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ABSTRACT

Model merging (MM) recently emerged as an effective method for combining large
deep learning models. However, it poses significant security risks. Recent research
shows that it is highly susceptible to backdoor attacks, which introduce a hidden
trigger into a single fine-tuned model instance that allows the adversary to control
the output of the final merged model at inference time. In this work, we propose a
simple framework for understanding backdoor attacks by treating the attack itself
as a task vector. Backdoor Vector (BV) is calculated as the difference between
the weights of a fine-tuned backdoored model and fine-tuned clean model. BVs
reveal new insights into attacks understanding and a more effective framework
to measure their similarity and transferability. Furthermore, we propose a novel
method that enhances backdoor resilience through merging dubbed Sparse Back-
door Vector (SBV) that combines multiple attacks into a single one. We identify the
core vulnerability behind backdoor threats in MM: inherent triggers that exploit
adversarial weaknesses in the base model. To counter this, we propose Injection
BV Subtraction (IBVS) – an assumption-free defense against backdoors in MM.
Our results show that SBVs surpass prior attacks and is the first method to leverage
merging to improve backdoor effectiveness. At the same time, IBVS provides a
lightweight, general defense that remains effective even when the backdoor threat
is entirely unknown.

1 INTRODUCTION

Model Merging (MM) is an effective and cost-efficient paradigm for updating large pretrained models
via weight-space operations Wortsman et al. (2022); Ilharco et al. (2023a); Yadav et al. (2023);
Gargiulo et al. (2025); Marczak et al. (2025). It enables the integration of differently fine-tuned
models into a single, more capable one. However, research into the security risks of this increasingly
popular approach remains limited Yang et al.; Zhang et al. (2024a).

Backdoor attacks have emerged as a major security concern in recent literature Gu et al. (2017); Li
et al. (2021); Liang et al. (2024); Qi et al. (2022); Nguyen & Tran (2020); Zhang et al. (2024b); Abad
et al. (2024).They are a class of adversarial techniques that implant malicious, hidden behavior into
machine learning models by poisoning training data or manipulating the training procedure. It is hard
to detect a model compromised in this manner because the model performs as expected on clean
inputs, but produces attacker-specified outputs only when a particular trigger is present. Backdoors
pose serious risks, especially when models are trained or fine-tuned with data or checkpoints from
untrusted sources. Successful attacks can bypass authentication Guo et al. (2021), allow harmful
content to evade moderation filters Zhang et al. (2024a) or expose private user data during downstream
deployment Guo et al. (2025).

In this work, we study backdoor attacks in the context of model merging. We introduce Backdoor
Vectors (BVs) – task vectors that capture the information of specific backdoor attacks. The backdoor
vector is computed by subtracting the weights of a clean fine-tuned model from those of a backdoored
fine-tuned model trained on the same task (see Figure 1a, Section 3).

We show that modeling backdoor attacks as task vectors using Task Arithmetic (TA) Ilharco et al.
(2023b) offers a simple and effective framework to analyze and quantify their behavior. Addition
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DEFENSE BACKDOOR TRANSFERBACKDOOR VECTOR BACKDOOR MERGINGATTACK

(a) (b) (c) (d)

Figure 1: Backdoor Attack as Task Vector = Backdoor Vector (BV). (a) A BV is the element-wise
difference between backdoored and clean fine-tuned model parameters. (b) Adding a BV injects
a backdoor; subtracting it weakens the attack. (c) Like task analogies, backdoor analogies reveal
relationships between attacks. We define Backdoor Transfer as positive when Attack Success Rate
(ASR) is strengthened and negative when is weakened by another task vector. (d) We show a method
of merging BVs that yields a significantly stronger attack.

and negation map naturally to attack and defense, while BV analysis enables comparison and reveals
transfer dynamics during MM. We introduce Sparse Backdoor Vectors (SBVs), which merge multiple
BVs into a more resilient and potent attack, yielding higher Attack Success Rate (ASR) after merging.

Finally, we identify the root of the backdoor threat in model merging as the white-box access to the
pre-trained foundational model, an inherent requirement in all model merging scenarios. Although
such access enables seamless collaboration, it also reveals adversarial vulnerabilities within the
model, known as inherent triggers Tao et al. (2024); Wenger et al. (2022); Tao et al. (2022). We are
the first to show that inherent triggers have high resilience in the MM process, but also share inherent
similarities. Building upon this observation, we propose Injection BV Subtraction (IBVS) defense
method to mitigate backdoor risks for MM. We summarize the contributions of this work as follows:

• We introduce Backdoor Vectors (BVs) and show that viewing backdoor attacks through task
arithmetic reveals new insights, such as an intuitive understanding of the interplay between
backdoor attacks and defenses, enabling a more effective framework for measuring their similarity,
transferability, and resilience in model merging.

• We explore backdoor attacks as task vectors and show that merging multiple Backdoor Vectors
produces a single, stronger and more resilient Sparse Backdoor Vector (SBV). Our simple BV
merging strategies outperform state-of-the-art attacks in effectiveness and in merging resilience.

• We identify the core vulnerability enabling backdoor threats in model merging as the inherent
white-box access to the pre-trained foundational model. To address this, we propose Injection
BV Subtraction – a defense method to mitigate backdoor risks even when the backdoor threat is
entirely unknown.

2 PROBLEM SETTING

Model Merging We follow the standard procedure of merging vision models Yadav et al. (2023);
Ilharco et al. (2022); Tang et al. (2023); Ortiz-Jimenez et al. (2024); Yang et al. (2024; 2023). We use
CLIP model Radford et al. (2021) M = {V, T} with an image encoder V and a text encoder T . CLIP
aligns image and text embeddings in a joint space enabling zero-shot classification by comparing an
image to textual class descriptions via cosine similarity. The predicted label corresponds to the class
with the highest similarity score. To improve performance on specific tasks, a common approach is to
fine-tune only the vision encoder V while freezing the text encoder T (see Appendix A.2 for details).

Let Mθ denote a CLIP-like model parameterized by weights θ, and let Vθ represent its visual encoder.
We denote the weights of the base pre-trained model Mpre by θpre, and the weights of a model fine-
tuned on dataset D(t) from task t as θ(t). The corresponding task vector is defined as the element-wise
difference between the fine-tuned and pre-trained weights:

∆θ(t) = θ(t) − θpre. (1)

Suppose that we are given n such task vectors {∆θ(1), . . . ,∆θ(n)}, obtained from different fine-
tuning instances (potentially across different tasks or training configurations). The model merging
process aims to construct a new set of weights θmerged by combining these task vectors into a merged
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task vector ∆θmerged, which is then added to the pre-trained weights:

θmerged = θpre + λ∆θmerged. (2)

where λ is a scaling factor determined on a held-out validation set. The exact strategy for computing
∆θmerged may vary, including simple averaging (Wortsman et al., 2022), heuristics aiming at reducing
interference between models Yadav et al. (2023); Yu et al. (2024); Marczak et al. (2024); Wang et al.
(2024a; 2025), or more sophisticated optimization-based approaches Yang et al. (2024; 2023).

We consider two distinct merging scenarios: single-task and multi-task. In the former, all merged
models are fine-tuned on the same downstream task, differing only in training seeds, augmentations, or
other hyperparameters. This setup is commonly used for robustness or performance improvement on
a single objective, as shown in Model Soups Wortsman et al. (2022). Multi-task scenario follows the
setting from learning via addition from Task Arithmetic Ilharco et al. (2023a): given models fine-tuned
on different tasks, we aim to fuse them to obtain a model capable of multi-task generalization. In this
work, we focus primarily on the single-task merging scenario, since it is harder to create a resilient
backdoor in this setup. We aggregate multiple independently fine-tuned models M (t), for t = 1, . . . , n,
all originating from a common pre-trained model Mpre. Although our emphasis is on the single-task
case, we note that similar attack strategies may seamlessly extend to the multi-task setting.

Threat Model in Model Merging We adopt the threat model from Zhang et al. (2024a) and extend
it to include the defender’s perspective.

Attack scenario. We consider a threat model in which the adversary acts as a model provider. The
adversary publicly releases a Mbackdoored (fine-tuned for a task denoted as adversary task) with
competitive utility to increase its chances of inclusion in a merged model. When Mbackdoored is
incorporated into the model merging process, Mmerged behaves according to the adversary’s intent,
which can lead to major security breaches, as discussed in Section 1. We assume that only one of the
models originates from the adversary, while the rest are contributed by benign providers. We refer to
any task other than the adversary’s as a clean task.

Adversary’s Knowledge. The adversary has a dataset Dadv corresponding to a single task. Similarly to
clean model contributors, adversary has white-box access to Mpre, since they fine-tune a base model
Mpre to obtain Mbackdoored. We assume that the adversary contributes only one model and has no
information about other models, merging algorithms, or coefficients used in the merging process.

Defense scenario. The defender’s objective is to construct a reliable and secure merged model from
independently submitted components, ensuring high utility on the target task while preventing the
inclusion of any malicious behavior. Given that individual models may originate from untrusted
sources, the defender aims to preserve the functional performance of the merged model on clean
tasks, while mitigating the risk of backdoor activation.

Defender’s Knowledge. We assume that the defender lacks prior knowledge regarding whether any of
the models have been backdoored. Furthermore, the defender has no access to the internal training
data or methodologies employed by the individual contributors. Although the merging algorithm
and its associated coefficients are under the control of the defender, the presence and nature of any
injected trigger patterns remain unknown. Consequently, the defender must rely exclusively on the
behavior of the submitted models to maintain the security and reliability of the merged model.

2.1 BACKDOOR ATTACK

Let x denote a clean input image and define the trigger as t = {m, δ}, where m ∈ {0, 1}H×W is a
binary mask specifying the location of the trigger, and δ ∈ RH×W×C encodes the trigger pattern.
The poisoned image is constructed by an injection function x⊛ t, defined as:

x⊛ t = δ ⊙m+ (1−m)⊙ x, (3)

where ⊙ denotes element-wise (pixel-wise) multiplication. The objective of the backdoor attack is
to train a model so that x is classified correctly, that is, f(x) = y, but f(x⊛ t) = c, where c is an
attacker-specified target class. In this work, we call t inherent (⋆) if the trigger patch was optimized
to backdoor Mpre (e.g., by adversarial attack using white-box access to θpre) and injected (⊕) if the
trigger is a fixed pattern injected only to Mbackdoored.

3
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Table 1: Sparsity H(x) of TVs, BVs, and SBVs:
x ∈ (0, 1); values near 1 indicate higher sparsity.

CIFAR100 ImageNet100 TinyImageNet100

TV 0.3270 0.3190 0.3234

BadMerging BV 0.3330 0.3261 0.3273
SBV (Ours) 0.5482 0.5407 0.5455

BadNets BV 0.3296 0.3238 0.3247
SBV (Ours) 0.5256 0.5262 0.5247

Algorithm 1 Sparse Backdoor Vector (SBV)
Require: Backdoored task vector ∆backdoored, clean

task vectors {∆(t)
clean}

k
t=1, sparsification type st ∈

{SC,RND}
1: for each t = 1 to k do
2: BV (t) ←∆backdoored −∆

(t)
clean

3: end for
4: s←

∑k
t=1 BV (t)

5: µ← sparse_mask({BV (t)}, st)
6: SBV← sj ⊙ µj

7: return SBV

Table 2: TVs Pairwise Cosine Similarity.

Task CIFAR100 ImageNet100 TinyImageNet100

TV 0.5646 0.5421 0.5438

BV (BadMerging) 0.5986 0.7238 0.6683
BV (BadNets) 0.3859 0.4671 0.4555
BV (BadMerging_BadNets) 0.5026 0.6653 0.5747

Algorithm 2 sparse_mask Function

Require: Backdoor vectors {BV (t)}kt=1, type st ∈
{SC,RND}

Ensure: Mask µ ∈ {0, 1}d

1: S ← sign({BV (t)})
2: s0 ← S[1]
3: c← all(S == s0, dim = 0)
4: nz ← all(S ̸= 0, dim = 0)
5: µ← c ∧ nz
6: if st = RND then
7: µ← shuffle(µ)
8: end if
9: return µ

3 BACKDOOR VECTORS

Intuition. Task vectors Ilharco et al. (2023a) provide a simple way of thinking about modifying the
capabilities of a model: adding a task vector improves the performance on the corresponding task
while subtracting it enables unlearning of the task. Task vectors are also effective in modifying the
properties of models that are not usually considered a task, e.g. the toxicity of text generation Ilharco
et al. (2023a). Therefore, we treat model vulnerabilities as any other task and propose to look at
backdoor attacks as backdoor vectors.

Definitions. Following Section 2, let θpre be the weights of a pre-trained model and θ(t) the weights
after fine-tuning on task t. The model fine-tuned by a benign provider is optimized solely to improve
the performance on task t, resulting in weights θ(t)clean. The adversary aims to produce a model that
performs well on the task t but also contains certain vulnerabilities (i.e. backdoor) resulting in weights
θ
(t)
backdoored. The backdoor vector BV(t) is a parameter-wise difference between the backdoored

weights θ
(t)
backdoored and the clean weights θ

(t)
clean, i.e. BV (t) = θ

(t)
backdoored − θ

(t)
clean. We use a

scaling coefficient λBV to modulate the strength of an attack (or a defense). We denote BVs from
backdoor attacks with ⊕ and ⋆ triggers as BV⊕ and BV⋆, respectively.

Backdoor Transfer determines how another task or backdoor vectors V interact with the primary
backdoor vector (Figure 1c). Positive transfer occurs when V strengthens the primary backdoor,
while negative transfer weakens it and can be used for defense. Notably, this interaction may not be
symmetrical: one attack vector can strengthen another, but the reverse might not occur (see Figure 9
in the Appendix).

3.1 BV IMPROVEMENT BY MERGING: SPARSE BACKDOOR VECTORS (SBV)

Merging backdoored task with clean tasks can introduce negative backdoor transfer, weakening the
attack. To counter this, we introduce BV merging method (Figure 1d) combining multiple backdoor
attacks into a stronger one that can withstand model merging. We propose sparsifying BVs to retain
only the most consistent and influential malicious components. This enhances the resulting sparse
BV (SBV), allowing it to reinforce the trigger and persist despite dilution from clean models.

Algorithms 1 and 2 detail our sparsification procedure. We adapt a simple idea used in MM to reduce
TV interference for backdoors and propose sign-consistent sparsification (SBVSC), which retains
components with consistent weigths signs across merged BVs.
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3.2 BV USED FOR DEFENSE: INJECTION BV SUBTRACTION (IBVS)

We show that state-of-the-art backdoor attacks on MM rely on inherent triggers that produce highly
similar and aligned BV⋆ vectors, enabling strong cross-attack transfer and revealing shared, general-
izable structure of backdoors (see Section 4.4). To exploit this, we propose Injection BV Subtraction
(IBVS) – a defense that subtracts a fixed BV⊕ (e.g., BV created from a simple white square trigger;
see Figure 6) to suppress unknown ⋆ attacks. IBVS requires no knowledge of the adversary’s
dataset, labels, target class, or trigger. The defender only needs to train a fixed ⊕ trigger on any
dataset, compute BV⊕, and subtract it – using task arithmetic as a simple yet effective tool to mitigate
backdoor influence.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

We follow the common model merging experimental setup for backdoor attacks introduced by Zhang
et al. (2024a). We present more detailed information about the details in the Section B and present
additional results in the Section C, including results for multi-task setup, different architectures
(ConvNext and ViT-L-14) and different merging types.

Metrics. Clean Accuracy (CA) is the accuracy on clean test data obtained by a clean merged model
(all provided task vectors are clean). Backdoored Accuracy (BA) is the accuracy on clean test data
obtained by a backdoored merged model (one provided task vector – adversary task – is backdoored).
Attack Success Rate (ASR) is a fraction of triggered test images from the adversary task that are
predicted as the target class by Mmerged. An attack is considered successful when the ASR is
high and the backdoored model performs similarly well as clean model (BA ≈ CA). We use Hoyer
sparsity Hoyer (2004) to compare the sparsity of TV s,BV s and SBV s.

Datasets. We conduct our experiments on the following datasets. We use CIFAR100 Krizhevsky &
Hinton (2009) and ImageNet100 Deng et al. (2009) as adversary tasks. In single-task setup, we merge
one adversary task with the rest clean using the same dataset. In multi-task setup, folllowing Zhang
et al. (2024a), we merge adversary task with five clean tasks: Cars Krause et al. (2013), SUN397 Xiao
et al. (2010), EuroSAT Helber et al. (2019), GTSRB Stallkamp et al. (2011) and Pets Parkhi et al.
(2012).

MM. We use TA Ilharco et al. (2023a) as MM algorithm. We use ViT-B-32, ViT-L-14 and ConvNext
as visual encoders of CLIP models, the first being the default for the experiments in the main part
of our work. For BV merging we use weights averaging as baseline Wortsman et al. (2022) for our
proposed SBVSC method.

Backdoor attacks. We use the simplest classic BadNets Gu et al. (2017) attack as a representative
of fixed injected (⊕) triggers as well as current state-of-the-art attack on MM (using inherent ⋆
triggers): BadMerging Zhang et al. (2024a). We compare these attack types using BVs, assess
their transferability in MM, and show that our sparsification method substantially improves trigger
resilience and final ASR in both cases. We set the trigger size to be 1% of pixels in the image.
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Figure 2: θclean + λBV = θbackdoored. Increasing the λ of BV added to θclean preserves accuracy (left)
but sharply raises attack success rate (right).
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Figure 3: ViT-B-32: Positive Backdoor Transfer Across Attacks (BV2 → BV1). Adding BV2

increases the ASR of BV1. Axes show λBV1 , λBV2 ; (a–c) use BVs from the same task (ImageNet100
or CIFAR100). Strong transfer occurs across seeds (a) and patch locations (b), but is weaker across
target classes (c) and tasks (d).

Table 3: ViT-B-32: Backdoor Merging: Single-Task Attack Results. We merge 1×θbackdoored+9×
θclean with λ = 0.1, reporting mean ± std. dev. BV merging: AV G — weight averaging Methods:
BN(⊕) — BadNets, BM(⋆) — BadMerging. ViT-B-32.

Backdoor Attack Adversary task: CIFAR100 Adversary task: IMAGENET100
Setting Method BV merging CA BA ASR CA BA ASR

Single-task

BN(⊕) - 89.70 ± 0.03 89.73 ± 0.03 0.2 ± 0.12 85.88 ± 0.07 85.88 ± 0.04 0.26 ± 0.1
BN(⊕) AVG 89.70 ± 0.03 89.75 ± 0.03 0.21 ± 0.12 85.88 ± 0.07 86.0 ± 0.03 0.27 ± 0.1
BN(⊕) SBVRDM (Ours) 89.70 ± 0.03 89.72 ± 0.04 0.23 ± 0.12 85.88 ± 0.07 86.0 ± 0.06 0.33 ± 0.14
BN(⊕) SBVSC (Ours) 89.70 ± 0.03 89.73 ± 0.12 12.23 ± 10.52 85.88 ± 0.07 85.8 ± 0.06 29.45 ± 12.36
BM(⋆) - 89.70 ± 0.03 89.74 ± 0.04 27.29 ± 12.14 85.88 ± 0.07 85.91 ± 0.04 84.01 ± 7.83
BM(⋆) AVG 89.70 ± 0.03 89.72 ± 0.03 27.56 ± 12.17 85.88 ± 0.07 85.96 ± 0.02 84.79 ± 7.48
BM(⋆) SBVRDM (Ours) 89.70 ± 0.03 89.72 ± 0.01 35.93 ± 13.64 85.88 ± 0.07 85.97 ± 0.04 92.55 ± 3.83
BM(⋆) SBVSC (Ours) 89.70 ± 0.03 89.69 ± 0.06 97.21 ± 2.3 85.88 ± 0.07 85.83 ± 0.09 99.99 ± 0.01

4.2 KEY OBSERVATIONS

Our four key observations align with the concepts illustrated in Figure 1:

BV addition represents backdoor attack. ASR grows sharply with increasing λBV (see Figure 2),
confirming that the effectiveness of the backdoor attack improves as the scaling factor increases.

BVs have high transferrability. Adding a BV from another attack notably boosts ASR of primary
attack, as shown in Figure 3. Interestingly, backdoor transfer remains strong across trigger patches
with different seeds or locations (Figure 3a,b), suggesting triggers are not fixed to one position and
can be reinforced by varying or duplicating placement. Positive transfer across tasks or target classes
also occurs, but at a lower magnitude.

BV merging: proposed SBV enhances attack by merging multiple attacks. Figures 4 and 5
show ACC/ASR trajectories throughout MM, with the optimal point in the top-right. Naive merging
(AVG) offers little gain over a single BV. SBV uses sign consistency to produce more sparse BV
(see Table 1) that better preserve backdoor information through merging. In 7 of 8 cases, SBVSC

performs best, highlighting that random sparsification (SBVRND) is insufficient – sign consistency
is the key to maximizing effectiveness. Figure 4 shows that SBV significantly improves backdoor
resilience in single-task MM, surpassing the state-of-the-art. We are the first to show a non-inherent
backdoor attack that withstands the merging process (Figure 5). It further highlights the importance
of our backdoor merging method, showing that merging can significantly strengthen even simplest
backdoor attack types. As shown in Table 3, our method outperforms both weight-averaging and
no-merging approaches.
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Figure 4: ViT-B-32: ACC/ASR trajectories for
inherent (⋆) triggers in first-backdoored-rest-
clean single-task MM.
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Figure 5: ViT-B-32: ACC/ASR trajectories for
injected (⊕) triggers in first-backdoored-rest-
clean single-task MM.
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Figure 6: Vit-B-32: Injection BV Subtraction (IBVS) Defense: subtracting the BV of a white-
square (□) trigger. Left: Removing BV□ lowers the ASR of an unknown attack (BV1), highlighting
cross-type transferability (see Figure 9). Right: This ASR drop slightly reduces clean accuracy (vs.
(0.0, 0.0)) but can be mitigated by natural addition of clean task vectors in MM process.

BV subtraction as backdoor defense. Figure 6 shows how defenders can leverage backdoor transfer
to improve MM robustness. Our proposed IBVS reduces ASR with minimal accuracy loss (Table 4)
requiring only a fixed ⊕ trigger trained on any dataset to compute and subtract BV⊕ during merging.

4.3 ADDITIONAL INSIGHTS

BV addition does not degrade the accuracy. The results in Figure 2 illustrate the effects of
increasing the scaling coefficient of the BV (λBV ) on the attack strength. The accuracy remains
stable as the λBV increases, indicating that BV does not degrade the clean performance of the model.

Reducing ASR via BV□ Subtraction. Subtracting BV□, derived from an attack with a fixed
white square trigger, lowers the ASR of unknown ⋆ attacks with minimal accuracy loss. This forms
the basis of our IBVS defense, which builds a fixed ⊕-trigger BV and subtracts it during model
merging to weaken state-of-the-art MM attacks (see Table 4). For more in-depth experiments on
IBVS performance see Section C.1.2 in the appendix.

Table 4: ViT-B-32 – Backdoor Defense: Injected BV Subtraction (IBVS). Single-task defense
results for merging 1 × θbackdoored + 9 × θclean with λ = 0.1, reporting mean BA and ASR. BV
merging: AV G — weight averaging. IBVS: IBV S□ uses a fixed white-square trigger; IBV SBN

uses a wavelet trigger from BadNets. Backbone: ViT-B-32. No defense: Badmerging attack.

Setting Adversary task: CIFAR100 Adversary task: ImageNet100
BV AVG SBVRND SBVSC BV AVG SBVRND SBVSC

BA ASR BA ASR BA ASR BA ASR BA ASR BA ASR BA ASR BA ASR

No defense 89.74 27.29 89.72 27.56 89.72 35.93 89.69 97.21 85.91 84.01 85.96 84.79 85.97 92.55 85.83 99.99
IBVS□ (Ours) 89.58 20.65 89.36 23.59 89.41 30.81 89.61 94.69 85.53 66.83 85.13 81.22 85.15 89.74 85.47 99.83
IBVSBN (Ours) 89.57 16.56 89.41 19.36 89.42 25.37 89.46 89.21 85.61 65.26 85.14 80.89 85.14 90.17 85.59 99.89
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Figure 7: Comparison of inherent (⋆) and injected (⊕) backdoor triggers in model merging.
State-of-the-art attacks on MM use ⋆ triggers – adversarial vulnerabilities of the base model Mpre.
They 1 directly affect Mpre and are effective even before merging with Mbackdoored and 2 remain
effective after merging with clean (benign) model. In contrast, ⊕ triggers, used in classical backdoor
attacks, rely on fixed patches, 3 , 4 require merging with Mbackdoored to become effective, and 5
degrade faster after merging with clean models.
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Figure 8: ACC/ASR trajectories for inherent (⋆) and injected (⊕) triggers in all-clean single-
task MM. We demonstrate that ⋆ triggers exploit the adversarial vulnerabilities of the base model
Mpre, maintaining their effectiveness even after merging multiple clean (benign) models. Conversely,
⊕ triggers are completely ineffective in the absence of Mbackdoored model.

Backdoor transfer is asymmetric. Adding BV⊕ with small λBV⊕ increases the ASR for BV⋆
attack, but the reverse does not occur (see Figure 9 in the appendix). Similarly, smaller triggers
enhance larger ones more than the reverse.

4.4 ADDITIONAL OBSERVATIONS ON INHERENT VS. INJECTED TRIGGERS IN MM

Inherent similarity of backdoor attacks with ⋆ triggers. State-of-the-art backdoor attacks on
MM Zhang et al. (2024a) exploit adversarial vulnerabilities in Mpre (see Figure 7 and Figure 8). As a
result, Mpre-optimized attacks (attacks with ⋆ triggers) are inherently similar, yielding highly aligned
BVs with strong cosine similarity (see Table 2). Interestingly, BV⋆ exhibit greater mutual similarity
than TVs from the same task. This suggests that inherent triggers share generalizable structure, as
evidenced by high BV⋆ similarity and strong backdoor transfer across attacks (see Figure 3).

Similarity and transfer of BV⋆ vs BV⊕. Interestingly, BVs from different attacks can be more
similar than BV⊕s or same-task TVs. Additionally, as shown in Figure 9, backdoor transfer is notably
stronger from BV⊕ to BV⋆, reinforcing the idea that many triggers share a generalizable structure –
an insight central to our IBVS defense.
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5 DISCUSSION AND RELATED WORK

We present extended related work in the appendix A.1, and focus on backdoor attacks on recently
proposed backdoor attacks on MM to broaden the context of our contributions.

Backdoor Attacks on Model Merging. Model merging usually operates under the assumption that
task vectors are obtained from reliable, trustworthy sources and, therefore, can be utilized without
posing security risks. However, recent studies Zhang et al. (2024a); Hsu et al. (2025); Yin et al.
(2024); Guo et al. (2025); Hammoud et al. (2024) have raised concerns about the security of the
model merging process, showing that maliciously crafted task vectors can potentially compromise
the integrity of the merged model. A key example is BadMerging Zhang et al. (2024a), which
demonstrates that an adversary can implant backdoors into a model by crafting task vectors that,
when merged, result in malicious model behavior. Follow-up work has expanded this threat model.
BADTV Hsu et al. (2025), shows how third-party task vectors can to insert hidden functionality into
the merged model without access to training data. Other techniques, like LoBAM Yin et al. (2024),
take advantage of low-rank adaptation modules to inject backdoors in a parameter-efficient manner,
preserving standard performance on clean data. Recent works explore privacy leakage Guo et al.
(2025) and multi-stage attacks Guo et al. (2025); Lu et al. (2025), where backdoors are composed or
activated through a sequence of merging steps.

We argue that analyzing backdoor attacks on MM is a complex issue and standard BA and ASR
metrics used in the above works to describe backdoor attack performance is not detailed enough
to fully quantify their behavior. We propose Backdoor Vector framework for the emerging field
of backdoor attacks on MM for better understanding of backdoors. We think it is a crucial step to
mitigate emerging backdoor threats. Our work is a substantial step forward in this emerging field, as
we present unified framework as well as its direct practice benefits, like SBV method that outperform
current state-of-the-art by a large margin, with no significant computations added.

Defenses. In response, several defences have been proposed to counteract backdoors in model
merging. Subspace masking Yang et al. (2025) introduced by Yang et al. attempts to constrain
the merged model weights to parameter regions that are less susceptible to adversarial attacks.
Another, proposed by Arora et al. Arora et al. (2024), makes the counterintuitive observation that
merging multiple backdoored models may in some cases cancel out their respective backdoors – a
phenomenon they term the “Free Lunch” effect. Chen et al. Chen et al. (2024) pursue an active
approach in identifying conflicts between task vectors and leverage these oppositions to neutralize
backdoor effects.

Our results put the "Free Lunch" hypothesis under the new light and show that the adversary can
craft much more resilient backdoors with inherent triggers, and also significantly boost the standard
backdoor merging resilience by merging multiple backdoors into one using SBV method. Additionally,
those insights lead us to formulate the hypothesis that backdoor attacks share inherent similarities,
which can be also used for defense (like our proposed IBVS).

6 CONCLUSIONS

In this work, we introduced a novel perspective on backdoor attacks in model merging by framing
them as task arithmetic problems. By defining and analyzing Backdoor Vectors (BVs), we provided
a simple yet powerful abstraction that enables the injection, transfer, and mitigation of backdoors
via vector operations. We show that BVs expose key insights into attack dynamics and enable
stronger attacks through Sparse Backdoor Vectors (SBVs), which merge multiple BVs into a single,
resilient and highly effective threat. On the defense side, we proposed Injection BV Subtraction
(IBVS) – a lightweight, assumption-free method for mitigating unknown backdoor attacks. Our
framework unifies multiple phenomena observed in model merging security and opens new directions
to understand and secure model merging pipelines.

Limitations Our work shares a common assumption in the MM literature that task vectors are linearly
additive. This assumption holds when operating in a linear connectivity regime, which is induced by
the scale of the model and amount of pretraining. This work focuses on CLIP-like vision models
and image classification tasks; its applicability to other architectures (e.g., large language models)
remains to be explored.
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6.1 ETHICS STATEMENT

Recently, backdoor attacks and (more broadly) data poisoning attacks have gained increasing attention
due to their significance as a threat to open model sharing paradigms. By sharing results of our
investigations on backdoors in MM we aim to broaden the access to the information on such threats in
the community and increase the interest of researchers in active research to counter newly discovered
attacks.

Our work on understanding backdoor attacks in model merging enables defenders to better detect,
understand, and counteract such threats. By shedding light on the attacks using task arithmetic,
we aim to inform the research community and practitioners deploying merged models – do not
underestimate the data poisoning threat in MM paradigm.

Framing backdoor attacks as TVs provides powerful tools to study them in MM beyond standard
CA/BA/ASR metrics (similarity, backdoor transfer, ’the shared internal structure’ of inherent triggers),
which is beneficial for the community.

Additionally, as most of backdoor attacks, our SBVs can be used for IP protection by allowing a
model provider to embed a backdoor as a watermark, enabling verification of their model’s presence
even after it has been merged with others.

6.2 REPRODUCIBILITY STATEMENT

For reproduction of our experiments see Section 4.1 in the main section of our work. All remaining
details are described in Section B in the Appendix.
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A ADDITIONAL INFORMATION

A.1 RELATED WORK ON MODEL MERGING AND BACKDOOR ATTACKS

Model Merging Model merging aims to integrate weights of multiple models. Historically, averag-
ing weights along the training trajectory was used to improve the generalization of the model Izmailov
et al. (2018). More recently, many works (Wortsman et al., 2022; Rame et al., 2022; Jang et al.,
2024) have shown that merging multiple independent fine-tunings on a given task improves model’s
performance in-distribution and out-of-distribution. On the other hand, model merging can be used
to integrate the knowledge of multiple models fine-tuned on disjoint tasks to obtain a multi-task
models Yadav et al. (2023); Ilharco et al. (2022); Tang et al. (2023); Ortiz-Jimenez et al. (2024); Yang
et al. (2024; 2023).

Backdoor Attacks Backdoor attacks Gu et al. (2017); Liu et al. (2018) are a class of adversarial
techniques that implant malicious hidden behavior into machine learning models by poisoning training
data Chen et al. (2017); Turner et al. (2019); Zhang et al. (2024b); Tran et al. (2024) or manipulating
the training procedure Bagdasaryan et al. (2020); Goldblum et al. (2022); Huang et al. (2024); Wang
et al. (2024b). It is hard to detect a model compromised in this manner because the model performs
as expected on clean inputs, but produces attacker-specified outputs only when a particular trigger is
present. Recent works Tao et al. (2024); Wenger et al. (2022); Tao et al. (2022); Wang et al. (2022)
show that pre-trained models can also exhibit inherent triggers—natural adversarial vulnerabilities
that act as backdoors without explicit trigger injection.

A.2 CLIP-LIKE CLASSIFIERS

Contrastive Language–Image Pretraining Radford et al. (2021) (CLIP)-like classifier employ con-
trastive learning to align visual and textual modalities within a joint embedding space. The classifier
model M = {V, T} uses an image encoder V (x) and a text encoder T (t), respectively. Given an
image x and a set of textual class descriptions C = {c1, c2, . . . , ck}, the model computes similarity
scores using the cosine similarity between the image embedding and each class text embedding. The
similarity score sj for class j is defined as:

sj =
V (x) · T (cj)

∥V (x)∥ ∥T (cj)∥
, for j = 1, . . . , k. (4)

The predicted class ŷ is then obtained by selecting the class with the highest similarity score:

ŷ = argmax
j

sj . (5)

The formulation in Equations equation 4–equation 5 enables zero-shot classification, as the model can
generalize to previously unseen categories based solely on their textual descriptions. Nevertheless, to
enhance performance on a specific downstream task with a fixed set of class labels C, the model can
be further adapted by optimizing a task-specific classifier using the cross-entropy loss:

LCE(M(x, C), y), (6)

where M(x, C) denotes the similarity-based prediction over the class set C, and y is the ground-truth
label. A common Ilharco et al. (2022); Tang et al. (2023); Ortiz-Jimenez et al. (2024); Yadav et al.
(2023); Yang et al. (2024; 2023) fine-tuning strategy involves freezing the text encoder T and updating
only the vision encoder V , which has been empirically shown to yield the best performance Ilharco
et al. (2022).

A.3 LIMITATIONS

Our work focuses on CLIP-like vision models and image classification tasks; its applicability to other
architectures (e.g., large language models) remains to be explored.

By introducing BVs we offer efficient, intuitive ways to capture with Task Arithmetic (TA) the
complex interplay between task vectors and backdoors in MM. That is why we focus on TA and not
any other novel MM method. The applicability of the obtained results to other methods remains to be
explored.
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Our IBVS method is rather a simple defense baseline than a final robust solution to backdoor problems
in MM. We introduce it for further defense studies, as it requires almost no computation overhead to
the defender, and its assumptions are minimalistic.

A.4 LLM USAGE

Adhering to ICLR LLM usage policy we hereby declare that we used LLMs to polish the writing of
the manuscript, style tables and for finding additional related work connected with backdoor attacks
on MM.

B EXPERIMENTAL DETAILS

B.1 CODE TO REPRODUCE OUR FINDINGS

We attach the code repository to our submission with implementation details to allow the reproduction
of our main results. The code repository structure is adapted from Zhang et al. (2024a), to enable
simple use of our method as an add-on to existing backdoor attacks on MM.

B.2 BACKDOOR TRIGGER CONFIGURATION

Backdoor triggers are defined by a fixed set of parameters. These control both their visual appearance
and how they interact with the model during training (see Table 5).

For our main experiments we use:

• Patch Size: 22 x 22 ( 1% pixels of the image), following Zhang et al. (2024a),
• Location: default bottom-right. We also test different patch locations for backdoor

transfer experiments: bottom-left, upper-right, upper-left,
• Trigger Type: we use both types of triggers (⋆,⊕) for different attacks, and show that

proposed SBV merging improves ASR for both of them. We use ⊕ triggers for our proposed
defense IBVS (white square trigger and wavelet trigger from Badnets Gu et al. (2017)),

• Target class: We average all our main results on five different target classes. Table 6
presents selected target classes from adversary tasks in our experiments. Details on used
ImageNet100 classes are in the code repository added to the appendix,

• Optimization seed: We use 15 different optimization seeds for out experiments on
SBV merging (some needed to calculate SBV, other to create 10 different models for
single-task merging experiments),

• α We set this parameter to 5.0 following previous work Zhang et al. (2024a).

Table 5: Trigger configuration parameters used for backdoor attack design.

Parameter Description
Patch Size Spatial dimensions of the trigger (e.g., 16× 16 − 0.5%, 22× 22 − 1%)
Location Position of the patch within the input (e.g., bottom-right)
Trigger Type Inherent (⋆) or injected ⊕ (like fixed white square □) used in BadNets Gu et al. (2017)
Target Class Output class enforced by the backdoor attack when triggered
Optimization Seed Random seed used in training Mbackdoored or inherent trigger (⋆) optimization
α Loss weight parameter for backdoor attack loss in finetuning Mbackdoored

B.3 BACKDOOR TARGET CLASS

We present output class enforced by the backdoor attack used in our experiments in Table 6. We
average all the main results between results obtained for these five target classes.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Table 6: Selection of the target class for each task.

Task Target Class

1 2 3 4 5

CIFAR100 beaver dolphin otter seal whale
ImageNet100 american coot harvestman macaw bittern electric ray
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Figure 9: ViT-B-32: Backdoor transfer is asymmetric across attack types and trigger sizes:
(BV2 → BV1) > (BV1 → BV2). (a) BadNets (BV2) attack boosts the ASR of the BadMerging
(BV1) attack, but not vice versa. (b) A smaller trigger attack (0.5% of image pixels) enhances the
ASR of a BV1 attack with a larger trigger (1%), while the reverse transfer is much weaker.

C ADDITIONAL RESULTS

C.1 ADDITIONAL RESULTS ON VIT-B-32

C.1.1 ADDITIONAL RESULTS ON THE IMPORTANCE OF K-PARAMETER

Our findings (see Table 7) demonstrate that increasing the number of BVs used to form a single SBV
leads to stronger and more robust attacks. Not only does the ASR improve with higher values of k (up
to 5), but the results also become more stable - exhibiting reduced sensitivity to random noise during
the merging process. This is reflected in the lower standard deviation reported across multiple runs.

Table 7: Backdoor Merging: Effect of k in Algorithm 2 under Single-Task with ViT-B. Single-
task, λ = 0.1, 10 tasks, TA. Methods: BM(⋆) — BadMerging

Backdoor Attack Adversary task: CIFAR100 Adversary task: IMAGENET100
Setting Method BV merging CA BA ASR CA BA ASR

Single-task

BM(⋆) BV(k=1) 89.70 ± 0.03 89.74 ± 0.04 27.29 ± 12.14 85.88 ± 0.07 85.91 ± 0.04 84.01 ± 7.83
BM(⋆) SBV(k=2) 89.70 ± 0.03 89.76 ± 0.03 55.09 ± 14.09 85.88 ± 0.07 85.84 ± 0.05 98.22 ± 0.89
BM(⋆) SBV(k=3) 89.70 ± 0.03 89.73 ± 0.06 79.68 ± 10.98 85.88 ± 0.07 85.86 ± 0.07 99.71 ± 0.24
BM(⋆) SBV(k=4) 89.70 ± 0.03 89.73 ± 0.06 91.95 ± 5.86 85.88 ± 0.07 85.87 ± 0.06 99.93 ± 0.05
BM(⋆) SBV(k=5) 89.70 ± 0.03 89.69 ± 0.06 97.21 ± 2.30 85.88 ± 0.07 85.83 ± 0.09 99.99 ± 0.01

C.1.2 IBVS PERFORMANCE

Despite its simplicity, IBVS demonstrates strong generalization across architectures such as ViT-B,
ViT-L, and ConvNeXt. It consistently achieves substantial reductions in attack success rate (ASR),
with performance degradation (in terms of backdoor accuracy, BA) typically below 1 percentage
point.

Tables 8, 13 and 15 present results for ViT-B/ViT-L/ConvNext using varying numbers of BVs in SBV
construction (parameter k). Note that BadMerging corresponds to BV(k=1). Reductions in ASR due
to our defense are shown as ∆ and are highlighted in bold.

C.1.3 BACKDOOR TRANSFER

Figures 10 and 11 show the asymmetry of backdoor transfer given different trigger sizes across four
different patch sizes (19 x 19, 22 x 22, 25 x 25, 28 x 28). Similarly to results from Figure 9b, smaller
trigger patches enchance the ASR of bigger ones, and the reverse transfer is much weaker.
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Table 8: Backdoor Merging: Effect of IBVS Defense under Single-Task with ViT-B. Single-task,
λ = 0.1, 10 tasks, TA. BadMerging (BM, ⋆) with λIBVS = 0.5 when defense is enabled. k – number
of BVs merged for an attack. Methods: BM(⋆) — BadMerging.

Backdoor Attack Adversary task: CIFAR100 Adversary task: IMAGENET100
Defense Method BV merging BA ASR BA ASR
- BM(⋆) BV(k=1) 89.74 ± 0.04 27.29 ± 12.14 85.91 ± 0.04 84.01 ± 7.83
IBVS BM(⋆) BV(k=1) 89.06 ± 0.11 11.10 ± 8.96 85.20 ± 0.12 50.74 ± 17.35

∆ (IBVS − none) -0.68 -16.19 -0.71 -33.27
- BM(⋆) SBV(k=2) 89.76 ± 0.03 55.09 ± 14.09 85.84 ± 0.05 98.22 ± 0.89
IBVS BM(⋆) SBV(k=2) 89.03 ± 0.11 26.17 ± 15.53 85.27 ± 0.17 84.45 ± 10.19

∆ (IBVS − none) -0.73 -28.92 -0.57 -13.77
- BM(⋆) SBV(k=3) 89.73 ± 0.06 79.68 ± 10.98 85.86 ± 0.07 99.71 ± 0.24
IBVS BM(⋆) SBV(k=3) 88.98 ± 0.07 47.09 ± 20.33 85.34 ± 0.21 96.42 ± 3.17

∆ (IBVS − none) -0.75 -32.59 -0.52 -3.29
- BM(⋆) SBV(k=4) 89.73 ± 0.06 91.95 ± 5.86 85.87 ± 0.06 99.93 ± 0.05
IBVS BM(⋆) SBV(k=4) 89.00 ± 0.11 64.91 ± 20.54 85.22 ± 0.22 99.09 ± 0.95

∆ (IBVS − none) -0.73 -27.04 -0.65 -0.84
- BM(⋆) SBV(k=5) 89.69 ± 0.06 97.21 ± 2.30 85.83 ± 0.09 99.99 ± 0.01
IBVS BM(⋆) SBV(k=5) 89.00 ± 0.11 64.91 ± 20.54 85.22 ± 0.22 99.09 ± 0.95

∆ (IBVS − none) -0.69 -32.30 -0.61 -0.90
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Figure 10: CIFAR100 : Backdoor Transfer Asymmetry For Different Trigger Sizes. Axes show
λBV1

, λBV2
; A smaller trigger patch attack (e.g. 19x19 pixels) enhances the ASR of an attack with a

larger trigger (e.g. 22x22 pixels), while the reverse transfer is much weaker.

C.1.4 SBV: MULTI-TASK SETUP

Figure 12 shows how the adversary may use inherent triggers to attack the model even without
contributing poisoned Mbackdoored during merging process. We show using ACC/ASR trajectories that
inherent triggers are much more resilient in multi-task setup, than in single-task setup (see Figure 8).
Tasks are different from each other and have cosine similarity close to zero, which results in small
overlap in task vectors. Since different tasks interfere less with inherent trigger, the final attack
success rate is high.

Table 9 show comparison between single- and multi-task scenarios for 6 tasks. Our SBV merging
method improves the ASR in all tested scenarios. It is the first method that enables even the most
simple, classical backdoor attack with injected triggers to withstand the merging process.
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Figure 11: ImageNet100: Backdoor Transfer Asymmetry For Different Trigger Sizes. Axes
show λBV1 , λBV2 ; A smaller trigger patch attack (e.g. 19x19 pixels) enhances the ASR of an attack
with a larger trigger (e.g. 22x22 pixels), while the reverse transfer is much weaker.
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Figure 12: ACC/ASR trajectories for inherent (⋆) and injected (⊕) triggers in all-clean multi-
task MM. Once again ⋆ triggers maintain their effectiveness even after merging multiple Mclean
models, while ⊕ triggers are completely ineffective in the absence of Mbackdoored model. Contrary
to Figure 8, in multi-task setup inherent triggers do not weaken with more models merged, as tasks
are much more independent and do not interfere with adversary task (cosine similarities between
different TVs are close to 0.)

C.1.5 IBVS: λ PARAMETER

Table 10 shows the impact of λ parameter for IBVS. Stronger defense merging coefficient (λIBV S)
decrease the ASR more, but it comes with the cost of small final accuracy decrease. With smaller
values of λIBV S , like 0.1 the defender can still lower the backdoor ASR, without any loss on the
accuracy.
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Table 9: Backdoor Merging: Single- and Multi-Task Attack Results. We merge 1× θbackdoored +
5×θclean with λ = 0.2, reporting mean ± std. dev. BV merging: AV G — weight averaging Methods:
BN(⊕) — BadNets, BM(⋆) — BadMerging. TA. Visual encoder: ViT-B-32. Tasks for Multi-task
setting: Adversary task, Cars Krause et al. (2013), SUN397 Xiao et al. (2010), EuroSAT Helber et al.
(2019), GTSRB Stallkamp et al. (2011) and Pets Parkhi et al. (2012).

Backdoor Attack Adversary task: CIFAR100 Adversary task: IMAGENET100
Setting Method BV merging CA BA ASR CA BA ASR

Single-task

BN(⊕) - 89.43 ± 0.06 89.45 ± 0.03 0.25 ± 0.13 85.41 ± 0.11 85.54 ± 0.06 0.40 ± 0.16
BN(⊕) AVG 89.43 ± 0.06 89.51 ± 0.03 0.24 ± 0.13 85.41 ± 0.11 85.55 ± 0.08 0.41 ± 0.17
BN(⊕) SBVRDM (Ours) 89.43 ± 0.06 89.43 ± 0.04 0.48 ± 0.21 85.41 ± 0.11 85.43 ± 0.10 0.94 ± 0.24
BN(⊕) SBVSC (Ours) 89.43 ± 0.06 88.93 ± 0.07 100.00 ± 0.00 85.41 ± 0.11 84.86 ± 0.16 100.00 ± 0.00
BM(⋆) - 89.43 ± 0.06 89.49 ± 0.04 34.94 ± 15.00 85.41 ± 0.11 85.60 ± 0.08 96.95 ± 1.79
BM(⋆) AVG 89.43 ± 0.06 89.53 ± 0.05 35.55 ± 15.12 85.41 ± 0.11 85.52 ± 0.03 97.38 ± 1.54
BM(⋆) SBVRDM (Ours) 89.43 ± 0.06 89.49 ± 0.08 55.16 ± 15.88 85.41 ± 0.11 85.51 ± 0.11 99.34 ± 0.57
BM(⋆) SBVSC (Ours) 89.43 ± 0.06 89.20 ± 0.08 100.00 ± 0.00 85.41 ± 0.11 85.18 ± 0.08 100.00 ± 0.00

Multi-task

BN(⊕) - 66.93 ± 0.11 66.88 ± 0.07 2.04 ± 1.59 66.60 ± 0.13 66.54 ± 0.07 0.67 ± 0.42
BN(⊕) AVG 66.93 ± 0.11 66.94 ± 0.05 2.07 ± 1.59 66.60 ± 0.13 66.56 ± 0.04 0.69 ± 0.41
BN(⊕) SBVRDM (Ours) 66.93 ± 0.11 66.88 ± 0.07 18.5 ± 10.96 66.60 ± 0.13 66.54 ± 0.07 2.59 ± 1.05
BN(⊕) SBVSC (Ours) 66.93 ± 0.11 65.66 ± 0.31 100.0 ± 0.0 66.60 ± 0.13 65.23 ± 0.2 100.0 ± 0.0
BM(⋆) - 66.93 ± 0.11 66.99 ± 0.06 99.92 ± 0.06 66.60 ± 0.13 66.67 ± 0.04 99.89 ± 0.15
BM(⋆) AVG 66.93 ± 0.11 67.09 ± 0.05 99.92 ± 0.07 66.60 ± 0.13 66.69 ± 0.05 99.92 ± 0.1
BM(⋆) SBVRDM (Ours) 66.93 ± 0.11 67.11 ± 0.05 99.99 ± 0.01 66.60 ± 0.13 66.66 ± 0.07 100.0 ± 0.01
BM(⋆) SBVSC (Ours) 66.93 ± 0.11 66.27 ± 0.14 100.0 ± 0.0 66.60 ± 0.13 65.91 ± 0.13 100.0 ± 0.0

Table 10: Backdoor Defense: Injected BV Subtraction (IBVS). Single-task results for IBVS
variants across λIBV S ∈ {0.1, 0.3}, reporting mean BA and ASR. BV merging: AV G — weight
averaging. IBVS: IBV S□ uses a fixed white-square trigger; IBV SBN uses a wavelet trigger from
BadNets. Backbone: ViT-B-32. No defense BV: Badmerging attack. We improve state-of-the-art
ASR for BV creating stronger attack using our SBV merging method (columns). At the same time
we propose a simple defense method (IBVS) to weaken the backdoors during merging and show the
decrease of the ASR (rows). Values for λIBV S == 0.3 we report in the main part of the work.

Method λIBV S CIFAR100 ImageNet100
BV AVG SBVRND SBVSC BV AVG SBVRND SBVSC

BA ASR BA ASR BA ASR BA ASR BA ASR BA ASR BA ASR BA ASR

No defense 0 89.74 27.29 89.72 27.56 89.72 35.93 89.69 97.21 85.91 84.01 85.96 84.79 85.97 92.55 85.83 99.99

IBVS□ (Ours) 0.1 89.82 25.60 89.87 26.78 89.89 34.81 89.69 96.75 85.93 78.84 85.65 84.00 85.69 91.92 85.77 99.96
0.3 89.58 20.65 89.36 23.59 89.41 30.81 89.61 94.69 85.53 66.83 85.13 81.22 85.15 89.74 85.47 99.83

IBVSBN (Ours) 0.1 89.77 23.55 89.86 24.64 89.84 32.38 89.66 95.45 85.88 78.59 85.73 83.88 85.74 91.99 85.79 99.97
0.3 89.57 16.56 89.41 19.36 89.42 25.37 89.46 89.21 85.61 65.26 85.14 80.89 85.14 90.17 85.59 99.89

C.2 RESULTS ON VIT-L-14 AND CONVNEXT

Figures 13 and Table 12 show the results of our main experiments for larger visual encoder ViT-L-14
(we use mostly ViT-B-32 in the main part of our work). Our main results are consistent across these
architectures. ViT-L-14 is more robust than ViT-B-32 to designed backdoor attacks. We suspect that
the main reason behind it is the size of tested triggers, which are beyond single patch for small 14x14
ViT-L’ patches. Training on small patch sizes can increase the robustness of the model to backdoor
attacks (it is hard to optimize strong trigger pattern smaller than 14x14), but it comes with much
higher cost during the ViT-L training.

Table 11: Backdoor Merging: Single-Task Attack Results with TIES. Additional results under
single-task setting with λ = 0.1, 10 tasks, TIES merging. Methods: BN(⊕) — BadNets, BM(⋆) —
BadMerging, SBV — ours.

Backdoor Attack Adversary task: CIFAR100 Adversary task: IMAGENET100
Setting Method BV merging CA BA ASR CA BA ASR

Single-task

BN(⊕) - 87.82 ± 0.08 87.76 ± 0.04 0.23 ± 0.09 85.10 ± 0.07 85.15 ± 0.05 0.29 ± 0.17
BN(⊕) SBV (Ours) 87.82 ± 0.08 87.68 ± 0.10 18.07 ± 11.94 85.10 ± 0.07 84.81 ± 0.15 20.0 ± 9.24
BM(⋆) - 87.82 ± 0.08 87.77 ± 0.03 58.20 ± 13.26 85.10 ± 0.07 85.14 ± 0.05 67.36 ± 18.28
BM(⋆) SBV (Ours) 87.82 ± 0.08 87.82 ± 0.05 99.93 ± 0.07 85.10 ± 0.07 85.06 ± 0.09 99.98 ± 0.02
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Figure 13: Positive Backdoor Transfer Across Attacks (BV2 → BV1) for ViT-L-14. Adding BV2

increases the ASR of BV1. Axes show λBV1 , λBV2 ; (a–c) use BVs from the same task (ImageNet100
or CIFAR100). The strongest transfer occurs across patch locations (b) and seeds (a), but is weaker
across target classes (c) and tasks (d). In comparison to Figure 3 for ViT-L-14 different seeds has
smaller backdoor transfer. We suspect this is connected with trigger size, as 22x22 trigger is bigger
than ViT-L-14 training patches.

Table 12: Backdoor Merging: Single-Task Attack Results with ViT-L-14 Visual Encoder. We
merge 1× θbackdoored + 9× θclean with λ = 0.1, reporting mean ± std. dev. BV merging: AV G —
weight averaging Methods: BN(⊕) — BadNets, BM(⋆) — BadMerging.

Backdoor Attack Adversary task: CIFAR100 Adversary task: IMAGENET100
Setting Method BV merging CA BA ASR CA BA ASR

Single-task

BN(⊕) - 93.82 ± 0.03 93.86 ± 0.03 0.09 ± 0.04 91.20 ± 0.09 91.22 ± 0.03 0.11 ± 0.07
BN(⊕) AVG 93.82 ± 0.03 93.85 ± 0.03 0.09 ± 0.04 91.20 ± 0.09 91.21 ± 0.03 0.1 ± 0.06
BN(⊕) SBVRDM (Ours) 93.82 ± 0.03 93.7 ± 0.07 0.11 ± 0.03 91.20 ± 0.09 91.19 ± 0.06 0.63 ± 0.68
BN(⊕) SBVSC (Ours) 93.82 ± 0.03 93.38 ± 0.07 17.06 ± 16.89 91.20 ± 0.09 91.11 ± 0.13 81.86 ± 8.86
BM(⋆) - 93.82 ± 0.03 93.85 ± 0.03 0.1 ± 0.04 91.20 ± 0.09 91.19 ± 0.03 0.27 ± 0.17
BM(⋆) AVG 93.82 ± 0.03 93.82 ± 0.06 0.09 ± 0.04 91.20 ± 0.09 91.22 ± 0.02 0.26 ± 0.18
BM(⋆) SBVRDM (Ours) 93.82 ± 0.03 93.7 ± 0.08 0.16 ± 0.1 91.20 ± 0.09 91.2 ± 0.04 3.98 ± 3.73
BM(⋆) SBVSC (Ours) 93.82 ± 0.03 93.42 ± 0.03 32.21 ± 18.17 91.20 ± 0.09 91.01 ± 0.11 94.1 ± 5.08

Table 13: Backdoor Merging: Effect of IBVS Defense under Single-Task with ViT-L. Single-task,
λ = 0.1, 10 tasks, TA. BadMerging (BM, ⋆) with λIBVS = 0.5 when defense is enabled. k – number
of BVs merged for an attack. Methods: BM(⋆) — BadMerging.

Backdoor Attack Adversary task: CIFAR100 Adversary task: IMAGENET100
Defense Method BV merging BA ASR BA ASR
- BM(⋆) BV(k=1) 93.85 ± 0.03 0.10 ± 0.04 91.19 ± 0.03 0.27 ± 0.17
IBVS BM(⋆) BV(k=1) 92.72 ± 0.02 0.12 ± 0.08 90.99 ± 0.09 0.21 ± 0.12

∆ (IBVS − none) -1.13 +0.02 -0.20 -0.06
- BM(⋆) SBV(k=5) 93.42 ± 0.03 32.21 ± 18.17 91.01 ± 0.11 94.10 ± 5.08
IBVS BM(⋆) SBV(k=5) 92.47 ± 0.00 1.06 ± 0.93 90.89 ± 0.17 56.79 ± 18.42

∆ (IBVS − none) -0.95 -31.15 -0.12 -37.31

Table 14: Backdoor Merging: Single-Task Attack Results with ConvNeXt Backbone. We merge
1× θbackdoored + 9× θclean with λ = 0.1, reporting mean ± std. dev. BV merging: -— no merging.
Methods: BN(⊕) — BadNets, BM(⋆) — BadMerging, SBV — ours.

Backdoor Attack Adversary task: CIFAR100 Adversary task: IMAGENET100
Setting Method BV merging CA BA ASR CA BA ASR

Single-task

BN(⊕) - 90.62 ± 0.03 90.71 ± 0.02 1.06 ± 1.74 88.63 ± 0.05 88.73 ± 0.04 0.16 ± 0.07
BN(⊕) SBV (Ours) 90.62 ± 0.03 90.71 ± 0.04 100.0 ± 0.01 88.63 ± 0.05 88.61 ± 0.02 99.52 ± 0.58
BM(⋆) - 90.62 ± 0.03 90.71 ± 0.05 11.03 ± 3.71 88.63 ± 0.05 88.71 ± 0.02 3.97 ± 1.57
BM(⋆) SBV (Ours) 90.62 ± 0.03 90.76 ± 0.02 100.0 ± 0.00 88.63 ± 0.05 88.53 ± 0.09 99.99 ± 0.01
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Table 15: Backdoor Merging: Effect of IBVS Defense under Single-Task with ConvNeXt. Single-
task, λ = 0.1, 10 tasks, TA. BadMerging (BM, ⋆) with λIBVS = 0.5 when defense is enabled. k –
number of BVs merged for an attack.Methods: BM(⋆) — BadMerging.

Backdoor Attack Adversary task: CIFAR100 Adversary task: IMAGENET100
Defense Method BV merging BA ASR BA ASR
- BM(⋆) BV(k=1) 90.62 ± 0.03 11.03 ± 3.71 88.63 ± 0.05 3.97 ± 1.57
IBVS BM(⋆) BV(k=1) 90.06 ± 0.03 6.91 ± 4.60 88.39 ± 0.02 1.39 ± 0.83

∆ (IBVS − none) -0.56 -4.12 -0.24 -2.58
- BM(⋆) SBV(k=5) 90.62 ± 0.03 100.0 ± 0.00 88.63 ± 0.05 99.99 ± 0.01
IBVS BM(⋆) SBV(k=5) 90.13 ± 0.12 96.99 ± 3.62 88.37 ± 0.08 72.98 ± 23.77

∆ (IBVS − none) -0.49 -3.01 -0.26 -27.01
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