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Abstract
Randomized smoothing has achieved state-of-the-
art certified robustness against l2-norm adversar-
ial attacks. However, it is not wholly resolved
on how to find the optimal base classifier for ran-
domized smoothing. In this work, we employ
a Smoothed WEighted ENsembling (SWEEN)
scheme to improve the performance of random-
ized smoothed classifiers. We show the ensem-
bling generality that SWEEN can help achieve
optimal certified robustness. Furthermore, theo-
retical analysis proves that the optimal SWEEN
model can be obtained from training under mild
assumptions. We also develop an adaptive pre-
diction algorithm to reduce the prediction and
certification cost of SWEEN models. Extensive
experiments show that SWEEN models outper-
form the upper envelope of their corresponding
candidate models by a large margin. Moreover,
SWEEN models constructed using a few small
models can achieve comparable performance to
a single large model with a notable reduction in
training time.

1. Introduction
Deep neural networks have achieved great success in image
classification tasks. However, they are vulnerable to adver-
sarial examples, which are small imperceptible perturba-
tions on the original inputs that can cause misclassification
(Biggio et al., 2013; Szegedy et al., 2014). To tackle this
problem, researchers have proposed various defense meth-
ods to train classifiers robust to adversarial perturbations.

Recently, a new certified defense technique called random-
ized smoothing has been proposed (Lecuyer et al., 2019;
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Cohen et al., 2019). A (randomized) smoothed classifier is
constructed from a base classifier, typically a deep neural
network. It outputs the most probable class given by its base
classifier under a random noise perturbation of the input.
Randomized smoothing is scalable due to its independency
over architectures and has achieved state-of-the-art certified
l2-robustness. In theory, randomized smoothing can apply to
any classifiers. However, naively using randomized smooth-
ing on standard-trained classifiers leads to poor robustness
results. It is still not wholly resolved on how a base classifier
should be trained so that the corresponding smoothed classi-
fier has good robustness properties. Recently, Salman et al.
(2019a) employ adversarial training to train base classifiers
and substantially improve the performance of randomized
smoothing, which indicates that techniques originally pro-
posed for empirical defenses can be useful in finding good
base classifiers for randomized smoothing.

In this paper, we take a step towards finding suitable base
models for randomized smoothing by model ensembling.
The idea of model ensembling has been used in various
empirical defenses against adversarial examples and shows
promising results for robustness (Liu et al., 2018; Strauss
et al., 2018; Pang et al., 2019; Wang et al., 2019; Meng
et al., 2020; Sen et al., 2020). Moreover, an ensemble can
combine the strengths of candidate models1 to achieve su-
perior clean accuracy (Hansen & Salamon, 1990; Krogh
& Vedelsby, 1994). Thus, we believe ensembling several
smoothed models can help improve both the robustness
and accuracy. Specifically for randomized smoothing, the
smoothing operator is commutative with the ensembling
operator: ensembling several smoothed models is equiva-
lent to smoothing an ensembled base model. This property
makes the combination suitable and efficient. Therefore, we
directly ensemble a base model by taking some pre-trained
models as candidates and optimizing the optimal weights
for randomized smoothing. We refer to the final model as a
Smoothed WEighted ENsembling (SWEEN) model. More-
over, SWEEN does not limit how individual candidate clas-
sifiers are trained, thus is compatible with most previously
proposed training algorithms on randomized smoothing.

1In this paper, ”candidate model” and ”candidate” refer to an
individual model used in an ensemble. The term ”base model”
refers to a model to which randomized smoothing applies.
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Our contributions are summarized as follows:

1. We propose SWEEN to substantially improve the per-
formance of smoothed models. Theoretical analysis
shows the ensembling generality and the optimization
guarantee of SWEEN.

2. We develop an adaptive prediction algorithm for the
weighted ensembling, which effectively reduces the
prediction and certification cost of the smoothed en-
semble classifier.

3. We evaluate our proposed method through extensive
experiments. On all tasks, SWEEN models outperform
the upper envelopes of their respective candidate mod-
els in terms of the approximated certified accuracy by a
large margin. To the best of our knowledge, our best re-
sults achieve the state-of-the-art certified robustness on
CIFAR-10 under `2 norm. In addition, SWEEN mod-
els can achieve comparable or superior performance to
a large individual model using a few candidates with a
notable reduction in total training time.

2. Preliminaries
Notation Let Y = {1, 2, ...,M}. We overload no-
tation slightly, letting k refer the M -dimensional one-
hot vector whose k-th entry is 1 for k = 1, ...,M as
well. The choice should be clear from context. Let
∆k = {(p1, p2, ..., pk)

∣∣pi ≥ 0,
∑k
i=1 pi = 1} be the k-

dimensional probability simplex for k ∈ N+, and ∆ = ∆M .
For an M -dimensional function f , we use fi to refer to its
i-th entry, i = 1, 2, · · · ,M . We use N (0, σ2I) to denote
the d-dimensional Gaussian distribution with mean 0 and
variance σ2I . We use Φ−1 to denote the inverse of the
standard Gaussian CDF.

Neural network and classifier Consider a classification
problem from X ⊆ Rd to classes Y . The training set
{(xi, yi)}ni=1 is i.i.d. drawn from the data distribution D.
We call f a probability function or a classifier if it is a map-
ping from Rd to ∆ or Y , respectively. For a probability
function f , its induced classifier f∗ is defined such that
f∗(x) = arg max1≤i≤M fi(x).

Certified robustness We call x + δ an adversarial ex-
ample of a classifier f , if f correctly classifies x but
f(x+δ) 6= f(x). Usually ‖δ‖2 is small enough so x+δ and
x appear almost identical for the human eye. The (l2-)robust
radius of f is defined as

r(x, y; f) = inf
F (x+δ)6=y

‖δ‖2, (1)

which is the radius of the largest l2 ball centered at x within
which f consistently predicts the true label y of x. Note
that r(x, y; f) = 0 if f(x) 6= y. As mentioned before, we

can extend the above definitions to the case when f is a
probability function by considering the induced classifier
f∗. A certified robustness method tries to find some lower
bound rc(x, y; f) of r(x, y; f), and we call rc a certified
radius of f .

Randomized smoothing Let f be a probability function
or a classifier. The (randomized) smoothed function of f is
defined as

g(x) = Eδ∼N (0,σ2I)[f(x+ δ)]. (2)

The (randomized) smoothed classifier of f is then defined
as g∗. Cohen et al. (2019) first provide a tight robustness
guarantee for classifier-based smoothed classifiers, which is
summerized in the following theorem:

Theorem 1. (Cohen et al. (2019)) For any classifier f ,
denote its smoothed function by g. Then

r(x, y; g) ≥ σ

2
[Φ−1(gy(x))− Φ−1(max

k 6=y
gk(x))]. (3)

Later on, Salman et al. (2019a); Zhai et al. (2020) extends
Theorem 1 for probability functions.

3. SWEEN: Smoothed weighted ensembling
In this section, we describe the SWEEN framework we
use. We also present some theoretical results for SWEEN
models in Appendix B which show that SWEEN can achieve
optimal certified robustness w.r.t. the defined γ-robustness
index, which is an extension of previously proposed criteria
of certified robustness (Lemma 1), and SWEEN can be
easily trained to a near-optimal risk with a surrogate loss
(Theorem 2)..

To be specific, we adopt a data-dependent weighted average
of neural networks to serve as the base model for smooth-
ing. Suppose we have some pre-trained neural networks
f(·; θ1), ..., f(·; θK) as ensemble candidates. A weighted
ensemble model is then

fens(·; θ, w) =

K∑
k=1

wkf(·; θk), (4)

where θ = (θ1, · · · , θK) ∈ ΘK , and w ∈ ∆K is the ensem-
ble weight. For a specific fens, the corresponding SWEEN
model is defined as the smoothed function of fens, denoted
by gens. We have

gens(x; θ, w) = Eδ[
K∑
k=1

wkf(x+ δ; θk)]

=

K∑
k=1

wkEδf(x+ δ; θk) =

K∑
k=1

wkg(x; θk),

(5)
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Table 1. ACA (%) and ACR on CIFAR-10. All models are trained via MACER training. UE stands for the upper envelope of candidate
models.

σ MODEL 0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 ACR

0.25

RESNET-110 81 71 59 43 0 0 0 0 0 0.556
UE-3 77.4 66.9 56.8 41.9 0 0 0 0 0 0.529
SWEEN-3 77.7 68.7 60.3 46.6 0 0 0 0 0 0.558
UE-6 80.7 69.4 56.6 41.8 0 0 0 0 0 0.540
SWEEN-6 80.7 71.5 61.3 48.1 0 0 0 0 0 0.578

0.50

RESNET-110 66 60 53 46 38 29 19 12 0 0.726
UE-3 64.9 57.1 49.7 41.1 34.1 26.2 20.2 11.7 0 0.685
SWEEN-3 64.7 58.4 51.8 43.9 37.2 29.2 22.8 14.6 0 0.727
UE-6 65.4 58.5 51.8 44.4 35.8 28.0 19.9 11.3 0 0.701
SWEEN-6 67.0 60.3 53.2 46.8 38.8 30.3 22.6 14.6 0 0.751

1.00

RESNET-110 45 41 38 35 32 29 25 22 18 0.792
UE-3 39.4 38.2 35.8 33.4 30.3 27.6 24.5 22.0 19.0 0.793
SWEEN-3 39.5 37.9 35.8 33.2 30.4 27.5 24.6 22.0 19.1 0.796
UE-6 39.4 38.2 35.8 33.4 30.3 27.6 24.5 22.3 19.5 0.793
SWEEN-6 42.7 40.4 38.1 34.6 32.0 29.1 26.4 24.0 20.1 0.816

where g(·; θ) is the smoothed function of f(·; θ). This re-
sult means that gens is the weighted sum of the smoothed
functions of the candidate models under the same weight
w, or more briefly, randomized smoothing and weighted
ensembling are commutative. Thus, ensembling under the
randomized smoothing framework can provides benefits in
improving the accuracy and robustness.

To find the optimal SWEEN model, we can minimize a
surrogate loss of gens over the training set to obtain the
value of appropriate weights. These data-dependent weights
can make the ensemble model robust to the presence of
some biased candidate models, as they will be assigned with
small weights.

4. Experiments
In this section, we design extensive experiments on CIFAR-
10 and ImageNet to evaluate the performance of SWEEN
models.

4.1. Setup

Model setup We train different network architectures on
CIFAR-10 to serve as candidates for SWEEN, including
ResNet-20 (He et al., 2016), ResNet-26, ResNet-32, ResNet-
50, ResNet-80 and ResNet-110. We particularly evaluate
two compositions of SWEEN models. The first is a rela-
tively rich set of models, including all six candidate models,
denoted by the SWEEN-6 model. The second is a small set
of small models, including ResNet-20, ResNet-26, ResNet-
32, denoted by the SWEEN-3 model. The SWEEN-6 model
and the SWEEN-3 model simulate how much SWEEN can
help in scenarios when we have adequate and limited num-
bers of candidate models, respectively. On ImageNet, we

train three candidate models including ResNet-18, ResNet-
34 and ResNet-50. We evaluate the SWEEN model con-
taining the three models, denoted by the SWEEN-IN model.
A SWEEN model and its candidate models are trained and
evaluated with the same noise level σ. The detailed algo-
rithm for obtaining a SWEEN model is presented in Ap-
pendix D.

Candidate model Training We train candidate models
using two training schemes, including Gaussian data aug-
mentation training (Cohen et al., 2019), which is denoted
as the standard training for simplicity, and MACER train-
ing (Zhai et al., 2020). All hyper-parameters used in our
experiments are listed in Appendix F.1.

Solving the ensembling weight From Section 3 we know
that we can obtain the empirical risk minimizer by solving a
convex optimization. However, this requires first to approxi-
mate the value of smoothed functions of candidate models at
every data point, which can be very costly when the number
of candidates or training data samples is large. Hence, we
use Gaussian data augmented training to solve the ensem-
bling weight. More precisely, we freeze the parameters of
candidate models and minimize the cross-entropy loss of
the SWEEN model on Gaussian augmented data from the
evaluation set. Empirically we find that this approach is
much faster and yields comparable results.

Certification Following previous works, we report the
approximated certified accuracy (ACA), which is the frac-
tion of the test set that can be certified to be robust at ra-
dius r approximately (see (Cohen et al., 2019) for more
details). We also report the average certified radius (ACR)
following Zhai et al. (2020). The ACR equals to the area
under the radius-accuracy curve (see Figure 1). All results
were certified using algorithms in (Cohen et al., 2019) with
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Table 2. ACA (%) and ACR on ImageNet. All models are trained via standard training.

σ MODEL 0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 ACR

0.25 RESNET-50 66.8 58.2 49.0 38.2 0 0 0 0 0 0.469
SWEEN-IN 67.8 60.2 51.6 41.6 0 0 0 0 0 0.489

0.50 RESNET-50 56.4 52.4 46.4 42.2 37.8 32.6 28.0 21.4 0 0.726
SWEEN-IN 56.4 52.4 49.6 45.0 40.8 37.0 31.6 25.2 0 0.781

1.00 RESNET-50 43.6 40.6 37.8 35.4 32.4 28.8 25.8 22.4 19.4 0.863
SWEEN-IN 44.6 42.0 38.6 36.4 35.0 32.6 29.4 25.6 22.4 0.948

Table 3. Training time, #parameters and #FLOPs for models under
σ = 0.50 via MACER training. All the experiments are run on a
single NVIDIA 1080 Ti GPU.

MODEL TOTAL HRS #PARAMETERS #FLOPS

RESNET-110 49.4 1.73M 255.27M

RESNET-20 8.8 0.27M 41.21M
RESNET-26 11.3 0.36M 55.48M
RESNET-32 13.8 0.46M 69.75M

WEIGHT 0.025 - -
ENSEMBLE 33.9 1.10M 166.44M

N = 100, 000 samples and failure probability α = 0.001.

4.2. Results

Standard training on CIFAR-10 Due to space con-
straints, we report the detailed table of results in Ap-
pendix F.2. In Figure 1, we display the radius-accuracy
curves for the SWEEN models and all their corresponding
candidate models under σ = 0.50 on CIFAR-10.

Figure 1. Radius-accuracy curves under σ = 0.50. (Left) The
SWEEN-3 model. (Right) The SWEEN-6 model.

The results show that SWEEN models significantly boost
the performance compared to their corresponding candidate
models. According to Figure 1, the SWEEN-6 model con-
sistently outperforms all its candidates in terms of the ACA
at all radii.

MACER training on CIFAR-10 Since SWEEN is com-
patible with previous training algorithms, we adopt MACER
training for the SWEEN-3 model. The results are summa-

rized in Table 1. For the ACA and ACR of the ResNet-110
model, we use the original numbers from Zhai et al. (2020).

In the results, the SWEEN-3 model achieves comparable
results to the ResNet-110 but is more efficient. From Table
5 and 1, the SWEEN-3 model takes 33.9 hours to achieve
0.727 in terms of the ACR for σ = 0.5, using three small and
easy-to-train candidates models. Meanwhile, it takes 49.4
hours for the ResNet-110 to achieve similar performance
on CIFAR-10. This 32% speed up reveals the efficiency of
applying SWEEN to previous training methods. Moreover,
the SWEEN-6 models outperform the ResNet-110 model on
ACA of most radius levels and on ACR by a large margin.
To our best knowledge, it establishes a new state-of-the-art
certified robustness on CIFAR-10 under `2 norm.

Results on ImageNet Table 2 displays the performance
of ResNet-50 and SWEEN-IN under the noise levels σ ∈
{0.25, 0.50, 1.00}. We note that the performance of ResNet-
50 is also the upper envelope of the three models in SWEEN-
IN. We can see that the SWEEN-IN model significantly
outperforms its corresponding candidate models, similar
to the results on CIFAR-10. The results again confirm the
effectiveness of our proposed SWEEN framework.

Other experimental results Due to space constraints,
we only report the main results here. The results of further
experiments can be found in Appendix F.

5. Conclusions
In this work, we introduced the smoothed weighted ensem-
bling (SWEEN) to improve randomized smoothed classifiers
in terms of both accuracy and robustness. We showed that
SWEEN can achieve optimal certified robustness through
our theoretical analysis. Our extensive experiments showed
that a properly designed SWEEN model was able to out-
perform all its candidate models by a significant margin
consistently. Moreover, SWEEN models using a few small
and easy-to-train candidates could match or exceed a large
individual model on performance with a notable reduction
in total training time. Our theoretical and empirical results
confirmed that SWEEN is a viable tool for improving the
performance of randomized smoothing models.
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A. Related Work
Adversarial Defenses In the past few years, numerous
defenses have been proposed to build classifiers robust to
adversarial examples. These defenses can be roughly cate-
gorized into empirical defenses and certified defenses. One
of the most successful empirical defenses is adversarial
training (Kurakin et al., 2017; Madry et al., 2018), which
optimizes the model by minimizing the loss over adversarial
examples generated during training. Empirical defenses
produce models robust to certain attacks without a theoreti-
cal guarantee. Most of the empirical defenses are heuristic
and subsequently broken by more sophisticated adversaries
(Carlini & Wagner, 2017; Athalye et al., 2018; Uesato et al.,
2018; Tramer et al., 2020). Certified defenses, either exact
or conservative, are introduced to mitigate such deficiency
in empirical defenses. In the context of lp norm-bounded
perturbations, exact methods report whether an adversarial
example exists within an lp ball with radius r centered at a
given input x. Exact methods are usually based on Satisfi-
ability Modulo Theories (Katz et al., 2017; Ehlers, 2017)
or mixed-integer linear programming (Lomuscio & Maga-
nti, 2017; Fischetti & Jo, 2017), which are computationally
inefficient and not scalable (Tjeng et al., 2019). Conserva-
tive methods are more computationally efficient, but might
mistakenly flag a safe data point as vulnerable to adversar-
ial examples (Raghunathan et al., 2018a; Wong & Kolter,
2018; Wong et al., 2018; Gehr et al., 2018; Mirman et al.,
2018; Weng et al., 2018; Zhang et al., 2018; Raghunathan
et al., 2018b; Dvijotham et al., 2018b; Singh et al., 2018;
Wang et al., 2018b; Salman et al., 2019b; Croce et al., 2019;
Gowal et al., 2018; Dvijotham et al., 2018a; Wang et al.,
2018a). However, both types of defenses are not scalable
to practical networks that perform well on modern machine
learning problems (e.g., the ImageNet (Deng et al., 2009)
classification task).

Randomized smoothing Randomized smoothing con-
structs a smoothed classifier from a base classifier via con-
volution between the input distribution and certain noise
distribution. It is first proposed as a heuristic defense by
(Liu et al., 2018; Cao & Gong, 2017). Lecuyer et al. (2019)
first prove robustness guarantees for randomized smoothing
utilizing tools from differential privacy. Subsequently, a
stronger robustness guarantee is given by Li et al. (2018).
Cohen et al. (2019) provide a tight robustness bound for
isotropic Gaussian noise in l2 robustness setting. The theo-
retical properties of randomized smoothing in various norm
and noise distribution settings have been further discussed
in the literature (Blum et al., 2020; Kumar et al., 2020; Yang
et al., 2020; Lee et al., 2019; Teng et al., 2019; Zhang et al.,
2020). Recently, a series of works (Salman et al., 2019a;
Zhai et al., 2020) develop practical algorithms to train a base
classifier for randomized smoothing. Our work improves
the performance of smoothed classifiers via weighted en-
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sembling of pre-trained base classifiers.

Model ensembling Model ensembling has been widely
studied and applied in machine learning as a technique to im-
prove the generalization performance of the model (Hansen
& Salamon, 1990; Krogh & Vedelsby, 1994). Krogh &
Vedelsby (1994) show that ensembles constructed from ac-
curate and diverse networks perform better. Recently, simple
averaging of multiple neural networks has been a success
in ILSVRC competitions (He et al., 2016; Krizhevsky et al.,
2017; Simonyan & Zisserman, 2015). Model ensembling
has also been used in defenses against adversarial examples
(Liu et al., 2018; Strauss et al., 2018; Pang et al., 2019; Wang
et al., 2019; Meng et al., 2020; Sen et al., 2020). Wang et al.
(2019) have shown that a jointly trained ensemble of noise
injected ResNets can improve clean and robust accuracies.
Recently, Meng et al. (2020) find that ensembling diverse
weak models can be quite robust to adversarial attacks. Un-
like the above works, which are empirical or heuristic, we
employ ensembling in randomized smoothing to provide a
theoretical robustness certification.

B. Certified robustness of SWEEN models
The proofs of the results in this section can be found in
Appendix C.

Additional Notation We use Γ to denote the gamma
function. We use R∗ to denote the set of non-negative real
numbers. For x, a, b ∈ R, a ≤ b, we define clip(x; a, b) =
min{max{x, a}, b}. We use Ω(·) to denote Big-Omega
notation that suppresses multiplicative constants.

Assume the input space X has finite diameter D =
supx1,x2∈X ‖x1 − x2‖2 < ∞. For a smoothed
function g, the certified radius at (x, y) provided by
Theorem 1 is rc(x, y; g) = clip(σ2 [Φ−1(gy(x)) −
Φ−1(maxk 6=y gk(x))]; 0, D). We now formally define γ-
robustness index as a criterion of certified robustness.

Definition 1. (γ-robustness index). For γ : R∗ → R∗ and
a smoothed function g, the γ-robustness index of g is defined
as

Iγ(g) = E(x,y)∼Dγ(rc(x, y; g)). (6)

It can be easily observed that γ-robustness index is an exten-
sion of many frequently-used criteria of certified robustness
of smoothed classifiers.

Proposition 1. Let γ1(r) = 1{r ≥ R}, γ2(r) =

r, γ3(r) = π
d
2

Γ( d2 +1)
rd. Then, γ1-robustness index is the

certified accuracy at radius R (Cohen et al., 2019); γ2-
robustness index is the average certified radius (Zhai et al.,
2020); γ3-robustness index is the average volume of the
certified region.

We note that criteria considering the volume of the certified

region are more comprehensive than those only considering
the certified radii in a sense, as they take the input dimension
into account.

Now consider F = {f(·; θ) : Rd → ∆
∣∣θ ∈ Θ}, the

set of neural networks parametrized over Θ. The corre-
sponding set of smoothed functions is G = {g(x; θ) =
Eδ∼N (0,σ2I)[f(x+ δ; θ)]|θ ∈ Θ}. Suppose θ1, · · · , θK are
drawn i.i.d. from a fixed probability distribution p on Θ.
The set of SWEEN models is then

F̂θ =

{
φ(x) =

K∑
k=1

wkg(x; θk)
∣∣∣wk ≥ 0,

K∑
k=1

wk = 1

}
.

(7)
Similar to Rahimi & Recht (2008), we consider mixtures
of the form φ(x) =

∫
Θ
w(θ)g(x; θ)dθ. For a mixture φ, we

define ‖φ‖p := supθ |
w(θ)
p(θ) |. Define

Fp =

{
φ(x) =

∫
Θ

w(θ)g(x; θ)dθ
∣∣∣

‖φ‖p <∞, w(θ) ≥ 0,

∫
Θ

w(θ)dθ = 1

}
.

(8)

Note that for any φ ∈ Fp, φ is a smoothed probability
function. Intuitively, Fp is quite a rich set. The following
result shows that with high probability, the best γ-robustness
index a SWEEN model can obtain is near the optimal γ-
robustness index in the class Fp. Thus, the ensembling
generality also holds for the γ-robustness index we defined
for robustness.

Lemma 1. Suppose γ is a Lipschitz function. Given η > 0.
For any ε > 0, for sufficently large K, with probability at
least 1− η over θ1, ..., θK drawn i.i.d. from p, there exists
φ̂ ∈ F̂θ which satisfies

Iγ(φ̂) > sup
φ∈Fp

Iγ(φ)− ε. (9)

Moreover, if there exists φ0 ∈ Fp such that Iγ(φ0) =
supφ∈Fp

Iγ(φ), K = O( 1
ε4 ).

In practice, the defined robustness index Iγ(·) may be hard
to optimized directly, in which case we choose a surrogate
loss function l : RM × Y → R to approximate it. Now the
optimization for the ensemble weight w of a SWEEN model
over a training set {(xi, yi)}ni=1 can be formulated as

min
w∈∆K

1

n

n∑
i=1

l(

K∑
k=1

wkg(xi; θk), yi). (10)

However, this process typically invovles Monte Carlo simu-
lation since we only have access to f(·, θk), k = 1, · · · ,K.
We define the risk and empirical risk w.r.t. the surrogate loss
l.
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Definition 2. (Risk and empirical risk). For a surrogate
loss function l : RM × Y → R, the risk of a probability
function φ are defined as

R[φ] = E(x,y)∼Dl(φ(x), y). (11)

If φ(x) =
∑K
k=1 wkg(x; θk) ∈ F̂θ, for training set

{(xi, yi)}ni=1 and sample size s, the empirical risk of φ
is defined as

Remp[φ] =
1

n

n∑
i=1

l(

K∑
k=1

wk[
1

s

s∑
j=1

f(xi + δijk; θk)], yi),

(12)
where δijk

i.i.d.∼ N (0, σ2I), 1 ≤ i ≤ n, 1 ≤ j ≤ s, 1 ≤ k ≤
K.

Now solving for w is reduced to finding the minimizer of
Remp. When the loss function l is convex, this problem is
a low-dimensional convex optimization, so we can obtain
the global empirical risk minimizer using traditional convex
optimization algorithms. Furthermore, we have:

Theorem 2. Suppose for all y ∈ Y , l(·, y) is a Lipschitz
function with constant L and is uniformly bounded. Given
η > 0. For any ε > 0, for sufficently large K, if n =

Ω(K
2

ε2 ), s = Ω( logKn
ε2 ), then with probability at least 1− η

over the training dataset {(xi, yi)}ni=1 drawn i.i.d. from D
and the parameters θ1, ..., θK drawn i.i.d. from p and the
noise samples drawn i.i.d. from N (0, σ2I), the empirical
risk minimizer φ̂ over F̂θ satisfies

R[φ̂]− inf
φ∈Fp

R[φ] < ε. (13)

Moreover, if there exists φ0 ∈ Fp such that R[φ0] =
infφ∈Fp R[φ], K = O( 1

ε4 ).

Theorem 2 gives a guarantee that, for large enough K,n, s,
the gap between the risk of the empirical risk minimizer φ̂
and infφ∈Fp R[φ] can be arbitrarily small with high proba-
bility. Note that we can solve φ̂ to any given precision when
l is convex. Moreover, Theorem 2 reveals the accessibility
of φ̂ in Lemma 1 when l approximates the γ-robustness
index well. While the number of candidate models and the
number of training samples need to be large to ensure good
theoretical properties, we will show that the performance
of SWEEN models of practical settings is good enough in
Section 4.

C. Proofs
C.1. Proof of Lemma 1

Define

F ′p =

{
φ(x) =

∫
Θ

w(θ)g(x; θ)dθ
∣∣∣

‖φ‖p <∞, w(θ) ≥ 0

}
,

(14)

F̂ ′θ =

{
φ(x) =

K∑
k=1

wkg(x; θk)
∣∣∣wk ≥ 0

}
. (15)

We have Fp ⊆ F ′p, F̂θ ⊆ F̂ ′θ.

Lemma 2. Let µ be any probability measure on Rd. For
φ : Rd → RM , define the norm ‖φ‖2µ ,

∫
Rd ‖φ(x)‖22dµ(x).

Fix φ ∈ F ′p, then for any η > 0, with probability at least
1−η over θ1, ..., θK drawn i.i.d. from p, there exists φ̂(x) =
K∑
k=1

ckg(x; θk) ∈ F̂ ′θ which satisfies

‖φ̂− φ‖µ ≤
‖φ‖p√
K

(1 +

√
2 log

1

η
). (16)

Proof. Sine φ ∈ F ′p, we can write φ(x) =∫
Θ
w(θ)g(x; θ)dθ, where w(θ) ≥ 0. Construct φk =

βkg(·; θk), k = 1, 2, · · · ,K, where βk = w(θk)
p(θk) , then

Eφk = φ, ‖φk‖µ =
√∫

Rd β
2
k‖g(x; θk)‖22dµ(x) ≤ |βk| ≤

‖φ‖p. We then define

u(θ1, · · · , θK) = ‖ 1

K

K∑
k=1

φk − φ‖µ. (17)

First, by using Jensen’s inequality and the fact that ‖φk‖µ ≤
‖φ‖p, we have

E[u(θ)] ≤
√
E[u2(θ)]

=

√√√√E[‖ 1

K

K∑
k=1

φk − Eφk‖2µ]

=

√
1

K
(E‖φk‖2µ − ‖Eφk‖2µ) ≤ ‖φ‖p√

K
.
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Next, for θ1, · · · , θM and θ̃i, we have

|u(θ1, · · · , θM )− u(θ1, · · · , θ̃i, · · · , θM )|

= |‖ 1

K

K∑
k=1

φk − φ‖µ − ‖
1

K
(

K∑
k=1,k 6=i

φk + φ̃i)− φ‖µ|

≤ ‖ 1

K

M∑
k=1

φk −
1

K
(

M∑
k=1,k 6=i

φk + φ̃i)‖µ

=
‖φi − φ̃i‖µ

K

≤ 2‖φ‖p
K

.

Now we can use McDiarmid’s inequality to bound u(θ),
which gives

P[u(θ)− ‖φ‖p√
K
≥ ε] ≤ P[u(θ)− Eu(θ) ≥ ε]

≤ exp(− Kε2

2‖φ‖2p
).

(18)

The theorem follows by setting δ to the right hand side and
solving ε.

Lemma 3. Let µ be any probability measure on Rd. For
φ : Rd → RM , define the norm ‖φ‖2µ ,

∫
Rd ‖φ(x)‖22dµ(x),

then for any η > 0, for K ≥M‖φ‖2p(1 +
√

2 log 1
η )2, with

probability at least 1− η over θ1, ..., θK drawn i.i.d. from

p, there exists φ̂(x) =
K∑
k=1

ckg(x; θk) ∈ F̂θ which satisfies

‖φ̂− φ‖µ < 2
√
‖φ‖p

4

√
M

K
(1 +

√
2 log

1

η
)

1
2 . (19)

Proof. Fix φ ∈ Fp ⊆ F ′p, by using Lemma 2, we have that
for any δ > 0, with probability at least 1− η over θ1, ..., θK

drawn i.i.d. from p, there exists φ̃(x) =
K∑
k=1

ckg(x; θk) ∈

F̂ ′θ which satisfies

‖φ̃− φ‖µ <
‖φ‖p√
K

(1 +

√
2 log

1

η
) , B(K). (20)

Denote C =
K∑
k=1

ck, and define s(t) ,
M∑
i=1

ti as the sum

of all elements of t ∈ RM . Then s(g(x; θ)) = 1,∀x ∈

Rd, θ ∈ Θ. Thus,

s(φ(x)) =

M∑
i=1

φi(x) =

M∑
i=1

∫
Θ

w(θ)gi(x; θ)dθ

=

∫
Θ

w(θ)

M∑
i=1

gi(x; θ)dθ =

∫
Θ

w(θ)dθ = 1,

s(φ̃(x)) =

M∑
i=1

φ̃i(x) =

M∑
i=1

K∑
k=1

ckgi(x; θk)

=

K∑
k=1

ck

M∑
i=1

gi(x; θk) =

K∑
k=1

ck = C.

Now we have

B(K)2 > ‖φ̃− φ‖2µ =

∫
Rd
‖φ̃(x)− φ(x)‖22dµ(x)

≥
∫
Rd

(s(φ̃(x)− φ(x)))2

M
dµ(x)

=

∫
Rd

(C − 1)2

M
dµ(x)

=
(C − 1)2

M
,

which gives 1 −
√
MB(K) < C < 1 +

√
MB(K). Con-

struct φ̂(x) = φ̃(x)
C , then φ̂ ∈ F̂θ and

‖φ̂− φ‖2µ

=

∫
Rd
‖φ̂(x)− φ(x)‖22dµ(x)

=

∫
Rd
‖C−1φ̃(x)− φ(x)||22dµ(x)

=

∫
Rd
‖(φ̃(x)− φ(x)) + (C−1 − 1)φ̃(x)‖22dµ(x)

=

∫
Rd

(‖φ̃(x)− φ(x)‖22 + ‖(C−1 − 1)φ̃(x)‖22

+2(C−1 − 1)〈φ̃(x)− φ(x), φ̃(x)〉)dµ(x)

=

∫
Rd

(‖φ̂(x)− φ(x)‖22 + (C−2 − 1)‖φ̃(x)‖22

+2(1− C−1)〈φ(x), φ̃(x)〉)dµ(x).

Since we have C2

M ≤ ‖φ̃(x)‖22 ≤ C2, |〈φ(x), φ̃(x)〉| ≤√
‖φ(x)‖22‖φ̃(x)‖22 ≤ C, it holds that
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(i) When 1 < C < 1 +
√
MB(K),

‖φ̂− φ‖2µ

≤
∫
Rd

(‖φ̃(x)− φ(x)‖22 +
1− C2

M
+ 2(C − 1))dµ(x)

≤ B(K)2 +
1− C2

M
+ 2(C − 1)

≤ −2B(K)√
M

+ 2
√
MB(K);

(ii) When 1−
√
MB(K) < C ≤ 1,

‖φ̂− φ‖2µ

≤
∫
Rd

(‖φ̃(x)− φ(x)‖22 + (1− C2) + 2(1− C))dµ(x)

≤ B(K)2 + 4− (1 + C)2

≤ 4
√
MB(K)− (M − 1)B(K)2

< 4
√
MB(K).

Thus, with probability at least 1− η over θ1, ..., θK drawn
i.i.d. from p,

‖φ̂−φ‖µ < 2

√√
MB(K) = 2

√
‖φ‖p

4

√
M

K
(1+

√
2 log

1

η
)

1
2 .

Lemma 4. Suppose l(·, ·) is L-Lipschitz in its first ar-
gument. Fix φ ∈ Fp, then for any η > 0, for K ≥
M‖φ‖2p(1 +

√
2 log 1

η )2, with probability at least 1 − η

over θ1, ..., θK drawn i.i.d. from p, there exists φ̂ ∈ F̂θ

which satisfies

|E(x,y)∼D[l(φ̂(x), y)]− E(x,y)∼D[l(φ(x), y)]|

< 2L
√
‖φ‖p

4

√
M

K
(1 +

√
2 log

1

η
)

1
2 .

Proof.

|E[l(φ̂(x), y)]− E[l(φ(x), y)]|
≤ E|c(φ(x), y)− c(φ̂(x), y)|
≤ LE‖φ(x)− φ̂(x)‖2

≤ L

√
E‖φ(x)− φ̂(x)‖22

= L‖φ− φ̂‖D|x
The desired result follows from Lemma 3.

Lemma 5. (Corollary of Proposition 1 in Zhai et al. (2020))
Given any p1, p2, · · · , pM satisfies p1 ≥ p2 ≥ · · · ≥
pM ≥ 0 and p1 + p2 + · · · + pM = 1. The derivative of
clip(σ2 [Φ−1(p1) − Φ−1(p2)]; 0, D) with respect to p1 and
p2 is bounded.

Now we can prove Lemma 1.

Proof of Lemma 1. Let φ0 ∈ Fp such that Iγ(φ0) >
supφ∈Fp

Iγ(φ) − ε
2 . From Lemma 5 we know that

q(p, y) , clip(σ2 [Φ−1(py) − Φ−1(maxk 6=y pk)]; 0, D) is
Lipschitz in its first argument. Since m is Lipschitz,
c(p, y) , m(q(p, y)) is also Lipschitz in its first argument
with some constant L. Apply Lemma 4, we have that for

K ≥M‖φ‖2p(1 +
√

1 + 2 log 1
δ )2, with probability at least

1−η over θ1, ..., θK drawn i.i.d. from p, there exists φ̂ ∈ F̂θ

which satisfies

Iγ(φ0)− Iγ(φ̂)

= E(x,y)∼D[l(φ0(x), y)]− E(x,y)∼D[l(φ̂(x), y)]

< 2L
√
‖φ0‖p

4

√
M

K
(1 +

√
2 log

1

η
)

1
2 .

When K >
256L4‖φ0‖2pM(1+

√
2 log 1

η )2

ε4 , we have

sup
φ∈Fp

Iγ(φ)− Iγ(φ̂)

= ( sup
φ∈Fp

Iγ(φ)− Iγ(φ0)) + (Iγ(φ0)− Iγ(φ̂))

<
ε

2
+
ε

2
= ε.

If Iγ(φ0) = supφ∈Fp
Iγ(φ), which means ‖φ0‖p is inde-

pendent of ε, K = O( 1
ε4 ).

C.2. Proof of Theorem 2

First we introduce some results from statistical learning
theory.

Definition 3. (Gaussian complexity). Let µ be a probabil-
ity distribution on a set X and suppose that x1, ..., xn are
independent samples selected according to µ. Let F be
a class of functions mapping from X to R. The Gaussian
complexity of F is

Gn[F ] , E[ sup
f∈F
| 2
n

n∑
i=1

ξif(xi)|
∣∣x1, ..., xn; ξi, ..., ξn]

where ξ1, ..., ξn are independent N (0, 1) random variables.

Definition 4. (Rademacher complexity) Let µ be a proba-
bility distribution on a set X and suppose that x1, ..., xn are
independent samples selected according to µ. Let F be a
class of functions mapping from X to R. The Rademacher
complexity of F is

Rn[F ] , E[ sup
f∈F
| 2
n

n∑
i=1

σif(xi)|
∣∣x1, ..., xn;σi, ..., σn]

where σ1, ..., σn are independent uniform {±1}-valued ran-
dom variables.
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Lemma 6. (Part of Lemma 4 in Bartlett & Mendelson
(2001)). There are absolute constants β such that for every
class F and every integer n, Rn(F ) ≤ βGn(F ).

Lemma 7. (Corollary of Theorem 8 in Bartlett & Mendel-
son (2001)). Consider a loss function c : A× Y → [0, 1].
Let F be a class of functions mapping from X to A and
let (xi, yi)

n
i=1 be independently selected according to the

probability measure µ. Then, for any integer n and any
0 < η < 1, with probability at least 1− η over samples of
length n, every f in F satisfies

E(x,y)∼µ[c(f(x), y)]

≤ 1

n

n∑
i=1

c(f(xi), yi) +Rn[c̃ ◦F ] +

√
8 log 2

η

n
,

where c̃ ◦F = {(x, y) 7→ c(f(x), y)− c(0, y)
∣∣f ∈ F}

Lemma 8. (Corollary of Theorem 14 in Bartlett & Mendel-
son (2001)). Let A = RM and let F be a class of functions
mapping from X to A. Suppose that there are real-valued
classes F1, ...,FM such that F is a subset of their Carte-
sian product. Assume further that c : A× Y → R is such
that, for all y ∈ Y , c(·, y) is a Lipschitz function with con-
stant L which passes through the origin and is uniformly
bounded. Then

Gn(c ◦F ) ≤ 2L

M∑
i=1

Gn(Fi).

Now we prove the following lemma:

Lemma 9. Let c,F , (xi, yi)
n
i=1, c̃ ◦F be as in Lemma 7.

Then, for any integer n and any 0 < η < 1, with probability
at least 1−η over samples of length n, every f in F satisfies

1

n

n∑
i=1

c(f(xi), yi)

≤ E(x,y)∼µ[c(f(x), y)] +Rn[c̃ ◦F ] +

√
8 log 2

η

n
.

Proof.

1

n

n∑
i=1

c(f(xi), yi)− E(x,y)∼µ[c(f(x), y)]

≤ sup
h∈c◦F

(Ênh− Eh)

= sup
h∈c̃◦F

(Ênh− Eh) + Ênc(0, y)− Ec(0, y).

When an (xi, yi) pair changes, the random variable
sup

h∈c̃◦F
(Ênh − Eh) can change by no more than 2

n . Mc-

Diarmid’s inequality implies that with probability at least

1− η
2 ,

sup
h∈c̃◦F

(Ênh− Eh) ≤ E sup
h∈c̃◦F

(Ênh− Eh) +

√
2 log 2

η

n
.

A similar argument, together with the fact that
EÊnc(0, y) = Ec(0, y), shows that with probability at least
1− η,

Remp[f ] ≤ R[f ] + E sup
h∈c̃◦F

(Ênh− Eh) +

√
8 log 2

η

n
.

It’s left to show that E sup
h∈c̃◦F

(Ênh−Eh) ≤ Rn[c̃◦F ]. Let

(x′1, y
′
1), ..., (x′n, y

′
n) be drawn i.i.d. from µ and independent

from (xi, yi)
n
i=1, then

E sup
h∈c̃◦F

(Ênh− Eh)

= E sup
h∈c̃◦F

E[Ênh−
1

n

n∑
i=1

h(x′i, y
′
i)]

≤ EE sup
h∈c̃◦F

[Ênh−
1

n

n∑
i=1

h(x′i, y
′
i)]

= E sup
h∈c̃◦F

1

n
(

n∑
i=1

h(xi, yi)−
n∑
i=1

h(x′i, y
′
i))

≤ 2E sup
h∈c̃◦F

1

n

n∑
i=1

σih(xi, yi)

≤ Rn[c̃ ◦F ].

We can prove the following result:

Theorem 3. Let A = RM and let F be a class of func-
tions mapping from X to A. Suppose that there are real-
valued classes F1, ...,FM such that F is a subset of their
Cartesian product. Assume further that the loss function
c : A× Y → R is such that, for all y ∈ Y , c(·, y) is a Lip-
schitz function with constant L and is uniformly bounded.
Let {(xi, yi)}ni=1 be independently selected according to
the probability measure µ. Then, for any integer n and any
0 < η < 1, there is a probability of at least 1− η that every
f ∈ F has

| 1
n

n∑
i=1

c(f(xi), yi)− E(x,y)∼µ[c(f(x), y)]|

≤ βL
M∑
j=1

Gn[Fj ] +

√
8 log 4

η

n
,

where β is a constant.
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Proof. From Lemma 7 and 9 we have that with probability
at least 1−η over samples of length n, every f in F satisfies

| 1
n

n∑
i=1

c(f(xi), yi)− E(x,y)∼µ[c(f(x), y)]|

≤ Rn[c̃ ◦F ] +

√
8 log 4

η

n
,

it follows by applying Lemma 6 and 8.

Lemma 10. Let c(·, ·), β be as in Theorem 3. Let
(xi, yi)

n
i=1 be independently selected according to the prob-

ability measure D. For any integer n and any 0 < η < 1,
there is a probability of at least 1 − η that every f ∈ F̂θ

has

| 1
n

n∑
i=1

c(f(xi), yi)− E(x,y)∼D[c(f(x), y)]|

≤ 2βLMK√
n

+

√
8 log 4

η

n
.

Proof. Denote

F̂θ(i) =

{
φ(x) =

K∑
k=1

wkgi(x;wk)
∣∣∣

wk ≥ 0,

K∑
k=1

wk = 1

}
, 1 ≤ i ≤M.

We have that F̂θ ⊆
M⊗
k=1

F̂θ(i), where
⊗

stands for a

Cartesian product operation. The Gaussian comlexities of

F̂θ(i)’s can be bounded as

Gn[F̂θ(j)] = Ex,ξ[ sup
φ∈F̂θ(j)

| 2
n

n∑
i=1

ξiφ(xi)|]

= Ex,ξ[sup
w
| 2
n

n∑
i=1

ξi

K∑
k=1

wkgj(xi;wk)|]

= Ex,ξ[sup
w
|
K∑
k=1

wk
2

n

n∑
i=1

ξigj(xi;wk)|]

≤ Ex,ξ[2
K∑
k=1

| 1
n

n∑
i=1

ξigj(xi;wk)|]

≤ Ex[2

K∑
k=1

√√√√Eg(
1

n

n∑
i=1

ξigj(xi;wk))2]

= Ex[2

K∑
k=1

√√√√ 1

n2

n∑
i=1

gj(xi;wk)2]

≤ Ex[2

K∑
k=1

√
1

n
]

=
2K√
n
.

The desired result follows by applying Theorem 3 to
F̂θ, F̂θ(1), · · · , F̂θ(M) and D.

Next, we give the definition of semi-empirical risk. The
term ”semi-” implies that it is empirical with respect to the
training set but not the smoothing operation.
Definition 5. (Semi-empirical risk). For a surrogate
loss function l(·, ·) : RM × RM → R and train-
ing set {(xi, yi)}ni=1, the semi-empirical risk of φ(x) =∑K
k=1 wkg(x; θk) ∈ F̂θ are defined as

Rse[φ] =
1

n

n∑
i=1

l(
K∑
k=1

wkg(xi; θk), yi). (21)

We can use Lemma 4 and 10 to prove the following result:
Theorem 4. Suppose for all y ∈ Y , l(·, y) is a Lipschitz
function with constant L and is uniformly bounded. Fix
φ ∈ Fp, then for any η > 0, with probability at least 1− η
over the training dataset {(xi, yi)}ni=1 drawn i.i.d. from
D and the parameters θ1, ..., θK drawn i.i.d. from p, the
semi-empirical risk minimizer φ̂ over F̂θ satisfies

R[φ̂]−R[φ] <
4βLMK + 4

√
2 log 8

η
√
n

+2L
√
‖φ‖p

4

√
M

K
(1 +

√
2 log

2

η
)

1
2 ,

where β is a constant.
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Proof. Let φ∗ be the minimizer of R over F̂θ. Combine
Lemma 4 and 10, we derive that, with probability at least 1−
2δ over the training dataset and the choice of the parameters
θ1, ..., θK ,

R[φ̂]−R[φ]

= (R[φ̂]−Rse[φ̂]) + (Rse[φ̂]−Rse[φ∗])
+(Rse[φ∗]−R[φ∗]) + (R[φ∗]−R[φ])

<
2βLMK + 2

√
2 log 4

η
√
n

+ 0 +
2βLMK + 2

√
2 log 4

η
√
n

+2L
√
‖φ‖p

4

√
M

K
(1 +

√
2 log

1

η
)

1
2

=
4βLMK + 4

√
2 log 4

η
√
n

+2L
√
‖φ‖p

4

√
M

K
(1 +

√
2 log

1

η
)

1
2 .

Lemma 11. Let µ be a probability distribution on ∆. For
any η > 0, with probability at least 1 − η over x1, ..., xs
drawn i.i.d. from µ, it holds that

‖1

s

s∑
i=1

xi − Ex∼µ[x]‖2 ≤
1√
s

(1 +

√
2 log

1

η
) (22)

Proof. Define u(x1, · · · , xs) = ‖ 1
s

∑s
i=1 xi − E[x]‖2. By

using Jensen’s inequality, we have

E[u(x)] ≤
√
E[u2(x)] =

√√√√E[‖1

s

s∑
i=1

xi − E[x]‖22]

=

√
1

s
(E‖x‖22 − ‖E[x]‖22)

≤ 1√
s
.

Next, for x1, · · · , xM and x̃k, we have

|u(x1, · · · , xs)− u(x1, · · · , x̃k, · · · , xs)|

= |‖1

s

s∑
i=1

xi − E[x]‖2

−‖1

s
(

s∑
i=1,i6=k

xi + x̃k)− E[x]‖2|

≤ ‖1

s

s∑
i=1

xi −
1

s
(

s∑
i=1,i6=k

xi + x̃k)‖2

=
‖xk − x̃k‖2

s

≤ 2

s
.

Now we can use McDiarmid’s inequality to bound u(x),
which gives

P[u(x)− 1√
s
≥ ε] ≤ P[u(x)−Eu(x) ≥ ε] ≤ exp(−sε

2

2
).

(23)
The result follows by setting η to the right hand side and
solving ε.

Now we are ready to prove Theorem 2.

Proof of Theorem 2. Let φ0 ∈ Fp such that R[φ0] <
infφ∈Fp R[φ] + ε

4 . By Lemma 11, with probability at least
1− η

3 ,

‖1

s

s∑
j=1

f(xi + δijk; θk)− g(xi; θk)‖2

≤
1 +

√
2 log 3Kn

η√
s

, 1 ≤ i ≤ n, 1 ≤ k ≤ K,

(24)

hold simultaneously. So with probability at least 1− η
3 , for

every φ =
∑K
k=1 wkg(x; θk) ∈ F̂θ, it holds that

|Remp[φ]−Rse[φ]|

= | 1
n

n∑
i=1

[l(

K∑
k=1

wk[
1

s

s∑
j=1

f(xi + δijk; θk)], yi)

−l(
K∑
k=1

wkg(xi; θk), yi)]|

≤ L

n

n∑
i=1

‖
K∑
k=1

wk[
1

s

s∑
j=1

f(xi + δijk; θk)− g(xi; θk)]‖2

≤ L

n

n∑
i=1

K∑
k=1

wk‖
1

s

s∑
j=1

f(xi + δijk; θk)− g(xi; θk)‖2

≤ L

n

n∑
i=1

K∑
k=1

wk
1 +

√
2 log 3Kn

η√
s

=
L(1 +

√
2 log 3Kn

η )
√
s

, ε1.

By Lemma 10, with probability at least 1 − η
3 , for every

φ ∈ F̂θ, it holds that

|Rse[φ]−R[φ]| ≤ 2βLMK√
n

+

√
8 log 12

η

n
, ε2.

Let φ∗ be the minimizer ofR over F̂θ. By Lemma 4, with
probability at least 1− δ

3 , forK ≥M‖φ0‖2p(1+
√

2 log 3
η )2,

R[φ∗]−R[φ0] < 2L
√
‖φ‖p

4

√
M

K
(1 +

√
2 log

3

η
)

1
2 , ε3.
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So with probability at least 1− η, it holds that

R[φ̂]− inf
φ∈Fp

R[φ]

= (R[φ̂]−Rse[φ̂]) + (Rse[φ̂]−Remp[φ̂])

+(Remp[φ̂]−Remp[φ∗]) + (Remp[φ∗]−Rse[φ∗])
+(Rse[φ∗]−R[φ∗]) + (R[φ∗]−R[φ0])

+(R[φ0]− inf
φ∈Fp

R[φ])

< ε2 + ε1 + 0 + ε1 + ε2 + ε3 +
ε

4

= 2ε1 + 2ε2 + ε3 +
ε

4
.

When K >
256L4‖φ0‖2pM(1+

√
2 log 1

η )2

ε4 , n >

64(2βLMK+
√

8 log 12
η )2

ε2 , s >
64L2(1+

√
2 log 3Kn

η )2

ε2 , we
have

R[φ̂]− inf
φ∈Fp

R[φ] < ε. (25)

IfR[φ0] = infφ∈Fp
R[φ], which means ‖φ0‖p is indepen-

dent of ε, K = O( 1
ε4 ).

D. Detailed SWEEN algorithm

Algorithm 1 SWEEN
1: Input: Training set p̂train, evaluation set p̂eval, Ensem-

bling weight w ∈ RK , candidate model parameters
θ = {θ1, ..., θK} ∈ ΘK .

2: Initialize θ1, ..., θK , w
3: for i = 1 to K do
4: Train candidate models θi using p̂train.
5: end for
6: Construct SWEEN model
gsween(·; θ, w) =

∑K
k=1 wkg(·; θk)

7: Train w using p̂eval
8: return w and θ1, ..., θK

E. Adaptive prediction algorithm
A major drawback of ensembling is the high execution
cost during inference, which consists of prediction and cer-
tification costs for smoothed classifiers. The evaluation
of smoothed classifiers relies on Monte Carlo simulation,
which is computationally expensive. For instance, Cohen
et al. (2019) use 100 Monte Carlo samples for prediction
and 100,000 samples for certification. If we use 100 candi-
date models to construct a SWEEN model, the certification
of a single data point will require 10,010,000 local evalua-
tions (10,000 for prediction and 10,000,000 for certification).
Inoue (2019) observes that ensembling does not make im-
provements for inputs predicted with high probabilities even

when they are mispredicted. He proposes an adaptive en-
semble prediction algorithm to reduce the execution cost
of unweighted ensemble models. We modify the algorithm
to make it applicative to weighted ensemble models, which
is detailed in Algorithm 2. For a data point, classifiers are
evaluated in descending order with respect to their weights.
Whenever an early-exit condition is satisfied, we stop the
evaluation and return the current prediction.

Algorithm 2 Adaptive prediction for weighted ensembling
1: Input: Ensembling weight w ∈ RK , candidate model

parameters θ ∈ ΘK , significance level α, threshold T ,
data point x

2: Compute z = Φ−1(1− α
2 )

3: Set π as the permutation of indices that sorts w in de-
scending order and i← 0

4: repeat
5: Set i← i+ 1
6: Compute the wπi -th local prediction

pπi ← (pπi,1, · · · , pπi,M ) ∈ ∆

7: Compute p̂i,k ←
∑i
j=1 wπj pπj,k∑i

j=1 wπj
for k = 1, 2, · · ·M

8: Compute ki ← arg maxk p̂i,k
9: until p̂1,k1 > T or for some 1 < i < K, p̂i,ki >

1
2+

z

√∑i
j=1 w

2
πj∑i

j=1 wπj

√∑i
j=1 wπj (pπj,ki−p̂i,ki )2∑i

j=1 wπj
or i = K

10: return ki and p̂i,k, k = 1, 2, · · ·M

F. Supplementary material for experiments
F.1. Detailed settings and hyper-parameters

We perform all experiments on CIFAR-10 with a single
GeForce GTX 1080 Ti GPU. For the experiments on Ima-
geNet, we use eight V100 GPUs.

For training the SWEEN models on CIFAR-10, we divide
the training set into two parts, one for training candidate
models, and the other for solving weights. We employ 2,000
images for solving weights on CIFAR-10. For ImageNet,
we use the whole training set to train candidate models and
1/1000 of the training set to solve weights.

For Gaussian data augmentation training, all the models
are trained for 400 epochs using SGD on CIFAR-10. The
models on ImageNet are trained for 90 epochs. The learning
rate is initialized set as 0.01, and decayed by 0.1 at the
150th/300th epoch.

For MACER training, we use the same hyper-parameters
as Zhai et al. (2020), i.e., we use k = 16, β = 16.0, γ =
8.0, and we use λ = 12.0 for σ = 0.25 and λ = 4.0 for
σ = 0.50. We train the models for 440 epochs, the learning
rate is initialized set as 0.01, and decayed by 0.1 at the
200th/400th epoch.
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Table 4. ACA (%) and ACR on CIFAR-10. All models are trained via the standard training. UE stands for the upper envelope, which
shows the largest ACA and ACR among the candidate models.

σ MODEL 0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 ACR

0.25

RESNET-110 79.6 65.2 50.8 34.4 0 0 0 0 0 0.489
UE-3 80.5 65.6 47.9 30.2 0 0 0 0 0 0.470
SWEEN-3 82.3 69.8 54.7 35.9 0 0 0 0 0 0.520
UE-6 81.5 67.5 50.3 34.2 0 0 0 0 0 0.491
SWEEN-6 84.2 73.2 59.5 42.4 0 0 0 0 0 0.560

0.50

RESNET-110 68.7 58.6 46.7 35.4 25.0 17.0 9.0 4.6 0 0.573
UE-3 69.6 58.3 45.8 33.7 23.0 15.8 9.2 4.7 0 0.556
SWEEN-3 70.9 61.4 50.8 38.3 27.7 20.1 12.8 6.7 0 0.630
UE-6 69.6 59.4 47.7 34.9 24.7 16.5 10.7 4.9 0 0.574
SWEEN-6 71.7 63.1 53.9 41.6 31.0 22.4 15.3 8.4 0 0.680

1.00

RESNET-110 51.4 44.9 37.9 31.8 24.6 18.8 13.8 10.2 6.7 0.559
UE-3 50.6 44.7 38.2 30.8 24.6 18.5 13.6 10.5 7.0 0.555
SWEEN-3 51.9 45.5 39.3 32.3 25.9 19.7 15.4 11.4 8.1 0.595
UE-6 52.2 44.4 38.3 31.3 25.4 19.4 14.4 10.6 7.4 0.563
SWEEN-6 53.2 46.7 39.9 33.6 27.3 22.1 16.9 12.5 9.2 0.626

F.2. Standard training on CIFAR-10

Table 4 displays the performance of two kinds of SWEEN
models under noise levels σ ∈ {0.25, 0.50, 1.00}. The per-
formance of a single ResNet-110 is included for comparison,
and we also report the upper envelopes of the ACA and ACR
of their corresponding candidate models as UE. The ACR
of the SWEEN-6 model is 0.680, much higher than that of
the upper envelope of the candidates, which is 0.574. It
confirms our theoretical analysis in Section 3 that SWEEN
can combine the strength of candidate models and attain
superior performance. Besides, SWEEN is effective when
only limited numbers of small candidate models are avail-
able. The SWEEN-3 model using ResNet-20, ResNet-26,
and ResNet-32 achieves higher ACA than the ResNet-110
at all radii on all noise levels. The total training time and
the number of parameters of the SWEEN-3 model are 36 %
and 30% less than those of ResNet-110, respectively. The
improvements can be further amplified by increasing the
number and size of candidate models. As an instance, the
ACR of the SWEEN-6 model is at least 13% higher than
that of the ResNet-110 in Table 4. The above results verify
the effectiveness of SWEEN for randomized smoothing.

F.3. SWEEN models using candidates with identical
architectures

The SWEEN-3 and SWEEN-6 models are all using can-
didate models with diverse architectures. For a more
comprehensive result, we also experiment with SWEEN
models using candidates with identical architectures. For
σ ∈ {0.25, 0.5, 1.0}, We train 8 ResNet-110 models us-
ing different random seeds on CIFAR-10 via the standard
training. We then use these models to ensemble SWEEN
models.

Table 5. Training time, #parameters and #FLOPs for models under
σ = 0.50 via MACER training. All the experiments are run on a
single NVIDIA 1080 Ti GPU.

MODEL TOTAL HRS #PARAMETERS #FLOPS

RESNET-110 49.4 1.73M 255.27M

RESNET-20 8.8 0.27M 41.21M
RESNET-26 11.3 0.36M 55.48M
RESNET-32 13.8 0.46M 69.75M

WEIGHT 0.025 - -
ENSEMBLE 33.9 1.10M 166.44M

The results are shown in Table 6 and Figure 2. We can
see that SWEEN is still effective in this scenario and sig-
nificantly boosts the performance compared to candidate
models.

We also run experiments on ImageNet using models with
identical structure but with different random initialization.
We train 3 ResNet-50 on ImageNet via the standard training
to ensemble the SWEEN models. Table 7 shows the results.
The improvement of SWEEN is substantial compared with
the AVG and UE results.

F.4. Adaptive prediction ensembling

To alleviate the higher execution cost introduced by
SWEEN, we apply the previously mentioned adaptive pre-
diction algorithm to speed up the certification. Experiments
are conducted on the SWEEN-6 models via the standard
training on CIFAR-10 and the results are summarized in
Table 8. It can be observed that the adaptive prediction
successfully reduce the number of evaluations. However,
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Table 6. ACA (%) and ACR on CIFAR-10. All candidate models are ResNet-110s trained via the standard training. UE stands for the
upper envelope, which shows the largest ACA and ACR among the candidate models. AVG stands for the average ACA or ACR of
candidate models.

σ MODEL 0.00 0.25 0.5 0.75 1.00 1.25 1.50 1.75 2.00 ACR

0.25
AVG 79.9 67.2 50.3 33.5 0 0 0 0 0 0.491
UE 80.4 68.3 52.0 34.6 0 0 0 0 0 0.496
SWEEN 83.5 73.0 60.4 43.8 0 0 0 0 0 0.572

0.50
AVG 68.4 58.0 46.1 34.5 24.4 16.2 9.7 4.4 0 0.568
UE 69.7 59.3 47.1 35.7 24.9 17.6 10.8 5.1 0 0.581
SWEEN 71.3 63.3 53.1 44.0 32.6 22.9 15.8 9.2 0 0.691

1.00
AVG 51.9 45.0 37.8 30.9 24.7 18.7 13.5 9.9 7.1 0.558
UE 53.0 46.0 38.6 31.8 25.5 19.3 14.1 10.5 7.7 0.566
SWEEN 54.1 47.3 41.0 34.7 27.6 22.9 16.7 12.2 9.2 0.623

Figure 2. Radius-accuracy curves of SWEEN models and their candidate models. All candidate models are using the ResNet-110
architecture and trained via the standard training. (Left) σ = 0.25. (Middle) σ = 0.50. (Right) σ = 1.00.

Table 7. ACA (%) and ACR on ImageNet. All candidate models are ResNet-50s trained via the standard training. The SWEEN model
here contains 3 ResNet-50s. UE stands for the upper envelope, which shows the largest ACA and ACR among the candidate models. AVG
stands for the average ACA or ACR of candidate models.

σ MODEL 0.00 0.25 0.5 0.75 1.00 1.25 1.50 1.75 2.00 ACR

0.50
AVG 56.8 52.1 46.1 42.3 37.5 32.8 28.1 21.6 0 0.723
UE 57.2 52.4 46.4 42.4 37.8 33.0 28.2 21.8 0 0.727
SWEEN 60.0 55.2 50.2 46.0 42.6 37.8 33.2 28.4 0 0.816

Table 8. ACA (%) and ACR on CIFAR-10. All models are trained
via the standard training.

σ MODEL ACR #EVALS/IMG

0.25 NORMAL 0.560 600,600
ADAPTIVE 0.547 246,981

0.50 NORMAL 0.680 600,600
ADAPTIVE 0.672 349,805

1.00 NORMAL 0.626 600,600
ADAPTIVE 0.624 431,148

the performance of the adaptive prediction models is only
slightly worse than their vanilla counterparts.

F.5. SWEEN versus adversarial attacks

We further investigate the performance of SWEEN mod-
els versus AutoAttack (Croce & Hein, 2020), which is an
ensemble of four diverse attacks to reliably evaluate robust-
ness. Similar to Salman et al. (2019a), we used 128 samples
to estimate the smoothed classifier. We share the results
below in Table 9. It can be seen that SWEEN can improve
the empirical robustness as well.



Submission and Formatting Instructions for ICML 2021 Workshop on Adversarial Machine Learning

Table 9. Certified accuracy and empirical accuracy versus AutoAt-
tack on CIFAR-10. All candidate models are trained via the stan-
dard training.

σ Model 0.00 0.25 0.5 0.75 1.00

0.50

SWEEN-3 (ACA) 70.9 61.4 50.8 38.3 27.7
SWEEN-3 (AA) 75.0 67.0 58.9 48.4 39.9
ResNet-20 (AA) 72.5 64.7 55.4 46.2 37.0
ResNet-26 (AA) 74.5 65.4 57.3 46.3 35.7
ResNet-32 (AA) 73.8 64.5 55.3 45.0 35.3


