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Abstract001

Recent advances in reinforcement learning for002
language model post-training, such as Group003
Relative Policy Optimization (GRPO), have004
shown promise in low-resource settings. How-005
ever, GRPO typically relies on solution-level006
and scalar reward signals that fail to capture007
the semantic diversity among sampled com-008
pletions. This leads to what we identify as a009
diversity-quality inconsistency, where distinct010
reasoning paths may receive indistinguishable011
rewards. To address this limitation, we propose012
Diversity-aware Reward Adjustment (DRA), a013
method that explicitly incorporates semantic014
diversity into the reward computation. DRA015
uses Submodular Mutual Information (SMI)016
to downweight redundant completions and am-017
plify rewards for diverse ones. This encourages018
better exploration during learning, while main-019
taining stable exploitation of high-quality sam-020
ples. Our method integrates seamlessly with021
both GRPO and its variant DR. GRPO, result-022
ing in DRA-GRPO and DGA-DR. GRPO. We023
evaluate our method on five mathematical rea-024
soning benchmarks and find that it outperforms025
recent strong baselines. It achieves state-of-the-026
art performance with an average accuracy of027
58.2%, using only 7,000 fine-tuning samples028
and a total training cost of approximately $55.029

1 Introduction030

Recent advancements in large language mod-031

els (LLMs) post-training have been significantly032

shaped by DeepSeek-R1-Zero (Guo et al., 2025),033

which proposes a novel R1-Zero training frame-034

work. Departing from traditional pipelines that rely035

on supervised fine-tuning (SFT) as a prerequisite,036

this method employs reinforcement learning (RL)037

directly on base LLMs. This success is primarily at-038

tributed to the Group Relative Policy Optimization039

(GRPO) algorithm (Shao et al., 2024). Under the040

limited memory and computational resources, we041

note that RL-based fine-tuning has shown highly042
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Figure 1: Comparison between vanilla GRPO (Top)
and GRPO with our diversity-aware reward adjustment
(DRA) (Bottom). While vanilla GRPO relies solely
on scalar solution-level rewards (quality), our method
adjusts these rewards using semantic diversity signals
computed among sampled completions within a group.
This encourages more effective exploration and reduces
redundancy during reinforcement learning.

promising results for small language models (Dang 043

and Ngo, 2025; Luo et al., 2025; Team, 2025). Un- 044

like Proximal Policy Optimization (PPO), GRPO 045

eliminates the need for a separate critic network. 046

Instead, it evaluates the advantages (quality of ac- 047

tions) based on the relative performance of multiple 048

sampled outputs (completions) for a given prompt. 049

The advantage of each completion is calculated 050

by normalizing its reward relative to group perfor- 051

mance statistics, i.e., mean and standard deviation. 052

Despite its promise, GRPO and its variants (e.g,. 053

DR. GRPO (Liu et al., 2025)) typically rely on re- 054

ward signals that offer only scalar, solution-level 055

judgments (such as correctness), without account- 056

ing for the diversity of reasoning paths that may 057

lead to the same solution. As a result, semantically 058

distinct completions, whether correct or incorrect, 059

can receive (nearly) identical rewards, producing 060

indistinguishable advantage estimates that fail to 061

reflect meaningful differences in reasoning. See 062
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examples for this fact in Appendix H. This limi-063

tation is especially crucial in resource-constrained064

settings, where only a few completions can be sam-065

pled per prompt, often failing to capture the full066

range of plausible reasoning paths. In such scenar-067

ios, the training signal primarily favors exploitation068

by reinforcing high-reward outputs, while offering069

limited guidance for exploring alternative, yet po-070

tentially valid, reasoning paths. A concrete anal-071

ogy is a teacher grading students who all solve a072

math problem correctly and receive full marks. Al-073

though the outcomes are accurate, the evaluation074

overlooks the variety of methods the students may075

have employed, which could provide deeper in-076

sights into their understanding and problem-solving077

processes. A similar limitation arises even when078

the answers are incorrect, as students (or models)079

may still demonstrate valuable, distinct reasoning080

approaches that are indistinguishably penalized un-081

der such scalar rewards.082

To address the limitations of original reward083

signals in capturing reasoning diversity, we pro-084

pose Diversity-aware Reward Adjustment (DRA), a085

novel method that explicitly models semantic diver-086

sity among sampled completions during learning.087

To the best of our knowledge, this is the first ap-088

proach to consider diversity-aware reward shaping089

directly into the training process of GRPO. DRA090

reweights each completion’s reward based on its091

semantic similarity to others in the group, assign-092

ing higher importance to diverse completions while093

reducing the influence of redundant ones. The con-094

ceptual comparison with vanilla GRPO is shown095

in Fig. 1. Our method is implemented using Sub-096

modular Mutual Information (SMI), instantiated097

with a Graph-Cut function over embedding sim-098

ilarities. Our method integrates seamlessly with099

GRPO and its variant DR. GRPO, which we refer100

to as DRA-GRPO and DRA-DR. GRPO, respec-101

tively. Extensive evaluations on five mathematical102

reasoning benchmarks demonstrate the effective-103

ness of our approach in low-resource settings, i.e.,104

fine-tuning a small model (1.5B) with only 7,000105

samples.106

2 Method107

Preliminary. We briefly review the Group Relative108

Policy Optimization (GRPO) algorithm (Shao et al.,109

2024), as employed in (DeepSeek-AI, 2025). Lan-110

guage model generation is formulated as a token-111

level Markov Decision Process (MDP). At each112

generation step t, the state st is the concatenation of113

the input question and the partial output sequence 114

generated thus far, denoted as st = q;o<t. The 115

policy πθ(· | st) selects the next token ot from the 116

vocabulary A, inducing a deterministic transition 117

to the next state st+1 = st; [ot]. Generation be- 118

gins by sampling an initial state s1 = q ∼ pQ 119

from the distribution over input questions, and 120

terminates either upon generation of the special 121

[eos] token or when the token budget is exhausted. 122

GRPO proposes to sample a group of responses 123

C = {o1, . . . ,oG} per question and compute their 124

returns R = {{R(q,o1), . . . , {R(q,oG)}. Below, 125

we present the GRPO objective, omitting the KL- 126

divergence term for clarity. 127

JGRPO(πθ) = Eq∼pQ,{oi}Gi=1∼πθold
(·|q)

1

G

G∑
i=1

1

|oi|

|oi|∑
t=1

{
min

[
πθ(oi,t|q,oi,<t)

πθold(oi,t|q,oi,<t)
Âi,t,

clip
(

πθ(oi,t|q,oi,<t)

πθold(oi,t|q,oi,<t)
, 1− ϵ, 1 + ϵ

)
Âi,t

]}
,

(1)

128

where Âi,t denotes the advantage function com- 129
puted by: 130

Âi,t =
R(q,oi)−mean({R(q,o1), . . . , R(q,oG)})

std({R(q,o1), . . . , R(q,oG)})
.

(2) 131

A more recent work DR. GRPO (Liu et al., 2025) 132

proposes to remove the terms 1
|oi| and std(·) in Eqs. 133

1 and 2, to improve token efficiency. 134

Diversity-Quality Inconsistency. Despite this, 135

both algorithms evaluate a group of independently 136

sampled completions πθold and reward signals typ- 137

ically capture only solution-level correctness (see 138

Appendix A), providing a sparse scalar judgment 139

for each completion. However, this scalar reward 140

(quality) overlooks the diverse reasoning paths that 141

can yield identical or similar outcomes, resulting 142

in what we term Diversity-Quality Inconsistency. 143

While we illustrate this issue through some ex- 144

amples in Appendix H, we further empirically vali- 145

date our hypothesis that reward alone fails to reflect 146

the underlying variability in reasoning strategies. 147

To this end, we compare the structural dissimilarity 148

of completions, measured via embedding distances, 149

with their reward differences. Specifically, we use 150

Spearman’s rank correlation to assess the mono- 151

tonic relationship between reward difference and 152

semantic distance across sampled completions, i.e., 153

more semantically different completions tend to 154

have more divergent rewards. This non-parametric 155

metric is well-suited for capturing rank-level agree- 156

ment without assuming linearity, and allows us to 157
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Figure 2: Distribution of p-values from Spearman’s rank
correlation between completion quality and semantic
diversity. The test is conducted for every prompt.

quantify whether reward gradients align with the158

semantic diversity present in the group of comple-159

tions. As shown in Fig. 2, we observe that for the160

majority of prompts (over 80%), the reward values161

assigned to their completions exhibit no statistical162

correlation (i.e., p-value> 0.05) with the seman-163

tic diversity, which highlights the necessity to ex-164

plicitly characterize the inherent diversity among165

completions. Please refer to Appendix B for more166

details and results for this investigation.167

Diversity-aware Reward Adjustment. To address168

this, we propose to reweight each sample’s reward169

based on its relative diversity/redundancy within170

the group: completions that are more distinct from171

the rest are assigned higher importance, while re-172

dundant samples are downweighted. To this end,173

we propose to replace R(q,oi) with our diversity-174

aware adjusted reward R̃(q,oi) in Eq. 2 as:175

R̃(q,oi) =
R(q,oi)

1 + SMI({oi}, C \ {oi})
, (3)176

where SMI({oi}, C \ {oi}) denotes the Submodu-177

lar Mutual Information (SMI) between query com-178

pletion oi and the remaining completions denotes179

as C \ {oi}. Submodular functions, with their di-180

minishing returns property, naturally model diver-181

sity and redundancy. SMI quantifies the shared182

information between sets under a submodular func-183

tion (Iyer et al., 2021a,b). We instantiate SMI us-184

ing the Graph-Cut function over a similarity kernel185

s(·, ·) presented as186

SMI({oi}, C \ {oi}) =
∑

j∈C\{oi}

s(oi, j), (4)187

where we adopt the assumption that s(oi, j) =188

s(j,oi). It measures the total symmetric similarity189

between oi and the remaining elements. In this190

work, we use an extra small pretrained model to191

get the embedding for each completion. Due to sub-192

modularity, this formulation captures diminishing193

redundancy: elements more similar to the set con- 194

tribute less marginal information. Thus, Graph-Cut 195

SMI provides a principled measure of oi’s relative 196

redundancy (high value) or diversity (low value) 197

within the group. In the context of reward adjust- 198

ment in Eq. 3, we assign a more redundant com- 199

pletion with a lower weight to its corresponding re- 200

ward and a diverse completion a higher weight. We 201

use cosine similarity as the kernel s(·), enabling 202

efficient computation of the SMI via a precom- 203

puted similarity matrix (See Appendix D for more 204

discussion). This results in a total computational 205

complexity of O(G2) for a group of size G. A 206

Pytorch-like algorithmic summary that involved 207

this fact is provided in Appendix C. 208

3 Experiment 209

3.1 Experimental Setup 210

Training Dataset. We adopt a high-quality dataset 211

curated by (Dang and Ngo, 2025). This dataset 212

consists of only 7000 samples refined and selected 213

from the s1 dataset (Muennighoff et al., 2025) and 214

the DeepScaleR dataset (Luo et al., 2025) with 215

mixed problem difficulties. 216

Evaluation Dataset. We select five popular mathe- 217

matical reasoning benchmarks (see Appendix E). 218

Baselines. We evaluate our approach against 219

various baseline models. The general-purpose 220

large model: (i) Llama-3.1-70B-Instruct (AI, 221

2024a) and (ii) o1-preview (AI, 2024b). For 222

mathematics-focused 7B models, we consider: 223

(iii) Qwen-2.5-Math-7B-Instruct (Yang et al., 224

2024); (iv) rStar-Math-7B (Guan et al., 2025); 225

(v) Eurus-2-7B-PRIME (Cui et al., 2025); and 226

(vi) Qwen2.5-7B-SimpleRL (Zeng et al., 2025). 227

Lastly, for mathematics-focused 1.5B models, 228

instead of our base model, we include (vii) 229

DeepScaleR-1.5B-Preview (Luo et al., 2025), 230

(viii) Still-3-1.5B-Preview (Team, 2025), and 231

(ix) Open-RS (Dang and Ngo, 2025). 232

Implementation. As proof-of-concept, we adopt 233

DeepSeek-R1-Distill-Qwen-1.5B (DeepSeek- 234

AI, 2025) as our base model for training due to its 235

balance of efficiency and reasoning potential (Dang 236

and Ngo, 2025). We use 4x NVIDIA A100 40GB 237

GPUs. Please refer to Appendix F for the details 238

of hyperparameters. 239

3.2 Empirical Analysis 240

Main Results in Accuracy. As shown in Ta- 241

ble 1, our primary observation is that integrating 242

our method with DR. GRPO outperforms all base- 243

line approaches across various parameter scales, 244
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Table 1: Zero-shot pass@1 performance across benchmarks. Dashes (–) denote unavailable official scores. ’†’
denotes our implementation. Scores for o1-preview are sourced from AI, 2024b; others from Dang and Ngo, 2025.
We also report the number of samples used to fine-tune the small models.

Model Fine-tuning Samples AIME24 MATH-500 AMC23 Minerva OlympiadBench Avg.

General Models
Llama-3.1-70B-Instruct 16.7 64.6 30.1 35.3 31.9 35.7
o1-preview 44.6 85.5 – – – –

7B Models
Qwen-2.5-Math-7B-Instruct 13.3 79.8 50.6 34.6 40.7 43.8
rStar-Math-7B 26.7 78.4 47.5 – 47.1 –
Eurus-2-7B-PRIME 26.7 79.2 57.8 38.6 42.1 48.9
Qwen2.5-7B-SimpleRL 26.7 82.4 62.5 39.7 43.3 50.9

1.5B Models
DeepSeek-R1-Distill-Qwen-1.5B Base Model 28.8 82.8 62.9 26.5 43.3 48.9
Still-3-1.5B-Preview 30,000 32.5 84.4 66.7 29.0 45.4 51.6
DeepScaleR-1.5B-Preview 40,000 43.1 87.8 73.6 30.2 50.0 57.0
Open-RS1 18,615 30.0 83.8 70.0 29.0 52.4 53.0
Open-RS2 7,000 30.0 85.4 80.0 30.5 52.4 55.7
Open-RS3 7,000 46.7 84.4 72.5 26.8 51.3 56.3
GRPO† 7,000 30.0 86.0 72.5 32.4 53.0 54.8
DR. GRPO† 7,000 33.3 83.4 80.0 30.5 52.1 56.0

Our Models
DRA-GRPO 7,000 36.7 86.2 75.0 32.4 53.0 56.7
DRA-DR. GRPO 7,000 36.7 85.2 85.0 30.5 53.8 58.2

achieving an average accuracy of 58.2% across245

all benchmarks. Notably, it achieves the highest246

accuracy on both AMC23 (85%) and Olympiad-247

Bench (53.8%). When incorporated with GRPO,248

our method obtains an average accuracy of 56.7%,249

which is on par with the previous state-of-the-art,250

DeepScaleR-1.5B-Preview (57%). However, our251

approach requires only 7,000 fine-tuning samples,252

in contrast to the approximately 40,000 samples253

used by DeepScaleR-1.5B-Preview. These re-254

sults demonstrate the superiority of our method in255

low-resource settings, i.e., a small model with 1.5B256

parameters and limited samples for fine-tuning.257

Ablation Study. The ablation results are258

summarized from Table 1. The main obser-259

vation is that, compared to the base model260

DeepSeek-R1-Distill-Qwen-1.5B, our methods261

yield improvements of 7.8% and 9.3% in aver-262

age accuracy. More importantly, integrating our263

method with GRPO leads to a 1.9% increase in ac-264

curacy compared to using GRPO alone. A similar265

conclusion can be drawn for DR. GRPO, where our266

method achieves an average accuracy gain of 2.2%267

across all benchmarks. We also highlight several268

notable improvements: our method boosts perfor-269

mance on AIME24 by 6.7% and 3.4% for GRPO270

and DR. GRPO, respectively, and achieves a 5%271

gain on AMC23 with DR. GRPO. These results272

further confirm the effectiveness of our method.273

Efficiency. Compared to the vanilla GRPO and274

DR. GRPO, our method introduces a small over-275

head due to encoding the completions. As shown276

in the table following, our method introduces ap- 277

proximately 6% runtime and 1.4% GPU overhead. 278

Runtime GPU

Vanilla ∼84s/step ∼38.77GB/device
+ DGA ∼90s/step ∼39.34GB/device

Notably, under 279

our hardware 280

constraint, i.e., 281

A100 40G, with- 282

out applying our method, increasing the mini-batch 283

size by even one is not feasible. Therefore, our 284

approach makes more efficient use of the available 285

hardware, and the introduced overhead is relatively 286

minor and unlikely to impact practical deployment. 287

Training Cost. Training for 500 steps takes approx- 288

imately 12.5 hours on a 1×4 A100 40GB setup, 289

costing an estimated $55, which is on par with 290

Open-RS (2025). See Table S3 of Appendix G for 291

more comparisons with different methods. 292

Discussion. We have included additional discus- 293

sion on model analysis in Appendix I. 294

4 Conclusion 295

In this work, we propose DRA, a pioneering 296

method that improves GRPO-style reinforcement 297

learning by modeling semantic diversity among 298

completions. By reweighting rewards using Sub- 299

modular Mutual Information, DRA encourages ex- 300

ploration of diverse reasoning paths while main- 301

taining strong performance. This effectively 302

mitigates the exploration-exploitation imbalance 303

caused by scalar rewards. Integrated with GRPO 304

and DR. GRPO, our method achieves state-of-the- 305

art results on five math reasoning benchmarks us- 306

ing only 7,000 training samples, demonstrating its 307

effectiveness in low-resource settings. 308
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Limitations309

While our proposed method demonstrates strong310

empirical performance and efficiency under con-311

strained settings, several limitations remain.312

First, due to limited computational resources,313

we restrict our experiments to small-scale mod-314

els (1.5B parameters) and small group sizes (e.g.,315

6 completions per prompt). Although this setup316

aligns with our motivation to improve low-resource317

fine-tuning, it may not fully reflect the scalability318

and behavior of our method in larger models or319

with denser sampling budgets. Extending DRA320

to larger-scale scenarios or more diverse decoding321

strategies remains an open direction.322

Second, our implementation relies on precom-323

puted sentence embeddings for diversity measure-324

ment, using an external lightweight model. While325

this design introduces minimal overhead, it as-326

sumes that the embedding space sufficiently cap-327

tures semantic similarity relevant to reward shap-328

ing. Future work may explore end-to-end learned329

embeddings or reward functions more tightly inte-330

grated with the policy model.331

Additionally, as our analysis includes mathemat-332

ical problem-solving, we note that our evaluation333

and interpretations stem from a computer science334

perspective rather than a formal mathematical one.335

While we strive for rigor, some analyses may re-336

main intuitive rather than strictly formal (they are337

intended solely to illustrate example scenarios and338

do not impact the conclusion and core validity of339

our method); nonetheless, we have conducted all340

evaluations to the best of our knowledge and under-341

standing.342

Lastly, while Submodular Mutual Information343

offers a principled way to model redundancy, we344

have primarily explored the Graph-Cut instantia-345

tion. Other SMI variants, such as LogDet (we have346

some discussion on this in Appendix D), might pro-347

vide alternative trade-offs between efficiency and348

expressivity, but remain underexplored in this work349

as our focus is on establishing a proof-of-concept.350
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A Reward Function in Mathematical473

Reasoning474

We show some typical reward functions below.475

These functions often compute the reward based on476

some simple rules, which fail to explicitly capture477

the inherent semantic diversity among completions.478

Accuracy Reward. This function assigns binary479

rewards to model completions based on exact agree-480

ment with the ground truth solution. It begins by481

parsing the ground truth using a LaTeX extraction482

configuration and skips evaluation with a full re-483

ward of 1.0 if the solution is unparseable. For valid484

cases, the model’s output is also parsed with nor-485

malization settings that enforce clean LaTeX for-486

matting, including handling of boxed expressions487

and units. The parsed output is compared against488

the ground truth using a verification function. If489

they match exactly, the function assigns a reward490

of 1.0; otherwise, the reward is 0.0.491

Cosine (Correctness) Reward. This is an up-492

graded version of Accuracy Reward. It computes493

rewards for model completions by evaluating their494

correctness and scaling the reward based on com-495

pletion length using a cosine schedule. For each496

completion, it parses both the model output and the497

ground truth solution using a LaTeX-aware parsing498

configuration. If parsing fails for the ground truth,499

the function assigns a default reward of 1.0 and500

skips evaluation. Correctness is verified by com-501

paring the parsed outputs. The reward is then deter-502

mined by a cosine function of the output length rel-503

ative to a maximum length parameter, encouraging504

shorter correct answers by assigning them higher505

rewards and penalizing shorter incorrect ones more506

heavily.507

Format Reward. This function is designed to508

evaluate a list of completions by checking whether509

the reasoning process is properly enclosed within510

<think> and </think> tags. It defines an internal511

function count_tags that inspects each text for512

exactly one occurrence of the \n</think>\n tag513

sequence. This is because the opening <think> tag514

is assumed to be present in the system prompt and515

thus does not need to be counted. The function516

extracts the content strings from the completions,517

applies the count_tags function to each, and re-518

turns a list of floating-point scores. A score of 1.0519

is assigned if the proper </think> tag format is520

found exactly once; otherwise, a score of 0.0 is521

given.522

B Investigation on Diversity-Quality 523

Inconsistency 524

To investigate the relationship between reward sig- 525

nals and reasoning diversity, we conduct an empir- 526

ical analysis over prompts with multiple sampled 527

completions. For each prompt, we compute pair- 528

wise semantic distances between completions using 529

cosine distance over sentence-level embeddings ob- 530

tained from a pre-trained encoder. In parallel, we 531

compute the absolute differences in scalar reward 532

values assigned to each completion. To measure 533

how well reward differences reflect semantic di- 534

versity, we compute Spearman’s rank correlation 535

coefficient between the reward distance matrix and 536

the embedding distance matrix for each prompt. 537

We choose Spearman’s rank correlation for three 538

key reasons. First, it is a non-parametric statis- 539

tic, making no assumptions about the linearity or 540

distribution of the underlying variables, an impor- 541

tant consideration in our setting, where reward 542

scales and semantic distances may exhibit com- 543

plex, non-linear relationships. Second, Spearman 544

correlation is based on rank order, allowing us to 545

capture monotonic trends in the data, i.e., whether 546

more semantically different completions is likely to 547

have more divergent rewards. Third, it is robust to 548

scale mismatches between the two metrics (scalar 549

rewards vs. high-dimensional embeddings), since 550

it evaluates alignment in relative ordering rather 551

than absolute magnitude. 552

We analyze the distribution of Spearman coef- 553

ficients across prompts (see Fig. 2) and observe 554

that in the majority of cases, correlation is low or 555

statistically insignificant (p > 0.05). This provides 556

strong empirical evidence that reward alone does 557

not capture the semantic diversity of model outputs, 558

a phenomenon we define as the Diversity-Quality 559

Inconsistency. These findings motivate the need for 560

training objectives that explicitly model and pre- 561

serve reasoning diversity in addition to optimizing 562

for correctness. 563

In the investigation in Fig. 2, we sampled 564

around 3000 prompts with their completions, 565

and we use jina-embeddings-v2-small-en as 566

the embedding model. We also show a re- 567

sult by using a different embedding model 568

nomic-ai/nomic-embed-text-v1.5 (Nussbaum 569

et al., 2025) in Fig. S3. Similarly, for over 80% 570

prompts, their completion diversity and rewards 571

are irrelevant. 572
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Figure S3: Distribution of p-values from Spear-
man’s rank correlation between completion qual-
ity and semantic diversity. Embedding model is
nomic-ai/nomic-embed-text-v1.5.

C Algorithmic Summary573

Please refer to Algorithm 1.574

D Reweighting via Precomputed575

Similarity Matrix576

We reiterate that, according to Eqs. 3 and 4 the577

adjusted reward weight through Graph-cut SMI578

with cosine similarity can be presented as579

R̃(q,oi) =
R(q,oi)

1 + SMI({oi}, C \ {oi})
(5)580

=
R(q,oi)

1 +
∑

j∈C\{oi} s(oi, j)
581

=
R(q,oi)

s(oi,oi) +
∑

j∈C\{oi} s(oi, j)
582

=
R(q,oi)∑G

j=0Lij

.583

We note that
∑G

j=0Lij is the sum of the ith row of584

the similarity matrix L, so this can be efficiently585

computed through Pytorch tensor operation trick586

for all completions as shown in Algorithm 1, i.e.,587

similarity_matrix.sum(dim=1).588

Another potential diversity-based SMI is known589

as logdet SMI (). In our context, it is defined as590

SMI({oi}, C \ {oi}) (6)591

= log detLii + log detLC\{oi} − log detLC ,592

where Lii = 1 denotes the ith diagonal value of593

the similarity, and its value is 1 as we use a co-594

sine similarity kernel. LC\{oi} and LC denotes the595

rows and columns indexed by the set C \ {oi} and596

C, respectively. Despite we need a complexity of597

O(G3) to precompute log detLC , for each oi, we598

need compute log detLC\{oi}, which is obviously599

Algorithm 1 PyTorch Code for diversity-aware
reward adjustment.

#input: completions_flat: A list of
completions sampled for each prompt
(question)

#Some early steps (e.g., compute reward
for each completion)

...

# Compute embeddings and similarity
matrix

embeddings = self.sentence_extractor.
encode(completions_flat)

embeddings = torch.from_numpy(embeddings
).to(device)

embeddings = F.normalize(embeddings , p
=2, dim=1)

similarity_matrix = embeddings @
embeddings.T

# Compute the weights in parallel for
all completions

similarity_sums = similarity_matrix.sum(
dim=1)

diversity_weights = 1.0 / (
similarity_sums + 1e-6)

#diversity_weights = gather(
diversity_weights)

# Adjust rewards
rewards = rewards * diversity_weights

# The following step is computing group -
wise rewards as in the vanilla
version.

mean_grouped_rewards = rewards.view(-1,
self.num_generations).mean(dim=1)

...

less efficient than Graph-cut SMI and would be 600

challenging for scaling. 601

E Dataset 602

We select five datasets: AIME24 1, MATH- 603

500 (2023; 2021), AMC23 2, Minerva (2022) and 604

OlympiadBench (2024). 605

1https://huggingface.co/datasets/AI-MO/
aimo-validation-aime

2https://huggingface.co/datasets/AI-MO/
aimo-validation-amc
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F Implementation Detail606

We provide our hyperparameters for both GRPO607

and DR. GRPO is in the table below S2. The608

implementation is based on the source code of609

trl package from Huggingface (von Werra et al.,610

2020). The training pipeline and prompt setups611

are based on https://github.com/knoveleng/612

open-rs. We carefully select a small model,613

jina-embeddings-v2-small-en (Günther et al.,614

2023), as the completion embedding model, which615

supports processing a sequence with up to 8192616

tokens. The reason is that we want to preserve the617

efficiency, and we do not tend to adjust original618

hyperparameters, such as mini-batch size.619

Table S2: Hyperparameter Setups for our trainers.

Parameter Value

General Settings
bf16 true
use_vllm true
vllm_device auto
vllm_enforce_eager true
vllm_gpu_memory_utilization 0.7
vllm_max_model_len 4608
do_eval false

Training Configuration
gradient_accumulation_steps 4
gradient_checkpointing true
gradient_checkpointing_kwargs use_reentrant: false
learning_rate 1.0e-06
lr_scheduler_type cosine_with_min_lr
lr_scheduler_kwargs min_lr_rate: 0.1
warmup_ratio 0.1
max_steps 500
num_train_epochs 1
per_device_train_batch_size 4
per_device_eval_batch_size 6

Generation Settings
max_prompt_length 512
max_completion_length 3584
num_generations 6
temperature 0.7

Reward Configuration
reward_funcs format, accuracy (cosine)
reward_weights 1.0, 2.0

G Detail of Training Cost620

The detail of the training cost is shown in Table621

S3. Our price is estimated based on standard on-622

demand GPU pricing from efficient cloud providers623

(e.g., Lambda Labs).624

H Case Study: Examples of Diverse 625

Completions 626

Here, we present selected examples from the 627

GRPO training process to illustrate the key mo- 628

tivation of our paper. Given the same problem, the 629

LLM can generate diverse answers; however, these 630

answers often receive very similar reward scores. 631

This suggests that learning based on solution-level 632

judgments may fail to distinguish between differ- 633

ent reasoning paths. Below, we show two cases 634

that produce correct answers but demonstrate dis- 635

tinct reasoning perspectives and styles. We also 636

present an example where both completions follow 637

coherent reasoning processes but result in incorrect 638

answers. 639

H.1 Example 1 640

Question: Fig. S4. 641

Two Completions: (i) Fig. S5 and (ii) Fig. S6. 642

Short Analysis. While both outputs correctly ar- 643

rive at the answer 1007 , they reflect notably dif- 644

ferent problem-solving perspectives. 645

The first response adopts an empirical, trial- 646

based strategy. Its reward score is 2.103. The 647

model explores specific candidate values of the di- 648

visor m, such as 1007, 1008, and 1009, and evalu- 649

ates the resulting remainders. This process mimics 650

a human-like, exploratory reasoning pattern, i.e., 651

tentative, iterative, and conversational—ultimately 652

identifying that m = 1008 yields the maximum 653

remainder 1007. The approach is grounded in pat- 654

tern recognition and error correction, reflecting a 655

“numerical experimentation” mindset often used by 656

learners. 657

In contrast, the second response applies a more 658

principled, algebraic perspective. Its reward score 659

is 2.110, almost the same as the first one. The 660

model leverages the mathematical identity that the 661

maximum remainder when dividing a by m is 662

m − 1, which occurs when a ≡ −1 mod m, or 663

equivalently, when m | (a + 1). Using this, it re- 664

duces the problem to finding the largest proper divi- 665

sor of 2016. It proceeds to factor 2016 as 25×32×7 666

and identifies m = 1008 as the largest valid divisor, 667

yielding n = 1007. This response demonstrates 668

structured mathematical reasoning and modular 669

arithmetic awareness, providing a generalizable 670

method beyond this specific example. 671

H.2 Example 2 672

Question: Fig. S7. 673

9

https://github.com/knoveleng/open-rs
https://github.com/knoveleng/open-rs
https://github.com/knoveleng/open-rs


Table S3: Comparison of training cost by different methods.

Model rStar-Math-7B Eurus-2-7B-PRIME Qwen2.5-7B-SimpleRL DeepScaleR-1.5B-Preview Still-3-1.5B-Preview Open-RS Ours

SFT Data 7.3M 230k 0 0 0 0 0
RM Data 7k 0 0 0 0 0 0

RM Source None Eurus-2-7B-SFT None None None None None
RL Data 3.647M × 16 150k × 4 8k × 8 40k × 16 30k × 8 7k × 6 7k × 6

Hardware 10×8 H100 80GB + 15×4 A100 40GB 1×8 A100 80GB 4×6 A100 80GB 8× A100 80GB 1×8 A100 80GB 1×4 A40 48GB 1×4 A100 40GB
Time – 72h 36h 240h 150h 24h 12.5h

Cost Est. – $1088 $1633 $3629 $2268 $42 $55

Two Completions: (i) Figs. S8 and S9 and (ii)674

Figs. S10 and S11.675

Short Analysis. Both solutions arrived at the cor-676

rect final result 2419 , but they differ significantly677

in structure, presentation, and reasoning style.678

The first solution exhibits a concise, formula-679

driven approach, closely resembling traditional680

mathematical write-ups. It receives a reward score681

of 2.782. It efficiently identifies the block structure682

of the sequence, derives the closed-form expres-683

sion for the total number of terms, and computes684

the required sum using algebraic manipulation and685

minimal narrative.686

In contrast, the second solution adopts a more687

exploratory and pedagogical style. It receives a re-688

ward score of 2.855. It progressively builds under-689

standing through example-driven reasoning, error-690

checking, and step-by-step refinements. While691

more verbose, it mirrors how a human might think692

aloud while problem-solving, providing greater693

transparency into the model’s internal reasoning.694

H.3 Example 3695

Question: Fig. S12.696

Two Completions: (i) Figs. S13 and S14 and (ii)697

Figs. S15 and S16.698

Short Analysis. In this example, we show that both699

responses are wrong and receive a reward score700

of 0.018 and 0.021, respectively. However, after701

checking their responses, we can easily observe702

that their different reasoning paths. For example,703

the first solution tries to use a symbolic-algebraic704

perspective, which attempts to deduce a closed-705

form identity. The second solution takes a more706

complex-number driven view, focusing heavily on707

manipulating the roots and constants in the general708

solution. Their errors also happened at different709

places. the first response correctly obtains the roots710

−2± i
√
3 to set up the general solution. However,711

it then wrongly assumes that the expression is con-712

stant and evaluates it only at n = 1 to conclude the713

value at n = 50. In the second response, the model714

incorrectly computes the roots of the recurrence as715

−2 ± i, not the correct characteristic polynomial.716

Its following derivation is based on these wrong 717

roots. 718

I Discussion 719

Exploration-exploitation Balance. Our method 720

integrates exploration-exploitation balancing di- 721

rectly into the policy gradient framework. The base 722

reward encourages exploitation by reinforcing com- 723

pletions that achieve high scores according to re- 724

ward models. Simultaneously, the diversity weight- 725

ing term promotes exploration by amplifying the 726

learning signal for semantically novel completions. 727

This exploration is particularly important under re- 728

source constraints, where only a limited number of 729

completions can be sampled per prompt, and maxi- 730

mizing coverage of diverse reasoning modes within 731

that budget is crucial. By shaping the per-sample 732

reward before policy updates, our method biases 733

the policy toward both high-reward and diverse be- 734

haviors, preventing mode collapse and encouraging 735

broader reasoning strategies. 736

Ad-hoc VS Post-hoc. There are two common 737

strategies for modeling diversity among generated 738

completions: ad-hoc and post-hoc. Ad-hoc ap- 739

proaches attempt to encourage diversity during gen- 740

eration. For example, by tuning the sampling tem- 741

perature or other decoding parameters. However, 742

this strategy cannot explicitly model correlations 743

among completions, as they are still sampled in- 744

dependently. Another ad-hoc approach is to gen- 745

erate a larger pool of completions and then select 746

a diverse subset using some point process meth- 747

ods, such as determinantal point processes (DPPs). 748

While DPPs can explicitly model correlations, they 749

act as post-selection mechanisms, which reduce the 750

number of available completions for policy updates, 751

and are less effective when only a small number 752

of completions (e.g., 6 in our case) are generated. 753

In contrast, we adopt a post-hoc strategy that in- 754

tegrates diversity directly into the reward signal. 755

This allows the policy to efficiently adjust learning 756

based on semantic redundancy across completions, 757

even under limited generation budgets. 758
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Question 1

<|begin_of_sentence|>A conversation between User and Assistant. The user asks
a question, and the Assistant solves it. The assistant first thinks about
the reasoning process in the mind and then provides the user with the answer,
and put your final answer within \boxed{}. The reasoning process and answer
are enclosed within <think> </think> and <answer> </answer> tags, respectively,
i.e., <think> reasoning process here </think> <answer> answer here </answer>.
Note that respond by English, NOT use other languages.<|User|>Let m be a
positive integer less than 2015. Suppose that the remainder when 2015 is divided
by m is n. Compute the largest possible value of n.<|Assistant|><think>

Figure S4: Prompt used for Example Question 1.

Answer 1 for Question 1 [Reward: 2.103]

Alright, so I’ve got this problem here where I need to find the largest possible value of n, which is
the remainder when 2015 is divided by some positive integer m, and m < 2015. Hmm, okay. Let
me think about how to approach this.
First off, I remember that when you divide one number by another, the remainder is always less
than the divisor. So, in this case, n < m < 2015.
Since n = 2015 mod m, that means:

2015 = m · q + n

for some integer q, and 0 ≤ n < m.
I want to maximize n. From the division algorithm, we also know:

n = 2015−m · ⌊2015/m⌋

As m increases toward 2015, n generally decreases because the quotient becomes 1 and n =
2015−m. So:
- If m = 2014, then n = 1 - If m = 1008, then 2015 = 1008 · 1 + 1007 ⇒ n = 1007 - If
m = 1009, then n = 2015 mod 1009 = 1006 - If m = 1007, then 2015 mod 1007 = 1
So as m increases above 1008, the remainder n decreases.

Let’s test m = 1006:
1006 · 2 = 2012 ⇒ n = 2015− 2012 = 3

If m = 1005:
1005 · 2 = 2010 ⇒ n = 5

So clearly, n peaks at m = 1008, where:

2015 mod 1008 = 1007

Final Answer:
1007

Figure S5: Completion 1 for Question 1.
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Answer 2 for Question 1 [Reward: 2.110]

Alright, so I have this problem here: I need to find the largest possible remainder when 2015 is
divided by a positive integer m, where m < 2015. Hmm, okay. Let me try to figure this out step
by step.
First off, I remember that when you divide a number by another number, the remainder is always
less than the divisor. So if m < 2015, then the remainder n should be less than m as well. But the
problem is asking for the largest possible n. So, I need to find the maximum remainder possible
when 2015 is divided by some m < 2015.
From the division algorithm:

2015 = q ·m+ n, where 0 ≤ n < m

So n = 2015− q ·m, and we want to maximize n.
Trying values around half of 2015 gives interesting results. If m = 1008, then:

1008 · 1 = 1008, 2015− 1008 = 1007

So the remainder n = 1007, which is promising.
Trying nearby m values:
- m = 1007 ⇒ 1007 · 2 = 2014, n = 2015− 2014 = 1 - m = 1009 ⇒ 2015− 1009 = 1006
So as m increases past 1008, the remainder decreases.
Let’s consider another route. Suppose we want n = m− 1, the largest possible remainder. Then:

2015 ≡ −1 mod m ⇒ m | (2015 + 1) = 2016

So the value of m must divide 2016, and the largest possible remainder will be m− 1. The largest
divisor of 2016 less than 2015 is:

Prime factorization: 2016 = 25 · 32 · 7 ⇒ divisors: 36 total

Among these, the largest divisor less than 2015 is:

m = 1008 ⇒ n = 1008− 1 = 1007

Trying m = 1009 ⇒ n = 2015 mod 1009 = 1006, which is less.
Thus, we confirm:

Final Answer:
1007

Figure S6: Completion 2 for Question 1.
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Question 2

<|begin_of_sentence|>A conversation between User and Assistant. The user asks
a question, and the Assistant solves it. The assistant first thinks about
the reasoning process in the mind and then provides the user with the answer,
and put your final answer within \boxed{} . The reasoning process and answer
are enclosed within <think> </think> and <answer> </answer> tags, respectively,
i.e., <think> reasoning process here </think> <answer> answer here </answer>.
Note that respond by English, NOT use other languages.<|User|>Given the sequence
1, 2, 1, 2, 2, 1, 2, 2, 2, 1, 2, 2, 2, 2, 1, 2, · · · where the number of 2’s between each pair of
1’s increases by one each time, find the sum of the first 1234 terms of the
sequence.<|Assistant|><think>

Figure S7: Prompt used for Example Question 2.
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Answer 1 for Question 2 [Reward: 2.782]

Okay, so I have this sequence: 1, 2, 1, 2, 2, 1, 2, 2, 2, 1, 2, 2, 2, 2, 1, 2, and so on. The pattern is
that each time, there’s a 1 followed by an increasing number of 2’s. The number of 2’s between
each pair of 1’s increases by one each time.
First, I need to figure out the structure of the sequence to find the sum of the first 1234 terms. Let
me write out the beginning of the sequence to see the pattern clearly:
1, 2, 1, 2, 2, 1, 2, 2, 2, 1, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 1, ...
So, starting from the first term:

• The first term is 1.

• Then one 2.

• Then another 1.

• Then two 2’s.

• Then another 1.

• Then three 2’s.

• Then another 1.

• Then four 2’s.

• And so on.

So, each "block" of the sequence consists of a 1 followed by n 2’s, where n starts at 1 and increases
by 1 each time. So, the first block is 1 followed by 1 two; the second block is 1 followed by 2
two’s; the third block is 1 followed by 3 two’s, etc.
Wait, actually, looking again, the first block is 1, followed by one 2: so it’s 1, 2. Then 1, 2, 2. Then
1, 2, 2, 2. So each block is 1 followed by k 2’s, where k increases by 1 each time. So each block
has (k + 1) terms: 1 and k 2’s.
Wait, no: 1, 2 is two terms. Then 1, 2, 2 is three terms. Then 1, 2, 2, 2 is four terms. So each block
is (k + 1) terms, where k starts at 1: 1, 2; 1, 2, 2; 1, 2, 2, 2; etc.
So, the total number of terms in the sequence up to a certain block can be calculated as the sum of
the sizes of each block. Each block has (k+1) terms, where k is the block number starting from 1.

• First block (k = 1) has 2 terms: 1, 2.

• Second block (k = 2) has 3 terms: 1, 2, 2.

• Third block (k = 3) has 4 terms: 1, 2, 2, 2.

And so on.
So, the total number of terms up to the nth block is the sum from k = 1 to n of (k + 1) terms.
Which is:

n∑
k=1

(k + 1) =

n∑
k=1

k +

n∑
k=1

1 =
n(n+ 1)

2
+ n =

n(n+ 1) + 2n

2
=

n2 + 3n

2
.

Figure S8: Completion 1 for Question 2.
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Answer 1 (continued) for Question 2 [Reward: 2.782]

We need to find n such that

n2 + 3n

2
≤ 1234 <

(n+ 1)2 + 3(n+ 1)

2
.

Solving for n:

n2 + 3n

2
= 1234 ⇒ n2 + 3n− 2468 = 0.

Using the quadratic formula:

n =
−3±

√
9 + 4 · 2468
2

=
−3±

√
9881

2
.

Since
√
9881 ≈ 99.4, we have:

n ≈ −3 + 99.4

2
≈ 96.4

2
≈ 48.2 ⇒ n = 48.

Check total terms for n = 48:

482 + 3 · 48
2

=
2304 + 144

2
=

2448

2
= 1224.

For n = 49:

492 + 3 · 49
2

=
2401 + 147

2
=

2548

2
= 1274.

So, the 48th block ends at term 1224, and the 49th block starts at term 1225 and ends at term 1274.
Thus, to reach the 1234th term, we take 10 terms from the 49th block:

1234− 1224 = 10.

The 49th block is: 1 followed by 49 two’s. The first 10 terms of this block are: 1, 2, 2, 2, 2, 2, 2, 2,
2, 2.
Sum of first 48 blocks:

48∑
k=1

(1 + 2k) =
48∑
k=1

1 +
48∑
k=1

2k = 48 + 2 · 48 · 49
2

= 48 + 2352 = 2400.

Sum of first 10 terms of block 49:

1 + 9 · 2 = 1 + 18 = 19.

Total sum:

2400 + 19 = 2419.

Final Answer: The sum of the first 1234 terms is 2419 .

Figure S9: Completion 1 for Question 2 (Continued).
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Answer 2 for Question 2 [Reward: 2.855]

Okay, so I have this sequence: 1, 2, 1, 2, 2, 1, 2, 2, 2, 1, 2, 2, 2, 2, 1, 2, and so on. The pattern seems
to be that each time there’s a 1 followed by an increasing number of 2’s. Specifically, between each
pair of 1’s, the number of 2’s increases by one each time. So, the first time there’s one 1 followed
by one 2, then next time two 1’s with two 2’s in between, then three 1’s with three 2’s, etc.
The question is asking for the sum of the first 1234 terms of this sequence. Hmm, okay, so I need
to figure out where the 1234th term falls in this sequence and then calculate the sum up to that
point.
First, let’s understand the structure of the sequence. Each "block" consists of a 1 followed by an
increasing number of 2’s. So the first block is [1, 2], the second block is [1, 2, 2], the third block is
[1, 2, 2, 2], and so on. So each block n consists of 1 followed by n 2’s, making the total length of
each block n+ 1.
Wait, actually, hold on. Let me clarify. When n = 1, the block is [1, 2], which is 2 terms. For
n = 2, it’s [1, 2, 2], which is 3 terms. For n = 3, it’s [1, 2, 2, 2], which is 4 terms, etc. So in
general, block n has (n+ 1) terms. So the total number of terms up to block n is the sum from
k = 1 to k = n of (k + 1). That’s the same as the sum from k = 1 to k = n of k plus the sum of
1’s, which is:

n(n+ 1)

2
+ n =

n(n+ 1) + 2n

2
=

n2 + 3n

2
.

So the total number of terms after block n is n2+3n
2 . We need to find the largest n such that

n2+3n
2 ≤ 1234. Then, the sum will be the sum of all complete blocks plus the sum of the remaining

terms in the next block.
Let me denote S(n) = n2+3n

2 as the total number of terms after block n. We need to solve for n in
S(n) ≤ 1234.
So, solving n2 + 3n− 2468 ≤ 0 (since 1234× 2 = 2468). Using the quadratic formula:

n =
−3±

√
9 + 9872

2
=

−3±
√
9881

2
.

Calculating
√
9881: Let’s see, 992 = 9801, so

√
9881 is approximately 99.40. So n ≈ −3+99.40

2 ≈
96.40
2 ≈ 48.2. So n is approximately 48.2, but since n must be an integer, n = 48.

Let’s check S(48):

S(48) =
482 + 3 · 48

2
=

2304 + 144

2
=

2448

2
= 1224.

Then, the next block is block 49, which starts with a 1 followed by 49 2’s. So, we need to see how
many terms we have beyond 1224 to reach 1234.

1234− 1224 = 10 terms.

So, we need to take 10 terms from block 49, which is [1, 2, 2, 2, ..., 10 times 2].
Therefore, the sum of the sequence up to 1234 terms is the sum of all complete blocks up to block
48, plus the sum of the first 10 terms of block 49.
Each block k has 1 followed by k 2’s, so the sum of block k is 1 + 2k.

Figure S10: Completion 2 for Question 2.
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Answer 2 (continued) for Question 2 [Reward: 2.855]

Therefore, the total sum up to block 48 is:

48∑
k=1

(1 + 2k).

This can be broken into two sums:

48∑
k=1

1 +
48∑
k=1

2k = 48 + 2 · 48 · 49
2

= 48 + 48 · 49 = 48 + 2352 = 2400.

Now, we need to add the sum of the first 10 terms of block 49.
Block 49 is [1, 2, 2, 2, 2, 2, 2, 2, 2, 2, ..., 10 times 2].
The first term is 1, and the next 9 terms are 2’s.

Sum = 1 + (10− 1) · 2 = 1 + 18 = 19.

Therefore, the total sum up to 1234 terms is:

2400 + 19 = 2419.

Let me double-check the calculations.
First, S(n) = n2+3n

2 .
For n = 48, S(48) = 482+3·48

2 = 2304+144
2 = 2448

2 = 1224. Correct.
So, 1234− 1224 = 10 terms. So, taking the first 10 terms of block 49, which is [1, 2, 2, 2, 2, 2, 2,
2, 2, 2], sum is 1 + 2 · 9 = 19. Correct.
Therefore, 2400 + 19 = 2419.
Yes, that seems correct. Then, adding the first 10 terms of block 49 adds 19, so total is 2419.
Block 49: 1 followed by 49 2’s, so 50 terms.
But we only take 10 terms from it, so total terms are 1224 + 10 = 1234. Correct.
Yes, that all adds up. So, the answer is 2419.
Final Answer
The sum of the first 1234 terms is 2419 .

Figure S11: Completion 2 for Question 2 (Continued).
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Question 3

<|begin_of_sentence|> A conversation between User and Assistant. The user asks
a question, and the Assistant solves it. The assistant first thinks about the
reasoning process in the mind and then provides the user with the answer, and
put your final answer within \boxed{} . The reasoning process and answer are
enclosed within <think> </think> and <answer> </answer> tags, respectively, i.e.,
<think> reasoning process here </think> <answer> answer here </answer>. Note
that respond by English, NOT use other languages.

<|User|> The Sequence {an}n⩾0 is defined by a0 = 1, a1 = −4 and

an+2 = −4an+1 − 7an

for n ⩾ 0 . Find the number of positive integer divisors of a250 − a49a51 .
<|Assistant|><think>

Figure S12: Prompt used for Example Question 3.
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Answer 1 for Question 3 [Reward: 0.018]

To determine the number of positive integer divisors of a250 − a49a51 for the given sequence, I’ll
follow these steps:
1. Understand the Sequence Definition: - The sequence is defined by a0 = 1, a1 = −4, and the
recurrence relation an+2 = −4an+1 − 7an for n ≥ 0.
2. Identify the Type of Recurrence Relation: - This is a linear homogeneous recurrence relation
with constant coefficients. It can be solved using characteristic equations.
3. Formulate the Characteristic Equation: - Assume a solution of the form an = rn. Substitut-
ing into the recurrence relation gives:

rn+2 = −4rn+1 − 7rn

- Dividing both sides by rn (assuming r ̸= 0) results in the characteristic equation:

r2 + 4r + 7 = 0

4. Solve the Characteristic Equation: - The roots of the equation r2 + 4r + 7 = 0 are found
using the quadratic formula:

r =
−4±

√
(4)2 − 4 · 1 · 7
2 · 1

=
−4±

√
16− 28

2
=

−4±
√
−12

2
= −2± i

√
3

- Thus, the roots are complex: r = −2 + i
√
3 and r = −2− i

√
3.

5. Express the General Solution: - For complex roots α± iβ, the general solution is:

an = λ(α+ iβ)n + µ(α− iβ)n

- Here, α = −2 and β =
√
3, so:

an = λ(−2 + i
√
3)n + µ(−2− i

√
3)n

6. Determine the Constants λ and µ: - Using the initial conditions a0 = 1 and a1 = −4: - For
n = 0:

a0 = λ(−2 + i
√
3)0 + µ(−2− i

√
3)0 = λ+ µ = 1

- For n = 1:
a1 = λ(−2 + i

√
3) + µ(−2− i

√
3) = −4

- Solving these equations, we find λ = 1
2 and µ = 1

2 .
7. Express an Explicitly: - Substituting λ and µ into the general solution:

an =
1

2
(−2 + i

√
3)n +

1

2
(−2− i

√
3)n

- Alternatively, using Euler’s formula for complex roots, this can also be written in terms of
trigonometric functions, but for our purposes, the exponential form is sufficient.

Figure S13: Completion 1 for Question 3.
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Answer 1 (continued) for Question 3 [Reward: 0.018]

8. Simplify the Expression a250 − a49a51: - Recognize that the given expression resembles the
determinant of a 2x2 matrix: ∣∣∣∣a50 a49

a51 a50

∣∣∣∣
- This determinant simplifies to:

a250 − a49a51

- To find this determinant, we can use properties of the sequence. Notice that for a linear recurrence
relation of this form, the determinant a2n+1 − anan+2 is constant for all n.
9. Find the Constant Determinant: - Calculate the determinant for the initial terms n = 0:

a21 − a0a2

- First, compute a2 using the recurrence relation:

a2 = −4a1 − 7a0 = −4(−4)− 7(1) = 16− 7 = 9

- Now, compute the determinant:

a21 − a0a2 = (−4)2 − (1)(9) = 16− 9 = 7

- Therefore, the determinant a250 − a49a51 = 7.
10. Determine the Number of Positive Integer Divisors: - The number 7 is a prime number. -
The only positive integer divisors of 7 are 1 and 7. - Hence, there are 2 positive integer divisors.
Final Answer The number of positive integer divisors of a250 − a49a51 is 2 .

Figure S14: Completion 1 for Question 3 (Continued).
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Answer 2 for Question 3 [Reward: 0.021]

To determine the number of positive integer divisors of a250 − a49a51 for the given sequence, I start
by analyzing the recurrence relation:

an+2 = −4an+1 − 7an

with initial conditions a0 = 1 and a1 = −4.
Next, I recognize that the characteristic equation for this recurrence is:

r2 + 4r + 7 = 0

Solving this quadratic equation using the quadratic formula gives complex roots:

r = −2± i

These roots indicate that the general solution to the recurrence is:

an = α(−2 + i)n + β(−2− i)n

Using the initial conditions, I determine the constants α and β:

1 = α+ β and − 4 = α(−2 + i) + β(−2− i)

Solving these equations yields:

α =
1 + i

2
and β =

1− i

2

Substituting these back into the general solution, I get:

an =
1

2
[(1 + i)(−2 + i)n + (1− i)(−2− i)n]

To find a250−a49a51, I simplify the expression using properties of complex numbers and exponents.
After simplification, I find that:

a250 − a49a51 = 1

Finally, since 1 only has one positive divisor, the number of positive integer divisors is 1.
To determine the number of positive integer divisors of a250 − a49a51 for the given sequence, we
can follow these steps:
1. Understand the Recurrence Relation:
The sequence is defined by the recurrence relation:

an+2 = −4an+1 − 7an

with initial conditions a0 = 1 and a1 = −4.
2. Find the Characteristic Equation:
The characteristic equation for the recurrence relation is:

r2 + 4r + 7 = 0

Figure S15: Completion 2 for Question 3.
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Answer 2 (continued) for Question 3 [Reward: 0.021]

3. Solve the Characteristic Equation:
Solving the quadratic equation using the quadratic formula:

r =
−4±

√
16− 28

2
=

−4±
√
−12

2
= −2± i

The roots are complex: r = −2 + i and r = −2− i.
4. General Solution of the Recurrence:
The general solution for the sequence is:

an = α(−2 + i)n + β(−2− i)n

where α and β are constants determined by the initial conditions.
5. Apply Initial Conditions to Find α and β:
Using a0 = 1:

1 = α+ β

Using a1 = −4:
−4 = α(−2 + i) + β(−2− i)

Solving these equations, we find:

α =
1 + i

2
, β =

1− i

2

Thus, the explicit formula for an is:

an =
1

2
[(1 + i)(−2 + i)n + (1− i)(−2− i)n]

6. Compute a250 − a49a51:
After simplifying the expression using properties of complex numbers and exponents, it can be
shown that:

a250 − a49a51 = 1

7. Determine the Number of Positive Integer Divisors:
Since a250 − a49a51 = 1, the only positive integer divisor of 1 is 1 itself.

1

Figure S16: Completion 2 for Question 3 (Continued).
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