
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

CERTIFIED TRAINING WITH BRANCH-AND-BOUND:
A CASE STUDY ON LYAPUNOV-STABLE
NEURAL CONTROL

Anonymous authors
Paper under double-blind review

ABSTRACT

We study the problem of learning Lyapunov-stable neural controllers which
provably satisfy the Lyapunov asymptotic stability condition within a region-of-
attraction. Compared to previous works which commonly used counterexample
guided training on this task, we develop a new and generally formulated certified
training framework named CT-BaB, and we optimize for differentiable verified
bounds, to produce verification-friendly models. In order to handle the relatively
large region-of-interest, we propose a novel framework of training-time branch-
and-bound to dynamically maintain a training dataset of subregions throughout
training, such that the hardest subregions are iteratively split into smaller ones
whose verified bounds can be computed more tightly to ease the training. We
demonstrate that our new training framework can produce models which can be
more efficiently verified at test time. On the largest 2D quadrotor dynamical sys-
tem, verification for our model is more than 5X faster compared to the baseline,
while our size of region-of-attraction is 16X larger than the baseline.

1 INTRODUCTION

Deep learning techniques with neural networks (NNs) have greatly advanced abundant domains in
recent years. Despite the impressive capability of NNs, it remains challenging to obtain provable
guarantees on the behaviors of NNs, which is critical for the trustworthy deployment of NNs espe-
cially in safety-critical domains. One area of particular concern is safe control for robotic systems
with NN-based controllers (Chang et al., 2019; Dai et al., 2021; Wu et al., 2023; Yang et al., 2024).
There are many desirable properties in safe control, such as reachability w.r.t. target and avoid
sets (Althoff & Kochdumper, 2016; Bansal et al., 2017; Dutta et al., 2019; Everett et al., 2021;
Wang et al., 2023b), forward invariance (Ames et al., 2016; Taylor et al., 2020; Zhao et al., 2021;
Wang et al., 2023a; Huang et al., 2023), stability (Lyapunov, 1992; Chang et al., 2019; Dai et al.,
2021; Wu et al., 2023; Yang et al., 2024), etc.

In particular, we focus on the Lyapunov (Lyapunov, 1992) asymptotic stability of NN-based con-
trollers in discrete-time nonlinear dynamical systems (Wu et al., 2023; Yang et al., 2024), where we
aim to train and verify asymptotically Lyapunov-stable NN-based controllers. It involves training
a controller while also finding a Lyapunov function which intuitively characterizes the energy of
input states in the dynamical system, where the global minima of the Lyapunov function is at an
equilibrium state. If it can be guaranteed that for any state within a region-of-attraction (ROA), the
controller always makes the system evolve towards states with lower Lyapunov function values, then
it implies that starting from any state within the ROA, the controller can always make the system
converge towards the equilibrium state and thus the stability can be guaranteed. Such stability re-
quirements have been formulated as the Lyapunov condition in the literature. This guarantee is for
an infinite time horizon and implies a convergence towards the equilibrium, and thus it is relatively
stronger than reachability or forward invariance guarantees.

Previous works (Wu et al., 2023; Yang et al., 2024) typically used a counterexample-guided pro-
cedure that basically tries to find concrete inputs which violate the Lyapunov condition and then
train models on counterexamples. After the training, the Lyapunov condition is verified by a formal
verifier for NNs (Zhang et al., 2018; Xu et al., 2020; 2021; Wang et al., 2021; Zhang et al., 2022;
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Shi et al., 2024). However, the training process has very limited consideration on the computation of
verification which is typically achieved by computing verified output bounds given an input region.
Thereby, their models are often not sufficiently “verification-friendly”, and the verification can be
challenging and take a long time after training (Yang et al., 2024).

In this paper, we propose to consider the computation of verification during the training, for the
first time on the problem of learning Lyapunov-stable neural controllers. To do this, we optimize
for verified bounds on subregions of inputs instead of only violations on concrete counterexample
data points, and thus our approach differs significantly compared to Wu et al. (2023); Yang et al.
(2024). Optimizing for verified bounds during training is also known as “certified training” which
was originally proposed for training provably robust NNs (Wong & Kolter, 2018; Mirman et al.,
2018; Gowal et al., 2018; Müller et al., 2022; Shi et al., 2021; De Palma et al., 2022; Mao et al., 2024)
under adversarial robustness settings (Szegedy et al., 2014; Goodfellow et al., 2015). However, our
certified training here is significantly different, as we require that the model should globally satisfy
desired properties on an entire large region-of-interest over the input space, rather than only local
robustness guarantees around a finite number of data points. Additionally, the model in this problem
contains not only an NN as the controller, but also a Lyapunov function and nonlinear operators
from the system dynamics, introducing additional difficulty to the training and verification.

We propose a new Certified Training framework enhanced with training-time Branch-and-Bound,
namely CT-BaB. We jointly train a NN controller and a Lyapunov function by computing and op-
timizing for the verified bounds on the violation of the Lyapunov condition. To achieve certified
guarantees on the entire region-of-interest, we dynamically maintain a training dataset which con-
sists of subregions in the region-of-interest. We split hard examples of subregions in the dataset into
smaller ones during the training, along the input dimension where a split can yield the best improve-
ment on the training objective, so that the training can be eased with tighter verified bounds for the
smaller new subregions. Our new certified training framework is generally formulated for problems
requiring guarantees on an entire input region-of-interest, but we focus on the particular problem of
learning Lyapunov-stable controllers in this paper as a case study.

Our work makes the following contributions:

• We propose a new certified training framework for producing NNs with relatively global
guarantees which provably hold on the entire input region-of-interest instead of only small
local regions around a finite number of data points. We resolve challenges in certified
training for the relatively large input region-of-interest by proposing a training-time branch-
and-bound method with a dynamically maintained training dataset.

• We demonstrate the new certified training framework on the problem of learning (asymp-
totically) Lyapunov-stable neural controller. To the best of our knowledge, this is also the
first certified training work for the task. Our new approach greatly reduced the training
challenges observed in previous work. For example, unlike previous works (Chang et al.,
2019; Wu et al., 2023; Yang et al., 2024) which required a special initialization from a lin-
ear quadratic regulator (LQR) during counterexample-guided training, our certified training
approach works well by training from scratch with random initialization.

• We empirically show that our training framework produces neural controllers which ver-
ifiably satisfy the Lyapunov condition, with a larger region-of-attraction (ROA), and the
Lyapunov condition can be much more efficiently verified at test time. On the largest 2D
quadrotor dynamical system, we reduce the verification time from 1.1 hours (Yang et al.,
2024) to 11.5 minutes, while our ROA size is 16X larger.

2 RELATED WORK

Learning Lyapunov-stable neural controllers. On the problem of learning (asymptotically)
Lyapunov-stable neural controllers, compared to methods using linear quadratic regulator (LQR)
or sum-of-squares (SOS) (Parrilo, 2000; Tedrake et al., 2010; Majumdar et al., 2013; Yang et al.,
2023; Dai & Permenter, 2023) to synthesize linear or polynomial controllers with Lyapunov stability
guarantees (Lyapunov, 1992), NN-based controllers have recently shown great potential in scaling
to more complicated systems with larger region-of-attraction. Some works used sampled data points
to synthesize empirically stable neural controllers (Jin et al., 2020; Sun & Wu, 2021; Dawson et al.,
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2022; Liu et al., 2023) but they did not provide formal guarantees. Among them, although Jin et al.
(2020) theoretically considered verification, they assumed an existence of some Lipschitz constant
which was not actually computed, and they only evaluated a finite number of data points without a
formal verification.

To learn neural controllers with formal guarantees, many previous works used a Counter Exam-
ple Guided Inductive Synthesis (CEGIS) framework by iteratively searching for counterexamples
which violate the Lyapunov condition and then optimizing their models using the counterexamples,
where counterexamples are generated by Satisfiable Modulo Theories (SMT) solvers (Gao et al.,
2013; De Moura & Bjørner, 2008; Chang et al., 2019; Abate et al., 2020), Mixed Integer Program-
ming solvers (Dai et al., 2021; Chen et al., 2021; Wu et al., 2023), or projected gradient descent
(PGD) (Madry et al., 2018; Wu et al., 2023; Yang et al., 2024). Among these works, Wu et al.
(2023) has also leveraged a formal verifier (Xu et al., 2020) only to guarantee that the Lyapunov
function is positive definite (which can also be achieved by construction as done in Yang et al.
(2024)) but not other more challenging parts of the Lyapunov condition; Yang et al. (2024) used
α,β-CROWN (Zhang et al., 2018; Xu et al., 2020; 2021; Wang et al., 2021; Zhang et al., 2022; Shi
et al., 2024) to verify trained models without using verified bounds for training. In contrast to those
previous works, we propose to conduct certified training by optimizing for differentiable verified
bounds at training time, where the verified bounds are computed for input subregions rather than
violations on individual counterexample points, to produce more verification-friendly models.

Verification for neural controllers on other safety properties. Apart from Lyapunov asymptotic
stability, there are many previous works on verifying other safety properties of neural controllers.
Many works studied the reachability of neural controllers to verify the reachable sets of neural
controllers and avoid reaching unsafe states (Althoff & Kochdumper, 2016; Dutta et al., 2019; Tran
et al., 2020; Hu et al., 2020; Everett et al., 2021; Ivanov et al., 2021; Huang et al., 2022; Wang
et al., 2023b; Schilling et al., 2022; Kochdumper et al., 2023; Jafarpour et al., 2023; 2024; Teuber
et al., 2024). Additionally, many other works studied the forward invariance and barrier functions
of neural controllers (Zhao et al., 2021; Wang et al., 2023a; Huang et al., 2023; Harapanahalli &
Coogan, 2024; Hu et al., 2024; Wang et al., 2024). In contrast to the safety properties studied
in those works, the Lyapunov asymptotic stability we study is a stronger guarantee which implies
a convergence towards an equilibrium point, which is not guaranteed by reachability or forward
invariance alone.

NN verification and certified training. On the general problem of verifying NN-based models
on various properties, many techniques and tools have been developed in recent years, such as α,β-
CROWN (Zhang et al., 2018; Xu et al., 2020; 2021; Wang et al., 2021; Zhang et al., 2022; Shi et al.,
2024), nnenum (Bak, 2021), NNV (Tran et al., 2020; Lopez et al., 2023), MN-BaB (Ferrari et al.,
2021), Marabou (Wu et al., 2024), NeuralSAT (Duong et al., 2024), VeriNet (Henriksen & Lomus-
cio, 2020), etc. One technique commonly used in the existing NN verifiers is linear relaxation-based
bound propagation (Zhang et al., 2018; Wong & Kolter, 2018; Singh et al., 2019), which essentially
relaxes nonlinear operators in the model by linear lower and upper bounds and then propagates lin-
ear bounds through the model to eventually produce a verified bound on the output of the model.
Verified bounds computed in this way are differentiable and thus have also been leveraged in cer-
tified training (Zhang et al., 2020; Xu et al., 2020). Some other certified training works (Gowal
et al., 2018; Mirman et al., 2018; Shi et al., 2021; Müller et al., 2022; De Palma et al., 2022) used
even cheaper verified bounds computed by Interval Bound Propagation (IBP) which only propagates
more simple interval bounds rather than linear bounds. However, existing certified training works
commonly focused on adversarial robustness for individual data points with small local perturba-
tions. In contrast, we consider a certified training beyond adversarial robustness, where we aim to
achieve a relatively global guarantee which provably holds within the entire input region-of-interest
rather than only around a proportion of individual examples.

Moreover, since verified bounds computed with linear relaxation can often be loose, many of the
aforementioned verifiers for trained models also contain a branch-and-bound strategy (Bunel et al.,
2020; Wang et al., 2021) to branch the original verification problem into subproblems with smaller
input or intermediate bounds, so that the verifier can more tightly bound the output. In this work, we
explore a novel use of the branch-and-bound concept in certified training, by dynamically expanding
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a training dataset and gradually splitting hard examples into smaller ones during the training, to
enable certified training which eventually works for the entire input region-of-interest.

3 METHODOLOGY

3.1 PROBLEM SETTINGS

Certified training problem. Suppose the input region-of-interest of the problem is defined by
B ⊆ Rd for input dimension d, and in particular, we assume B is an axis-aligned bounding box
B = {x | b ≤ x ≤ b, x ∈ Rd} with boundary defined by b,b ∈ Rd (we use “≤” for vectors
to denote that the “≤” relation holds for all the dimensions in the vectors). We define a model (or
a computational graph) gθ : Rd → R parameterized by θ, where gθ generally consists of one or
more NNs and also additional operators which define the properties we want to certify (such as the
Lyapunov condition in this work). The goal of certified training is to optimize for parameters θ such
that the following can be provably verified (we may omit θ in the remaining part of the paper):

∀x ∈ B, gθ(x) ≤ 0, (1)

where any gθ(x) > 0 can be viewed as a violation. Unlike previous certified training works (Gowal
et al., 2018; Mirman et al., 2018; Zhang et al., 2020; Müller et al., 2022) which only considered
certified adversarial robustness guarantees on small local regions as {x : ∥x − x0∥ ≤ ϵ} around
a finite number of examples x0 ∈ B in the dataset, we require Eq. (1) to be fully certified for any
x ∈ B.

Neural network verifiers typically verify Eq. (1) by computing a provable upper bound g such
that g ≥ g(x) (∀x ∈ B) provably holds, and Eq. (1) is considered as verified if g ≤ 0. For
models trained without certified training, the upper bound computed by verifiers is usually loose, or
it requires a significant amount of time to further optimize the bounds or gradually tighten the bounds
by branch-and-bound at test time. Certified training essentially optimizes for objectives which take
the computation of verified bounds into consideration, so that Eq. (1) not only empirically holds for
any worst-case data point x which can be empirically found to maximize g(x), but also the model
becomes more verification-friendly, i.e., verified bounds become tighter and thereby it is easier to
verify g ≤ 0 with less branch-and-bound at test time.

Specifications for Lyapunov-stable neural control. In this work, we particularly focus on the
problem of learning a certifiably Lyapunov-stable neural state-feedback controller with continuous
control actions in a nonlinear discrete-time dynamical system, with asymptotic stability guarantees.
We adopt the formulation from Yang et al. (2024). Essentially, there is a nonlinear dynamical system

xt+1 = f(xt, ut(xt)), (2)

which takes the state xt ∈ Rd at the current time step t and a continuous control input ut(xt) ∈ Rnu ,
and then the dynamical system determines the state at the next time step t + 1. The control input
ut(xt) is generated by a controller which is a NN here. The state of the dynamical system is also
the input of the certified training problem.

Lyapunov asymptotic stability can guarantee that if the system begins at any state x ∈ S within
a region-of-attraction (ROA) S ⊆ B, it will converge to a stable equilibrium state x∗. Following
previous works, we assume that the equilibrium state is known, which can be manually derived
from the system dynamics for the systems we study. To certify the Lyapunov asymptotic stability,
we need to learn a Lyapunov function V (xt) : Rd → R, such that the Lyapunov condition provably
holds for the dynamical system in Eq. (2):

∀xt ̸= x∗ ∈ S, V (xt) > 0, V (xt+1)− V (xt) ≤ −κV (xt), (3)

and V (x∗) = 0, where κ > 0 is a constant which specifies the exponential stability convergence rate.
This condition essentially guarantees that at each time step, the controller always make the system
progress towards the next state with a lower Lyapunov function value, and thereby the system will
ultimately reach x∗ which has the lowest Lyapunov function value given V (x∗) = 0. Following
Yang et al. (2024), we guarantee V (x∗) = 0 and ∀xt ̸= x ∈ Rd, V (xt) > 0 by the construction of
the Lyapunov function, as discussed in Section 3.4, and we specify the ROA using a sublevel set of
V as S := {x ∈ B | V (x) < ρ} with sublevel set threshold ρ. Since ROA is now restricted to be a
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subset of B and the verification will only focus on B, we additionally need to ensure that the state at
the next time step does not leave B, i.e., xt+1 ∈ B.

Overall, we want to verify g(xt) ≤ 0 for all xt ∈ B, where g(xt) is defined as:

g(xt) := min

{
ρ−V (xt), σ(V (xt+1)−(1−κ)V (xt))+

∑
1≤i≤d

σ([xt+1]i−bi)+σ(bi−[xt+1]i)

}
,

(4)
where xt+1 is given by Eq. (2), and σ(x) = max{x, 0} is also known as ReLU. For the specification
in Eq. (4), ρ − V (xt) means that for a state which is provably out of the considered ROA as
V (xt) ≥ ρ, we do not have to verify Eq. (3) or xt+1 ∈ B, and it immediately satisfies g(xt) ≤ 0;
σ(V (xt+1)− (1− κ)V (xt)) is the violation on the V (xt+1)−V (xt) ≤ −κV (xt) condition in Eq.
(3); and the “

∑
1≤i≤d” term in Eq. (4) denotes the violation on the xt+1 ∈ B condition. Verifying

Eq. (4) for all xt ∈ B guarantees the Lyapunov condition for any x ∈ S in the ROA (Yang et al.,
2024). In the training, we try to make g(xt) ≤ 0 verifiable by optimizing the parameters in the
neural controller ut and the Lyapunov function V (xt).

3.2 TRAINING FRAMEWORK

As we are now considering a challenging setting, where we want to guarantee g(x) ≤ 0 on the
entire input region-of-interest B, directly computing a verified bound on the entire B can produce
very loose bounds. Thus, we split B into smaller subregions, and we we maintain a dataset with n
examples D = {(x(1),x(1)), (x(2),x(2)), · · · , (x(n),x(n))}, where each example (x(k),x(k)) (1 ≤
k ≤ n) is a subregion in B, defined as a bounding box {x : x ∈ Rd, x(k) ≤ x ≤ x(k)} with
boundary x(k) and x(k), and all the examples in D cover B as

⋃
(x,x)∈D(x,x) = B. We dynamically

update and expand the dataset during the training by splitting hard examples into more examples
with even smaller subregions, as we will introduce in Section 3.3.

During the training, for each training example (x,x), we compute a verified upper bound of g(x)
for all x (x ≤ x ≤ x) within the subregion, denoted as g(x,x), such that

g(x,x) ≥ g(x) (∀x, x ≤ x ≤ x). (5)

Thereby, g(x,x) is a verifiable upper bound on the worst-case violation of Eq. (1) for data points in
[x,x]. To compute g(x,x), we mainly use the CROWN (Zhang et al., 2018; 2020) algorithm which
is based on linear relaxation-based bound propagation as mentioned in Section 2, while we also use
a more simple Interval Bound Propagation (IBP) (Gowal et al., 2018; Mirman et al., 2018) algorithm
to compute the intermediate bounds of the hidden layers in NNs. Such intermediate bounds are re-
quired by CROWN to derive linear relaxation for nonlinear operators including activation functions,
as well as nonlinear computation in the dynamics of the dynamical system. We use IBP on hidden
layers for more efficient training and potentially easier optimization (Lee et al., 2021; Jovanović
et al., 2021). Verified bounds computed in this way are differentiable, and then we aim to achieve
g(x,x) ≤ 0 and minimize g(x,x) in the training.

We additionally include a training objective term where we try to empirically find the worst-case
violation of Eq. (1) by adversarial attack using projected gradient descent (PGD) (Madry et al.,
2018), denoted as gA(x,x) := g(A(x,x)), where A(x,x) ∈ Rd (x ≤ A(x,x) ≤ x) is a data point
found by PGD to empirically maximize g(A(x,x)) within the domain:

argmax
x∈Rd (x≤x≤x)

g(x), (6)

but A(x,x) found by PGD is not guaranteed to be the optimal solution for Eq. (6). Since it is easier
to train a model which empirically satisfies Eq. (1) compared to making Eq. (1) verifiable, we add
this adversarial attack objective so that the training can more quickly reach a solution with most
counterexamples eliminated, while certified training can focus on making it verifiable. This objec-
tive also helps to achieve that at least no counterexample can be empirically found, even if verified
bounds by CROWN and IBP cannot yet verify all the examples in the current dataset (x,x) ∈ D,
as we may still be able to fully verify Eq. (1) at test time using a stronger verifier enhanced with
large-scale branch-and-bound.
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Overall, we optimize for a loss function to minimize the violation of g(x,x) and gA(x,x):

L =

(
E(x,x)∈D σ(g(x,x) + ϵ) + λmaxσ(gA(x,x) + ϵ)

)
+ Lextra, (7)

where σ(·) is ReLU, ϵ is small value for ideally achieving Eq. (1) with a margin, as g(x,x) ≤ −ϵ
and gA(x,x) ≤ −ϵ, λ is a coefficient used to for assigning a weight to the PGD term, and Lextra
is an extra loss term which can be used to control additional properties of the model. After the
training, the desired properties as Eq. (1) are verified by a formal verifier such as α,β-CROWNwith
larger-scale branch-and-bound, and thus the soundness of the trained models can be guaranteed as
long as the verification succeeds at test time.

We have formulated our general training framework in this section, and we will instantiate our train-
ing framework on the particular task of learning Lyapunov-stable neural controllers in Section 3.4.

3.3 TRAINING-TIME BRANCH-AND-BOUND

We now discuss how we initialize the training dataset D and dynamically maintain the dataset during
the training by splitting hard examples into smaller subregions.

Initial splits. We initialize D by splitting the original input region-of-interest B into grids along
each of its d dimensions, respectively. We control the maximum size of the initial regions with a
threshold l which denotes the maximum length of each input dimension. For each input dimension
i (1 ≤ i ≤ d), we uniformly split the input range [bi,bi] into mi = ⌈bi−bi

l ⌉ segments in the
initial split, such that the length of each segment is no larger than the threshold l. We thereby create∏d

i=1 mi regions to initialize D, where each region is created by taking a segment from each input
dimension, respectively. Each region (x,x) ∈ D is also an example in the training dataset. We set
the threshold l such that the initial examples fill 1∼2 batches according to the batch size, so that
the batch size can remain stable in the beginning of the training rather than start with a small actual
batch size.

Splits during the training. After we create the initial splits with uniform splits along each input
dimension, during the training, we also dynamically split hard regions into even smaller subregions.
We take dynamic splits instead of simply taking more initial splits, as we can leverage the useful
information during the training to identify hard examples to split where the specification has not
been verified, and we also identify the input dimension to split such that it can lead to the best
improvement on the loss values.

In each training batch, we take each example (x(k),x(k)) with g(x(k),x(k)) > 0, i.e., we have not
been able to verify that g(x) ≤ 0 within the region [x(k),x(k)]. We then choose one of the input
dimensions i(1 ≤ i ≤ d) and uniformly split the region into two subregions along the chosen input
dimension i. At dimension i, suppose the original input range for the example is [x

(k)
i ,x

(k)
i ], we

split it into [x
(k)
i ,

x
(k)
i +x

(k)
i

2 ] and [
x
(k)
i +x

(k)
i

2 ,x
(k)
i ], while leaving other input dimensions unchanged.

We remove the original example from the dataset and add the two new subregions into the dataset.

In order to maximize the benefit of splitting an example, we decide the input dimension to choose
by trying each of the input dimensions j(1 ≤ j ≤ d) and computing the total loss of the two
new subregions when dimension j is split. Suppose L(x(k),x(k)) is the contribution of an example
(x(k),x(k)) to the loss function in Eq. (7). We take the dimension j to split which leads to the lowest
loss value for the new examples:

argmin
1≤j≤d

L(x(k),x(k,j)) + L(x(k,j),x(k)), where x
(k,j)
j = x

(k,j)
j =

x
(k)
j + x

(k)
j

2
, (8)

and x
(k,j)
i = x

(k)
i ,x

(k,j)
i = x

(k)
i keep unchanged for other dimensions i ̸= j not being split. All

the examples requiring a split in a batch and all the input dimensions to consider for the split can be
handled in parallel on GPU.
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3.4 MODELING AND TRAINING OBJECTIVES FOR LYAPUNOV-STABLE NEURAL CONTROL

To demonstrate our new certified training framework, we focus on its application on learning veri-
fiably Lyapunov-stable neural controllers with state feedback. Since our focus is on a new certified
training framework, we use the same model architecture as Yang et al. (2024). We use a fully-
connected NN for the controller u(x); for the Lyapunov function V (x), we either use a model based
on a fully-connected NN ϕ(x) as V (x) = |ϕ(x) − ϕ(x∗)| + ∥(ϵV I + R⊤R)(x − x∗)∥1, or a
quadratic function as V (x) = (x−x∗)⊤(ϵV I +R⊤R)(x−x∗), where R ∈ Rnr×nr is an optimiz-
able matrix parameter, and ϵV > 0 is a small positive value to guarantee that ϵV I+R⊤R is positive
definite. The construction of the Lyapunov functions automatically guarantees that V (x∗) = 0 and
V (x) > 0 (∀x ̸= x∗) (Yang et al., 2024) required in the Lyapunov condition.

We have discussed the formulation of g(x) in Eq. (4). When bounding the violation term V (xt+1)−
(1− κ)V (xt) in Eq. (4), we additionally apply a constraint V (xt+1) ≥ ρ+ ϵ for xt+1 /∈ B. It is to
prevent wrongly minimizing the violation by going out of the region-of-interest as xt+1 /∈ B while
making V (xt+1) (xt+1 /∈ B) small, such that the violation V (xt+1)− (1− κ)V (xt) appears to be
small yet missing the xt+1 ∈ B requirement.

As mentioned in Eq. (4), an additional term Lextra can be added to control additional properties
of the model. We use the extra loss term to control the size of the region-of-attraction (ROA). We
aim to have a good proportion of data points from the region-of-interest x ∈ B, such that their
Lyapunov function values are within the sublevel set V (x) < ρ where the Lyapunov condition is to
be guaranteed. To do this, we randomly draw a batch of nρ samples within B, as x̃1, x̃2, · · · , x̃nρ

∈
B, and we define Lextra as:

Lextra = I
(

1

nρ

nρ∑
i=1

I(V (x̃i) < ρ) < ρratio

)
λρ

nρ

nρ∑
i=1

σ(V (x̃i) + ρ− ϵ), (9)

which penalizes samples with V (x̃i) > ρ − ϵ when the ratio of samples within the sublevel set is
below the threshold ρratio, where ϵ is a small value for the margin as similarly used in Eq. (7) and λρ

is the weight of term Lextra Eq. (7). In our implementation, we simply fix ρ = 1 and make nρ equal
to the batch size of the training. The threshold ρratio and the weight λρ can be set to reach the desired
ROA size, but setting a stricter requirement on the ROA size can naturally increase the difficulty of
training.

All of our models are randomly initialized and trained from scratch. This provides an additional
benefit compared to previous works (Wu et al., 2023; Yang et al., 2024) which commonly required
an initialization for a traditional non-learning method (linear quadratic regulartor, LQR) with a small
ROA. Yang et al. (2024) also proposed to enlarge ROA with carefully selected candidates states
which are desired to be within the ROA by referring to LQR solutions. In contrast, our training does
not require any baseline solution. Thus, this improvement from our method can reduce the burden
of applying our method without requiring a special initialization.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

Dynamical systems. We demonstrate our new certified training work on learning Lyapunov-stable
neural controllers with state feedback in several nonlinear discrete-time dynamical systems follow-
ing Wu et al. (2023); Yang et al. (2024), as listed in Table 1: Inverted pendulum is about swinging up
the pendulum to the upright equilibrium; Path tracking is about tracking a path for a planar vehicle;
and 2D quadrotor is about hovering a quadrotor at the equilibrium state. For inverted pendulum
and path tracking, there are two different limits on the maximum allowed torque of the controller,
where the setting is more challenging with a smaller torque limit. Detailed definition of the system
dynamics (f in Eq. (2)) is available in existing works: Wu et al. (2023) for inverted pendulum and
path tracking, and Tedrake (2009) for 2D quadrotor.

Implementation. We use the PyTorch library auto LiRPA (Xu et al., 2020) to compute CROWN
and IBP verified bounds during the training. After a model is trained, we use α,β-CROWN to finally
verify the trained model, where α,β-CROWN is configured to use verified bounds by auto LiRPA
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Table 1: Dynamical systems used in the experiments. All these settings follow Yang et al. (2024).
d means the dimension of input states and nu means the dimension of control input which is from
the output of the controller. There is a limit on the control input u and the output of the controller is
clamped according to the limit, where some symbols in the limit on u are from the dynamics of the
systems: m for mass, g for gravity, l for length, and v for velocity. Size of the region-of-interest here
is represented by the upper boundary b, and b = −b holds for all the systems here. Equilibrium
state of all the systems here is x∗ = 0.

System d nu Limit on u Region-of-interest

Inverted pendulum 2 1 |u| ≤ 8.15 ·mgl (large torque)
[12, 12]|u| ≤ 1.02 ·mgl (small torque)

Path tracking 2 1 |u| ≤ 1.68 · l/v (large torque)
[3, 3]|u| ≤ l/v (small torque)

2D quadrotor 6 3 ∥u∥∞ ≤ 1.25 ·mg [0.75, 0.75, π, 2, 4, 4, 3]

Table 2: Comparison on the verification time cost and the size of ROA. “Pendulum” refers to the
inverted pendulum system. Model checkpoints for Wu et al. (2023) are obtained from the source
code of Yang et al. (2024) and the same models have been used for comparison in Yang et al. (2024),
where “-” denotes that on some of the systems models for Wu et al. (2023) are not available. Yang
et al. (2024) and ours have the same model architecture on each system.

System Wu et al. (2023) CEGIS (Yang et al., 2024) Ours
Time ROA Time ROA Time ROA

Pendulum (large torque) 11.3s 53.28 33s 239.04 32s 495.36
Pendulum (small torque) - - 25s 187.20 26s 275.04
Path tracking (large torque) 11.7s 14.38 39s 18.27 31s 21.60
Path tracking (small torque) - - 34s 10.53 27s 11.51
2D quadrotor - - 1.1hrs 3.29 11.5min 54.39

and run branch-and-bound on the input space to tighten the verified bounds until the verification
succeeds, which has been used in the same way in Yang et al. (2024). Additional details of the
experiments are included in Appendix A.

4.2 MAIN RESULTS

We show the main results in Table 2, where we compare the verification time cost and size of ROA
with the previous state-of-the-art method based on CEGIS (Yang et al., 2024), as well as an earlier
work (Wu et al., 2023) on applicable systems. Following Wu et al. (2023), we estimate the size of
ROA by considering grid points in the region-of-interest B and counting the proportion of grid points
within the sublevel set of the Lyapunov function where the Lyapunov condition is verified, multiplied
by the volume of B. Models by Wu et al. (2023) have much smaller ROA than Yang et al. (2024), and
thus we focus on comparing our method with Yang et al. (2024). On inverted pendulum, our method
produces much larger ROA with similar verification time, and on path tracking, our method produces
larger ROA while also reducing the verification time. On these two systems, the verification time
cannot be greatly reduced, due to the overhead of launching α,β-CROWN and low GPU utilization
when the verification is relatively easy. On 2D quadrotor with a much higher difficulty, our method
significantly reduces the verification time (11.5 minutes compared to 1.1 hours by Yang et al. (2024))
while also significantly enlarging the ROA (54.39 compared to 3.29 by Yang et al. (2024)). These
results demonstrate the effectiveness of our method on producing verification-friendly Lyapunov-
stable neural controllers and Lyapunov functions with larger ROA. In Figure 1, we visualize the
ROA on 2D quadrotor, with different 2D views, which demosntrates a larger ROA compared to the
Yang et al. (2024) baseline. In Appendix B, we visualize the distribution of the subregions after
our training-time branch-and-bound, which suggests that much more extensive splits tend to happen
when at least one of the input states is close to that of the equilibrium state, where Lyapunov function
values are relatively small and the training tends to be more challenging.
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Table 3: Runtime of training, size of the training dataset, and the ratio of examples in the training
dataset verifiable by CROWN without further branch-and-bound. “Initial dataset size“ denotes the
size of the training dataset at the start of the training, and “final dataset size” denote the size at the
end of the training. All the models can be fully verified at test time using α,β-CROWN with branch-
and-bound at the input space, as shown in Table 2.

System Runtime Initial dataset size Final dataset size Verified by CROWN

Pendulum (large torque) 6min 58080 68686 100%
Pendulum (small torque) 32min 58080 657043 100%
Path tracking (large torque) 17min 40400 7586381 94.95%
Path tracking (small torque) 16min 40400 222831 99.97%
2D quadrotor 107min 46336 34092930 88.18%

Table 4: Training and test results of ablation study conducted on the 2D quadrotor system. For
training results, we report the dataset size at the end of the training and the ratio of training examples
verified by CROWN, where “verified (all)” is evaluated on all the training examples, while “verified
(within the sublevel set)” excludes examples verified to be out of the sublevel set with V (x) < ρ.
For test results, we report if the model can be fully verified at test time by α,β-CROWN and a
“candidate ROA” size which denotes the volume of the sublevel set with V (x) < ρ. “Candidate
ROA” is the true ROA if the model is fully verified.

Method Training Test
Dataset size Verified (all) Verified (within the sublevel set) Fully verified Candidate ROA

Default 34092930 88.18% 86.95% Yes 54.39
No dynamic split 64916160 99.95% 38.29% No 0.08
Naive dynamic split 20477068 90.05% 55.62% No 0.0095

In Table 3, we show information about the training, including the time cost of training, size of the
dynamic training dataset and the ratio of training examples which can be verified using verified
bounds by CROWN (Zhang et al., 2018; Xu et al., 2020) at the end of the training. Our training
dataset is dynamically maintained and expanded as described in Section 3.3, and the dataset size
grows from the “initial dataset size” to the “final dataset size” shown in Table 3. At the end of
the training, most of the training examples (more than 88%) can already be verified by CROWN
bounds. Although not all of the training examples are verifiable by CROWN, all the models can
be fully verified when we use α,β-CROWN to finally verify the models at test time, where α,β-
CROWN further conducts branch-and-bound on the input space using CROWN bounds.

Ours Yang et al (2024)

Figure 1: Visualization of the Lyapunov function (color plots) and ROA (contours) on the 2D
quadrotor system with three different 2D views compared to Yang et al. (2024). The system contains
6 states denoted as x = [x, y, θ, ẋ, ẏ, θ̇]. Our method demonstrates a 16X larger ROA (in terms of
the volume of ROA on the 6-dimensional input space) compared to Yang et al. (2024).
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4.3 ABLATION STUDY

In this section, we conduct an ablation study to demonstrate the necessity of using our dynamic
splits to maintain the training dataset as described in Section 3.3, on the largest 2D quadrotor system.
We consider two variations of our proposed method: No dynamic split means that we use a large
number of initial splits by reducing the threshold l which controls the maximize size of initial regions
mentioned in Section 3.3, and the dataset is then fixed and there is no dynamic split throughout the
training; Naive dynamic split means that we use dynamic splits but we simply split along the input
dimension with the largest size, as argmax1≤j≤d(x

(k)
i − x

(k)
j ), instead of taking the best input

dimension in terms of reducing the loss value as Eq. (8). We show the results in Table 4. Neither of
“no dynamic split” and “naive dynamic split” can produce verifiable models. We observe that they
both tend to make the sublevel set with V (x) < ρ very small, which leads to a very small ROA size
even if the model can be verified (if the weight on the extra loss term for ROA in Eq. (9) is increased,
the training does not converge with many counterexamples which can be empirically found). For
the two variations, although most of the training examples can still be verified at the end of training,
if we check nontrivial examples which are not verified to be out of the sublevel set (see “verified
(within the sublevel set)” in Table 4), a much smaller proportion of these examples are verified.
Without our proposed dynamic splits decided by Eq. (8), these two variations cannot identify hard
examples to split and split along the best input dimension to efficiently ease the training, leaving
many unverified examples among those possibly within the sublevel set, despite that the size of
the sublevel set is significantly shrunk. This experiment demonstrates the benefit of our proposed
dynamic splits.

5 CONCLUSION

To conclude, we propose a new certified training framework for training verification-friendly mod-
els where a relatively global guarantee can be verified for an entire region-of-interest in the input
space. We maintain a dynamic dataset of subregions which cover the region-of-interest, and we
split hard examples into smaller subregions throughout the training, to ease the training with tighter
verified bounds. We demonstrate our new certified training framework on the problem of learning
and verifying Lyapunov-stable neural controllers. We show that our new method produces more
verification-friendly models which can be more efficiently verified at test time while the region-of-
attraction also becomes much larger compared to the state-of-the-art baseline.

A limitation of this work is that only low-dimensional dynamical systems have been considered,
which is also a common limitation of previous works on this Lyapunov problem (Chang et al.,
2019; Wu et al., 2023; Yang et al., 2024). Future works may consider scaling up our method to
higher-dimensional systems. Since splitting regions on the input space can become less efficient
if the dimension of the input space significantly increases, future works may consider applying
splits on the intermediate bounds of activation functions (potentially with sparsity), which has been
commonly used in state-of-the-art NN verifiers (mentioned in Section 2) for verifying trained models
on high-dimensional tasks such as image classification.

Although our new certified training framework is generally formulated, we have only focused on
demonstrating the training framework on Lyapunov asymptotic stability. Given the generality of our
new framework, it has the potential to enable broader applications, such as other safety properties
including reachability and forward invariance mentioned in Section 2, control systems with more
complicated settings such as output feedback systems, or even applications beyond control. These
will be interesting directions for future work.
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A DETAILS OF THE IMPLEMENTATION AND EXPERIMENTS

We directly adopt the model architecture of all the controllers and Lyapunov functions from Yang
et al. (2024) (we follow their source code which has some minor difference with the information
provided in their paper). The controller is always a fully-connected NN with 8 hidden neurons in
each hidden layer. For inverted pendulum and path tracking, there are 4 layers, and for 2D quadrotor,
there are 2 layers. ReLU is used as the activation function. A NN-based Lyapunov function is used
for inverted pendulum and path tracking, where the NN is a fully-connected NN with 4 layers, and
the number of hidden neurons is 16, 16, and 8 for the three hidden layers, respectively. Leaky ReLU
is used as the activation function for NN-based Lyapunov functions. A quadratic Lyapunov function
with nr = 6 is used for 2D quadrotor. For κ in Eq. (3), κ = 0.001 is used for inverted pendulum
and path tracking, and κ = 0 is used for 2D quadrotor, following Yang et al. (2024).

We use a batch size of 30000 for all the training. We mainly use a learning rate of 5× 10−3, except
2 × 10−2 for path tracking. In the loss function, we set λ to 10−4, λp to 0.1, and ϵ to 0.01. We
try to make ρratio as large as possible for individual systems, as long as the training works. We set
ρratio = 0.1 for 2D quadrotor. For inverted pendulum and path tracking, the range of ρratio is between
0.5 and 0.9 for different settings. We start our dynamic splits after 100 initial training steps and
continue until 5000 training steps (for 2D quadrotor) or if the training finishes before that (for other
systems). For the adversarial attack, we use PGD with 10 steps and a step size of 0.25 relative to
the size of subregion. We fix ρ = 1.0 during the training. At test time, we slightly reduce ρ to
0.9 for 2D quadrotor while we keep ρ = 1.0 for other systems. Using a slightly smaller ρ at test
time instead of the value used for training has been similarly done in Yang et al. (2024) to ease the
verification. Each training is done using a single NVIDIA GeForce RTX 2080 Ti GPU, while the
verification with α,β-CROWN at test time is done on a NVIDIA RTX A6000 GPU which is the
same GPU model used by Yang et al. (2024).

B VISUALIZATION OF BRANCH-AND-BOUND

In this section, we visualize the distribution of subregions in the training dataset D at the end of the
training, in order to understand where the most extensive branch-and-bound happens. Specifically,
we check the distribution of the center of subregions. For systems with two input states (inverted
pendulum and path tracking), we use 2D histogram plots, as shown in Figure 2 and 3. For the 2D
quadrotor system which has 6 input states (and thus a 2D histogram plot cannot be directly used),
we plot the distribution for different measurements of the subregion centers, including the ℓ1 norm,
ℓ∞ norm, and the minimum magnitude over all the dimensions, as shown in Figure 4. We find that
much more extensive splits tend to happen when at least one of the input states is close to that of the
equilibrium state. Such areas have relatively small Lyapunov function values and tend to be more
challenging for the training and verification. Specifically, in Figure 2a, 3a and 3b, extensive splits
happen right close to the equilibrium state, while in Figure 2b, although extensive splits are not fully
near the equilibrium state, extensive splits happen for subregions where the value for the θ̇ input
state is close to 0 (i.e., value of θ̇ for the equilibrium state). The observation is also similar for the
2D quadrotor system, where Figure 4c shows that most subregions have at least one input state close
to 0.
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Figure 2: Visualization for the distribution of subregions in D at the end of the training for the
inverted pendulum system, with large torque limit and small torque limit, respectively. The 2D
histogram plots show the distribution of the center of subregions. θ and θ̇ denote the angular position
and angular velocity, respectively, for the two input states in inverted pendulum.
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Figure 3: Visualization for the distribution of subregions in D at the end of the training for the path
tracking system, similar to Figure 2. ed and eθ denote the distance error and angle error, respectively,
for the two input states in path tracking.
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Figure 4: Visualization for the distribution of subregions in D at the end of the training for the 2D
quadrotor system. We check the distribution of ℓ1 norm, ℓ∞ norm, and the minimum magnitude
over all the dimensions (all the input states), respectively, for the subregion centers.
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