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ABSTRACT

Data augmentation and regularization have proven to be fundamental techniques
for enhancing the generalization of deep neural networks. While canonical meth-
ods such as RandAug, CutMix, Mixup, RandErase, and DropPath offer diverse
regularization effects, their combined use appears to have reached a saturation
point, leaving little room for further performance gains. In this work, we introduce
DiffNoise, a novel data augmentation strategy that injects smooth noise-based
perturbations into the input embedding space rather than directly into the raw
input. Contrary to the conventional belief, Dif fNoise performs orthogonally to
existing data augmentations, improving the standard recipe that has largely reached
saturation. This improvement may be interpreted as expanding the augmentation
space along a previously unexplored axis, without any architectural modifications
or auxiliary objectives. Furthermore, DiffNoise implicitly benefits from a
more improved localization capability and learn generalized, robust representa-
tions across various models. Extensive experiments across a wide spectrum of
model families—including ViTs, CLIP, and self-supervised architectures—show
that Dif fNoise consistently enhances performance across multiple downstream
tasks. Code is available in the Supplementary Material.

1 INTRODUCTION

Data augmentation is a staple for the generalization capability of vision models. It has delivered
large gains in CNNs (He et al., 2016) by enriching data diversity and mitigating overfitting. After the
emergence of large-scale Vision Transformers (ViT) (Dosovitskiy et al., 2020) and Transformer-based
training (He et al., 2022; Xie et al., 2022; Wei et al., 2023; Zheng et al., 2023; Choi et al., 2024b),
they have made augmentation even more crucial. This is presumably due to ViTs having a higher
capacity, which relies on global self-attention, lacking spatial inductive biases, and making them
sensitive to small perturbations. In downstream fine-tuning with ViTs, this issue becomes central:
effective transfer of pre-trained parameters depends on carefully chosen augmentations that inject
task-relevant inductive biases and curb overfitting under limited labels.

Tremendous efforts have been made to discover a golden augmentation recipe, but we now face
the wall of the standard setup using CutMix (Yun et al., 2019), Mixup (Zhang et al., 2017), Drop-
Path (Huang et al., 2016), and RandAug (Cubuk et al., 2020) for fine-tuning ViTs (often combined
with Label Smoothing and Dropout). In practice, despite broad adoption and strong results, its gains
have reached a performance plateau'. Fig. 1 (a) illustrates that stacking additional augmentations on
Ry yields negligible improvement. Why does the standard recipe saturate? Our insight is that most
existing data augmentations largely overlap in the augmentation space, which limits the complemen-
tarity between them. At times, we argue fine-tuned ViTs seem weaker in fine-detail localization and
robustness, likely due to this.

To move beyond saturated axes, an ingenious path may lie in generative training, where corruption by
noise plays a core role. Language models (Hua et al., 2021; Nukrai et al., 2022; Jain et al., 2024) and
diffusion-based methods (Ho et al., 2020; Song et al., 2020; Nichol & Dhariwal, 2021; Rombach
et al., 2022; Ramesh et al., 2021; Saharia et al., 2022) inject noise at embedding-level for improved
feature learning in pretraining and downstream tasks (Ho et al., 2020; Wang et al., 2022; Choi et al.,

"Prior works (Tan & Le, 2019; Touvron et al., 2021; Han et al., 2021; Wightman et al., 2021; Steiner et al.,
2021; Touvron et al., 2022; Dehghani et al., 2023; Kim et al., 2024; Heo et al., 2025) employed or slightly
extended the standard setup, yet the combination remains the default and has plateaued in augmentation diversity.
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Figure 1: Where we stand? Data augmentation may reach its limits. When more is no more, we are now at
the wall of augmentations that limits further progress. Current ImageNet training appears to have reached a point
where the de facto setup dominates all alternatives. Specifically, (a) ImageNet-1K accuracy gains vanish beyond
the de facto recipe Ry = CutMix, Mixup, DropPath, and RandAug (often combined with Label Smoothing
and Dropout). (b) Conceptually, augmentation space can be drawn in three explicit axes—input transforms,
region-level mixing, feature-level dropping. We argue that methods on these axes overlap in regularization,
which could visually explain the saturation in (a).

2024a). Drawing from this insight, we introduce Di f fNoise?, a simple embedding-level noise
augmentation method for improved representation learning. We argue Di ffNoise complements
the standard setup R in an orthogonal manner and integrates effectively as a plug-in. What is more,
it turns out that (1) Dif fNoise enhances localization by suppressing high-norm values, leading to
broader attention with improved fine detail sensitivity; (2) DiffNoise acts like a embedding- (i.e.,
token-) level regularization due to injecting noise in the embedding space, thus leading to improved
robustness; (3) Dif fNoise demonstrates the ability to learn generalized and robust representations.

We conduct extensive experiments across a diverse suite of architectures with Di £ fNoise. Our eval-
uation spans ViT-{S,B,L} (Dosovitskiy et al., 2020), multi-modal pre-trained models (CLIP (Radford
et al., 2021)), and modern self-supervised learning (SSL) frameworks (Masked Image Modeling (He
et al., 2022; Xie et al., 2022) and Diffusion-based Masked Image Modeling (Wei et al., 2023; Zheng
etal., 2023; Choi et al., 2024b)). When combined with existing augmentations, Di f fNoi se achieves
up to 4.41%p improvement in performance across various settings. We validate beyond ViTs—testing
DiffNoise on CNNs (ResNet-26/50) and hierarchical transformer (Swin V2-L)—and observe
consistent gains, indicating that the mechanism is not tied to a particular backbone design.

We further report the evaluations on downstream tasks, including image classification, fine-grained
visual classification (FGVC), semantic segmentation, object detection, and instance segmentation.
Notably, tasks that hinge on subtle, part-level cues—e.g., FGVC—benefit the most: as a strong
localizer, D1 f £Noi se sharpens sensitivity to fine detail by suppressing attention sinks and shortening
effective attention distance, translating into consistent gains on fine-grained benchmarks (Wah et al.,
2011; Van Horn et al., 2015).

2 METHOD

2.1 BACKGROUND

Embedding-level noise injection in language modeling. In language modeling, embeddings
are often perturbed or masked to enhance generalization (Devlin, 2018; Miyato et al., 2017; Zhu
et al., 2020). Among various perturbation strategies, Gaussian random noise has been commonly
employed for this purpose (Hua et al., 2021; Nukrai et al., 2022; Jain et al., 2024). Specifically,
given token embeddings e_i € R?, noise is injected as &; = e; + €;, s.t. €; ~ N(0,02I). This
can be understood as encouraging invariance to small perturbations for continuous relaxation of
embedding-level augmentation. Our method is inspired by applying random perturbations directly
to tokens in the embedding space, rather than to the image input, thereby introducing an additional
dimension of augmentation.

Noise injection in diffusion models. Denoising Diffusion Models (DDM) (Ho et al., 2020; Song
et al., 2020; Nichol & Dhariwal, 2021; Rombach et al., 2022; Ramesh et al., 2021; Saharia et al.,

21t was inspired by diffusion-style noise injection, but without adopting their training framework.
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2022) are based on a forward and reverse process that iteratively adds and removes noise from data.
The forward diffusion process gradually corrupts data by adding Gaussian noise. Namely, the forward
process is a noise injection step, which is typically described by a Markov chain that adds noise
at each step t. The data at time step ¢, denoted as z; is obtained from the original data x( through
Ty = \/asxo + /1 — o€, where ay is a schedule that determines how much noise is added at each
step, €; is the Gaussian noise sampled from A/ (0, I), and x; is the noisy data at time step ¢. Without
explicitly employing the diffusion models, the noise injection principles in diffusion model training
offer insights into how noise can be injected more effectively.

Motivation. Grounded in both prior literature and the observations in Figure 1, our method is
driven by three key insights: (1) noise injection has been largely absent and underexplored in the
augmentation space; (2) injecting noise at the token level is likely more effective than at the input
level; and (3) such an approach can enhance localization ability. More details for the insights will be
presented subsequently.

2.2 INTRODUCING OUR DIFFNOISE

Design principle. The core design of DiffNoise is guided by the principle that (1) effective
regularization should preserve semantic structure while (2) encouraging the model to learn robust and
localized representations. We believe that among many options, the noise injection at the embedding
space could satisfy the principle.

Noise injection in the embedding space. To realize our design principle, we inject noise into the
embedding space rather than in the input space. Our insight is that input-level perturbations often
distort spatial alignment and low-level patterns, which are especially important for fine-grained or
structured tasks. In contrast, perturbations at the embedding level are more closely related to control
abstract representations, while preserving the essential semantic structure. This choice is supported
by recent findings in self-supervised learning and diffusion-based pre-training (Chen et al., 2024; Ho
et al., 2020; Choi et al., 2024a), which showcased that injecting noise at the feature level enhances
both generalization and localization.

Employing alpha-blending noise. To control the strength of injected noise while maintaining
semantic fidelity, we adopt an alpha-blending scheme inspired by diffusion training objectives. Rather
than directly adding noise, we blend it with the embedding space through a simple formulation:
T =/a; -+ /1T — ¢, where e ~ N(0,I) is sampled Gaussian noise and a; € (0, 1) controls
the noise intensity at training step ¢. This ensures that noise is introduced in a smooth and controlled
fashion, avoiding the abrupt corruption typically associated with additive noise. By progressively
scaling the input and noise, the model is encouraged to adapt to perturbations without compromising
the underlying feature structure.

Implementation. Algorithm 1 illustrates how Dif fNoise integrates into the standard fine-tuning
pipelines (Dosovitskiy et al., 2020; Touvron et al., 2021; He et al., 2022; Touvron et al., 2022; Heo
et al., 2025). Given an existing training setup using strong augmentations (denoted as R;), DiffNoise
requires only a single additional line—injecting noise into the embeddings after patch embedding
and positional encoding. This simplicity shows the modularity of our method: it acts as a lightweight,
plug-and-play augmentation component that operates in the feature space without altering the model
architecture or training procedure.

Algorithm 1 Fine-tuning ViTs with Di ffNoise

1: function ADDDIFFNOISE(x, t)

2 sS4 i, n+—\V1—a

3 e~ N(0,I) > same tensor shape as =
4 returns-xr + n-e¢

5: end function

6:

7: x < DataLoader(ImageNet, augmentation = R;)

8. x < PatchEmbed(z) + PosEmbed

9: & + AddDiffNoise(z,t) > single added line
10: = + Encoder(z)
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Figure 2: DiffNoise suppresses high-norm weights for broader attention. For each input image, the
baseline model trained with R, (middle) exhibits high-norm tokens (highlighted towards red) focused on
semantically irrelevant regions. In contrast, the DiffNoise-augmented model (right) distributes attention
more coherently across foreground, reducing isolated peaks and encouraging smoother token interactions.
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Figure 3: DiffNoise enjoys broader attention distance. We measure average attention distance across
layers for ViT-L. Baseline model trained with Ry shows narrowed late-layer patterns; DiffNoise acts as
an implicit localizer, coupling local cues with global context and expanding the attention range into a broader
distribution, enhancing feature sharing without architectural changes or extra supervision.

3 WHY SIMPLE EMBEDDING-LEVEL NOISE AUGMENTATION WORKS?

This section studies why such a simple noise augmentation could work effectively. We find that
DiffNoise (1) acts like a stronger localizer, (2) augments robustness, and (3) serves as a token-
aligned regularizer in the embedding space.

3.1 DIFFNOISE AS A STRONG LOCALIZER

Here, we study how DiffNoise behaves like an improved model with stronger localization ability
by examining attention weights.

Suppressing high-norms at attentions. Di f fNoise applies spatially localized, diffusion-style per-
turbations that suppress attention sinks—overly concentrated, high-norm activations on semantically
irrelevant regions. As shown in Fig. 2, the baseline model trained with R, exhibits sinky patterns with
spurious peaks, whereas Di f fNoise distributes attention more evenly across task-relevant regions,
increasing spatial coverage and reducing false saliency. We attribute this to implicit denoising:
localized noise is attenuated as depth increases, dampening noisy activations and enhancing local
feature encoding that aligns with object parts.

Broader attention distance. To probe representational behavior, we analyze average attention
distance across layers for ViT-L trained with and without Di ffNoise. As shown in Fig. 3, the
baseline model trained with R, tends to adopt narrowed attention patterns in later layers, limiting
interaction across distant tokens. In contrast, DiffNoise endows the model with a localizer,
expands the attention range over diverse layers: it enables attention to couple local cues with global
context. The result is a broader, more uniformly distributed attention range across layers—tokens
attend more widely over the spatial layout because reliable local features are available to be integrated.
This broader receptive behavior promotes stronger feature sharing across tokens and layers, without
any architectural changes or explicit supervision.
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Table 1: Improved robustness under distribution shifts. Di f fNoise improves out-of-distribution perfor-
mance across five robustness benchmarks, showing better generalization under domain shift.

Model ImageNetV2 ImageNetSketch ImageNetA ObjectNet ImageNetR
ViT-B 60.96 17.12 14.79 31.77 40.39
+DiffNoise 63.32 19.16 15.29 32.52 42.84
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Figure 4: Robustness test under 20 x amplification. Only Di f fNoise progressively suppresses structured
noise and converges to clean, class-consistent latents; conventional augmentations retain residual artifacts.
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Fine-grained gains from better localization. On FGVC benchmarks reported in Tab. 4,
DiffNoise delivers consistent improvements: CUB rises from 79.10 to 80.74, and NABirds from
77.87 to 79.52. These considerable gains align with Dif fNoise ’s localizer effect—suppressing
spurious sinks while reinforcing part-level evidence—thereby sharpening boundaries between visually
similar subcategories and enhancing fine-grained transfer without additional modules or losses.

3.2 DirfFNoiskE LERNS MORE ROBUST, GENERALIZED REPRESENTATIONS

We argue that injecting noise at a local neighborhood around each example (at embedding) promotes
generalization. This serves as vicinal training in embedding space, smoothing decision boundaries,
and discouraging brittle shortcuts. We explore this through experiments on ImageNet distribution
shifts and loss surfaces, and further reconstruct noisy images to examine how Di f fNoise enables
the model to learn to handle noise.

Improved robustness under distribution shifts. To assess robustness under distribution shifts, we
evaluate ViT-B (Dosovitskiy et al., 2020) fine-tuned with and without DiffNoise on five challeng-
ing ImageNet (Deng et al., 2009) variants: ImageNetV2 (Recht et al., 2019), ImageNetSketch (Wang
et al., 2019), ImageNet-A (Hendrycks et al., 2021b), ObjectNet (Barbu et al., 2019), and ImageNet-
R (Hendrycks et al., 2021a). As shown in Table 1, DiffNoise consistently improves performance
across all benchmarks, with gains of +0.75% to +2.45% absolute accuracy. These results indicate
that embedding-space noise serves as a complementary regularizer that enhances resilience to input
shifts and semantic perturbations, enhancing generalization to unseen domains.

Generalized representations via flatter minima. Figure 6 shows the
loss landscapes of ViT models trained with and without DiffNoise.
The baseline model converges to a sharp minimum with steep curvature,
indicating sensitivity to perturbations. In contrast, the Di f fNoi se-trained
model exhibits a flatter and wider basin, suggesting more stable optimization
and better generalization.

(a) Baseline

Stress tests with amplified augmentation. We further conduct two stress
tests by amplifying the augmentation strength beyond typical settings. First,
in Fig. 4 at 20 strength, only Di f £No1 se recovers clean, class-consistent
latents in deeper layers, whereas conventional augmentations leave resid-
ual artifacts. Second, directly reconstructing images from feature maps
in Fig. 5—under a 50 x noise setting—shows that Di f fNoise maintains
sufficient semantic fidelity to approximate the clean input. These findings
demonstrate that DiffNoise exhibits denoiser-like behavior and sup-

(b) w/ DiffNoise

Figure 6: Robustness via
flatter minima. We plot
the loss surfaces: base-
line + Ry (top) and with
DiffNoise (bottom).
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Figure 5: Reconstructions with DiffNoise-trianed models on 50 x noise- infected images. We highlight
the striking capability of Dif fNoise-trained models to process heavily corrupted inputs. Late-layer feature
inversions show Dif fNoise preserves sufficient semantic content to approximate the clean image, which
suggests the model has equipped improved noise-robustness.

port the view that DiffNoise maintains sufficient semantic fidelity to
approximate clean input.

3.3 EMBEDDING-SPACE NOISE AS REGULARIZER

As a complementary plug-in to standard augmentations, why did prior noise augmentations often
fail (see Appendices C and A), yet DiffNoise works? We argue that noise placement matters:
embedding-space (token-aligned) noise—unlike pixel-space noise that becomes anisotropic after
patch embedding—preserves isotropy and alignment, making the regularization effective.

Why inject at embedding space? Anisotropic vs. isotropic. The desired noising effect is to inject
perturbations that spread uniformly across all embedding dimensions (i.e., token dimensions) as
an isotropic perturbation. However, injecting noise at the pixel level yields biased perturbations.
Specifically, let z € R¥*XWXC and let the patch-embedding operator be (approximately) linear,
P REXWXC L RNXd (¢ ¢ a stride-p conv). Injecting pixel-level noise e ~N (0, %1 leads to

29 = Plx+¢€) = Px + fﬁ, ) (1)
embedding noise after patchify
so the perturbation at embedding-space is €,,x = Pe with covariance
Coveox] = o PPT. 2)
Thus, the covariance is no longer isotropic, resulting in biased perturbation that concentrates dis-
proportionately on certain directions or channels rather than being evenly distributed. Moreover,
pixel-space corruption disrupts spatial alignment before the stem layer (e.g., patchification or set

of convolutions), entangling noise across neighboring pixels inside each patch and degrading fine
structure that is critical for fine-grained data like FGVC datasets.

In contrast, injecting noise at embedding space preserves isotropy, magnitude, and alignment at the
level where the model actually computes:

zo = Pz + no, 1o ~ N (0,02 Ing). 3
For a Transformer block with residual pathways:
241 = 2+ filz), = oy = [+ Jp(2) m, 4)
—~ —
noise noise

so the skip connection provides a lossless route for embedding noise 7 to propagate (without attenu-
ation by 'P). With LayerNorm (LN) centered and scale-learned, the first-order effect of 1 remains
observable in the attention logits:
T
A = softmax <QL
Vd
thereby producing gradients that explicitly train the network to denoise while preserving token
boundaries and positional structure intact. Empirically, this yields (i) stronger early-layer diversity
(signal present at the level where computation occurs) and (ii) late-layer recovery via residual
aggregation—benefits that vanish when noise is injected in pixels and then suppressed by P.
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4 EXPERIMENT

This section performs comprehensive comparisons between baseline models without augmentation
and models trained with Di f fNoise. Our main analysis covers three major axes: (1) transformer
backbone variants (ViT and Swin) including vision-language models (CLIP); (2) self-supervised
learning (SSL) frameworks, and (3) extensions to CNNs (ResNet-26/50).

Ablation studies. Comprehensive ablations—covering noise injection level, noise type, injec-
tion layer, intensity, random vs. fixed schedules, and diffusion-inspired variants—are reported in
Appendices C, D, and E.

4.1 IMPLEMENTATION DETAILS

Architecture. We use Vision Transformers (ViT) (Dosovitskiy et al., 2021) for experiments. The
patch size follows the pre-trained architecture, where the ImageNet-21K (Deng et al., 2009) variants
typically use a patch size of 16 (e.g.,, ViT-B/16). We employ ImageNet-21K (Deng et al., 2009)
pre-trained ViTs, SSL-pre-trained ViTs, SwinV2 (Liu et al., 2021), and CLIP (Radford et al., 2021).

Training setup. We follow standard fine-tuning protocols from prior work (Dosovitskiy et al.,
2020; Touvron et al., 2021; He et al., 2022; Touvron et al., 2022; Heo et al., 2025; Liu et al.,
2021). Training is conducted using cosine learning rate scheduling (Loshchilov & Hutter, 2017)
with the AdamW optimizer (Loshchilov & Hutter, 2019). Regularization and data augmentation
include RandAug (Cubuk et al., 2020), RandErase (DeVries & Taylor, 2017; Zhong et al., 2020),
DropPath (Huang et al., 2016), Mixup (Zhang et al., 2017), CutMix (Yun et al., 2019), weight decay,
and other standard settings to both baseline and Di f fNoise-augmented models. Overall, our
ImageNet-1K (Deng et al., 2009) training is based on the Timm repository (Wightman, 2019). See
Appendix F for detailed experimental settings.

4.2 EVALUATION ON TRANSFORMER ARCHITECTURES

We first assess the impact of DiffNoise on standard vision transformer models (Dosovitskiy
et al., 2020). Experiments are conducted on Vanilla ViT architectures, including ViT-L, ViT-B, and
ViT-S, that are pre-trained on ImageNet-1K (Deng et al., 2009) and subsequently fine-tuned with and
without DiffNoise. Across all ViT architectures, we evaluate Dif fNoise in comparison to a
standard augmentation setup Ry, including CutMix (Yun et al., 2019), MixUp (Zhang et al., 2017),
DropPath (Huang et al., 2016), and RandAug (Cubuk et al., 2020), which are commonly used in
transformer training pipelines such as timm, as shown in Table 2.

On ViT-B, R, lifts Top-1 from 79.02% to 81.17%, while adding other augmentations (Hendrycks
et al., 2019; DeVries & Taylor, 2017) yields no further gains due to overlap along the same three
axes (Fig. 1). In contrast, D1 f fNoise adds a fourth, previously unexplored axis and raises accuracy
to 82.43%, expanding the effective regularization space.

On ViT-S, we observe a similar trend. The baseline achieves 77.79%, while R, lead to 78.85%. Incor-
porating Di f fNo1ise results in 79.42%, a relative improvement of +2.09%. For ViT-L, Di ffNoise
improves performance from the baseline of 82.24% to 85.35% when added to the standard augmenta-
tion setup. These results indicate that Di f fNoise complements standard augmentations. Unlike
existing methods, which fall into three primary categories in Fig. 1 (b), DiffNoise operates along a
distinct regularization axis.

On Swin V2-L (Liu et al., 2021), pre-trained with SimMIM (Xie et al., 2022) on ImageNet-1K (Deng
et al., 2009) and then fine-tuned, R} reaches 85.21%; adding DiffNoise nudges it to 85.30%
(+1.45%), consistent with Swin’s stronger built-in locality yet confirming Di ffNoise as a com-
plementary regularizer even for locality-aware backbones. On CLIP (Radford et al., 2021) ViT-B,
adding Dif fNoise lifts accuracy to 84.37% (+1.59% over baseline), indicating that Di ffNoise
transfers beyond vanilla ViTs and remains effective for multi-modal encoders trained with alignment
objectives.

Potential beyond Transformers: extension to CNNs. We also apply DiffNoise to convolutional
backbones (ResNet-50/26) on ImageNet and observe consistent gains in Tab. B.1, indicating that the
regularization effect is not exclusive to ViTs. See more in Appendix B.
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Table 2: ImageNet-1K (Deng et al., 2009)’s top-1 accuracy and relative improvement. DiffNoise
consistently outperforms standard augmentations by introducing orthogonal regularization in the embedding
space. We denote Ry, as the abbreviated recipe: Ry = CutMix + MixUp + DropPath + RandAug.

Model Augmentation/regularization Setup Top-1 Acc (%) Relative Gain (%p)
ViT-B + R (CutMix + MixUp + DropPath + RandAug) 81.17 +2.71
+ Ry + AugMix 81.16 +2.70
+ R4 + RandErase 81.14 +2.69
+ Ry +DiffNoise 82.25 +4.08
+ Ry + AugMix + RandErase 81.16 +2.71
+ Ry + AugMix + DiffNoise 82.43 +4.31
+ Ry + RandErase + Di ffNoise 82.38 +4.25
+ Rs + AugMix + RandErase + DiffNoise 82.51 +4.41
ViT-S Baseline 77.79 -
+ Ry 78.85 +1.36
+Rp + DiffNoise 79.42 +2.09
ViT-L Baseline 82.24 -
+ Ry 84.71 +3.00
+Rp +DiffNoise 85.35 +3.78
SwinV2 Baseline 84.08 -
+ Ry 85.21 +1.34
+Rp +DiffNoise 85.30 +1.45
CLIP Baseline 83.05 -
+ Ry 84.10 +1.26
+Rp + DiffNoise 84.37 +1.59
ViT-B Baseline 79.02 -
+ CutMix (Yun et al., 2019) 80.08 +1.34
+ MixUp (Zhang et al., 2017) 79.93 +1.15
+ DropPath (Huang et al., 2016) 79.65 +0.80
+ RandAug (Cubuk et al., 2020) 79.64 +0.79
+ AutoAug (Cubuk et al., 2019) 79.63 +0.77
+ AugMix (Hendrycks et al., 2019) 79.84 +1.04
+ RandErase (DeVries & Taylor, 2017) 79.83 +1.02
+DiffNoise 80.14 +1.41

Table 3: Top-1 accuracy on ImageNet-1K of fine-tuning self-supervised pre-trained models, with and without
DiffNoise. We leverage recent state-of-the-art pre-trained models.

SSL Framework Model Pre-training Method Top-1 Acc (%)
ViT-B MAE (He et al., 2022) + R, 82.92
+DiffNoise 83.17
Masked Image ViT-L MAE (He et al., 2022) + R, 84.42
Modeling +DiffNoise 84.61
ViT-B SimMIM (Xie et al., 2022) + Ry, 83.10
+DiffNoise 83.23
ViT-B DiffMAE (Wei et al., 2023) + R 82.18
+DiffNoise 82.50
Diffusion Model-based ViT-B MaskDiT (Zheng et al., 2023) + R, 82.89
Masked Image Modeling +DiffNoise 83.14
ViT-B DiffMIM (Wei et al., 2023) + Ry 83.31
+DiffNoise 83.52

4.3 EVALUATION WITH MODERN SELF-SUPERVISED LEARNING FRAMEWORKS

Self-supervised learning (SSL)-based pre-training (Xie et al., 2022; He et al., 2022) is now central in
vision, particularly for training large Vision Transformers effectively. As capacity grows and data
efficiency becomes a bottleneck, SSL exploits unlabeled data to learn transferable representations. In
practice, a method’s ability to integrate with—and improve—SSL pipelines has become a key test of
scalability and relevance.
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Table 4: Evaluation on downstream tasks. We evaluate our fine-tuned models with Di ffNoise to assess
improvements in generalization ability. Di ffNoise improves performance consistently across fine-grained
visual categorization, semantic segmentation, object detection, and instance segmentation.

Task CUB (Acc) NABirds (Acc) ADE20K (mIoU) COCO (APP*/AP™*k)
Baseline 79.10 77.87 43.12 46.17/40.21
+ DiffNoise 80.74 79.52 43.56 46.44 / 40.58

Moving beyond supervised pre-trained models in the previous section, we apply DiffNoise at
fine-tuning to SSL pre-trained ImageNet-1K checkpoints from MAE (ViT-B/L) (He et al., 2022),
SimMIM (Xie et al., 2022), and diffusion-based SSL (DiffMAE, MaskDiT, DiffMIM) (Wei et al.,
2023; Zheng et al., 2023; Choi et al., 2024b) to test our method’s generalization to SSL.

The results in Table 3 demonstrate that DiffNoise generalizes effectively to the modern SSL
frameworks. Across a variety of SSL-pre-trained models, incorporating Di f fNoise during fine-
tuning consistently improves performance over established augmentation baselines, even when
standard augmentations are already applied, indicating that Di f fNoise provides a complementary
form of regularization beyond existing methods.

This effect is pronounced in diffusion-based SSL, which has gained increasing prominence re-
cently. For instance, DiffNoise lifts DiffMAE (Wei et al., 2023) from 82.18% to 82.50% and
DifftMIM (Choi et al., 2024b) from 83.31% to 83.52%. These improvements, ranging from +0.25% to
+0.34%, are particularly notable given that they build on already strong SSL baselines. We attribute
these gains to reduced pretrain—finetune mismatch: Dif fNoise injects embedding-space noise and
implicitly encourages denoising, aligning fine-tuning with diffusion-style pre-training. Given the
ongoing shift toward diffusion-based pre-training in large vision models, Di f fNo1i se offers a timely
augmentation strategy that integrates with modern SSL methods and yields consistent complementary
gains.

4.4 EVALUATION ON DOWNSTREAM TASKS

We evaluate DiffNoise on a diverse set of downstream tasks, including fine-grained visual classifi-
cation (FGVC): CUB (Wah et al., 2011), NABirds (Van Horn et al., 2015)), semantic segmentation
(ADE20K (Zhou et al., 2017)), and object detection and instance segmentation (COCO (Lin et al.,
2014), as shown in Table 4. DiffNoise improves performance across all tasks, demonstrating its
generality beyond image classification.

Gains are strongest on FGVC datasets: +1.64% on CUB (Wah et al., 2011) and +1.65% on
NABirds (Van Horn et al., 2015), where subtle part cues (e.g., beak, feather texture) matter and
DiffNoise ’slocalization is especially helpful. In semantic segmentation (ADE20K (Zhou et al.,
2017)), where spatially coherent semantic understanding is crucial, mIoU rises from 43.12 to 43.56;
in object detection and instance segmentation (COCO (Lin et al., 2014)), AP** rises from 46.17
to 46.44 and AP™ rises from 40.21 to 40.58. These improvements suggest that embedding-level
perturbation strengthens discriminative features while preserving spatial structure, yielding consistent
gains across tasks.

5 CONCLUSION

We have presented Di f fNo1i se, revisiting noise augmentation particularly for input embeddings,
which complements the long-standing methods like Mixup, CutMix, RandAug, and Droppath,
despite prior challenges in effectively combining such augmentations with a novel augmentation.
Without modifying architectures or introducing additional objectives, it turned out that DiffNoise
naturally induces denoising through forward propagation, with more precise localization emerging
as a beneficial byproduct. Our analysis has further revealed that it flattens the loss landscape and
mitigates attention sinks. Extensive experiments show consistent improvements in performance. We
believe Dif fNoise offers a new, orthogonal axis to traditional augmentation strategies, enriching
long-standing fixed training recipes with minimal overhead.



Under review as a conference paper at ICLR 2026

Reproducibility statement. We conducted all experiments on ImageNet with extra publicly released
methods that were all reproducible. Code is available in the Supplementary Material to ensure
reproducibility.
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Appendix

A COMPARISON WITH PRIOR NOISE AUGMENTATIONS

Given the claim that noise-based augmentation enhances locality and thereby representation quality,
a natural question is whether prior noise augmentations in fact translate into improved recognition
performance. To evaluate this, Tab. A.1 compares several noise families under a matched-strength
protocol.

Table A.1: Comparison with prior noise augmentations. Pixel-space additive variants yield modest or negative
effects; pixel-level alpha blend helps but remains below DiffNoise. Placing noise in embedding space
(DiffNoise) preserves token alignment and delivers the strongest gains.

Noise Type  Gaussian  Uniform  Speckle Additive  a-blend (pixel-level) DiffNoise
Acc 77.30 78.84 76.53 76.38 80.17 82.25

The result shows that prior noise augmentations (Gaussian, Uniform, Speckle, Additive) provide
limited gains, while pixel-level a-blend is stronger but still lags behind D1 ffNoise. We attribute
this gap to where noise is applied. Pixel-space perturbations pass through patch embedding and
become anisotropic and misaligned at the token level, diversifying early features but impairing late
semantic recovery. a-blending stabilizes the signal and thus helps, yet it still inherits pre-tokenization
alignment loss. By contrast, Dif fNoise injects noise after tokenization, yielding token-aligned,
isotropic perturbations at the level where computation occurs. This preserves spatial structure,
explaining the highest Top-1 (82.25).

B EXTENSION TO CNNS: EVALUATION ON RESNET

While Di f fNoise is primarily evaluated on transformer-based architectures, we also assess its ap-
plicability to convolutional networks by applying it to ResNet-50 (He et al., 2016) and ResNet-26 (He
et al., 2016) on ImageNet (Deng et al., 2009) classification. As shown in Table B.1, DiffNoise im-
proves the top-1 accuracy from 79.86% to 80.04% and 73.20% to 73.33%, when added to a standard
ResNet-50 and ResNet-26 baseline. This confirms that the regularization effect of DiffNoise is
not exclusive to transformer models and can extend to CNNs.

Table B.1: Top-1 accuracy of ResNet (He et al., 2016) on ImageNet classification, with and without
DiffNoise. DiffNoise improves performance even on CNN architectures, demonstrating generality
beyond transformers.

Model Augmentation/regularization Setup  Top-1 Acc (%)
ResNet-50 (He et al., 2016)  Baseline 79.86
ResNet-50 (He et al., 2016) + DiffNoise 80.04
ResNet-26 (He et al., 2016)  Baseline 73.20
ResNet-26 (He et al., 2016) +DiffNoise 73.33

We interpret this improvement as further evidence of DiffNoise acting as a general-purpose
augmentation method. Unlike traditional augmentations tailored to input-level or region-level trans-
formations, DiffNoise perturbs intermediate features in the embedding space, which also benefits
CNN representations by promoting robustness in hidden activations. Nonetheless, the performance
gain observed in CNN:ss is relatively modest compared to the consistent improvements seen in trans-
formers, where attention-based models appear to benefit more from embedding-level regularization.
Thus, while Di f fNoise is broadly applicable, it is particularly effective in models lacking strong
inductive biases—such as ViTs (Dosovitskiy et al., 2020)—where denoising behavior and semantic
localization play a more critical role.

14



Under review as a conference paper at ICLR 2026

C ABLATION STUDIES

We conduct ablation studies to understand the design choices of DiffNoise, summarized in
Table C.1.

Table C.1: Ablation studies with DiffNoise. (a) noise injection level, (b) noise type, (c) noise injection layer,
and (d) noise intensity. All reported numbers are ImageNet-1K (Deng et al., 2009) Top-1 Accuracy (%).

(a) Noise injection level (b) Noise type (c) Noise injection layer (d) Noise intensity
Level ‘ Acc Type ‘ Acc Layer ‘ Acc Intensity (2) ‘ Acc
Baseline 79.02 Baseline 79.02 Baseline | 79.02 Baseline 79.02
Pixel-level 80.17 Additive 76.38 Layer 0 | 82.25 t=3 80.46
Embed-level | 82.25 a-blending | 82.25 Layer2 | 82.21 t=5 82.16

Layer4 | 81.84 t=10 82.25
Layer6 | 79.43 t=15 82.19
t =20 81.94

Noise injection level. When noise is injected at the pixel level, performance gains are marginal
(80.17%), consistent with prior findings in denoising diffusion models that pixel-level noise corrupts
fine-grained structure and is harder to recover. In contrast, embedding-space corruption achieves
significantly better results (82.25%).

Noise type. We also observe that using additive noise degrades performance (76.38%), even falling
below the baseline. This suggests that abrupt perturbations destroy semantic content, whereas
alpha-blending, as adopted in D1 f fNoise, integrates noise more smoothly.

Noise injection layer. When varying the injection layer, we find that applying noise closer to
the input (layer O or 2) yields better performance than deeper layers, indicating that early-stage
regularization is more beneficial.

Noise intensity. Regarding noise intensity, we observe that DiffNoise is robust to a wide
range of values, with stable performance as long as the noise level is not extremely low or high.
Together, these findings validate the two key design choices of Di £ fNoise—blending-based noise
injection and embedding-space corruption—as crucial for achieving effective and semantically
aligned regularization.

D ABLATION STUDY ON RANDOM VS. FIXED NOISE INTENSITY

Inspired by the noise scheduling in diffusion models (Wei et al., 2023; Zheng et al., 2023; Choi et al.,
2024b) where noise is injected at random timesteps, we investigate whether randomly varying the
noise intensity across training steps can improve model performance. In this setting, we compare
fixed noise injection at specific timesteps ¢t € 5,10, 15 with random sampling of ¢ from various
intervals.

As shown in Figure D.1, the best performance is obtained when the noise intensity is fixed at ¢ = 10,
achieving 82.25% top-1 accuracy. In contrast, randomly sampling ¢ from wider ranges such as
[0,15] or [0,10] leads to reduced accuracy. Even narrower random intervals (e.g., [10,15]) slightly
underperform compared to the fixed setting.

These results suggest that unlike generative diffusion models (Wei et al., 2023; Zheng et al., 2023;
Choi et al., 2024b) where random timestep sampling promotes diverse training signals, random
noise intensity in discriminative tasks such as classification may introduce excessive variability. This
variability appears to interfere with the model’s ability to form localized and stable representations.
Fixing the noise intensity at an optimal level encourages more consistent denoising behavior and
better spatial focus.
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Effect of Noise Intensity Range on Accuracy

82.3

3 Best{(Fixed t=10)
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Fixed Intensity
—e— not random (5)
81.8k —e— not random (10)
—e— not random (15)

0 2 1 6 8 10 12 14
Noise Intensity Range (t)
Figure D.1: Effect of fixed vs. random noise intensity. Injecting noise with a fixed intensity (particularly at
t = 10) outperforms random schedules. Unlike generative diffusion models (Wei et al., 2023; Zheng et al.,

2023; Choi et al., 2024b) where timestep sampling improves diversity, random noise intensities here degrade
localization and lead to less stable representations.

E ABLATION STUDY ON DIFFUSION-INSPIRED VARIANTS

To further explore how diffusion principles might inform augmentation design, we evaluate several
extensions of Di f fNoise that incorporate elements common in diffusion-based training objectives.
The results are summarized in Table E. 1.

We first experiment with adding an explicit denoising objective, where the model is trained to
reconstruct the clean (unperturbed) embeddings from their noisy counterparts. This setting mimics
the forward-reverse formulation in denoising diffusion models. Surprisingly, this explicit supervision
yields no performance gain over the original formulation, which relies entirely on implicit denoising.
This suggests that allowing the model to learn denoising behavior organically, without human-
specified supervision, leads to more effective regularization, revealing an unexpected advantage of
self-emergent behavior in deep networks.

Next, we investigate a time-embedding prediction variant. Inspired by the use of timestep conditioning
in generative diffusion models, we randomly vary the noise intensity and task the model with
predicting the noise level via an additional time-embedder head. This auxiliary prediction head is
trained alongside the main task using a scalar regression objective. However, this design consistently
underperforms, indicating that exposing the model to variable noise levels and forcing it to regress
explicit noise intensities can interfere with the main task learning.

Taken together, these results support the importance of simpler design: the original version of
DiffNoise, based solely on alpha-blended noise injection into the embedding space, remains
the most effective. It encourages implicit denoising without requiring auxiliary heads or explicit
supervision.

Table E.1: Ablation on diffusion-inspired variants. We evaluate additional designs motivated by a diffusion
model, including explicit de-noising and time-embedding prediction. The original formulation, a-blending noise
with embedding-level injection, achieves the best performance without any auxiliary objectives.

Method Top-1 Acc (%)
a-blending noise + embedding-level noising 82.25
a-blending noise + embedding-level noising + explicit de-noising 82.21
a-blending noise + embedding-level noising + time-embedding prediction 81.35
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F FINE-TUNING CONFIGURATIONS ACROSS ARCHITECTURES

We summarize the fine-tuning setups for all evaluated models in Tables E.2, E.3, E.4, and E.5. Each
table corresponds to a family of architectures: ViT (Dosovitskiy et al., 2020), CLIP (Radford et al.,
2021), self-supervised models (MAE (He et al., 2022), SimMIM (Xie et al., 2022)), diffusion-based
SSL methods (DiffMAE (Wei et al., 2023), MaskDiT (Zheng et al., 2023), DifftMIM (Choi et al.,
2024b)), and ResNet (He et al., 2016).

All models are fine-tuned on ImageNet-1K (Deng et al., 2009) under standardized training pipelines,
with consistent augmentation strategies—including Mixup (Zhang et al., 2017), CutMix (Yun et al.,
2019), DropPath (Huang et al., 2016), and RandAug (Cubuk et al., 2020)—to ensure fair compar-
isons. We vary warm-up epochs and layer decay based on model scale and training method, while
keeping optimizer and regularization consistent. These tables offer detailed reference points for the
reproducibility and comparability of the results presented in our experiments.

G RELATED WORK

Data Augmentation has been a cornerstone of deep learning in computer vision, primarily for
mitigating overfitting and improving model generalization. Early augmentation strategies included
simple geometric and photometric transformations such as flipping, cropping, rotation, and color
jittering, which proved highly effective in CNN-based models trained on limited data (Krizhevsky
etal., 2017). To go beyond heuristic transformations, more structured approaches were proposed, built
upon the milestone Dropout (Srivastava et al., 2014). Mixup (Zhang et al., 2017) introduced linear
interpolation between input-label pairs, effectively regularizing the decision boundary. CutMix (Yun
et al., 2019) improved upon this by pasting patches from one image onto another, preserving semantic
context while introducing strong local perturbations. In parallel, DropPath (Huang et al., 2016)
applied randomness to the model architecture itself during training, acting as implicit regularizers.

In recent years, policy-based augmentation methods have emerged. AutoAug (Cubuk et al., 2019) and
RandAug (Cubuk et al., 2020) learn or sample augmentation policies from data, yielding state-of-the-
art results on recognition benchmarks. AugMix (Hendrycks et al., 2019) proposed a compositional
and distributionally-robust augmentation scheme blending multiple augmentations while enforcing
consistency in predictions. These methods improved robustness and generalization, especially under
distribution shift. Despite these advances, many augmentation strategies operate within overlapping
regularization spaces, and combinations of strong augmentations often yield diminishing returns—a
saturation effect observed in recent studies (DeVries & Taylor, 2017; Zhang et al., 2022). This
motivates the search for augmentation techniques introducing orthogonal learning signals and operate
along previously untapped axes of regularization.

Toward Complementary Augmentation beyond Standard Triads. Mixup (Zhang et al., 2017),
CutMix (Yun et al., 2019), DropPath (Huang et al., 2016), and RandAug (Cubuk et al., 2020)
have become the de facto augmentation recipe across modern vision training pipelines. These
augmentations have been widely adopted as standard components in high-performance vision model
implementations, including community-maintained libraries such as timm (Wightman, 2019) and
Hugging Face (Wolf et al., 2020), often forming the default augmentation setup for transformer-based
architectures. Empirically, their combination yields strong performance across benchmarks.

However, despite their collective success, no augmentation method has yet been shown to complement
these in a synergistic manner. That is, additional augmentations often fail to introduce orthogonal
regularization signals, instead overlapping with existing methods and offering limited gains. This
observation motivates our development of Di ffNoise, a diffusion model-inspired augmentation
strategy designed to operate along an unexplored axis of regularization. DiffNoise fills this gap
by providing a noise-driven signal that integrates with existing setups.

H THE USE OF LLMS.

LLMs were used only for minor language improvements. They were not involved in the conception
of the research, experiments, analysis, interpretation, or drafting.
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Table E.2: Fine-tuning settings for ViT (Dosovitskiy et al., 2020) and CLIP (Radford et al., 2021) models.
ViT-{small, base, large} and CLIP are trained on ImageNet-1K (Deng et al., 2009) using AdamW with cosine
decay.

Setting ViT-S ViT-B ViT-L CLIP ViT-B
Optimizer AdamW AdamW AdamW AdamW
Base Learning Rate Se-4 Se-4 1.25e-3 le-3
Weight Decay 0.05 0.05 0.05 0.05
Layer Decay 0.65 0.65 0.9 0.6
Optimizer Momentum B1 = 0.9, 82 = 0.999 81 = 0.9, 52 = 0.999 81 = 0.9, 82 = 0.999 B1 = 0.9, B2 = 0.999
Learning Rate Schedule Cosine Decay Cosine Decay Cosine Decay Cosine Decay
Drop Path 0.1 0.1 0.1 0.0

Batch Size 2048 1024 1024 2048
Warmup Epoch 5 5 20 20
Training Epoch 100 50 100 100
RandAug RandAug(9, 0.5) RandAug(9, 0.5) RandAug(9, 0.5) RandAug(9, 0.5)
Mixup 0.8 0.8 0.8 0.8
Cutmix 1.0 1.0 1.0 1.0

Label Smoothing 0.1 0.1 0.1 0.1

Table E.3: Fine-tuning settings for self-supervised pre-trained models (MAE (He et al., 2022), SimMIM (Xie
et al., 2022)). Models are fine-tuned with consistent augmentation and optimization setups.

Setting MAE MAE SimMIM
Model Size base large base
Optimizer AdamW AdamW AdamW
Base Learning Rate 1.0e-3 1.0e-3 1.25¢e-3
Weight Decay 0.05 0.05 0.05
Layer Decay 0.65 0.75 0.9
Optimizer Momentum 81 = 0.9, 52 =0.999 ;1 =0.9,82 =0.999 B1 = 0.9, 52 = 0.999
Learning Rate Schedule Cosine Decay Cosine Decay Cosine Decay
Drop Path 0.1 0.2 0.1

Batch Size 2048 1024 1024
Warmup Epoch 5 5 20
Training Epoch 100 50 100
RandAug RandAug(9, 0.5) RandAug(9, 0.5) RandAug(9, 0.5)
Mixup 0.8 0.8 0.8
Cutmix 1.0 1.0 1.0

Label Smoothing 0.1 0.1 0.1
Random Erasing 0.25 0.25 0.25
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Table E.4: Fine-tuning settings for diffusion model-based masked image modeling methods (Diff MAE (Wei
et al., 2023), MaskDiT (Zheng et al., 2023), DiffMIM (Choi et al., 2024b)). All models adopt the same
augmentation pipeline and optimizer setup. Learning rates and warm-up epochs are scaled to stabilize fine-tuning

for high-capacity pre-training.

Setting DiffMAE MaskDiT DiffMIM
Model Size base base base
Optimizer AdamW AdamW AdamW
Base Learning Rate Se-4 Se-4 1.25e-3
Weight Decay 0.05 0.05 0.05
Layer Decay 0.65 0.65 0.65
Optimizer Momentum 81 = 0.9, 82 =0.999 (1 =0.9,8> =0.999 B; =0.9, 52 = 0.999
Learning Rate Schedule Cosine Decay Cosine Decay Cosine Decay
Drop Path 0.1 0.1 0.1

Batch Size 4096 4096 4096
Warmup Epoch 5 5 20
Training Epoch 100 100 100
RandAug RandAug(9, 0.5) RandAug(9, 0.5) RandAug(9, 0.5)
Mixup 0.8 0.8 0.8
Cutmix 1.0 1.0 1.0

Label Smoothing 0.1 0.1 0.1
Random Erasing 0.25 0.25 0.25

Table E.5: Fine-tuning settings for ResNet-26 (He et al., 2016) and ResNet-50 (He et al., 2016). Both models
are trained on ImageNet-1K using SGD with cosine decay and strong regularization. These settings are used to

evaluate the applicability of DiffNoise to CNN architectures.

Setting ResNet-26 ResNet-50
Optimizer SGD SGD
Base Learning Rate le-5 le-4 / 5e-4
Weight Decay 0.125 0.125
Optimizer Momentum / Betas ~ $1=0.6, 52=0.995  [3:=0.6, £2=0.995
Learning Rate Schedule Cosine Decay Cosine Decay
Drop Path 0.1 0.1
Dropout 0.3 0.3
Batch Size 1024 2048
Warmup Epochs 5 5
Training Epochs 100 100
RandAug RandAug(9, 0.5) -
Mixup 0.2 0.2
Cutmix 1.0 1.0
Label Smoothing 0.1 0.1
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