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Abstract

The recent, counter-intuitive discovery that deep generative models (DGMs) can
frequently assign a higher likelihood to outliers has implications for both outlier
detection applications as well as our overall understanding of generative modeling.
In this work, we present a possible explanation for this phenomenon, starting from
the observation that a model’s typical set and high-density region may not conincide.
From this vantage point we propose a novel outlier test, the empirical success of
which suggests that the failure of existing likelihood-based outlier tests does not
necessarily imply that the corresponding generative model is uncalibrated. We also
conduct additional experiments to help disentangle the impact of low-level texture
versus high-level semantics in differentiating outliers. In aggregate, these results
suggest that modifications to the standard evaluation practices and benchmarks
commonly applied in the literature are needed.

1 Introduction

Outlier detection is an important problem in machine learning and data science. While it is natural to
consider applying density estimates from expressive deep generative models (DGMs) to detect outliers,
recent work has shown that certain DGMs, such as variational autoencoders (VAEs [1]]) or flow-based
models [2], often assign similar or higher likelihood to natural images with significantly different
semantics than the inliers upon which the models were originally trained [3|4]. For example, a model
trained on CIFAR-10 may assign higher likelihood to SVHN images. This observation seemingly
points to the infeasibility of directly applying DGMs to outlier detection problems. Moreover, it also
casts doubt on the corresponding DGMs: One may justifiably ask whether these models are actually
well-calibrated to the true underlying inlier distribution, and whether they capture the high-level
semantics of real-world image data as opposed to merely learning low-level image statistics [3].
Building on these concerns, various diagnostics have been deployed to evaluate the calibration of
newly proposed DGMs [SH9], or applied when revisiting older modeling practices [10].

As we will review in Section [5] many contemporary attempts have been made to understand this
ostensibly paradoxical observation. Of particular interest is the argument from typicality. Samples
from a high-dimensional distribution will often fall on a typical set with high probability, but the
typical set itself does not necessarily have the highest probability density at any given point. Per this
line of reasoning, to determine if a test sample is an outlier, we should check if it falls on the typical
set of the inlier distribution rather than merely examining its likelihood under a given DGM. However,
previous efforts to utilize similar ideas for outlier detection have not been consistently successful
[3L[11]]. Thus it is unclear whether the failure of the likelihood tests studied in [3]] should be attributed
to the discrepancy between typical sets and high-density regions or instead, the miscalibration of
the corresponding DGMs. The situation is further complicated by the recent discovery that certain
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energy-based models (EBMs) do actually assign lower likelihoods to these outliers [5. 6], even though
we present experiments indicating that the probability density function (pdf) produced by these same
models at out-of-distribution (OOD) locations can be inaccurate.

In this work we will attempt to at least partially disambiguate these unresolved findings. To this end,
We first present an outlier test generalizing the idea of the typical set test. Our test is based on the
observation that applying the typicality notion requires us to construct an independent and identically
distributed (IID) sequence out of the inlier data, which may be too difficult given finite samples and
imperfect models. For this reason, we turn to constructing sequences satisfying weaker criteria than
IID, and utilizing existing tests from the time series literature to check for these properties. Under the
evaluation settings in previous efforts applying DGM:s to outlier detection, our test is found to work
well, suggesting that the previously-observed failures of outlier tests based on the DGM likelihood
should not be taken as unequivocal evidence of model miscalibration per se. We further support this
claim by demonstrating that even the pdf from a simple multivariate Gaussian model can mimic the
failure modes of DGMs.

Beyond these points, our experiments also reveal a non-trivial shortcoming of the existing outlier
detection benchmarks. Specifically, we demonstrate that under current setups, inlier and outlier
distributions can often be differentiated by a simple test using linear autocorrelation structures applied
in the original image space. This implies that contrary to prior belief, these benchmarks do not
necessarily evaluate the ability of DGMs to capture semantic information in the data, and thus
alternative experimental designs should be considered for this purpose. We present new benchmarks
that help to alleviate this problem.

The rest of the paper is organized as follows: In Section 2 we review the typicality argument and
present our new outlier dectection test. We then evaluate this test under a range of settings in Section
3. Next, Section 4 examines the difficulty of estimating pdfs at OOD locations. And finally, we
review related work in Section 5 and present concluding discussions in Section 6.

2 From Typicality to a White Noise Test
2.1 OOD Detection and the Typicality Argument

It is well-known that model likelihood can potentially be inappropriate for outlier detection, especially
in high dimensions. For example, suppose the inliers follow the d-dimensional standard Gaussian
distribution, py, (x) o< exp(—||z||3/2), and the test sample is the origin. By concentration inequalities,

with overwhelming probability an inlier sample will fall onto an annulus with radius v/d(1 & o(1)),
the typical set, and thus the test sample could conceivably be classified as outlier. Yet the (log) pdf of
the test sample is higher than most inlier samples by O(d). This indicates that the typical set does
not necessarily coincide with regions of high density, and that to detect outliers we should consider
checking if the input falls into the former set. We refer to such a test as the typicality test.

Remark 2.1. The relevance of the typicality argument can be demonstrated through the following
variant of the Gaussian example: suppose the inlier distribution is N'(11, %), where ¥ has a fast-
decaying eigenspectrum corresponding to latent factors of varying level of importance. E.g., in a
natural image distribution the leading eigenvectors may correspond to semantic variables, while
the trailing eigenvectors may correspond to textural or background information. In this case an
outlier distribution purely representing background texture may have a covariance spanned by the
least significant eigenspaces of X, with similar eigenvalues; and similar to the above example, its
samples usually have higher density when evaluated using piy,.

However, the typicality test is not directly applicable to general distributions, since it is difficult
to generalize the notion of typical set beyond simple cases such as component-wise independent
distributions, while maintaining a similar concentration propertyE] One appealing proposal that
generalizes this idea is to fit a deep latent variable model (LVM) on the inlier dataset using a

! [12] focuses on a similar scenario where the input can be decomposed into a foreground and a background
part. However, the typicality argument is more general, and corresponding tests do not require an explicit
decomposition.

2While several papers have referred to the typical set for general distributions (e.g. a natural image distribution)
which can be defined using the notion of weak typicality [13]], we are only aware of concentration results for
log-concave distributions [14]], or for stationary ergodic processes [13]]. Neither setting describes general
distributions encountered in many practical applications.



factorized prior, so that we can transform the inlier distribution back to the prior and invoke the
typicality test in the latent space. This idea has been explored in [3]], where the authors conclude that
it is not effective. One possible explanation is that for such a test to work, we must accurately identify
the LVM, which may be far more difficult than generating visually plausible samples, requiring a
significantly larger sample size and/or better models. Overall, the idea of typicality has not yet been
successfully applied to single-sample outlier detection for general inlier distributions.

2.2 A White Noise Test for Outlier Detection

As we focus on the high-dimensional case, it is natural to take a longitudinal view of data, and interpret
a d-dimensional random variable x as a sequence of d random variables. From this perspective, the
aforementioned LVM test essentially transforms x to another sequence 7T'(x), so that when x ~ pjy,
T(x) is IDP|Given a new sample z’, the test evaluates whether T'(z') is still IID by checking the

value of Y7, T;(z’)%. The statistical power of the test is supported by concentration properties.

Of course IID is a strong property characterizing the lack of any dependency structure in a sequence,
and transforming a long sequence back to IID may be an unreasonable objective. Thus it is natural to
consider alternative sequence mappings designed to achieve a weaker criteria, and then subsequently
test for that criteria. In the time series literature, there are two such weaker possibilities: the martingale
difference (MD) and white noise (WN). A sequence z is said to be a MD sequence if E(z¢|z<t) =0
for all ¢; x is said to be WN if for all s # ¢, Cov(z,zs) = 0, Var(zs) = 1. It is thus clear that for
sequences with zero mean and unit variance, MD is a weaker property than IID, and WN is weaker
than MD.

While IID sequences are automatically MD and WN, we can also construct WN or MD sequences
from inlier samples using residuals from autoregressive models per the following:

Claim 2.1. Let Ry(x) := x; — B, (v¢|z<:) and R(z) := Ry(z)/+/ Var,,, (Ri(z)); let Wi(x) :=
Ty — ZZ; arsxs, where the lower triangular matrix A = (ays) is the inverse of the Cholesky factor

of CoVyrp,, (). Assume Var,, (R;) > 0 for all t. Then when x ~ pi,, R(z), R(z) are both MD,
and R(x), W (z) are both WN.

The first claim above follows from definition. For the second, R is WN because it is MD and has unit
variance. Also, W is WN since Covy.p,, [Wi(x)] = I.

The conditional expectations in R can be estimated with deep autoregressive models. For convenience
we choose to estimate them with existing autoregressive DGMs in literature (e.g. PixelCNN). However,
even though we are fitting generative models, we only need to estimate the mean of the autoregressive
distributions {p(z|z<¢)} accurately, as opposed to estimating the entire probability density function.
For this reason, tests using R should be more robust against estimation errors than tests based on
model likelihood.

As testing for the MD property is difficult, we choose to test the weaker WN property. This can be
implemented using the classical Box-Pierce test statistics [[15]]

Qpp = d Y1, i, (1)

where f is the [-lag autocorrelation estimate of a test sequence (7} (x))%,. In practice, we can use
either W or R as the test sequence, which are both WN when constructed from inliers. When (77)
has zero mean and unit variance, we have p; = ﬁ Zf;f TTi+;. We consider a data point s
more likely to be outlier when Qpp (Ztest) is larger. Under the context of hypothesis testing where

a binary decision (whether x5t is an outlier) is needed, we can determine the threshold using the
distribution of )gp evaluated on inlier data.

In high dimensions, formally characterizing the power of a outlier test can be difficult; as illustrated
in Section[2.1} it is difficult to even find a proper definition of outlier that is simultaneously practical.
Nonetheless, the following remark provides some intuition on the power of our test, when the test
sequence derived from outliers has non-zero autocorrelations. This is a natural assumption for
image data, where the residual sequence from outlier data could contain more unexplained semantic

3Note that such a transformation is possible as long as pi, is absolutely continuous w.r.t. the Lebesgue
measure; it does not require x to represent truly temporal data.



information, which subsequently contributes to higher autocorrelation; see Appendix [A]for empirical
verification and further discussion on this matter.

Remark 2.2 (Connection with the concentration-of-measure phenomenon). The power of the Box-
Pierce test is supported by a concentration-of-measure phenomenon: When {Ty(x)} is IID Gaussianﬂ
Q pp will approximately follow a X% distribution [[I3]], and Qpp /L will concentrate around 1. On
the other hand, if the null hypothesis does not hold and there exists a non-zero p;, Qpp /L will be at
least dp? | L, which is much larger than 1 when d is large.

It should be noted, however, that our test benefits from the concentration phenomenon in a different
way comparing to the typicality test. As an example, consider the following outlier distribution, which
connects to the colored noise example in [[I6]]: for x ~ pooa, (T1(x),Ta(x)) follow the uniform
distribution on the circle centered at origin with radius /2, and Tj(z) = Tj_2(z) for j > 2. Then

1 Z?:l Tj2 (x) = 1, and thus the typicality test cannot detect such outliers. In contrast, our test will
always detect the lag-2 autocorrelation in T, and, as described above, reject the null hypothesis.

2.3 Implementation Details

Incorporating prior knowledge for image data: When applied to image data, the power of
the proposed test can be improved by incorporating prior knowledge about outlier distributions.
Specifically, as the test sequence T'(x) is obtained by stacking residuals of natural images, p; is
likely small for the lags [ that do not align with fixed offsets along the two spatial dimensions. As
the corresponding finite-sample estimates j; are noisy (approximately normal), they constitute a
source of independent noise that has a similar scale in both inlier and outlier data, and removing them
from (T) will increase the gap between the distributions of the test statistics computed from inlier
and outlier data, consequently improving the power of our test. For this reason, we modify (TJ) to
only include lags that correspond to vertical autocorrelations in images. When the data sequence is
obtained by stacking an image with channel-last layout (i.e., for 31 (;—1)4 )4 refers to the c-th
channel of the (i, j) pixel of a H x W RGB image), we will only include lags that are multiples of
3W. For empirical verifications and further discussion on this issue, see Appendix[A]

Testing on transformed data: Instead of fitting autoregressive models directly in the input space,
we may also fit them on some transformed domain, and use the resulting residual for the WN
test. Possible transformations include residuals from VAEs and lower-level latent variables from
hierarchical generative models (e.g. VQ-VAE)E] This can be particularly appealing for the test using
(W), as linear autoregressive models have limited capacity and cannot effectively remove nonlinear
dependencies from data, yet the lack of dependency seems important for the Box-Pierce test, as
suggested by Remark [2.2]

3 Evaluating the White Noise Test

In this section we evaluate the proposed test, with the goal of better understanding the previous
findings in [3]. We consider three implementations of our white noise test, which use different
sequences to compute the test statistics (T):

o the residual sequence R, estimated with autoregressive DGMs (denoted as AR-DGM);
o the residual sequence W from a linear AR model, directly fitted on the input space (Linear);

e the sequence W constructed from a linear model fitted on the space of VAE residuals
(VAE+linear).
Note that both R and W can be viewed as constructed from generative models: for the sequence W,
the corresponding model is a simple multivariate normal distribution. Therefore, we can always gain
insights from comparing our test to other tests based on the corresponding generative model.

3.1 Evaluation on Standard Image Datasets

We first evaluate our white noise test following the setup in [3]], where the outlier data comes from
standard image datasets, and can be different from inlier data in terms of both low-level details

* It is common to use the B-P test in the more general, non-IID case, so long as we are interested in alternative
hypotheses where autocorrelation structure exist. Also recall that {7} } are residuals from an autoregressive
model, so this condition is much weaker than requiring « to be IID.

>Note this is different from testing with the sequence R, which is constructed from autoregressive models.



(textures, etc) as well as high-level semantics. In Appendix [B] we present additional experiments
under a similar setup, in which we compare with more baselines.

Evaluation Setup: We use CIFAR-10, CelebA, and TinylmageNet images as inliers, and CIFAR-
10, CelebA and SVHN images as outliers. All colored images are resized to 32 x 32 and center
cropped when necessary. For deep autoregressive models, we choose PixelSNAIL [17]] when the
inlier dataset is TinyImageNet, and PixelCNN++ [18]] otherwise. We use the pretrained unconditional
models from the respective papers when possible; otherwise we train models using the setups from
the paperE] For the VAE-based tests, we use an architecture similar to [[19], and vary the latent
dimension 7 as it may have an influence on the likelihood-based outlier test. See Appendix [C.1]for
more details.

We compare our test (WN) with three baselines that have been suggested for generative-model-based
outlier detection: a single-sided likelihood test (LH), a two-sided likelihood test (LH-2S), and, for
the DGM-related tests, the likelihood-ratio test proposed in [20]] (LR). The LH test classifies samples
with lower likelihood as outliers. The LH-2S test classifies samples with model likelihood deviated
from the inlier median as outliers. It can be viewed as testing if the input falls into the weakly typical
set [13]£] while there is no concentration guarantee in the case of general inlier distributions, it is

natural to include such a baseline. The LR test is a competitive approach to single-sample OOD

detection; it conducts a single-sided test using the statistics log %ﬁ(f;), where pgeneric refers to

the distribution corresponding to some generic image compressor (e.g., PNG). Samples with a lower
value of this statistics is considered outlier. The test is based on the assumption that outlier samples
with a higher model likelihood may have inherently lower complexity, as measured by log pgeneric-
The test statistics, having the form of a Bayes factor, and can also be viewed that comparing two
competing hypotheses (Pmoder and Pyeneric) Without assuming either is true [22].

Table 1: AUROC values for the single-sample test, and average ranks within each group. Boldface
indicates best results; underline indicates notable failures (AUC < 0.5).

Inlier Dist. CIFAR-10 CelebA TinyImageNet Avg.
Outlier Dist. CelebA SVHN CIFAR-10 SVHN CIFAR-10 SVHN Rank

LH 088 016 0.82 0.15 0.28 005 367

LH2S 077 069 0.84 0.78 0.55 093 250

ARDGM 7y 086 086 0.99 1.00 0.39 056  2.00
WN 097 083 0.85 0.93 0.85 062 167

LH 064 009 0.88 0.26 0.28 004 333

VAE+Linear LH-2S 047 081 0.85 0.69 0.51 087  3.00
n. = 64 LR 039 090 0.98 0.99 0.64 091 183
WN 064 067 0.93 0.99 0.92 099 150

LH 076 004 0.81 0.09 0.19 001 333

VAE+Linear LH-2S 061  0.85 0.76 0.81 0.59 090 267
n.=512 LR 056 086 0.97 0.99 0.55 090 250
WN 061 088 0.88 1.00 0.94 099 133

LH 077 002 072 0.03 0.11 000 250

Linear  LH2S 069 076 0.70 0.80 0.64 081 217
WN 067 095 0.90 0.99 0.92 099 133

Results and Discussion: We compare the distribution of the test statistics on the inlier test data
and outlier datasets, and report the AUROC values. The results are shown in Table[I] where we
observe that our WN proposal outperforms all the others in terms of the average ranking across testing
conditions; see rightmost column. (We have deferred to Appendix [C.I] the results of likelihood-based
tests based on multivariate normal models fitted on VAE residuals, as those tests did not work well.)

Drilling further into details, we can see that our WN test generally outperforms the likelihood-based
tests, and the single-side likelihood test exhibits pathological behaviors. This happens across all
choices of generative models, including the simple Gaussian model corresponding to the linear test.
Therefore, it is reasonable to doubt whether the previously observed failures of likelihood-based tests

%This choice is made to maximize model capacity within the limit of computational resources we have.
"It can also be viewed as the single-sample version of [21].



should be attributed to some undesirable properties of DGMs. Alternatively, those results may be
better explained by the counter-intuitive properties of high-dimensional probability, as in Section [2.1]
Furthermore, the fact that we can always construct a principled test statistics out of generative models
suggests that these models have in some sense calibrated behavior on such outliers. In other words,
under these settings the models do know what they don’t know. Our result is to be compared with
the recent discovery that EBMs assign lower likelihood to outliers under this setting [5} 6], which
naturally leads to the question of whether a calibrated DGM should always have a similar behavior.
However, our findings are not necessarily inconsistent with theirs, as we explain in Section 4]

Comparison between our test and the LR test is more nuanced, as the latter is also competitive in
many cases. Still, the LR test consistently produces a slightly higher average rank, and also has two
cases of notable failures.

Finally, note that the simple linear generative model, especially when combined with the WN test,
works well in most cases. This challenges the intuition that the inflexibility of a linear model would
hamper outlier-detection performance, and has two-fold implications. First, these results indicate
that the linear white-noise test could be useful in practice, as it is easy to implement, and does not
have unexpected failures like the likelihood tests. Hence, it could be applied as a cheap, first test in a
detection pipeline. And secondly, the success of the linear test shows that the current benchmarks
leave a lot to be desired, since it implies that the differences between the inlier and outlier distributions
being exploited for outlier detection are mostly low-level. Consequently, it remains unclear if these
benchmarks are adequate for showcasing tests that are sensitive to semantic differences. Such a
semantics-oriented evaluation is arguably more important for downstream applications. Moreover, it
better reflects the ability of DGMs to learn high-level semantics from data, as was the intent of [3]].
To address this issue, in the following subsection we conduct additional experiments that are more
focused on semantics.

3.2 Semantics-Oriented Evaluation

In this section we evaluate the OOD tests in scenarios where the inlier and outlier distributions have
different semantics, but the influence from background or textual differences is minimized. We
consider two setups:

e CIFAR, in which we use CIFAR-10 images as inliers and a subset of CIFAR-100 as outliers. In
this setup the inlier and outlier distributions have significantly different semantics, as we have
removed from CIFAR-100 all classes that overlap with CIFAR-10, namely, non-insect creatures
and vehicles. Furthermore, this setup also reduces textual differences contributed by inconsistent
data collection processes; note that both CIFAR datasets have been created from the 80 Million
Tiny Images dataset [23]].

o Synthetic, in which we further reduce the background and textual differences between image
classes by using synthesized images from BigGAN [24]]. The outliers are class-conditional samples
corresponding to two semantically different ImageNet classes; the inlier distribution is obtained by
interpolating between these two classes using the GAN model. In this case, the semantic difference
between inlier and outlier distributions is smaller, although in most cases it is still noticeable. We
construct three benchmarks under this setting. Detailed settings and sample images are postponed

to Appendix [C.2}

Table 2: Results for the semantics-oriented experiments. Boldface indicates the best result.

CIFAR, AUROCYT Synthetic, Avg. Rank|
LH LH-2S LR WN LH LH-2S LR WN
AR-DGM 0.49 0.57 0.61 0.58 2 3.5 2.5 2
Linear 0.56 0.59 - 0.60 2.33 1.67 - 2
VAE+Linear, 64  0.51 0.55 0.64 0.84 1.67 3.33 2.67 233
VAE+Linear, 512  0.59 0.58 0.73  0.80 2 3.67 2 2.33

The results are summarized in Table [2] with full results for the synthetic experiments deferred to
Appendix In the CIFAR setup, none of the tests that are based on the AR DGM or the vanilla
Gaussian model works well, which is consistent with the common belief that these models cannot
capture the high-level semantics. When using VAEs, the WN test works well. This experiment
reaffirms that DGMs such as VAEs are able to distinguish between distributions with significantly
different semantics, even though they may assign similar likelihood to samples from both distributions.



However, as we move to the synthetic setup where the semantic difference is smaller but still evident,
the outcome becomes quite different. The LH test performs much better, and our test no longer
consistently outperforms the others. It is also interesting to note that the LR test does not work well
on the second synthetic setup (see Appendix [C.2), and completely fails to distinguish between inliers
and outliers when using an autoregressive DGM. To understand this failure, we plot the distributions
of model likelihood and test statistics in Appendix [C.2] We can see that the outlier distribution has a
slightly higher complexity as measured the generic image compressor, contrary to the assumption in
[20] that the lower input complexity of outliers causes the failure of likelihood-based OOD test.

The difference in outcome between these experiments and Section demonstrates the difficulty
in developing a universally effective OOD test. It is thus possible that in the purely unsupervised
setting we have investigated, OOD tests are best developed on a problem-dependent basis. Compared
with Section[3.1] we can also see that the previous evaluation setups do not adequately evaluate the
ability of each test to measure semantic differences. For this purpose, our approach may be more
appropriateﬂ

4 On the Difficulty of Density Estimation in OOD Regions

While DGMs such as GANs, VAEs, autoregressive models, and flow-based models tend to assign
higher likelihoods to certain OOD images, high-capacity energy-based models have been shown at
times to have the opposite behavior [} 16]]. This observation naturally leads to the question of whether
calibrated generative models trained on natural image datasets should always assign lower likelihood
to such outliers. In this section, we argue that such a question is unlikely to have a clear-cut answer,
by showing that given the relatively small sample size of typical image datasets compared to the high
dimensionality of data, density estimation on OOD regions is intrinsically difficult, and even models
such as EBMs can make mistakes.

Specifically, we train a Pixel CNN++ and the high-capacity EBM in [5] on samples generated by a
VAE. Since by design we have access to (lower bounds of) the true log probability density of the
inlier distribution, we can check if a test model’s density estimation in OOD regions is correct, simply
by comparing it to the ground truth.

Our ground truth VAE has the same architecture as in Section [3| with n, = 64; training is conducted
on CIFAR-10. The DGMs to be tested are trained using 80000 samples from the VAE, under the
same setup as in the original papers. See Appendix [C.3|for details. We generate outliers by setting
half of the latent code in the VAE to zero. Such outliers are likely to have a higher density under the
ground truth model, per the reasoning from Section [2.1] Therefore, a DGM that correctly estimates
the ground-truth data pdf should also assign higher likelihood to them.
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Figure 1: Distribution of log likelihood approximations from the ground-truth VAE (left), EBM
(center), and Pixel CNN++ (right). The intersection area of the two histograms is reported at the top.

The distributions of density estimates are shown in Figure[T} We can see that while both the EBM
and PixelCNN++ models being tested assign a higher relative likelihood to the outliers (note that the
absolute likelihoods between different models are not comparable because of different scaling and
offset factors), the inlier and outlier density estimates from the EBM overlap significantly (middle
plot) as compared to analogous overlap within the ground-truth VAE (left plot). Such behavior
may be attributed to the inductive bias of the EBM, which has a stronger influence than data on the
estimated pdf in OOD regions given the relatively small sample size.

8 To balance the discussion, note that in some cases it may be desirable to have a benchmark outlier dataset
with low-level differences, as such differences could be detrimental to down-stream applications. An example
is the low-level differences of radiographs taken from different medical sites, which can influence diagnostics
models [25]. Detection of such differences can be of practical interest in this context.



While we conjecture that VAEs or deep AR models can exhibit similar failures due to a different type
of inductive bias, we cannot reverse the above experiment and train these models on EBM samples,
as sampling from EBMs rely on ad hoc processes such as premature termination of MCMC chains
(5116} 26]]. Nonetheless, our experiment has demonstrated the intrinsic difficulty of density estimation
in OOD regions under the finite-sample, high-dimensional setting. For this reason, it is difficult to
draw a definitive conclusion as to whether real-world outliers should be assigned higher likelihoods,
and alternative explanations, such as the typicality argument in Section 2} deserve more attention.
The hardness of density estimation in OOD regions also suggests that OOD tests based on DGM
likelihood should be used with caution, as is also suggested by the results in Section 3.1}

5 Related Work

Several works have explored the use of DGMs in outlier detection under settings similar to [3]], some
of which also provided possible explanations to the findings in [3]. For example, [[11] presents a
heuristic test using the Watanebe-Akaike Information Criterion; however, the efficacy of this test
remains poorly understood. As another alternative, [[12] proposes to compute the likelihood ratio
between the inlier model and a background model, based on the intuition that background can be a
confounding factor in the likelihood test. In Appendix [B] we present evaluations for the two tests,
showing that they do not always work across all settings. In Section [3] we have introduced the
work of [20]], and demonstrated that its assumption does not always hold. In summary then, to date
there has not been a comprehensive explanation of the peculiar behavior of generative models on
semantically different outliers, although previous works can be illuminating and practically useful in
certain scenarios.

For the general problem of high-dimensional outlier detection, methods have also been developed
under different settings. For example, [21] proposes a typicality test assuming input contains a batch
of IID samples, while [4]] assumes a few outlier samples are available before testing. There is also
work on outlier detection in supervised learning tasks, where auxiliary label information is available;
see, e.g. [27H33].

Finally, it is worth mentioning the formulation of atypicality [16], as motivated by the possible
mismatch between the typical set and the high-density regions. The atypicality test considers a test
sequence to be OOD when there exists an alternative model leading to a smaller description length
[34]. Our test shares a similar spirit in the use of autocorrelation estimation, which can be viewed as
fitting a linear alternative model. However, our test works on the residual sequence from a flexible
generative model, which benefits from information in the inlier distribution; in contrast, they opt to
estimate p(x¢|x<¢) directly on a test point . This becomes problematic when x cannot be viewed as
a stationary process, and prevents the use of flexible models such as DGMs.

6 Discussion

The recent discovery that DGMs may assign higher likelihood to natural image outliers casts into
doubt the calibration of such models. In this work, we present a possible explanation based on an
OOD test that generalizes the notion of typicality. In evaluations we have found that our test is
effective under the previously used benchmarks, and that such peculiar behaviors of model likelihood
are not restricted to DGMs. We have also demonstrated that certain DGMs cannot accurately estimate
pdfs at OOD locations, even if at times they may correctly differentiate outliers. These findings
suggest that it may be premature to judge the merits of a model by its (in)ability to assign lower
likelihood to outliers.

Further investigation of the behavior of DGMs on outliers will undoubtedly continue to provide
useful insights. However, our analyses suggest a change of practice in such investigations, such
as considering alternatives to simply the model likelihood as our proposed test has exemplified.
Likewise, the observation that a simple linear test performs well under current evaluation settings also
suggests that care should be taken in the design and diversity of benchmark datasets, e.g., inclusion
of at least some cases where low-level textures cannot be exclusively relied on.

And finally, from the perspective of unsupervised outlier detection, our experiments also revealed the
intrinsic difficulty in designing universally effective tests. It is thus possible that future OOD tests are
best developed on a problem-dependent basis, with prior knowledge of potential outlier distributions
taken into account. [12] provides an example of such practice.
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Appendix

A On the Assumptions and Efficacy of the White Noise Test

In this section we provide visualizations to better understand the statistical power of our test, and to
verify the claims in Section[2.3]

We first plot samples of the residual sequence R in Figure Iﬂﬂ under varying choices of inlier and
outlier distributions. We can see that R constructed from outlier images generally include a higher
proportion of unexplained semantic information: comparing the CelebA residual in Fig[2{a) (second
column) where the model is trained on CIFAR-10, to Fingkb) (first column) where CelebA is inlier,
we can see that the facial structure in CelebA residual is more evident when the model is trained
on CIFAR-10. Similarly, comparing the CIFAR-10 residual from both models, we can see that the
structure of the vehicle (e.g. front window and car frame) is more evident when the model is trained
on CelebA. As the residual sequences constructed from outliers tend to have more natural image-like
structures, they will also have stronger spatial autocorrelations, compared with residuals from inlier
samples that should in principle be white noise.

Note that while the residual sequences constructed from inliers also contain unexplained semantic
information, this is due to estimation error of the deep AR model, and should not happen should we
have access to the ground truth model, as we have shown in Section@ Moreover, the estimation
error should have a small impact on the efficacy of the white noise test, as it is very easy to learn the
correct linear autocorrelation structure of the inlier distribution, and thus the deviation of R from WN
is usually small, as we show in Figure [3|right.

Inlier CelebA SVHN Inlier

(a) Inlier: CIFAR-10 (b) Inlier: CelebA

Figure 2: Samples of normalized residual R on different datasets, and the corresponding input images.
The left 3 columns are generated from a Pixel CNN++ trained on CIFAR-10; the right 3 columns
corresponds to CelebA.

We now turn to the verification of our prior belief about the autocorrelation structure in T'(Ztest )
when 54 comes from the outlier distribution. Specifically, we plot the average ACFs on inlier and
outlier data in Figure 3] We can see that the ACF estimates on outlier residuals peaks at lags that
are multiples of 96, which corresponds to the vertical spatial autocorrelations in 32 x 32 X 3 images.
Moreover, on inlier and outlier distributions, the ACF estimates at other lags have approximately
equal variances. When aggregated, these estimates will constitute a noticeable source of noise which
reduces the gap between the distributions of inlier and outlier test statistics, and thus excluding them
from the statistics will improve the power of the WN test.

Finally, we remark that it is also possible use spatial correlations directly in the construction of test
statistics. However, our main focus in this work is to understand previous findings in generative
outlier detection (instead of improving the state-of-the-art of OOD tests), and our choice to include
only the vertical spatial autocorrelations is good enough for this purpose.

° With a slight abuse of notation, we use R to refer to both the MD sequence constructed from true condi-
tional expectation E,,  (z¢|z<:), and the sequence constructed with DGM-based estimation to the conditional
expectation.
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Figure 3: Averaged ACF estimates and their standard deviations (over sample images) on Pixel CNN++
residuals. Left: residual generated from outlier (SVHN); right: from inlier (CIFAR-10) test set.
Shaded area indicates the standard deviation of p; where the randomness is from the input data .
Gray dashed line indicates the standard deviation of p; under the null hypothesis of IID residuals.

B More Experiments on Standard Image Datasets

In this section we conduct additional experiments, and evaluate a variety of generative outlier detection
methods under a common setting. As we will see, while several tests are in general more competitive
than others, no single test achieves the best performance across all settings. This experiment
strengthens our argument in the main text that unsupervised OOD tests should be developed on a
problem-dependent basis.

Evaluation Setup: We use CIFAR-10 as inlier data. For outliers we consider two setups. The
first setup is taken from [20]], and consists of 9 generic image datasets and 2 synthetic datasets,
const and random; see Appendix A in [20] for details. The second setup controls for low-level
differences by using the CIFAR-100 subset constructed in Section [3.2] The tests to be evaluated
include those considered in Section as well as the WAIC test [[11]] and the background likelihood
ratio (BLR) test [12]. We base these tests on two DGMs: the VAE-512 model used in Section 3.1} and
a smaller-capacity PixelCNN++ model as in [IZJEYI For the BLR test, a noise level of the background
model needs to be determined. Following the recommendations of the authors, we search for the
optimal parameter in the range of {0.1,0.2,0.3} using the grayscaled CIFAR-10 dataset as outlier.
We found the optimal noise level to be 0.1, which is consistent with [12].

Results: Results are shown in Table 3}d} When using VAEs, neither of the newly added baselines
are very competitive, suggesting that these methods are more prone to model misspecification.
Notably, the WAIC test does not work with SVHN as outlier. This is also observed in [[12} 21] using
different generative models (autoregressive and flow-based models, respectively). For this reason we
drop it in the PixelCNN++ experiment.

When we switch to PixelCNN++, the BLR test performs much better under the setting of [20]].
However, in either case it does not work well with the subset-of-CIFAR-100 dataset, despite the
dataset’s clear semantic difference from the inlier dataset. Such results are not surprising since the
difference in background or low-level details is much smaller for CIFAR-100 compared with the
other datasets, as we have discussed in Section Again, the difference in outcome between the
two different settings demonstrates the difficulty of constructing universally effective OOD tests in
the unsupervised setup.

C Experiment Details and Additional Results

C.1 Details for Section[3.1]

Experiment Setup: For the AR-DGM experiments, we use the pretrained unconditional models
from official repositories for CIFAR-10 and TinyImageNet. For CelebA we train a PixelCNN++
model using the authors’ setup for unconditional CIFAR-10 generation. Both PixelCNN++ and

19Using the standard hyperparameters in [18] results in the BLR test rejecting inlier test data as outlier with
high confidence (AUROC> 0.9). As such a failure mode can be detected without access to outlier samples, we
modify the model hyperparameters to follow [[12] and train for 20 epochs. The BPD on inlier test set is 3.15.
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Table 3: Results for the Experiment in Appendix |B} using VAE. Notable failures (with AUC< 0.5)
are underlined.

LH LH-2S LR[20] WAIC[iI] BLR[I2Z] WN

celeba 0.76 0.61 0.57 0.64 0.22 0.62
svhn 0.04 0.85 0.86 0.14 0.96 0.88
imagenet  0.90 0.88 0.85 0.84 0.08 0.91
facescrub  0.65 0.47 0.52 0.55 0.33 0.60
mnist 0.28 042 1.00 0.68 0.81 0.83
fashion 045 036 1.00 0.64 0.61 0.83
omniglot  0.53 0.46 1.00 0.81 0.57 0.85
trafficsign ~ 0.44 0.71 0.82 041 0.55 0.80
random 1.00 1.00 1.00 1.00 0.00 0.96
const 0.16 0.79 1.00 0.62 0.84 1.00
avg. rank 3.8 4.1 22 3.7 4.3 22
cifar100’ 0.58 0.58 0.73 0.58 0.40 0.80
(inlier test)  0.45 0.47 0.43 0.63 0.44 0.49

Table 4: Results for the Experiment in Appendix B} using PixelCNN++. Notable failures (with
AUC< 0.5) are underlined.

LH LH-2S LRJ[20] BLR[12] WN

imagenet  0.86 0.82 0.88 0.92 0.84
svhn 0.11 0.79 0.80 0.79 0.86
celeba32 0.81 0.64 0.75 0.89 0.97
mnist 0.00 1.00 1.00 0.91 0.98
fashion 0.00 1.00 0.97 0.82 0.96
omniglot  0.00 1.00 1.00 0.98 0.93
facescrub  0.80 0.69 0.82 0.93 0.82
trafficsign ~ 0.55 0.59 0.90 0.90 0.77
random 1.00 1.00 1.00 1.00 1.00
const 0.09 0.87 1.00 0.04 1.00
avg.rank  4.44 322 1.89 2.78 2.56
cifar100’ 0.50 0.57 0.63 0.45 0.58
(inlier test)  0.51 0.50 0.51 0.52 0.51

PixelSNAIL use the discretized mixture-of-logistics (DMOL) likelihood parameteriation. To calculate
its expectation, we first calculate the expectation of the continuous mixture of logistics distribution,
and then clip the result to the range of [0, 1]. This is needed because the definition of the DMOL
likelihood include a similar truncation [18]: extra probability mass for the interval (1, +o0) (or
(—00,0)) are assigned to the discretization bin [1 — 1/256, 1] (or [0, 1/256], respectively), so that the
distribution is always supported on [0, 1].

For the VAE experiments, we use the discretized logistics likelihood as the observation model. The
network architecture is adapted from [19]]; we vary the capacity of the model by increasing the
number of filters in convolutional layers by k times, where k& may be in {1,2,4, 8}. We train for
at most 8 x 10° iterations using a learning rate of 10—, and perform early stopping based on the
validation ELBO. We choose k to maximize validation ELBO. This leads to & = 1 for CIFAR-10, 4
for CelebA and 8 for TinylmageNet. This step is needed, because when k is further increased, the
reconstruction error will start to have different distributions between training and held-out set. Such
a difference would be undesirable for all tests, as they will start to find false differences between
the inlier training set and the test set. Note that this difference is not due to overfitting, as we have
performed early stopping based on validation ELBO; instead, it is simply due to the fact that the
model is exposed to training samples and not validation samples, and the gap appears very early in
training. We use ELBO to approximate model likelihood in likelihood-related tests. The discrepancy
between ELBO and true model likelihood is likely to have little impact on test performance, since we
have also experimented with IWAE;oo which led to very similar results.
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We compare the distributions of the test statistics evaluated on the inlier test set and outlier test set, and
report the AUROC value. We verified that the four tests used in this section do not falsely distinguish
between inlier training samples and test samples: the AUROC value for such a comparison is always
in the range of (0.42,0.53). For outlier datasets with more than 50000 test samples, we sub-sample
50000 images for evaluation. Using the formula in [35]], we can thus show that the maximum possible
95% confidence interval for the AUROC values is £0.011. For a description of the four datasets used
in this section, please refer to, e.g., Table 3 in [20].

Choice of L and Sensitivity: For our test, we use L = 1200 when computing the Box-Pierce
statistics (I). This is because while in principle we should include all lags that are known a priori to
be informative, in practice we only have d — [ samples to estimate p;, so the most distant lags can
be difficult to estimate. Nonetheless, the impact of L on the test outcome is relatively small: as is
shown in Figure 4] using different L does not lead to qualitatively different outcome. We also note
that our purpose in the experiments is not to build new state-of-the-art in OOD detection, but is to use
the proposed test to validate our explanation to previous findings. Still, if it is desirable to further
improve the performance of the test, we can consider tuning L on “validation outlier datasets” that is
known a priori to be similar to the outliers that will be encountered in practice, as is done in e.g. [12].

CelebA TinylmageNet SVHN
0.90
0.975 A
0.89 4 0.86 A
|9
0.970 A
% 0.88 |
Ed _ 0.84
0.965 0.87
0.960 1 T T T 0.86 T T T 0.82 - T T T
1000 1500 2000 1000 1500 2000 1000 1500 2000
L L L

Figure 4: Sensitivity to the maximum number of lags L of the proposed WN test using AR-DGM.
Inlier is CIFAR-10.

Results for the Normal Likelihood Test on VAE Residuals: In Table[5|we present results for the
likelihood tests using a multivariate normal model fitted on VAE residual, denoted with a prefix of
“LIN”. We also consider both single-side and two-side tests. Overall the performance is similar to
DGM likelihood, and the single-side likelihood test still manifests catastrophic failures.

Table 5: Full results for the VAE-related experiment in Section Iﬁ
Inlier Dist. CIFAR-10 CelebA TinyImageNet

Outlier Dist. CelebA SVHN CIFAR-10 SVHN CIFAR-10 SVHN Rank
DGM-LH 0.64 0.09 0.88 0.26 0.28 0.04 450
DGM-LH-2S  0.47 0.81 0.85 0.69 0.51 087  3.67

VAE.64 LN-LH 0.98 0.10 0.72 0.09 0.08 0.00  4.83
LN-LH2S 0.98 0.69 0.67 0.74 0.68 080  3.17

LR 0.39 0.90 0.98 0.99 0.64 091 233

WN 0.64 0.67 0.93 0.99 0.92 099  2.17

DGM-LH 0.76 0.04 0.81 0.09 0.19 0.01 450
DGM-LH-2S  0.61 0.85 0.76 0.81 0.58 090  3.17

VAE.S12 LN-LH 0.95 0.07 0.68 0.05 0.10 0.00  4.83
LN-LH2S 0.95 0.72 0.65 0.79 0.64 079  3.67

LR 0.56 0.86 0.97 0.99 0.55 090  3.00

WN 0.61 0.88 0.88 1.00 0.94 099  1.83

C.2 Details for Section[3.2]
The CIFAR Experiment: We use the trained models from Section 3.1} We remove from CIFAR-

100 the superclasses 1,2,9,12-17,19,20. For reference, the class names of CIFAR-10 and CIFAR-100
can be found inhttps://www.cs.toronto.edu/ kriz/cifar.htmll
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The Synthetic Experiments: We use a pretrained BigGAN model on ImageNet 128 x 128E]
and down-sample the generated images to 32 x 32. To generate the outliers, recall the BigGAN
generator takes as input a noise vector z € R*?® and the one-hot class encoding vector ¢ € R0,
Therefore, we interpolate between two classes ¢ and j by setting ¢, = 0.5 - 1x¢(4,5;- There are
two tunable parameters in our generation process: the truncation parameter ¢ that determines the
truncated normal prior, and a crop parameter 7. Before down-sampling the generated samples, we
apply center-cropping to retain a proportion of (1 — 27)? pixels, to reduce the amount of details lost
in the down-sampling process. The classes and generation parameters used are listed in Table 6} they
are hand-picked to ensure the background is similar in inlier and outlier classes. In each setup we
generate 200000 samples and use 80% for training.

The VAEs are trained using the same setting as in Section [3.1] For PixelCNN++ we use the
hyperparameters of the unconditional CIFAR-10 experiment in the original paper. As the synthetic
datasets contain more samples, we train for 80 epochs.

The full AUROC values for the synthetic experiments are shown in Table[/| We plot the distributions
of various statistics related to the LR tests using AR-DGM in the second synthetic experiment in
Figure[5] We also plot additional inlier and outlier samples in Figure [6]

Table 6: Generation parameters for the synthetic experiment in Section

No. Class 1 Class 2 o T
1 Sea Snake Electric Ray 0.8 0.25
2 Bus Vending Machine 0.7  0.125
3 Elephant Magpie 0.8 0.25

Table 7: AUROC scores for the synthetic experiments.

Synthetic 1 Synthetic 2 Synthetic 3
LH LH-2S LR WN LH LH-2S LR WN LH LH-2S LR WN
AR-DGM 0.65 0.57 0.68  0.59 0.61 0.58 048  0.76 0.57 0.57 056  0.64
Linear 0.62 0.64 0.61 0.64 0.57 0.76 0.60 0.67 0.62

VAE+Linear, 64 062 057 062 066 081 070 062 074 085 078 093 076
VAE+Linear, 512 0.65 060 069 065 077 065 065 071 070 064 083 071

Model BPD Generic BPD Test Stats
3
4 Inli
2.0 nlier 2l
Outlier
1.5 21 3
1.0 2
14
0.5 1
0.0 1— T 04 T T T 0 T T
1 2 20 25 30 35 1.0 15

Figure 5: Distribution of various statistics related to the LR test using AR-DGM on the second
synthetic experiment.

C.3 Details for Section ]

The ground truth VAE has the same architecture as in Section but with a continuous normal
likelihood. We use n, = 64. The VAE (log) likelihood is lower bounded by IWAEsqg. For EBM
and PixelCNN++, we use the authors’ hyperparameters and training setup for the unconditional
CIFAR-10 experiments. After training, we verified that the distributions of energy values of training
and held-out samples have small differences, so the models do not appear to overfit.

As the OOD test results in [3 6] are obtained with conditional models, we perform the single-sided
likelihood test with the unconditional model (trained on the real CIFAR-10 dataset) to check if its
behavior on the SVHN dataset is similar to the conditional model. The AUROC value from the
single-side likelihood test is 0.529, meaning that the EBM assigns similar or lower likelihood to

"https://github.com/huggingface/pytorch-pretrained-BigGAN
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(d) Synthetic 3 (left: inlier, middle and right: outlier)

Figure 6: More sample images for the setups in Section
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SVHN compared with the inliers. This is still significantly different from the results using other
generative models, justifying our use of an unconditional model.
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