different model configurations.414

Figure 3: ImageNet-1K Top-1 accuracy-FLOPs trade-
off comparison on DeiT-S fine-tuning. Ours consistently
perform better than all ViT token pruning competitors.

4.2 Results on Machine Translation415

We validate our approach on WMT machine trans-416

lation task. Applying ViT token competitors to417

the encoder-decoder transformer architecture is418

nontrivial due to their domain-specific design of419

discrete optimization. As such, we only design420

variants of our method for self-comparison. As421

Figure 4: ImageNet-1K Top-1 accuracy-FLOPs trade-
off comparison on LV-ViT-S fine-tuning. Ours consis-
tently perform better than all competitors.

Table 3: Results of t5-small and t5-base on WMT ma-
chine translation task. The table reports BLEU score
(%), training, and inference FLOPs (G) for both variants
of our approach w/wo token inflation.

Method BLEU (%) Train/Infer FLOPs(G)

T5-small 22.9±0.27 134.9 / 3.3
Ours-w-inflat 21.6±0.21 121.9 / 3.1
Ours-wo-inflat 19.1±0.12 115.0 / 3.0

T5-base 24.3±0.29 417.1 / 51.7
Ours-w-inflat 23.6±0.22 355.4 / 49.4
Ours-wo-inflat 21.2±0.19 331.6 / 46.9

shown in Table 3, our method generalizes well 422

to the encoder-decoder transformers T5-small and 423

T5-base. We also validate that inflating tokens 424

drastically improves BLEU at a reasonable cost 425

during training and inference. This suggests that in- 426

formation preservation is a necessity for language 427

generation when encoded representations interact 428

with the target tokens in cross-attention layers. 429

4.3 Results on Visual Question Answering 430

We demonstrate the applicability of our approach to 431

the multimodal application, visual question answer- 432

ing (VQA). We choose the backbone architecture 433

of PaLI-5B, and fine-tune on VQAv2 and STVQA 434

datasets. Since the resolution of the input image is 435

812× 812, PaLI-5B takes the visual tokens scaling 436

up to 3, 364. We merge the encoded tokens from a 437

frozen pre-trained ViT without inflation since we 438

only need the high-level visual concepts in this lan- 439

guage generation task. The results in Table 4 show 440

that in the context of fully fine-tuning, our approach 441

achieves comparable accuracies while maintaining 442
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Table 4: Results of PaLI-5B fully fine-tuning and LoRA
on VQAv2 and STVQA. We report accuracy (%), train-
ing (sequences/s), and inference (tokens/s) throughputs.

Method Accuracy (%) ↑ Train/Infer Tput. ↑

Dataset: VQAv2

Full-ft. 81.7±0.20 72.0 / 154.7
Ours-Full-ft 81.4±0.17 108.5 / 180.3
LoRA 79.9±0.21 74.0 / 154.6
Ours-LoRA 79.9±0.18 115.4 / 179.1

Dataset: STVQA

Full-ft. 77.5±0.28 67.3 / 128.5
Ours-Full-ft 76.6±0.21 99.3 / 144.7
LoRA 77.8±0.18 69.3 / 128.5
Ours-LoRA 77.3±0.16 105.3 / 144.1

Table 5: Results of ViLT on VQAv2. The table reports
accuracy (%), inference throughput acceleration (×)
from respective papers. We run our method over 3
random seeds.

Method Accuracy (%) ↑ Infer Tput. ↑

Original. 69.5 1×
DyViT 67.9 1.75×
ToMe 68.4 1.79×
PuMer 68.9 1.76×
Ours 69.1±0.1 1.76×

a wall-clock acceleration. LoRA, as a parameter-443

efficient tuning approach, accelerates the training444

a bit without improving the inference speed. In-445

corporating LoRA, ours not only drastically saves446

training costs but also speeds up inference while447

maintaining comparable accuracies.448

We also evaluate our approach by training an-449

other VL model ViLT. Following the settings in450

PuMer, we configure all methods with similar451

speedup and compare the accuracy over 3 runs. As452

shown in Table 5, our approach outperforms these453

competitors, which demonstrates the effectiveness454

of our design choices.455

4.4 Analysis456

Abalation Study We show the effects of turning457

off each of our modifications to our full optimiza-458

tion process (1) Full method described in Alg. 1.459

(2) wo-inflat.: we don’t apply inflation to merged460

tokens. (3) wo-detach: we don’t detach the gra-461

dients of the score matrix in Eq. 6. We conduct462

experiments using both ViT-S/16 on ImageNet and463

T5-small on WMT. As shown in Table 6, removing464

token inflation can improve the performance of ViT-465

S/16 by providing a subset of tokens encoded with466

high-abstraction visual concepts in the discrimina-467

tive task. Detaching gradients of the score matrix is 468

a necessity in stabilizing the optimization process 469

for both architectures. We also see that both infla- 470

tion and gradient detach are designed and woven 471

to accomplish the empirical leap in the language 472

generation task. In Figure 5(b) and 5(c), red curve 473

and yellow curve also demonstrate that token in- 474

flation consistently improves BLEU score for both 475

t5-small and t5-base across different model FLOPs. 476

Comparison with Random Baseline In Fig- 477

ure 5(a), for ViT-S/16 on ImageNet-1K, we com- 478

pare models obtained by (1) uniform pruning: a 479

naive predefined pruning method that prunes the 480

same percentage of dimension d in each layer, (2) 481

ours: variants of our method by setting different 482

merging positions l, and our method outperforms 483

uniform pruning, demonstrating that token merg- 484

ing maintains higher generalization capacity than 485

architectural pruning. In addition to the uniform 486

pruning baseline, we also compare with a random 487

merging baseline to further separate the contribu- 488

tion of the intrinsic property of token sparsification 489

and soft merging method. Specifically, this random 490

baseline replaces the procedure for merging entries 491

of S in Eq. 4. Instead of using merging scores 492

derived from the learned S, it samples randomly 493

from a uniform distribution and then normalizes 494

the sum to 1. As shown in Figure 5 (random merg- 495

ing), ours consistently performs much better than 496

this random baseline. These results, as well as the 497

more sophisticated baselines in uniform pruning, 498

demonstrate the effectiveness of our approach.

Table 6: Ablation study on inflation and gradient detach
components on ImageNet-1K and WMT.

Variant ViT-S/16 (%) ↑ T5-small (%) ↑

Full 78.4±0.15 (+0.0) 22.9±0.27 (+0.0)
wo-inflat. 79.3±0.18 (+0.9) 21.6±0.21 (-1.3)
wo-detach 75.3±0.10 (-3.1) 13.2±0.10 (-9.7)

499

Table 7: Ours still yields reasonable performance for
both vision and language tasks with merging window
size p enlarged to 4.

ViT-S/16 T5-small

Method Train Test Train BLEU
FLOPs(G) ↓Acc.(%) ↑FLOPs(G) ↓(%) ↑

Original 4.6 80.1±0.24 134.9 22.9
Rand. (p = 2) 2.8 77.1±0.24 120.2 18.1
Rand. (p = 4) 1.9 76.0±0.28 115.4 15.7
Ours (p = 2) 2.9 79.3±0.18 121.9 21.6
Ours (p = 4) 2.0 78.1±0.12 117.0 19.3
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(a) ViT-S/16 (b) T5-small (c) T5-base

Figure 5: Performance/FLOPs trade-offs for different variants of ViT-S/16, T5-small, and T5-base architectures. We
report the results of all variants over 5 random seeds.

Table 8: Comparison with trainable token pooling. Ours
has best performance consistently.

ViT-S/16

Method Train Test
FLOPs(G) ↓ Acc (%) ↑

Original 4.6 80.1±0.24
Trainable Pooling (l = 4) 2.9 78.0±0.16
Ours (l = 4) 2.9 79.3±0.18
Trainable Pooling (l = 6) 3.2 78.8±0.14
Ours (l = 6) 3.3 79.7±0.14

Investigation on Merging/Inflation Position500

Different from dynamic token pruning approaches501

which set token-kept ratios k for different model502

configurations, our approach realizes the flexibil-503

ity by injecting merging and inflation modules at504

different layer positions l. Appendix section A.4505

illustrates this strategy. Figure 5 investigates the506

performance-FLOPs trade-off curves of different507

variants by alternating l. Our approach not only508

bests accuracy among all baselines, but also ap-509

pears to be more robust over different FLOPs.510

Investigation on Merging Window Size The de-511

sign of merging window size p gains the flexibility512

to explore more trade-offs between training budgets513

and test performance. Appendix section A.5 illus-514

trates this strategy. Table 7 show the results for ours515

and random baselines, each generates trade-offs be-516

tween train costs and test accuracy by alternating517

the window sizes (p ∈ {2, 4}). Ours consistently518

outperforms random baselines. Even with a large519

window size p = 4, ours still yields reasonable ac-520

curacy, demonstrating that the regularization effect521

of ours benefits generalization performance.522

Connection with Trainable Pooling523

(Pietruszka et al., 2022) proposes an atten-524

tion sparsification approach by learning to select525

the most informative token representations, 526

focusing on long document summarization task, 527

denoted as trainable pooling. Both introduce 528

elegant optimization schemes with end-to-end 529

differentiability, guided by merely task losses. 530

However, ours explicitly learns self-attentive 531

scores for token reduction without any modifica- 532

tion to the pre-defined transformer layers (attention 533

mechanism, architectural configuration). We 534

generalize (Pietruszka et al., 2022) to ViT-S/16 535

on ImageNet-1K classification by adopting 536

cross-attention for trainable visual token pooling at 537

l ∈ {4, 6}. As shown in Table 8, ours consistently 538

yields better performance. 539

5 Conclusion 540

We tackle a set of optimization challenges in token 541

merging and invent a corresponding set of tech- 542

niques, including soft token merging, inflation with 543

information preservation, and parameter-efficient 544

tuning to address these challenges. Each of these 545

techniques can be viewed as ‘add-ons’ to an origi- 546

nal part for training transformers into a correspond- 547

ing one that accounts for accuracy-efficiency trade- 548

offs. There is a detailed analysis of these add-ons 549

and a guiding principle governing the formulation 550

of each computational module. Together, they ac- 551

celerate training and inference without impairing 552

model accuracy – a result that uniquely separates 553

our approach from competitors. In light of the 554

success of our current strategy, it is interesting to 555

subject the proposed merging system to extremely 556

long text or video sequence tasks as a future inves- 557

tigation. For example, incorporating our approach 558

with Chen et al. (2023a) to fine-tune a pre-trained 559

LLM with an interpolated longer context window 560

to improve efficiency while maintaining the ex- 561

treme exploration capability. 562
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A Appendix833

We further compare ours and recently proposed834

progressive token pruning approaches on Deit-835

S by showing additional Top-1 accuracy on836

ImageNet-1K, FLOPs, and inference throughput.837

Table 9, 10, 11 and 12 demonstrate that our ap-838

proach outperforms all the competitors consistently.839

Table 9: Comparisons on ImageNet for fine-tuning DeiT-
S. For competing methods, we set the token kept ratio
as 0.4 while for our approach the merging position l are
set as 3.

Method Top-1 Acc(%) FLOPs(G) Infer Tput.(imgs/s)

IdleViT 78.4 2.1 4363
DyViT 76.0 1.9 5741
EViT 77.6 2.0 3717
Evo-ViT 77.5 2.1 3548
ATS 76.4 2.0 2580
Ours 78.7 2.0 4843

840

A.1 More results in DeiT-S841

Table 10: Comparisons on ImageNet for fine-tuning
DeiT-S. For competing methods, we set the token kept
ratio as 0.6 while for our approach the merging position
l are set as 5.

Method Top-1 Acc(%) FLOPs(G) Infer Tput.(imgs/s)

IdleViT 79.3 2.7 3693
DyViT 78.5 2.5 4474
EViT 78.9 2.6 3045
Evo-ViT 78.0 2.6 2998
ATS 78.9 2.7 2229
Ours 79.6 2.7 4002

Table 11: Comparisons on ImageNet for fine-tuning
DeiT-S. For competing methods, we set the token kept
ratio as 0.7 while for our approach the merging position
l are set as 6.

Method Top-1 Acc(%) FLOPs(G) Infer Tput.(imgs/s)

IdleViT 79.6 3.1 3361
DyViT 79.3 3.0 3390
EViT 79.5 3.0 2621
Evo-ViT 78.2 3.0 2606
ATS 79.2 3.1 2161
Ours 79.7 3.1 3408

A.2 More results in LV-ViT-S842

We detail the number in Figure 4 in terms of Top-1843

accuracy and FLOPs, as shown in Table 13, 14, 15844

Table 12: Comparisons on ImageNet for fine-tuning
DeiT-S. For competing methods, we set the token kept
ratio as 0.8 while for our approach the merging position
l are set as 7.

Method Top-1 Acc(%) FLOPs(G) Infer Tput.(imgs/s)

IdleViT 79.9 3.5 3031
DyViT 79.6 3.4 3405
EViT 79.8 3.5 2286
Evo-ViT 78.4 3.5 2293
ATS 79.6 3.4 2036
Ours 79.9 3.5 3321

and 16. We additionally provide inference through- 845

put to demonstrate the wall-clock acceleration. 846

Table 13: Comparisons on ImageNet for fine-tuning LV-
ViT-S. For competing methods, we set the token kept
ratio as 0.8 while for our approach the merging position
l are set as 7.

Method Top-1 Acc(%) FLOPs(G) Infer Tput.(imgs/s)

IdleViT 83.2 5.1 855
DyViT 83.2 5.1 958
Ours 83.3 5.0 970

Table 14: Comparisons on ImageNet for fine-tuning LV-
ViT-S. For competing methods, we set the token kept
ratio as 0.7 while for our approach the merging position
l are set as 6.

Method Top-1 Acc(%) FLOPs(G) Infer Tput.(imgs/s)

IdleViT 83.1 4.5 938
DyViT 83.0 4.6 1077
Ours 83.2 4.5 1002

A.3 Details of PaLI-5B (Chen et al., 2023c) 847

Different from ViLT (Kim et al., 2021) which 848

jointly pass the linear projected image patches and 849

text tokens to a multimodal transformer architec- 850

ture, PaLI-5B first encodes the image into visual to- 851

kens with 2B SigLIP ViT (contrastively pretrained 852

parameters) (Zhai et al., 2023) and passes the vi- 853

sual tokens together with text query tokens to a 3B 854

encoder-decoder UL2 transformer (Tay et al., 2023) 855

that generates a text output. In the experiments, we 856

use 812× 812 image resolution to demonstrate the 857

efficiency and effectiveness of our token merging 858

approach. 859

A.4 Illustration of Merging Position l 860

Different from existing progressive token pruning 861

works, our system facilitates different trade-off con- 862
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Table 15: Comparisons on ImageNet for fine-tuning LV-
ViT-S. For competing methods, we set the token kept
ratio as 0.6 while for our approach the merging position
l are set as 5.

Method Top-1 Acc(%) FLOPs(G) Infer Tput.(imgs/s)

IdleViT 82.9 4.0 1040
DyViT 82.6 4.2 1206
Ours 83.0 4.0 1188

Table 16: Comparisons on ImageNet for fine-tuning
DeiT-S. For competing methods, we set the token kept
ratio as 0.5 while for our approach the merging position
l are set as 4.

Method Top-1 Acc(%) FLOPs(G) Infer Tput.(imgs/s)

IdleViT 82.6 3.6 1131
DyViT 82.0 3.7 1321
Ours 82.8 3.5 1378

figurations via injecting the merging module to a863

different transformer block, depicted as merging864

position l in Figure 7. The merging position l ef-865

fectively adapts the portion of transformer blocks866

that take reduced tokens, hence realizing different867

efficiency and accuracy trade-offs.868

A.5 Illustration of Merging Window Size p869

As shown in Figure 8, we illustrate the merging870

score matrices with different window size. Our ap-871

proach has the flexibility in aggregating p local to-872

kens into one with self-attentive importance scores,873

which is beneficial in maintaining reasonable task874

performance even with a large p.875

Image ViT-G/14

Text Tokenizer

UL2
Transformer
Encoder

UL2
Transformer
Decoder

Generated
Text

Figure 6: Overview of PaLI-5B.

Transformer Block l-th
Transformer Block

Our Merging System

...... ......

Figure 7: Illustration of applying our merging system to
position l.

(a) Merge p = 2 tokens to 1 (b) Merge p = 4 tokens to 1

Figure 8: Illustration of different merging window sizes.
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