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ABSTRACT

Flow matching models, ODE-based generative models, generate samples by grad-
ually morphing a simple source distribution into a target distribution. In practice,
these models still fall short of perfectly replicating the target distribution, mainly
due to imperfections of the learned mapping. Previous work mainly focus on al-
leviating discretization error, which rises from sampling a continuous trajectory
with a finite number of steps. In this work we focus on prediction error, an error
that is inherent in the model. Our main contribution is identifying a trajectory that
complies with the imperfect flow model and leads exactly to the target distribution.
Based on this finding, we propose Marginal Matching—a simple inference-time
correction scheme to steer the generated samples in the direction of the data. This
scheme proves to reduce a bound on the distance between the data and the learned
distribution, motivating two different implementations for the correction function.
We show that our proposed method improves sample quality on CIFAR-10 and
ImageNet-64, with minimal overhead in computation time, or non at all when
applying approximated correction.

1 INTRODUCTION

Flow based generative models (Lipman et al., 2023; Liu et al., 2023a; Tong et al., 2024) can gen-
erate complex data distributions, and have achieved remarkable results in image synthesis, audio
generation, protein design and robotics (Yan et al., 2024; Liu et al., 2023b; Le et al., 2024; Irwin
et al., 2024; Hu et al., 2023). These models learn a mapping between a source distribution (typically
Gaussian noise) and a target distribution. In practice, however, this learned mapping is not accurate
due to two main sources of error: discretization and prediction. The discretization error stems from
the mapping, which is defined as a continuous time operator, with discrete steps, while the prediction
error is attributed to general neural network training difficulties, such as limited architecture’s ex-
pressivity, limited training time and numerical instability. Previous works focus on minimizing the
discretization error, for example by learning straighter trajectories (Pooladian et al., 2023; Lee et al.,
2023; Tong et al., 2024). In this work we focus on mitigating the prediction error of a pre-trained
model, which, to the best of our knowledge, has not yet been tackled in the flow matching literature.

Flow matching models assume that there exists an ODE that maps Gaussian noise to the data dis-
tribution. Errors in learning this ODE result in an imperfect mapping, which leads to a generated
distribution that is different from the data. In reversible models one can also consider starting from
the data distribution and following the reverse mapping. The idea of approximating and implement-
ing the reversal mapping has been explored before, in the context of diffusion models (Wallace et al.,
2023; Mokady et al., 2023). Here, we exploit time reversibility for flow matching models, which is
arguably less involved, as it only requires solving the ODE in reverse time (Liu et al., 2023a).

Our main insight is that starting the generation from samples on the reverse time trajectory, (with
the data as initial distribution), will perfectly reach the target distribution under the model’s map-
ping. We build on this insight and propose a simple method to improve the quality generation via
correcting the sampled trajectory during inference. The correction is done by applying a learned
correction step intermittently with the ODE solver steps, which works to reduce the error between
the generated samples and the time-reversal ODE solution. We provide theoretical guarantees that
such a correction function minimizes a bound on the Wasserstein distance (Kantorovich, 1942) be-
tween the target approximation and the true target distribution, as a function of the error reduction
of the corrections at different time steps.
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We examine two practical implementations for the correction function. The first implementation
minimizes a theoretical bound, but has access to only subset of the data during training. The second
has access to the full dataset, but makes no theoretical guarantee. We examine these correction
models empirically and perform an extensive ablation study for our design choices. Our results
show significant improvement with minimal additional steps, or with no extra compute time at all
by running an approximated correction in parallel to the flow model.

In summary, our main contributions are as follows:

• A novel framework for improving pre-trained flow matching models using the concept of
time reversal.

• A theoretical analysis of this general framework, and two practical implementations.
• We empirically show that our proposed correction models improve results on CIFAR-10

and ImageNet-64 datasets, achieving lower FID scores with fewer sampling steps.

2 BACKGROUND

2.1 FLOW MODELS

Given a source distribution π0 and a target distribution π1, both over Rd, flow matching (Lipman
et al., 2023; Liu et al., 2023a; Tong et al., 2024) models their mapping. This is done with a smooth
time-dependent vector field u : [0, 1] × Rd → Rd which defines an ODE dϕt(x) = ut(ϕt(x))dt,
where x ∈ Rd, t ∈ [0, 1] and ϕt is the flow map with the initial condition ϕ0(x) = x. A time-varying
density function p : [0, 1]× Rd → R>0 that satisfies the continuity equation:

∂pt
∂t

+ div(pt(x)ut(x)) = 0, (1)

with the initial density p0 over Rd is called the marginal probability path generated by the vector
field u, and u is said to be the probability flow ODE for the density function p.

The flow matching (FM) objective regresses vθ : [0, 1] × Rd → Rd, a time-dependent vector field
parametrized as a neural network with weights θ, to a target vector field ut via the following mean
squared error (MSE) loss function:

LFM (θ) = Et∼[0,1],x∼pt(x)∥vθ(t, x)− ut(x)∥2. (2)
Numerous mappings exist between probability distributions π0 and π1. The distributions pt(x) and
ut(x) are not unique and typically impossible to compute directly. To overcome this challenge,
Lipman et al. (2023) demonstrated that equivalent gradients to Eq. 2 with respect to θ can be derived
using an alternative approach named conditional flow matching (CFM) loss:

LCFM (θ) = Et∼[0,1],z∼q(z),x∼pt(x|z)∥vθ(t, x)− ut(x|z)∥2, (3)

where z is some conditional variable sampled from a distribution q(z). The full derivation is avail-
able in Lipman et al. (2023); Tong et al. (2024). Many efficient parameterizations exist for ut(x|z)
and pt(x|z), in this work we focus on the parametrization described in Tong et al. (2024):

z = (x0, x1) ; ut(x|z) = x1 − x0 ; pt(x|z) = N (x|t · x1 + (1− t) · x0, σ2I),

where z ∼ q(z) and t ∈ [0, 1] is the interpolation coefficient. The conditional density pt(x|z)
specifies one of the possible pt distributions and is easy to sample from and learn. The vector field
ut and its corresponding marginal distribution pt can be obtained in terms of the conditional ones:
pt(x) =

∫
pt(x|z)q(z)dz, ut(x) =

∫ pt(x|z)ut(x|z)
pt(x)

q(z)dz. We examine two recently studied flow
models by Tong et al. (2024), one with independent coupling (I-CFM) q(z) = π0(x0)× π1(x1) and
another with optimal transport coupling (OT-CFM) q(z) = OT (x0, x1). The optimal transport (OT)
problem maps x0 to x1 such that a displacement cost, (typically the squared Euclidean distance), is
minimized, for more details see Appendix. A.1. The OT coupling is calculated on batches during
training and results in straighter trajectories, (Pooladian et al., 2023; Tong et al., 2024).

2.2 SCORE MODELS

In score-based generative models (Song et al., 2021b; Song & Ermon, 2019) the forward and reverse
processes are modeled using standard diffusion and reverse-time stochastic differential equations
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(SDEs). The forward process is described by dx = f(x, t)dt+ g(t)dw, while the reverse-time SDE
is given by dx =

(
f(x, t)− g(t)2∇ log π1

)
dt + g(t)dw. In these equations, w represent standard

Wiener processes, f is the drift coefficient, g is the diffusion coefficient, and t ranges from 0 to Ts.
The reverse SDE is used for generating samples, evolving from t = Ts to t = 0, for example by
using a numerical SDE solvers.

The score model estimates the score function ∇x log π1(x), where π1(x) is the target distribution
defined above. The training process typically involves denoising score matching (DSM):

LDSM (θ) = Eπ1(x)pσ(x̃|x)∥sθ(x̃)−∇x̃ log pσ(x̃|x)∥22 (4)

Here, sθ denotes a neural network parameterized by θ, and pσ(x̃|x) = N (x, σ2I) represents the
probability of a noisy sample from the target distribution. Vincent (2011) demonstrated that the op-
timal score network sθ∗(x), which minimizes Eq. 4, satisfies sθ∗(x) = ∇x log pσ(x) almost surely.
This result shows that the network learns to estimate the score function of pσ(x), which is crucial
for effectively denoising it. However, the approximation sθ∗(x) = ∇x log pσ(x) ≈ ∇x log π1(x)
holds true only when the noise level is sufficiently small, such that pσ(x) ≈ π1(x).

3 METHOD

3.1 PROBLEM FORMULATION AND MOTIVATION

Let u∗ denote an “ideal” flow function that maps the source distribution π0 to the target distribu-
tion π1. In this work we follow the formulation of Tong et al. (2024) and assume the conditional
marginals’ distributions specified by u∗ are pt(x|z) = N (x|t · x1 + (1− t) · x0, σ)1. Nonetheless,
our derivations are not limited to this particular flow. We are given a pre-trained flow model, vθ,
that was trained to approximate u∗. However, as is common in most practical applications vθ ̸= u∗.
Let π̂1 denote the distribution of samples generated by the model vθ. In practice, π̂1 will not exactly
match the target distribution π1 due to two primary sources of error:

• Prediction error: This error is inherent in the learned model, as vθ ̸= u∗. The primary
sources for this error are limited expressivity of the model’s architecture, limited training
time and numerical instability. In addition, this error is more pronounced in models in
which sampling is iterative, as it accumulates with each forward iteration.

• Discretization error: This error arises from approximating a continuous-time trajectory
with discrete steps. That is, even if vθ = u∗, it may be that π̂1 ̸= π1 due to the discretization
in the numerical integration method.

(a) π0 and π1 (b) Forward (c) Backward

Figure 1: Illustration of Marginals (a) Gaus-
sian source distribution π0 (red), and target
distribution π1 (blue). (b) Discrete forward
marginals {pftn}

N
n=0. (c) Discrete backward

marginals {pbtn}
N
n=0. Note that pbtn ̸= pftn

for every n, specifically pb0 (=π̂0, black) differs
from pf0 (=π0, red).

Previous works tried to tackle the discretization
error, for example by learning straighter trajecto-
ries (Pooladian et al., 2023; Tong et al., 2024; Lee
et al., 2023). This reduces the discrepancy be-
tween the continuous trajectory and its discretized
approximation. In contrast, the prediction error is
more challenging to address and has remained rel-
atively unexplored. In this work, we focus on this
error; given vθ and access to the data it was trained
with, we seek to improve the performance of gen-
erating samples from vθ.

A straightforward idea to mitigate prediction error
is to attempt to reduce the distance between vθ and
u∗. However, as this was already the training ob-
jective of vθ, it is not clear how to make a principled improvement in this direction. Instead, we
propose a different idea, based on the following insight.

We observe that if the vector field represented by vθ is invertible, a well defined “reverse flow” exists
from the target distribution π1 according to the reverse of the vector field – vθ. The key observation
is that starting a forward flow using vθ from any point on the reverse flow will converge to the target

1To keep it concise, we will henceforth use the notation pt(x)=pt(x|z)
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distribution. That is, we have found a trajectory of densities that works perfectly with our imperfect
model vθ. Our proposal is to learn how to correct the original trajectory density path to be more
similar to this trajectory, with the hope that by doing so, applying the flow with vθ, will bring us
closer to the target distribution. Thus, correcting deviations introduced by the prediction error.

We assume that the flow is invertible, implying cycle consistency between forward and backward
vector field mappings (Zhu et al., 2017). A similar assumption is used in Liu et al. (2023a) in
experiments on image translation. While we cannot verify that this assumption holds in practice, we
empirically validate our method on popular datasets.

To explain our method, we next define the forward and backward marginals, which represent the
evolving probability distributions over time generated by the vector field. These marginals will be a
key component to understand how we adjust the sampling process.

Definition 3.1. Forward and Backward Marginals: Let u be a continuous globally Lipschitz time-
dependent function u : [0, 1]×Rd → Rd. Let u−1 be the reverse vector field defined as: u−1(t, x) :=
−u(t, x). The discretization of the time-interval [0, 1] into N steps is tn = n/N .

• Forward Marginals are the probability path generated by ∂pft
∂t +div(pft (x)ut(x)) = 0 from

time 0 to 1, with initial distribution pf0 = π0. The final distribution is pf1 = π̂1. Their N
steps discretization is defined as {pftn}

N
n=0.

• Backward Marginals are the probability path generated by ∂pbt
∂t + div(pbt(x)u

−1
t (x)) = 0

from time 1 to 0, with initial distribution pb1 = π1. The final distribution is pb0 = π̂0. Their
N steps discretization is defined as {pbtn}

N
n=0

2.

Figure 2: Marginals in Vector Field The black lines
show two key trajectories in a vector field. The lower is
the forward trajectory, starts at π0 and ends at pf1 = π̂1.
The upper is the backward trajectory, begins at pb0 and
ends at the data distribution π1. Both are discretized at
time-steps t and t′. Our objective is to transition from
forward to backward marginals trajectory.

We refer to pb0 as the approximate source
distribution to distinguish it from π0, the
source distribution, and pf1 as the approx-
imate target distribution to distinguish it
from π1, the target distribution. Note that
pb0 is the optimal source distribution for vθ,
in the sense that integrating over the vec-
tor field from pb0 would guarantee reaching
the distribution π1. Fig. 1 illustrates the
forward and backward marginals of a flow
model sampled with 10-steps Euler inte-
gration. It demonstrates the probability
marginals trajectory and that pbtn ̸= pftn for
every n. Additionally, there is a substan-
tial intersection between the forward and
backward marginals, and their symmetric
difference represents the outliers that do
not reach the target distribution, for more details see Appendix. A.5.

Our next observation is that if the forward marginals trajectory reaches the target distribution, then
it aligns with the backward trajectory for every time-step. This is formally stated in Lemma. 3.2

Lemma 3.2. Let u : [0, 1] × Rd → Rd be a continuous time-dependent vector field, satisfying:
|ut(x) − ut(y)| ≤ L|x − y|, ∀t ∈ [0, 1], x, y ∈ Rd. Then, pf1 = pb1 = π1 if and only if pft = pbt
∀t ∈ [0, 1].

Based on this observation, we propose a novel approach to correct a flow model: rather than reducing
the discrepancy between vθ and u∗, we suggest reducing the discrepancy between the forward and
backward marginals. We term this process Marginal-Matching (MM). Fig.2 illustrates this idea. The
following lemma allows bounding the distance between the marginals at time t based on the distance
between the marginals at time t0:

2To maintain clarity, we use the same time indexing rationale for all marginals. That is, a subscript 0
corresponds to the initial point of the forward marginals and the final point for the backward marginals.
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Lemma 3.3. Let u be a vector field as defined in Lemma. 3.2. The 2-Wasserstein distance between
pft and pbt satisfies:

W2(p
f
t , p

b
t) ≤W2(p

f
t0 , p

b
t0) exp{L(t− t0)}.

This lemma indicates that reducing the Wasserstein distance at the initial t0 can effectively control
the Wasserstein distance at later times. We can apply this principle iteratively, by applying several
corrections along the interval [0, 1], and bounding the distance between the probability distributions
on the continuous sub-intervals between each correction step. The next theorem bounds the accumu-
lated error reduction due to applying such corrections. Let h be a function from a family of functions
that reduce the Wasserstein distance between the forward and backward marginals. We claim that
applying any function from this family on the forward marginals during inference would improve
generation.

Theorem 3.4. (Informal) Let u be a well-behaved vector field with Lipshitz constant L, pft and
pbt be two time-dependent probability density functions satisfying the continuity equation Eq. (1)
with respect to u. Suppose that the initial Wasserstein distance is d0 = W2(p

b
0, p

f
0 ). At each time

step tn, a correction function h is applied to pftn and the flow function continues from h(tn, p
f
tn).

Assuming h reduces the W2 distance to pbtn by ϵn, the reduction on the bound of the final distance
is: W2(p

b
1, p

f
1 ) ≤ d0 exp{L} −

∑n−1
i=0 ϵi exp{L(1− ti)}.

A formal theorem statement and complete proofs and are in Appendix. A.2. In the appendix, we
calculate the bound of Thm. 3.4 for two specific error reduction functions - additive and multiplica-
tive. In the following examples, we demonstrate that in each case, the total error reduction is spread
differently across the time steps, demonstrating an important idea – we should prioritize the correc-
tions applied in particular steps based on the error reduction model. We will revisit this idea in our
experiments.
Example 3.5. Linear Reduction This is the case of linear error reduction in Thm. 3.4. Suppose
N = 2, then the resulting bound takes the form: d0 exp{L}−ϵ0 exp{L}−ϵ1 exp{L·0.5}. Assuming
ϵ0 = ϵ1, the reduction term at time step 0 exerts a more significant influence on the final bound
due to the larger exponential factor. This underscores that, in such cases, the focus should be on
prioritizing the correction of earlier steps in the sequence.

Example 3.6. Multiplicative Reduction This is the case of multiplicative error reduction in
Thm. 3.4. Suppose N = 2, then the resulting bound takes the form: d0 exp{L}(1− ϵ0)(1− ϵ1). In
this formulation, the reduction terms at each time step (1 − ϵ0) and (1 − ϵ1) contribute equally to
the final bound, regardless of their position in the sequence. This structure implies that the optimal
strategy for minimizing the bound would be to prioritize improvements at the steps where they yield
the greatest benefit—specifically, where the magnitude of ϵi is largest.

3.2 PRACTICAL ALGORITHM Algorithm 1 Corrected Inference

Require: flow model vθ, correction model hψ ,
number of iterations N , step size of corrector
steps {αi}Ni=0, scale added noise {βi}Ni=0

1: x0 ∼ N (0, I)
2: for n = 0, . . . , N − 1 do:
3: ϵ ∼ N (0, I)
4: x̃tn = xtn + βn · ϵ
5: xtn = xtn + αn · hψ(tn, x̃tn) ▷ Correction
6: xtn+1

= xtn + 1
N vθ(tn, xtn) ▷ Flow

7: end for
8: xtN = xtN + αN · hψ(tN , xtN ) ▷ Correction
9: return xtN

Our goal is to correct the sampled trajectory
during inference to reduce the discrepancy be-
tween the forward and backward marginals at
every step. This section proposes such an algo-
rithm given a pre-trained flow model vθ. The
flow model is designed to transform an eas-
ily sampled source distribution π0, (such as
N (0, I)), into a target distribution π1. Rather
than considering only the approximate source
distribution (pb0), motivated by Thm. 3.4, our
approach considers all backward marginals.

Recall from Thm.3.4 that the transport map h
can be utilized to reduce the distance between the forward pft and backward marginals pbt . In the
following, slightly abusing notation, we assume that h is the push-forward of x ∈ Rd with a mapping
h(x). In practice, the specific error reduction is unknown and we can only require that the bound on
the Wasserstein distance will decrease after h is applied. Let hψ be a neural network with weights
ψ that approximates the correction function h. Algorithm 1 presents our proposed approach, which
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enhances the inference process. It introduces correction steps using hψ before each step of the flow
model vθ and at the end. For clarity, the algorithm assumes Euler integration for sampling vθ and
single correction steps, though multiple corrections per time-step are possible. Adding Gaussian
perturbation before each correction step, except the last one, improves performance.

Parallel Sampling: The corrected inference process, as described in Algorithm 1, introduces ad-
ditional sampling time for each correction step. To reduce the overhead, we propose a correction
algorithm that is parallelizable in principle, by running the correction and the flow model in parallel.
The correction and the flow model both operate on the same input at the same time, then the correc-
tion hψ and the flow model’s vθ direction are summed, approximating the full correction process.

Algorithm 2 Score Model Training

Require: flow model vθ, score model
hψ , σ, backward marginals
{ptn(x)b}Nn=0

1: repeat
2: ϵ ∼ N (0, I)
3: n ∼ U({0, 1, .., N})
4: xtn ∼ pbtn(x)
5: Take gradient descent step on
6: ∇ψ∥hψ(tn, xtn + σ · ϵ) + ϵ∥2
7: until converged

While this is an approximation, the effectiveness of this
approximation relies on the assumption that hψ and vθ
do not change too rapidly. The full algorithm is in Ap-
pendix. A.3.1.

In the following we consider two models for implement-
ing the correction model hψ .

3.2.1 SCORE MODEL

Our first proposed approach is a time-dependent score
model hψ(t, xt) = sψ(t, xt), presented in Algorithm. 2,
to approximate the backward marginals ∇xt

log pbt(xt),
xt ∈ pft . We assume the forward marginals are their
“noisy” versions, i.e. pft = pbt,σ where pbt,σ(ỹt|yt) = N (yt, σ

2I) and yt ∼ pbt . Motivated by the
bound of Kwon et al. (2022) (Thm. 2) for score models generation, the following lemma bounds the
final Wasserstein distance after applying the score correction on a single time-step marginal:
Lemma 3.7. (Informal) Applying sψ from pftn to approximate pbtn as described in Sec. 2.2 bounds
the final distance W2(p

b
1, p

f
1 ) as follows:

W2(p
b
1, p

f
1 ) ≤ C(sψ) exp{L(1− tn)},

where C(sψ) depends on the score model’s loss LψDSM as defined in Sec. 2.2. For small enough
LψDSM , this bound improves upon using no correction. For more details and a bound on the general
case—applying score correction on multiple marginals, see Appendix. A.2.

3.2.2 ROBUST CLASSIFIER

In the score model above, we did not use data from the forward marginals during training (we treated
them as “noisy” versions of the backward marginals). We next propose a method that explicitly
transitions between samples from the forward and backward marginals. This approach utilizes a
time-dependent classifier cψ(t, xt) that distinguishes between forward and backward marginals (pft
and pbt), evaluating each sample independently. By learning to categorize samples as belonging to
either the forward or backward marginal at each time step, the classifier’s gradients hψ(t, xt) =
∇xt log cψ(t, xt) provide corrective guidance, effectively steering samples toward the backward
marginals. The gradients will be zero upon reaching the correct class.

To enhance the classifier’s gradient performance, we implement two key improvements: Adversar-
ial Training (AT) and Gradient Alignment (GA). These keep the classifier’s gradients stable and
meaningful, for more details and the complete algorithm for training see Appendix. A.3.3.

Usage for Class Conditioning Classifier guidance is used in diffusion models and more recently in
flow models (Sun et al., 2024) in order to generate conditional images. So far, MM is used to gen-
erate samples from the data, however, we can extend this method to also generate conditional data.
For this purpose, our classifier can be conditioned cψ(t, xt, l) where l is a class label, and trained to
categorize different classes in the backward trajectory. For an illustration see Appendix. A.6.2.

4 RELATED WORK

Training and inference mismatch – Previous work recognized training and inference mismatch
in different settings. In score models (Song et al. (2021b); Song & Ermon (2019)), the source
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distribution during inference is N (0, I), which is intended to approximate the ”noisiest” training
distribution (pT ). However, as these distributions are not identical, starting from N (0, I) will yield
sub-optimal results. Two different solutions were proposed to minimize this gap as a pre-sampling
procedure: Franzese et al. (2023) suggested an auxiliary model that learns the mapping from N (0, I)
to pT . Alternatively, Pedrotti et al. (2024) proposed to use Langevin dynamics (Welling & Teh
(2011)), leveraging the score function ∇x log pT (x).

Even if the source distribution during training and inference is the same, practically, the actual distri-
bution that reaches the data is different. Coeurdoux et al. (2023) leveraged the invertibility property
of normalizing flow (NF) models (Kingma & Dhariwal (2018); Dinh et al. (2014)) to reach higher
probability samples in π̂1, which are more likely to belong to π1. They achieved this by employing
MCMC algorithm, where the score is computed using the Jacobian of the inverse mapping. This
discrepancy between the learned and actual source distribution is common in generative models like
VAEs (Kingma et al., 2021), which assume a Gaussian prior during inference. (Dai & Wipf, 2019)
addressed this by learning an additional VAE model to predict the actual prior distribution, thereby
removing the Gaussian assumption, which lead to improved results.

Different sampling trajectories – Different sampling trajectories were explored in previous work
mainly through the research of difference source distributions. In Denoising Diffusion Probabilis-
tic Models (Ho et al. (2020); Sohl-Dickstein et al. (2015)), various source distributions proved to
decrease inference time while maintaining quality. gil Lee et al. (2022) proposed using a Gaussian
prior distribution with parameters derived from data statistics. Lyu et al. (2022); Popov et al. (2021)
trained a model for prior distribution using an encoder or VAE (Kingma & Welling (2013)) and in-
corporated it into the standard diffusion process by adding noise. Other studies have shown that the
prior distribution need not be Gaussian Bansal et al. (2024); Heitz et al. (2023). Flow based models
Lipman et al. (2023); Tong et al. (2024); Liu et al. (2023a), a new family of generative models,
generalized the mapping to include general source distributions.

The work most closely aligned with ours is that of Xu et al. (2024) as they considered the learned
errors throughout the whole sampling trajectory. They use a sequence of NF blocks to learn a
sequential transformation from Gaussian noise to data, where each block represents a different time-
step. This requires training the blocks sequentially, as the learned error in each block is accounted for
in the next block, slowing the training process. The sampling process initiates from Gaussian noise,
where the model’s error is not accounted for. In contrast, our work takes into account the model’s
prediction error at every step, as we correct the inference time trajectory. Moreover, we improve the
recently proposed flow matching instead of NF. For extended related work see Appendix. A.4.

5 EXPERIMENTS

We empirically evaluate MM’s image generation performance, with both the score and classifier
correction models. The score model is trained with a constant noise σ. We conduct experiments
on two datasets: unconditional CIFAR-10 (Krizhevsky et al. (2009)) and ImageNet-64 (Chrabaszcz
et al. (2017); Deng et al. (2009)). To assess the quality of generated images, we employ Fréchet
Inception Distance (FID) (Heusel et al. (2017)) score as our evaluation metric.

A key factor in diffusion and flow models is inference compute time, measured by number of func-
tion evaluations (NFE). In all tables, NFE represents the total number of sampling steps, and C-NFE
denotes the number of sampling steps taken with our correction model (out of the NFE). We note
that a classifier correction step require two NFEs, due to input derivative calculations, while score
correction requires only one NFE.

For the flow model we use the UNet architecture with the same hyper-parameters as Tong et al.
(2024). For the score and classifier models, we use UNet with half the number of parameters used for
the flow model. Additionally, these correction models undergo significantly fewer training iterations
compared to the flow model. Unless otherwise specified, the correction models were trained on
trajectories consisting of N = 11 marginals with OT-CFM (Tong et al., 2024) as the flow model,
and the flow model was sampled with 10-step RK4, which is 40 NFEs. For more implementation
details, please refer to the Appendix. A.10. The code will be available upon publication.
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Model Sampler NFE ↓ FID ↓
DDPM Adaptive 274 7.48
Score Matching Adaptive 242 19.94
OT-FM Adaptive 142 6.35
OT-CFM RK4 40 4.34

Adaptive 133.94 3.58
I-CFM RK4 40 4.29

Adaptive 146.42 3.66

OT-CFM I-CFM
Ours NFE ↓ C-NFE ↓ FID ↓ FID ↓
Score 41 1 (n = 10) 3.45 3.47

43 3 (n = 0, 5, 10) 3.38 3.39
51 11 (n = 0 . . . 10) 3.37 3.38

Classifier 42 1 (n = 8) 3.57 3.77
46 3 (n = 8, 9, 10) 3.48 3.67
50 5 (n = 6, 7, 8, 9, 10) 3.47 3.62
62 11 (n = 0 . . . 10) 3.48 3.63

Table 1: CIFAR-10 performance. (Left) Leading baseline models. (Right) Our correction models
(score and classifier) with OT-CFM and I-CFM base flow models. The base flow models are sam-
pled with 10-step RK4 (40 NFE). Correction steps improve performance with minimal additional
NFEs, and generally, increasing the number of applied corrections (C-NFE) enhances overall results.
Additional comparisons are available in Appendix. A.6.6.

5.1 CIFAR-10 SAMPLE QUALITY

To showcase the improvement of MM we implement our score and classifier correction models
with OT-CFM and I-CFM base flow models on CIFAR-10. Table 1 shows comparison of our results
to (Ho et al., 2020; Song et al., 2021b; Lipman et al., 2023; Tong et al., 2024). Previous works
employ an adaptive sampler (DOPRI5, dor (1980)), while we use RK4 as the ODE-sampler to
ease the integration of the correction steps. We compare with results reported in Lipman et al.
(2023), implemented using the same UNet (Dhariwal & Nichol, 2021), and those in Tong et al.
(2024). As Tong et al. (2024) did not report RK4 sampling results, we conduct these experiments and
report baseline results using the models’ checkpoints as our foundational flow models. Following
the results of Sec. 3.1, we investigate applying the correction on various time steps (C-NFE >
1)3. We examine several options: for the score model the correction steps were taken on n =
{[10], [0, 5, 10], [0 . . . 10]} and for the classifier on n = {[8], [8, 9, 10], [6, 7, 8, 9, 10], [0 . . . 10]}.

We significantly outperform the baselines in the small NFE regime. The score model slightly out-
performs the classifier in FID score, although it was not exposed to the forward marginals during
training. Moreover, the score model demonstrates consistent performance regardless of whether it
is applied to OT-CFM or I-CFM, indicating a robust ability to denoise from forward to backward
marginals across both frameworks. Whereas, the robust classifier exhibits sensitivity to the choice
of the model, showing superior performance when coupled with OT-CFM. We did not observe any
benefit from applying both the score and classifier correction models together.

Fig. 4 (Left) presents a qualitative comparison of the correction performed by each algorithm, (addi-
tional images are available in Appendix A.8). The correction models improve clarity and sometimes
make significant changes to the image. The score and classifier corrections show varying levels of
effectiveness depending on the specific image. In some cases, one method outperforms the other,
while in other instances, they surprisingly produce similar results.

Parallel Sampling Fig. 3 presents parallel sampling results as described in Sec. 3.2 on CIFAR-10.
Both the classifier and score correction models show improvement in FID, though less than the exact
correction version.

Interpolating Marginals during Training The correction model hψ(t, xt) is time-dependent, as it
is trained on different time-step marginals. The marginals are generated and stored in advance to
avoid running the ODE-solver multiple times while training hψ(t, xt). In order to save this extra
storage, we propose to approximate the backward trajectory. Assuming the flow model’s trajectories
are sufficiently straight, we can interpolate between pb0, the approximate source distribution, and
pb1, the target distribution by: p̂btn = tn · pb1 + (1 − tn) · pb0. This allows for efficient training
storage as only the data and the approximate source distribution are stored rather than the entire
backward trajectory. This means that the MM’s dataset size is twice rather than N times the size
of the original data. Fig. 3 presents the results of the interpolated backward trajectory. The score
model’s performance remains steady, while the classifier exhibits degradation in its performance.

3Multiple corrections per time-step did not improve the score model but helped the classifier. However, for
simplicity we apply one correction step per marginal.
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Figure 3: CIFAR-10 sample quality with different approximations – parallel (“P-”) for faster infer-
ence and interpolated backward marginals for efficient storage during training; see text for details.
The base flow is sampled with 10-step RK4 (40 NFE). For additional results, see Appendix. A.6.3.

Model NFE ↓ Sample FID ↓
DDPM 264 Adaptive 17.36
Score Matching 441 Adaptive 19.74
OT-FM 138 Adaptive 14.45
OT-CFM 20 RK4 17.99

24 RK4 16.60
28 RK4 15.71
32 RK4 15.11

Ours NFE ↓ C-NFE ↓ FID

Score
21 1 (n = 5) 15.91
22 2 (n = 0, 5) 15.53
26 6 (n = 0 . . . 5) 15.57

Score
(Backward Marginals
Interpolation)

21 1 (n = 5) 15.89
22 2 (n = 0, 5) 15.62
26 6 (n = 0 . . . 5) 15.69

Table 2: ImageNet-64 results for top generative models (Left) vs. score correction with OT-CFM
base flow (Right), which is sampled with 5-step RK4 (20 NFE).

5.2 IMAGENET-64 SAMPLE QUALITY

We perform experiments on ImageNet-64 to examine how MM performs in a higher-dimensional
settings. Given a pre-trained OT-CFM flow model trained on ImageNet-64, we train a score correc-
tion model to improve its sample quality, as the score model outperform the classifier on CIFAR,
we chose to perform these resource-intensive experiments with it. The score model was trained on
trajectories consisting of N = 6 marginals. Table. 2 presents the improvement in FID of a correc-
tion model trained on the backward marginals trajectory and its approximation (for more details see
Sec. 5.1) compared to (Ho et al., 2020; Song et al., 2021b; Lipman et al., 2023; Tong et al., 2024).
Similarly to the CIFAR-10 results, we observe that MM improves FID in the low NFE regime (22
and below). The correction is qualitatively demonstrated in Fig. 4 (Right), (for more illustrations
see Appendix. A.7). The correction model removes the residual noise in the model’s approximation
and changes the images structure to better align with the ImageNet dataset photos.

5.3 ABLATION STUDY

For more ablation studies, including varying σ of the score correction model, see Appendix. A.6.1.

Figure 4: Correction models with OT-CFM as base flow model results on CIFAR-10 (Left) and
Imagenet-64 (Right). The ”-Diff” shows the difference between corrected and uncorrected images.
Corrected images show improved sharpness and better alignment with the dataset.
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Figure 5: CIFAR-10 sample quality. The base flow model is OT-CFM sampled with 10-step RK4
(40 NFE). Left: FID vs accumulative correction time-steps. Middle: FID vs single correction time-
step. Right: Ablation study on loss components of the classifier sampled on different marginals.

5.3.1 MARGINALS ABLATION

In this ablation we study the effect of applying correction on different time-steps. Fig. 5 (Left)
demonstrates the cumulative effect of correcting all time-step marginals (from 0 to 10). The score
model demonstrates significant improvements primarily during the middle and final steps, with min-
imal contributions from early stages. In contrast, the classifier exhibits a more uniform pattern of
enhancement. Whereas, Fig. 5 (Middle) presents the improvement in FID when applying a single
correction step on different time-step marginals. The classifier model’s correction shows greater im-
provement than the score model at every time-step, with the exception of the final one. As predicted
by the theoretical analysis in Sec. 3.1, we observe that different correction algorithms yield varying
levels of improvement when applied at different time steps.

Notably, early-stage corrections mainly affect low-frequency components, shaping overall image
structure. In contrast, later-stage corrections primarily impact high-frequency details, addressing
noise-like elements (Kim et al., 2024). The striking impact of executing the last time step with the
score model suggests residual noise in the model’s predictions (see Appendix. A.9 for illustrations).

5.3.2 CLASSIFIER LOSS ABLATION

To assess the significance of each improvement made to the classifier, namely Adversarial Training
(AT) and Gradient Alignment (GA), we conduct an ablation study by removing these components.
The results are presented in Fig. 5 (Right). In the absence of AT, the gradients become unstable,
which is evident from the inconsistent improvement observed when adding steps. On the other hand,
without GA, the gradients are small, and adding steps does not impact the overall improvement.

6 CONCLUSION AND LIMITATIONS

Our main insight is that given an imperfect flow model, a trajectory that reaches exactly the data
distribution can be computed by reversing its vector field. Based on this insight, we propose a
simple algorithm, Marginal Matching, which steers the inference-time trajectory to better align with
the trajectory that accurately reaches the data. We demonstrate superior performance on two datasets
CIFAR-10 and ImageNet-64, and perform an extensive ablation study.

Ideally, all generative models would benefit from correction of prediction errors, as such errors are
not specific to flow models. A major limitation of our work is the assumption on the reversibility of
the vector field, constraining our method from operating on non-reversible models. This limitation
may be relaxed for approximately reversible models such as diffusion models (Wallace et al., 2023).
In general, extending our approach to non-reversible models is an interesting future direction.

Another aspect is the practical implementation of our theory. In Thm. 3.4 we assumed knowledge
of error reductions. In practice, we do not have access to the model’s error reduction (see Sec.3.1).
However, we can bound that reduction in the case of score correction (Lemma. 3.7) and propose a
bound on the final Wasserstein distance. Future work could explore theoretical bounds also for our
classifier-based correction model.

Finally, our method requires training an additional model after a flow model has been pre-trained,
adding extra compute and parameters. It is worth noting that in all our experiments, this auxiliary
model is smaller than the original flow model, and training it takes significantly less time. An
alternative approach could involve training the flow and correction models together, either as a single
model with both flow and correction outputs or as two models trained simultaneously.
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A APPENDIX

A.1 OPTIMAL TRANSPORT

Optimal Transport (OT) is a mathematical framework that addresses the problem of efficiently mov-
ing probability mass from one distribution to another while minimizing a certain cost. The central
idea is to find the optimal way to transform one probability distribution into another, considering the
”cost” of moving each unit of mass.

In the context of flow matching, before learning the flow, an optimal transport map is computed
between batches of samples from π0 and π1. This OT step uses the 2-Wasserstein distance as its
metric, with a cost function defined as the Euclidean distance ∥x − y∥ between points. The flow
is then learned based on these optimally transported samples, resulting in straighter trajectories
(Pooladian et al., 2023; Tong et al., 2024).

A.2 THEORETICAL PROOFS

Proof of Lemma 3.2. If pft = pbt for every t then pf1 = pb1 = π1 is trivial.

Assume pf1 = pb1 = π1. We need to show that pft = pbt for every t ∈ [0, 1].

The flow ϕt is a diffeomorphism for each t ∈ [0, 1] due to the properties of the vector field u
(continuous and globally Lipschitz).

For any t ∈ [0, 1], we can write:

pft = [ϕt]#p
f
0 = [ϕt ◦ ϕ−1

1 ]#p
f
1 ,

pbt = [ϕt]#p
b
0 = [ϕt ◦ ϕ−1

1 ]#p
b
1,

where ϕ−1
1 is the inverse map of ϕ1 flowing from t = 1 to t = 0. Since the following equality holds:

pf1 = pb1 = π1, we can replace pf1 and pb1 with π1 in the above equations: pft = [ϕt ◦ ϕ−1
1 ]#π1

pbt = [ϕt ◦ ϕ−1
1 ]#π1.

Lemma A.1. [Lemma. 3.3 in the main paper] Let u be defined as in Lemma. 3.2. The 2-Wasserstein
distance between q1t and q2t satisfies:

W2(q
1
t , q

2
t ) ≤W2(q

1
0 , q

2
0) exp{Lt}.

Corollary A.1.1. Assume t′ > t: W2(q
1
t′ , q

2
t′) ≤W2(q

1
t , q

2
t ) exp{L(t′ − t)}.

Proof. Let ϕt be the flow map of the vector field u that induces the push-forward q1t := [ϕt]#q
1
0 ,

q2t := [ϕt]#q
2
0 for any two probability density distributions q10 and q20 over Rd, where t ∈ [0, 1].

Let õ04 be the optimal coupling between q10 and q20 . Denote the push-forward of õ0 as õ#t := [ϕt]#õ0.
Then:

4Literature commonly uses the symbol π to denote an optimal transport coupling. This paper, however,
already uses π to represent source and target distributions. To avoid confusion, õ is chosen for the optimal
transport coupling.
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d

dt

∫
Rd×Rd

∥x− y∥2dõ#t (x, y) =
d

dt

∫
Rd×Rd

∥ϕt(x)− ϕt(y)∥2dõ0(x, y) (5)

=

∫
Rd×Rd

d

dt
∥ϕt(x)− ϕt(y)∥2dõ0(x, y) (6)

=

∫
Rd×Rd

2(ϕt(x)− ϕt(y)) · (
d

dt
ϕt(x)−

d

dt
ϕt(y))dõ0(x, y) (7)

= 2

∫
Rd×Rd

(ϕt(x)− ϕt(y)) · (ut(ϕt(x))− ut(ϕt(y)))dõ0(x, y)

(8)

≤ 2L ·
∫
Rd×Rd

∥ϕt(x)− ϕt(y)∥2dõ0(x, y) (9)

= 2L ·
∫
Rd×Rd

∥x− y∥2dõ#t (x, y), (10)

where in (5) we changed variables, in (6) we used Leibniz’s rule and in (8) the Lipshitz constraint.

Using Grönwall’s inequality, we have:∫
Rd×Rd

∥x− y∥2dõ#t (x, y) ≤
∫
Rd×Rd

∥x− y∥2dõ0(x, y) exp{2Lt} (11)

=W 2
2 (q

1
0 , q

2
0) exp{2Lt}. (12)

By the definition of Wasserstein distance:

W 2
2 (q

1
t , q

2
t ) ≤

∫
Rd×Rd

∥x− y∥2dõ#t (x, y). (13)

Substituting the bound:

W 2
2 (q

1
t , q

2
t ) ≤W 2

2 (q
1
0 , q

2
0) exp{2Lt}. (14)

Taking the square root of both sides yields the result:

W2(q
1
t , q

2
t ) ≤W2(q

1
0 , q

2
0) exp{Lt}.

Theorem A.2. [Thm.3.4 in the main paper] Let P2(Rd) be the space of probability densities on Rd
with finite second moments. Let u be defined as in Lemma. 3.2. Let µt and νt be two time-dependent
probability density functions in Rd satisfying the continuity equation Eq. (1) with initial densities
µ0, ν0 and terminal densities µ1, ν1. Suppose that the initial 2-Wasserstein distance between them
is d0 = W2(µ0, ν0). The time interval [0, 1] is discretized into N equal steps: tn = n/N , where
n = 0, 1, ..., N . At each time step tn, a time-dependent transport map h : [0, 1]×P2(Rd) → P2(Rd)
is applied to νtn . After applying h, the flow function at time tn+1 continues from the probability
density of h(tn, νtn). We consider two variations for h:

A If h reduces the 2-Wasserstein distance by a constant amount ϵn > 0 at each step:
W2(µtn , h(tn, νtn)) = W2(µtn , νtn) − ϵn. Then, the following bound hold for n =

0, 1, ..., N : W2(µtn , νtn) ≤ d0 exp{L · tn} −
∑n−1
i=0 ϵi exp{L(tn − ti)},

B If h reduces the 2-Wasserstein distance to a proportion of the current distance:
W2(µtn , h(tn, νtn)) = (1 − ϵn) ·W2(µtn , νtn) where 0 < ϵn < 1 for all n. Then, the
following bound hold for n = 0, 1, ..., N : W2(µtn , νtn) ≤ d0 ·

∏n−1
i=0 (1− ϵi) ·exp{L ·tn}.

Proof of Theorem A.2. We will prove parts A and B of the theorem separately.

Part A:
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Let dn =W2(µtn , νtn). We will prove by induction that:

dn ≤ d0 exp{L · tn} −
n−1∑
i=0

ϵi exp{L(tn − ti)}.

Base case (n = 0): Trivially true as d0 =W2(µ0, ν0).

Inductive step: Assume the inequality holds for n. We’ll prove it for n+ 1.

After applying h at tn, we have:

W2(µtn , h(tn, νtn)) = dn − ϵn.

By Lemma. A.1 over the interval [tn, tn+1], we have:

dn+1 ≤ (dn − ϵn) exp{L(tn+1 − tn)}.

Substituting the inductive hypothesis:

dn+1 ≤

(
d0 exp{L · tn} −

n−1∑
i=0

ϵi exp{L(tn − ti)} − ϵn

)
exp{L(tn+1 − tn)}

= d0 exp{L · tn+1} −
n−1∑
i=0

ϵi exp{L(tn+1 − ti)} − ϵn exp{L(tn+1 − tn)}

= d0 exp{L · tn+1} −
n∑
i=0

ϵi exp{L(tn+1 − ti)}.

This completes the induction. The final bound at t = 1 follows by setting n = N .

Part B:

Again, let dn =W2(µtn , νtn). We will prove by induction that:

dn ≤ d0 ·
n−1∏
i=0

(1− ϵi) · exp{L · n/N}.

Base case (n = 0): Trivially true.

Inductive step: Assume the inequality holds for n. We’ll prove it for n+ 1.

After applying h at tn, we have:

W2(µtn , h(tn, νtn)) = (1− ϵn) · dn.

By Lemma. A.1, over the interval [tn, tn+1] we have:

dn+1 ≤ (1− ϵn) · dn · exp{L(tn+1 − tn)} = (1− ϵn) · dn · exp{L/N}.

Substituting the inductive hypothesis:

dn+1 ≤ (1− ϵn) · exp{L/N} · d0 ·
n−1∏
i=0

(1− ϵi) · exp{L · n/N}

= d0 ·
n∏
i=0

(1− ϵi) · exp{L · (n+ 1)/N}.

This completes the induction. The final bound at t = 1 follows by setting n = N .
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Score Wasserstein Bound:

The score-based models losses are:

LSM (θ;λ) :=
1

2

∫ Ts

0

λ(τ)Epτ [∥∇ log pτ (x)− sθ(x, τ)∥2]dτ,

LDSM (θ, λ) :=
1

2

∫ Ts

0

λ(τ)Ep0(x(0))p0τ (x|x(0))[∥sθ(x, τ)−∇x log p0τ (x|x(0))∥2]dτ,

where λ : [0, Ts] → (0,∞) is a positive weighting function. The score model is typically trained
using the widely adopted loss function known as LDSM .
Definition A.3. Noisy Backward Marginal: Let pbn,σ be the noisy nth backward marginal. Then,
pbn,σ(ỹn|yn) = N (yn, σ

2I), y ∼ pbn.
Theorem A.4 (Kwon et al. (2022)). If p0τ satisfies:

V ar[E[(∇x log p0τ (x|x(0)))⊤|x(0)]] = 0, (15)

then we have:

LSM ≤ LDSM and W2(p0, q0) ≤

√√√√2

(∫ Ts

0

g(τ)2I(τ)2 dτ

)
LDSM + I(Ts)W2(pTs

, qTs
),

(16)

were I(τ) := exp{
∫ τ
0
(Lf (r) + Ls(r)g(r)

2)dr}. Additionally, Lf and Ls are defined as follows:

(A1) The drift coefficient f : Rd× [0, Ts] → Rd is Lipschitz continuous in the space variable x:
there exists a positive constant Lf (τ) ∈ (0,∞), depending on τ ∈ [0, Ts], such that for all
x, y ∈ Rd

∥f(x, τ)− f(y, τ)∥ ≤ Lf (τ)∥x− y∥. (17)

(A2) sψ : Rd × [0, Ts] → Rd satisfies the one-sided Lipschitz condition [14, Definition 2.1]:
there exists a constant Ls(τ) ∈ R, depending on τ ∈ [0, Ts], satisfying for all x, y ∈ Rd

(sψ(x, τ)− sψ(y, τ)) · (x− y) ≤ Ls(τ)∥x− y∥2. (18)

For more details, see Kwon et al. (2022). In our case p0 = pbn and qTs = pfn, the nth backward
and forward marginals respectively. We assume the forward marginals are a ”noisy” version of the
backward marginals (Def. A.3) with a small σ. Thus, pTs

= qTs
and W2(pTs

, qTs
) = 0 the first

time the score model is applied, (the starting point is on the forward marginal). Consequently, as the
LDSM loss converges to zero, so is the bound on the Wasserstein distance.

Conditions: V ar[E[(∇x log p0τ (x|x(0)))⊤|x(0)]] = 0 under the following sufficient conditions:
(1) Lipschitz continuity of the drift function for the forward diffusion process, and (2) boundedness
of the noise schedule. Our scenario satisfies these conditions as follows:

• The drift function f is zero, which is Lipschitz continuous.
• The noise schedule g is between σmin and σmax, thus it is bounded above and below.

Therfore, we meet these sufficient conditions and adopt the additional assumptions from Kwon et al.
(2022), enabling us to apply Thm. A.4.
Lemma A.5. Let u : [0, 1] × Rd → Rd be a continuous time-dependent vector field, satisfying
the Lipschitz condition: for any t ∈ [0, 1] and x, y ∈ Rd, ∥ut(x) − ut(y)∥ ≤ L∥x − y∥. Let pbn
and pfn represent the nth backward and forward marginals respectively, where the corresponding
marginals continuous time is tn = n/N . Let sψ denote the trained score model. Then, applying sψ
from pfn to pbn as described in Sec. 2.2 lowers the final bound on W2(p

b
N , p

f
N ):

W2(p
b
N , p

f
N ) ≤


√√√√2

(∫ Ts

0

g(τ)2I(τ)2dτ

)
LψDSM

 exp{L(1− tn)}.
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Proof of Lemma 3.7. Denote as dn =W2(p
b
n, p

f
n). After applying the score models sψ:

d̂n,ψ =W2(p
b
n, p̂

b
n) ≤

√√√√2

(∫ Ts

0

g(τ)2I(τ)2dτ

)
LψDSM + I(Ts)W2(p

b
n,σ, p

f
n), (19)

where p̂bn is the score model’s approximation and 0, Ts are the integration times of the score model
and Ts → ∞. According to Lemma. A.1:

W2(p
b
N , p

f
N ) ≤ d̂n,ψ exp{L(1− tn)}, (20)

W2(p
b
N , p

f
N ) ≤W2(p

b
n, p

f
n) exp{L(1− tn)} =W2(p

b
n, p

b
n,σ) exp{L(1− tn)}, (21)

where the second inequality is the bound without applying the correction step.

The final bound can be obtained by substituting the bound on d̂n,ψ:

W2(p
b
N , p

f
N ) ≤


√√√√2

(∫ Ts

0

g(τ)2I(τ)2dτ

)
LψDSM + I(Ts)W2(p

b
n,σ, p

f
n)

 exp{L(1− tn)}.

(22)

Assuming the score model is trained, JψDSM is negligible:
√
2
(∫ Ts

0
g(τ)2I(τ)2dτ

)
LψDSM <

W2(p
b
n, p

b
n,σ). Since the forward marginals are a noisy version of the backward marginals

W2(p
f
n, p

b
n,σ) = 0. In total, the final bound after applying a correction step is lower than the bound

when applying no correction steps:
√√√√2

(∫ Ts

0

g(τ)2I(τ)2dτ

)
LψDSM

 exp{L(1− tn)} < W2(p
b
n, p

b
n,σ) exp{L(1− tn)}. (23)

Theorem A.6. Let u : [0, 1] × Rd → Rd be a continuous time-dependent vector field, satisfying
the Lipschitz condition: for any t ∈ [0, 1] and x, y ∈ Rd, ∥ut(x) − ut(y)∥ ≤ L · ∥x − y∥. Denote

lψ,n =

√
2
(∫ Ts

0
g(τ)2I(τ)2dτ

)
Lψ,nDSM , where Lψ,nDSM refers to the loss of sψ on the nth marginal.

Following Lemma. 3.7 and assuming that W2(p
b
n,σn

, qTs,n) ≤ W2(p
b
n, qTs,n) for every n where

qTs,n is the initial distribution of the nth correction of the score model, then the application of sψ to
multiple marginals upper bounds the final Wasserstein distance. This can be expressed as:

W2(p
b
N , p

f
N ) ≤

N−1∑
i=0

lψ,i exp{(N − i) · L/N}IN−1−i(Ts) + d0I
N (Ts) exp{L}.

Under the assumption that the forward marginals are a noisy version of the backward marginals when
qTs,n = pfn the inequality: W2(p

b
n,σn

, pfn) ≤ W2(p
b
n, p

f
n) is trivial. After applying a correction step

and continuing the flow, the trajectory at the next time-step lies between the forward and backward
marginal paths, rather than strictly on the forward marginals path (qTs,n ̸= pfn). This inequality
holds true provided that σn decreases at a rate corresponding to this intermediate positioning.
Corollary A.6.1. When no corrections are applied the final Wasserstein distance is:

W2(p
b
N , p

f
N ) ≤ d0 exp{L} (24)

Assuming the score model is trained lψ,i is negligible. In our case the drift is 0 resulting in a negli-
gible Lf (r). Additionally, the one-sided Lipschitz constant is limτ→∞ σ2Ls(τ) = −1 (Kwon et al.,
2022). Therefore, ∃τ ′ such that ∀τ > τ ′ I(τ) < 1, specifically limτ→∞ I(τ) < 1. Applying more
correction scores decreases the upper bound of the final Wasserstein distance by I(Ts), similarly to
the multiplicative case (B) in Thm. A.2.
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Proof of Theorem A.6. Denote as dn =W2(p
b
n, qTs,n). We will prove by induction that:

dn ≤
n−1∑
i=0

lψ,i exp{(n− i) · L/N}In−i−1(Ts) + d0I
n(Ts) exp{n · L/N}. (25)

Base case (n = 0): Trivially true.

Inductive step: Assume the inequality holds for n. We’ll prove it for n+ 1.

By Lemma. 3.7, after applying the score function:

d̂n,ψ =W2(p
b
n, p̂

b
n) ≤

√√√√2

(∫ Ts

0

g(τ)2I(τ)2dτ

)
Lψ,nDSM + I(Ts)W2(p

b
n,σn

, qTs,n) (26)

≤

√√√√2

(∫ Ts

0

g(τ)2I(τ)2dτ

)
Lψ,nDSM + I(Ts)W2(p

b
n, qTs,n) (27)

=

√√√√2

(∫ Ts

0

g(τ)2I(τ)2dτ

)
Lψ,nDSM + I(Ts)dn, (28)

in the second inequality we used the assumption that W2(p
b
n,σn

, qTs,n) ≤ W2(p
b
n, qTs,n). By

Lemma. A.1 over the interval [tn, tn+1], we have:

dn+1 ≤ d̂n,ψ exp{L(tn+1 − tn)} (29)

≤


√√√√2

(∫ Ts

0

g(τ)2I(τ)2dτ

)
Lψ,nDSM + I(Ts)dn

 exp{L(tn+1 − tn)} (30)

=


√√√√2

(∫ Ts

0

g(τ)2I(τ)2dτ

)
Lψ,nDSM

 exp{L/N}+ dnI(Ts) exp{L/N}, (31)

Substituting the inductive hypothesis:

dn+1 ≤ lψ,n exp{L/N}+ dnI(Ts) exp{L/N} (32)

≤ lψ,n exp{L/N} (33)

+

(
n−1∑
i=0

lψ,i exp{(n− i) · L/N}In−i−1(Ts) + d0I
n(Ts) exp{n · L/N}

)
I(Ts) exp{L/N}

(34)

=

n∑
i=0

lψ,i exp{(n− i+ 1) · L/N}In−i(Ts) + d0I
n+1(Ts) exp{(n+ 1) · L/N}. (35)

This completes the induction. The final bound at t = 1 follows by setting n = N .

A.3 PRACTICAL CONSIDERATIONS FOR hψ

Practical Considerations of hψ: When designing the learning objective for hψ an important issue
should be taken into consideration. The pre-trained flow model has established a matching between
each distribution on the forward trajectory pftn and between each distribution on the backward tra-
jectory pbtn across different time-steps. Additionally, there exists a matching between π̂1 and π1.
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Through transitivity, this implies a pairing between pftn and pbtn for every time step tn. During the
training process, samples from pftn and pbtn are accessible. Models that try to establish pairing be-
tween these distributions will yield sub-optimal results, since the correct pairing is unknown. Thus,
we opt for different generative models such as score and classifier.

Alternative Correction Models: Alternative correction models include the more sophisticated
score models for traversing between forward and backward marginals, provided the noise level for
the forward marginal is known. A supplementary model can be trained to predict the noise level,
thereby assisting the score model. Additionally, Energy-Based Models (EBMs) (Du et al., 2021),
could also be a good fit to explore the alignment of the sampling trajectory with the backward tra-
jectory.

A.3.1 PARALLEL SAMPLING

Fig. 6 presents the approximation of parallel sampling the correction and flow model. The algorithm
for parallel sampling is presented in Alg. 3. For clarity, the algorithm assumes Euler integration
as the ODE-solver. To maintain computational efficiency, a single correction step is implemented,
ensuring that the total computation time remains equivalent to that of the uncorrected method.

This algorithm is parallel in principle. Cuda has a queue, where the CPU sends tasks to be run
on the GPU. The GPU may execute tasks in parallel that are independent of one another, such as
our parallel sampling. The CPU may wait when the queue is full or during synchronization events,
(i.e. item(), synchronize(), etc). Given a powerful enough Cuda machine, the models could be
run in parallel on different GPUs or using advanced parallelism techniques. Parallel calculation on
separate devices could be useful when the correction calculation takes more time than the overhead
of moving between devices, as is the case for large models. The extent of parallel processing viability
will depend on the specific hardware and infrastructure available.

Figure 6: Parallel Sampling The black arrows denote the path of first flowing with vθ and only
then taking a correction step with hψ . In contrast, the dashed green arrow shows the approximation
obtained by summing the direction of the flow model vθ (black arrow), and the correction model hψ
(green arrow) on the current step.
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Algorithm 3 Parallel Corrected Inference

Require: flow model vθ, correction model hψ , number of iterations N , step size of corrector steps
{αi}N−1

i=0 , scale added noise {βi}N−1
i=0

1: x0 ∼ N (0, I)
2: for n = 0, . . . , N − 1 do:
3: ϵ ∼ N (0, I)
4: x̃tn = xtn + βn · ϵ
5: htn = hψ(tn, x̃tn) ▷ Correction
6: vtn = vθ(tn, xtn) ▷ Flow
7: xtn+1 = xtn + 1

N vtn + αn · htn
8: end for
9: return xtN

A.3.2 SCORE MODEL TRAINING

Score models are generative AI systems that transform random noise into meaningful data through
iterative denoising. At their core is the score function - the gradient of the log probability density -
which guides samples toward higher likelihood regions of a target distribution.

These models utilize varying noise levels (σ) during generation. At high noise levels, samples differ
significantly from the target distribution, but the score function provides stable gradients far from the
data manifold. At low noise levels, as samples approach the target distribution, the score function
enables detailed refinement. During generation, the model progressively reduces noise levels while
following each corresponding score function, establishing a path between random noise and complex
data distributions.

By assuming the forward marginals are a noisy version of the backward marginals (with a small σ),
a score model can be used to transverse between them.

While sophisticated approaches like annealing score models with time-varying σ are widely used
for generation, they proved unsuitable for our needs. This is due to our inference process that begins
at a forward marginal (or an intermediate point), where we lack information about the current noise
level, precluding the effective use of such models.

A.3.3 ROBUST CLASSIFIER TRAINING

Adversarial Training (AT): Srinivas & Fleuret (2021) demonstrated that the gradients of standard
classifiers can be arbitrarily altered without impacting their cross-entropy loss or accuracy. Building
on this insight, Kawar et al. (2023) proposed using gradients from a robust classifier for guidance,
rather than those from a conventional classifier. The gradients of robust classifiers are resistant to
arbitrary manipulation as a results of the adversarial attack used in their loss computation is directly
dependent on the model’s gradients. An intriguing characteristic of robust classifiers is that their
gradients have been shown to align well with human perception, as noted by Tsipras et al. (2019).
When robust classifiers are employed to guide x towards a specific class c, they are anticipated to
produce significant features that correspond well with the target class. As a result, the modifications
applied to x are likely to be visually convincing and aligned with human perception of the class
characteristics. Inspired by these works we enhance the classifier with Projected Gradient Descent
(PGD) attack and Adversarial Training (AT) robustification method (Madry et al. (2018)), with the
PGD pseudo-algorithm detailed in Alg. 4. Our findings indicate that adversarial training stabilizes
gradients and enhances their meaningfulness.
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Algorithm 4 Targeted Projected Gradient Descent

Require: classifier fϕ, input x, class c, number of iterations N , step size α, radius ϵ, loss function
ℓ,

1: δ0 = 0
2: for n = 0, . . . , N do:
3: δn+1 = Πϵ(δn − α∇δℓ(fϕ(x+ δt), c))
4: end for
5: xADV = x+ δN
6: Return xADV

Where Πϵ is a projection operator that keeps δ’s norm below ϵ so the adversarial example will not
stray too far from the input; and the loss function in our case is cross entropy.

Gradient Alignment (GA): Inspired by Yadin et al. (2024) and Song et al. (2021b), we incorporate
a cosine-similarity loss term for the gradient. This aims to align the classifier’s gradient direction
with the backward marginals when in close proximity. We artificially move away from the backward
marginals by introducing small Gaussian perturbations to sampled points, and training the classifier
gradient to point towards the original samples by aligning them with the negative direction of the
noise.

Algorithm 5 Robust Classifier Training

Require: classifier hψ , forwards marginals {ptn(x)f}Nn=0, backward marginals {ptn(x)b}Nn=0, loss
weights {βi}3i=1, σ scale of noise, adversarial step size α, adversarial number of steps K, ad-
versarial radius ϵADV

1: repeat
2: ϵ ∼ N (0, I)
3: n ∼ U({0, 1, .., N})
4: s = U(0, 1) · σ
5: xf ∼ pftn , xb ∼ pbtn
6: ℓCE = CE(hψ(xf , tn), 0) + CE(hψ(xb, tn), 1)
7: cn = ∇ψhψ(xb + s · ϵ, tn)
8: ℓCS = cosine− similarity(cn,−ϵ)
9: ℓADV = PGD(hψ, xf , 0,K, α, ϵADV , CE) + PGD(hψ, xb, 1,K, α, ϵADV , CE)

10: ℓ = β1 · ℓCE + β2 · ℓCS + β3 · ℓADV
11: Take gradient descent step on ∇ψℓ
12: until converged

The class for the forward marginals is represented by 0 and for the backward marginals by 1.

A.4 EXTENDED RELATED WORK

Inverse diffusion – Previous work researched inversion of diffusion models, which are ”approxi-
mately invertible” models, particularly in the context of image editing. DDIM inversion (Song et al.,
2021a) method laid the groundwork for this approach, enabling the reversal of the diffusion process
to obtain latent representations of images by utilizing a deterministic forward process. Building
upon this foundation, Wallace et al. (2023) improved the efficiency of the inversion by training an
encoder network to directly map images to their corresponding noise representations in the diffu-
sion process. Furthermore, Mokady et al. (2023) enabled precise edits on real images through a
text-guided approach, using a null-text optimization to find an optimal noise that, when denoised,
produces the target image. Zhang & Kleijn (2023) improved the accuracy of the inversion process
by combining forward and backward trajectories to minimize approximation errors, while Pan et al.
(2023) focused on enhancing both the speed and quality of image editing operations by iteratively
refining the inverted latent code.
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A.5 FORWARD AND BACKWARD TRAJECTORY COMPARISON

We illustrate the distinction between the forward and backward marginals of OT-CFM flow model
(Tong et al., 2024) trained on the CIFAR-10 dataset and sampled with 10-step RK4. Fig. 9 presents a
visual representation of these marginals at each time-step tn, created with t-SNE (Van der Maaten &
Hinton (2008)) in order to reduce the marginals’ dimensionality to two. Fig. 8 offers an alternative
visualization, where the t-SNE is applied to the classifier correction model’s features of the marginals
at each time-step. The visualizations demonstrate that as n increases there is a trend of growing
similarity between the forward and backward marginals. However, this pattern of convergence does
not extend to the final time step (n = 10), where the comparison is between the actual data and the
flow model’s approximation of it.

Figure 7: Percentage vs L2 difference. Histogram showing L2 differences of VGG features be-
tween samples generated using a flow model alone versus with a correction model. The samples are
generated from identical Gaussian noise. The percentage indicates the proportion of images with
the corresponding difference. The score and classifier correction models leave most images largely
unchanged, with differences concentrated in a small range, while significantly altering only outliers.
This suggests that there is an intersection between the forward and backward marginals.

Reinforcing this observation, Fig. 7 examines the intersection of forward and backward marginals by
presenting a histogram of the L2 differences in VGG5 features between uncorrected and corrected
samples. The distribution reveals that for both the classifier and score models, the majority of images
exhibit minimal changes. This pattern indicates that corrections are primarily applied to images
requiring adjustment, suggesting a close alignment between the forward and backward marginals.
The selective nature of these corrections implies that the models effectively identify and address
outliers, refining the overall distribution while leaving well-formed samples largely unchanged.

5VGG is the model used to calculate the FID score
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Figure 8: TSNE of Classifier Features Red represents the forward marginals, while blue denotes the
backward marginals. The classifier’s features can differentiate between the forward and backward
marginals in most cases. However, in some instances, these marginals are indistinguishable from
one another.

Figure 9: TSNE of Forward and Backward Marginals Red represents the forward marginals,
while blue denotes the backward marginals. As time progresses, we observe a convergence between
these two sets of marginals. However, it’s important to note that despite this increasing proximity,
they never achieve perfect alignment or identity. n = 0 compares the approximate source distribu-
tion distribution (pb0) and Gaussian noise while n = 10 compares the model’s data approximation
(pf1 ) and the real data.

A.6 ADDITIONAL EXPERIMENTS

A.6.1 SCORE ABLATION STUDY

An ablation study on different σ values for the score model trained on CIFAR-10 is presented in
Table. 3. The correction step-sizes for different sigmas were multiplied by a constant value, as the
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score function is multiplied by sigma during evaluation. For all other evaluations, we employed the
score model trained using σ = 0.005, as it yielded superior performance compared to other values.

Correction Model NFE ↓ C-NFE ↓ FID ↓
0.001-Score 41 1 3.83

43 3 3.75
51 11 3.77

0.003-Score 41 1 3.51
43 3 3.44
51 11 3.45

0.005-Score 41 1 3.45
43 3 3.38
51 11 3.37

0.01-Score 41 1 3.49
43 3 3.42
51 11 3.38

Table 3: Ablation study on the sigma value of score correction model sampled on n =
{[10], [0, 5, 10],∀n} marginals on CIFAR-10. The σ−Score represents the value of σ the score
model was trained with. The base flow model is OT-CFM sampled with 10-step RK4 (40 NFE). The
results demonstrate that the optimal performance is achieved when σ = 0.005 (the value used in the
main paper).

A.6.2 CIFAR-10 CLASSIFIER GUIDANCE

We implement classifier guidance as described in Sec. 3.2.2 on CIFAR-10 dataset. Fig. 10 presents
images produced with our corrected inference algorithm that use the class-condition classifier, where
the trajectory is steered toward the correct class in the backward marginals. On the left, the original
images of the flow model are presented (with no correction), and on the right the images from the
same source noise, but with correction steps toward the matching classes. Even when the classifier’s
class matches the original class of the source noise it produces a different image of the same class,
more closely aligned with the backward trajectory.

Figure 10: CIFAR-10 images generated by OT-CFM sampled with 10-step RK4, shown alongside
their counterparts produced with class conditioned classifier correction. The classifier successfully
directs the noise to the correct class.

A.6.3 ADDITIONAL CIFAR-10 SAMPLE QUALITY RESULTS

Table. 4 presents the complete results on CIFAR-10 of applying the correction models (score and
classifier) in parallel with the flow model, (to save computation time), and with an approximation of
the backward marginals (to save storage during training). For more details see Sec. 5.1.
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OT-CFM I-CFM
Correction Model NFE ↓ C-NFE ↓ FID ↓ FID ↓
No Correction 40 0 4.34 4.29

Classifier

42 1 (n = 8) 3.57 3.77
46 3 (n = 8, 9, 10) 3.48 3.67
50 5 (n = 6, 7, 8, 9, 10) 3.47 3.62
62 11 (∀n) 3.48 3.63

P-Classifier 40 1 (n = 7) 3.65 3.75
40 3 (n = 7, 8, 9) 3.60 3.73
40 5 (n = 5, 6, 7, 8, 9) 3.59 3.67
40 10 (n = 0, 1, 2, 3, 4, 5, 6, 7, 8, 9) 3.74 3.80

Classifier
(Backward Marginals
Interpolation)

42 1 (n = 8) 3.77 3.74
46 3 (n = 8, 9, 10) 3.72 3.62
50 5 (n = 6, 7, 8, 9, 10) 3.67 3.69
62 11 (∀n) 3.68 3.67

Score
41 1 (n = 10) 3.45 3.47
43 3 (n = 0, 5, 10) 3.38 3.39
51 11 (∀n) 3.37 3.38

P-Score 40 1 (n = 9) 4.29 4.27
40 3 (n = 0, 5, 9) 4.08 3.99
40 10 (n = 0, 1, 2, 3, 4, 5, 6, 7, 8, 9) 4.08 3.99

Score
(Backward Marginals
Interpolation)

41 1 (n = 10) 3.46 3.47
43 3 (n = 0, 5, 10) 3.38 3.40
51 11 (∀n) 3.41 3.41

Table 4: Comparison of two variants of classifier and score correction models on CIFAR-10. First,
a correction model that runs in parallel with (”P-”) the flow model. Second, a correction model
that learns an interpolation of the data and approximate source distribution. The base flow models
are sampled with 10-step RK4 (40 NFE). The classifier succeeds in improving the FID even with
the parallel approximation, while the score shows less improvement. Training with interpolated
backward marginals improves the FID score, though less than using their exact version.

A.6.4 FLOW AS CORRECTION MODEL

In this experiment we perform MM with a flow model (OT-CFM) as the correction model. The
correction is performed only on the first and last marginals with a different number of correction
steps, see Table. 5. The correction of the first marginal is done between Gaussian noise (pf0 ) to the
approximate source distribution (pb0), and on the last marginal from the approximate target distribu-
tion (pf1 ) to the target distribution (pb1 = π1). The first row in the table presents the FID result with
no correction model, but only 10-step RK4 sampling of the OT-CFM base flow model.

The flow model only degrades the results. We hypothesize that this is due to the pairing problem,
for more details refer to Appendix. A.3. That led us to explore other correction models - score and
robust classifier.

Correction Model NFE↓ C-NFE↓ FID ↓
No Correction 40 0 4.34
OT-CFM – 1st Marginal 42 2 9.74

46 6 6.31
60 20 6.33

OT-CFM – N th Marginal 42 2 7.43
46 6 4.39
60 20 4.41

Table 5: CIFAR-10 FID comparison of OT-CFM correction and flow model trained on first and last
marginals. The correction score model was sampled with C-NFE RK4 steps, while the base flow
model was sampled with 10-step RK4 (40 NFE). The correction flow model degrades the results.
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A.6.5 CIFAR-10 TEST SAMPLE QUALITY

CIFAR-10 Test Set FID: The performance of OT-CFM flow model with and without correction on
CIFAR-10 test set is presented in Table 6. The correction model helps the generation quality, even
though it was trained to match the training data marginals. Where the C-NFE is greater than one,
the correction steps were taken on different time-step marginals; we examine several options: for
the score model the correction steps were taken on n = [10], [0, 5, 10],∀n and for the classifier on
n = [8], [8, 9, 10], [6, 7, 8, 9, 10],∀n, same as Table .1.

Flow Model NFE ↓ FID ↓
OT-CFM 40 6.43

80 5.51
200 5.67

Correction Model NFE ↓ C-NFE ↓ FID ↓
Score 41 1 (n = 10) 5.52

43 3 (n = 0, 5, 10) 5.46
Classifier 42 1 (n = 8) 5.66

46 3 (n = 8, 9, 10) 5.57
50 5 (n = 6, 7, 8, 9, 10) 5.56

Table 6: CIFAR-10 test set FID performance of OT-CFM flow model with and without our correction
models (score and classifier). OT-CFM is sampled without correction using 10,20, and 50-step RK4.
Our correction models use OT-CFM with 10-step RK4 (40 NFE). In general, adding correction steps
(C-NFE) improves the results.

A.6.6 FLOW MODELS RK4 RESULTS

Model NFE FID ↓
OT-CFM (Tong et al., 2024) 40 4.34

44 3.96
48 3.73
52 3.59
56 3.52
60 3.47
80 3.48

160 3.65
200 3.67
400 3.69

I-CFM (Tong et al., 2024) 40 4.29
44 3.96
48 3.74
52 3.60
56 3.52
60 3.47
80 3.47

160 3.63
200 3.64
400 3.66

Table 7: CIFAR-10 FID scores for OT-CFM and I-CFM flow models sampled with RK4. The
number of RK4 steps is 1/4 of the number of the NFEs.
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A.7 IMAGENET-64 QUALITAIVE EXAMPLES

(a) OT-CFM

(b) Score Correction Model

(c) Difference

Figure 11: ImageNet-64 image generation using OT-CFM alone and with score correction model.
The corrected images demonstrate enhanced sharpness and definition compared to their uncorrected
counterparts.
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A.8 CIFAR-10 QUALITAIVE EXAMPLES

(a) OT-CFM

(b) Score Correction Model

(c) Classifier Correction Model

Figure 12: CIFAR-10 image generation using OT-CFM alone and with score correction and classifier
correction models. Despite the distinct nature of these correction models, their suggested improve-
ments often exhibit remarkable similarity. The corrected images demonstrate enhanced sharpness
and definition compared to their uncorrected counterparts.
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A.9 LAST STEP SCORE CORRECTION EXAMPLES

(a) OT-CFM

(b) Last Marginal Score Correction Model

(c) Correction Difference

Figure 13: ImageNet-64 images generated by OT-CFM alone and with score correction model ap-
plied solely to the final step, accompanied by their difference (amplified for visibility). The noise-
like appearance of the difference suggests the presence of residual noise in the model’s predictions.
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(a) OT-CFM

(b) Last Marginal Score Correction Model

(c) Correction Difference

Figure 14: CIFAR-10 images generated by OT-CFM alone and with score correction model applied
solely to the final step, accompanied by their difference (amplified for visibility). The noise-like
appearance of the difference suggests the presence of residual noise in the model’s predictions.

A.10 IMPLEMENTATION DETAILS

A.10.1 FLOW MODELS ARCHITECTURE

Our flow models architecture is based on the UNet design from Nichol & Dhariwal (2021) that was
employed in Tong et al. (2024) and Lipman et al. (2023).
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CIFAR-10 ImageNet-64
Channels 128 192
Depth 2 3
Channels multiple 1,2,2,2 1,2,3,4
Heads 4 4
Heads Channels 64 64
Attention resolution 16 32,16,8
Dropout 0.1 0.0
Batch size 128 512
Iterations 400K 600k
Learning Rate 5e-4 1e-4
Learning Rate Scheduler Polynomial Decay Constant
Warmup Steps 5000 0

Table 8: Hyper-parameters used for CIFAR-10 and ImageNet-64 flow models.

A.10.2 CORRECTIONS MODELS ARCHITECTURE

The correction models utilized the same UNet architecture with different hyper-parameters than the
flow models. The classifier model required an additional convolution layer and two linear layers
to reduce the output dimension to a single scalar. The correction models were trained for 100, 000
optimization steps, however we observed convergence within 30, 000 to 40, 000 steps. The models
sizes are half the number of trainable parameters of the original flow models, requiring significantly
less time to converge.

Classifier Score
CIFAR-10 CIFAR-10 ImageNet-64

Channels 128 128 192
Depth 1 1 2
Channels multiple 1,2,1,2 1, 2, 1, 2 1, 2, 3, 2
Heads 4 4 4
Heads Channels 32 32 64
Attention resolution 16 16 32, 16, 8
Dropout 0.1 0.1 0.0
Batch size 128 128 512
Iterations 100K 100K 100K
Learning Rate 0.0001 0.0002 0.0001
σ 0.01 0.005 0.05
Linear Layers Output 64, 1 - -

Table 9: Correction models hyper-parameters.

A.10.3 LOSSES

Score Model: Our score model was trained using the denoising score matching loss (DSM) over the
backward marginals {pbtn}

N
n=0 with a constant noise scale σ:

LDSM = E
[
Eytn∼pbtn ,ϵ∼N (0,σ2I)

[
∥sψ(tn, ytn + ϵ) + ϵ∥22

]]
where sψ(tn, ytn) is the score model parameterized by ψ. For more details see Sec. 2.2.

Classifier Model: Our robust classifier was trained using Lclassifier which is comprised of 3 terms:

Lclassifier = LBCE + LAT + LGA
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Binary Cross-Entropy: The binary cross-entropy (BCE) is used to distinguish between the back-
ward marginals pbtn and the forward marginals pftn :

LBCE = E
[
Eytn∼pbtn ,xtn∼pftn

[BCE(cψ(tn, ytn), 1) +BCE(cψ(tn, xtn), 0)]
]

where cψ(tn, y) is the classifier output for input y at time tn, parameterized by ψ.
Adversarial Training (AT): To enhance its robustness, the classifier was also trained on adversarial
examples. This process involves:

1. Sampling ytn ∼ pbtn and xtn ∼ pftn .
2. Optimizing norm-clipped additive perturbations ηy and ηx to:

• Decrease the classifier value for y: cψ(tn, ytn + ηy)

• Increase the classifier value for x: cψ(tn, xtn + ηx)

For a more detailed explanation see Sec. A.3.3.

LAT = E
[
Eytn∼pbtn ,xtn∼pftn

[BCE(cψ(tn, ytn + ηy), 1) +BCE(cψ(tn, xtn + ηx), 0)]
]

Gradient Alignment (GA): To align the classifier’s gradient near the backward marginals, we in-
troduce a small amount of Gaussian noise and use cosine similarity to adjust the classifier’s gradient
in the direction opposite to the noise (towards the backward marginal).

LGA = E
[
Eytn∼pbtn ,ϵ∼N (0,σ2I)

[
1−

⟨∇ytn
cψ(tn, xtn + ϵ), ϵ⟩

∥∇ytn
cψ(tn, xtn + ϵ)∥2∥ϵ∥2

]]
A.10.4 EVALUATION PARAMETERS

Hyper-parameters:

Step size α: The configuration with the best FID was selected from a grid search over the interval
[0, 2] with a step size of 0.05. For the classifier’s final step, the grid search was conducted over the
interval [0, 0.1] with a step size of 0.01.

Noise β: The configuration with the best FID was selected from a grid search over the interval
[0, 0.1] with a step size of 0.01.

Sampling: The hyper-parameters for all evaluations are described below, except for parallel sam-
pling, where the time-steps are shifted by 1 (10 → 9, 9 → 8, etc). Additionally, for parallel classifier
the final step-size is 0.02 instead of 0.06.

Corr.
Step

Classifier

10 Steps 5 Steps 3 Steps 1 Step
Step
Size

Noise Step
Size

Noise Step
Size

Noise Step
Size

Noise

0 1.5 0.05 - - - - - -
1 1.5 0.0 - - - - - -
2 1.5 0.0 - - - - - -
3 1.5 0.0 - - - - - -
4 1.5 0.0 - - - - - -
5 1.5 0.0 - - - - - -
6 1.5 0.08 1.5 0.08 - - - -
7 1.5 0.0 1.5 0.0 - - - -
8 1.5 0.0 1.5 0.0 1.0 0.05 1.0 0.05
9 1.5 0.0 1.5 0.0 0.4 0.0 - -
10 0.06 0.0 0.06 0.0 0.06 0.0 - -

Table 10: CIFAR-10 evaluation hyper-parameters for the classifier correction model.
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Corr.
Step Score

10 Steps 3 Steps 1 Step
Step Size Noise Step Size Noise Step Size Noise

0 0.4 0.03 0.35 0.03 - -
1 0.3 0.0 - - - -
2 0.3 0.0 - - - -
3 0.3 0.0 - - - -
4 0.3 0.01 - - - -
5 0.35 0.05 0.45 0.05 - -
6 0.3 0.0 - - - -
7 0.3 0.0 - - - -
8 0.3 0.01 - - - -
9 0.3 0.00 - - - -
10 2.0 0.0 2.0 0.0 2.0 0.0

Table 11: CIFAR-10 evaluation hyper-parameters for score correction model.

Corr.
Step Score

5 Steps 2 Steps 1 Step
Step Size Noise Step Size Noise Step Size Noise

0 0.4 0.1 0.4 0.01 - -
1 0.2 0.05 - - - -
2 0.2 0.0 - - - -
3 0.2 0.0 - - - -
4 0.2 0.05 - - - -
5 0.4 0.0 0.4 0.0 0.4 0.0

Table 12: ImageNet-64 evaluation hyper-parameters for score correction model.
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