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ABSTRACT

Analog/mixed-signal circuit design is one of the most complex and time-
consuming stages in the chip design process. Due to various process, voltage,
and temperature (PVT) variations from chip manufacturing, analog circuits in-
evitably suffer from performance degradation. Although there has been plenty of
work on automating analog circuit design under the typical variation condition,
limited research has been done on exploring robust designs under the real and
unpredictable silicon variations. To address these challenges, we present RoDe-
signer, a robust circuit design framework that involves the variation information in
the optimization process. Specifically, circuit optimizations under different vari-
ations are considered as a set of tasks. Similarities among tasks are leveraged
and competitions are alleviated to realize a sample-efficient multi-task training.
Moreover, RoDesigner prunes the task space before multi-task training to reduce
simulation cost. In this way, RoDesigner can rapidly produce a set of circuit pa-
rameters that satisfies diverse constraints (e.g., gain, bandwidth, noise...) across
variations. We compare our method with bayesian optimization, evolutionary al-
gorithm, and Deep Deterministic Policy Gradient (DDPG) and demonstrate that
RoDesigner can significantly reduce required the optimization time by 14×-30×.
We also show that RoDesigner ’s circuit performance is as good as a state-of-the-
art human design, while the design time is reduced from several days by an expert
to an hour.

1 INTRODUCTION

Analog circuit design is a paramount but extremely challenging task. It requires a huge amount
of human efforts and lacks effective automations. Due to numerous chip manufacturing variations,
analog circuits suffer from non-trivial performance degradation. Addressing such variation issues
is considerably challenging. Large manufacturing variations make the circuit performance unpre-
dictable. In the performance distribution visualized in Figure 1, quite a few proportion of chips
are landing in the red regions that are completely defected and discarded. As the chip fabrication
technology advances, variation issues become even worse, leading to a larger chip failure rate. If
such severe variation issues are not carefully handled, significant economic losses up to the billions
of dollars will occur (McConaghy et al., 2012). Hence, an effective variation-aware circuit design
methodology is in high demand.

Traditional solutions to address such circuit variation issues primarily rely on laborious human ex-
pert involvement. Experts manually design the circuit based on their expertise and the feedback from
a large number of circuit simulations and iterate the process until it passes all variation tests. How-
ever, the burdensome analysis and slow simulations make the manual design process considerably
time-consuming.

Existing automated methods cannot address variation issues effectively. The black-box optimization
algorithms (Cohen et al., 2015; Lyu et al., 2018) and learning-based automation techniques (Wang
et al., 2020; Settaluri et al., 2020; Wang et al., 2018) are used to design circuits. However, they
merely focus on the optimization under the typical condition without variations. None of them can
systematically produce a robust design under real chip variations. The variation-aware optimization
is challenging in two aspects. First, the simulation cost is prohibitively expensive in order to get ac-
curate variation effects under many test cases. Second, different variation conditions might conflict
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Figure 1: Left: Performances under variations form a distribution. Right: New technologies have
larger process variations, vulnerability to environmental variations, hence higher discarded rate.

with each other which significantly complicates the circuit optimization problem. It will cost the
solver much more time to find a feasible solution that meets all performance constraints.

To address the above challenges, in this work, we present RoDesigner, an efficient variation-aware
optimization framework for automatic analog circuit design. RoDesigner largely reduces the simu-
lation cost to design a robust analog circuit against variations. Here the variation-aware optimization
is formulated as a multi-task reinforcement learning (RL) problem, where design for each variation
condition is considered as one task. RoDesigner includes two stages. At the first stage, we select
a representative subset of tasks as the training set. Specifically, we group the tasks using clustering
algorithm and choose one task per group to form the training task set based on their relative per-
formance to the target performance. At the second stage, we leverage multi-task deep deterministic
policy gradient (DDPG) (Lillicrap et al., 2015) to train our RL agent with the selected tasks. During
training, the critic model learns to predict values of state-action pair from each task and guides the
actor to generate a better policy. To alleviate conflicting multi-task gradients, we apply PCGrad (Yu
et al., 2020) to optimize actor and critic models.

The core contribution of this work is an optimization framework for addressing the variation is-
sue efficiently. This variation-aware optimization framework comprises multi-task RL training and
task-space pruning, bringing down the simulation cost. We conducted extensive experiments on
three real-world circuits with practical variation requirements. Compared with evolutionary strategy
(ES) (Cohen et al., 2015), bayesian optimization (BO) (Snoek et al., 2012), and DDPG methods,
RoDesigner dramatically reduces the simulation cost needed to overcome variations. The simula-
tion cost is cut down by 14×-30×. The cost reduction becomes 4.4× larger when scaling to the
large task set. Moreover, RoDesigner’s design solutions are comparable in performances to a state-
of-the-art human design. While it takes several days for the expert to tune the circuit, RoDesigner
can finish it within an hour. Our study enables the deployment of analog automation techniques on
real silicon conditions.

2 RELATED WORK

PVT Variation and Corners – The major part of variations is PVT variation. PVT variation usu-
ally refers to a combination of global process variation (P), power supply (V), and temperature (T)
variations. Process variations happen during chip manufacturing, resulting in different transistor
characteristics. There are five transistor models to cover the process variation {TT, SS, FF, SF, FS}.
The T stands for typical, S for slow, and F for fast versions of transistors. Power supply voltage
and temperature variations are in the end user environments. For example, circuits in space stations
must handle extreme temperatures. To avoid circuit failures due to uncontrollable PVT variations,
we model all these variations by a set of PVT corners. A PVT corner is a combination of process,
voltage, and temperature values. For example, a fast-process, high-voltage, and low temperature cor-
ner is {Process = FF, Vdd = 1.3V, T = 15°C }. A robust circuit should maintain desired performances
in all of the pre-set PVT corners.
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Automatic Analog Sizing – An important stage of analog design is to size the devices in the given
topology to get desire performances. Analog sizing is a challenging engineering design problem
even without considering variations. There are two reasons. First, the correlation between the sizing
vector and the multi-dimensional metrics is complex. Second, the sizing solutions are usually very
sparse in the design space. The list of things that can go wrong is long. To deal with these challenges,
designers usually reduce the design space to a small range based on manual analysis. Then designers
rely on a large number of simulations to fine-tune the sizing parameters. Such a design process is
labor-intensive and time-consuming. Therefore, automatic analog sizing techniques are attracting
more and more research interests these years. The optimization methods, including Bayesian Opti-
mization (Snoek et al., 2012; Lyu et al., 2018), Genetic Algorithms (Cohen et al., 2015) formulate
the circuit design as a black-box problem. They show the differences in the sample efficiency and op-
timality. However, the critical issue is that they have to optimize the circuit from scratch every time
when encountering a new design condition. The lack of tranferalibity across different conditions
prevents them from addressing the variation issue at an affordable cost. Recently, learning-based
methods have been extensively applied to circuit sizing problems. DRL methods show the potential
to achieve higher circuit performances with enough explorations in the design space compared to the
black-box optimization methods (Wang et al., 2018; 2020; Settaluri et al., 2020). Moreover, deep
neural networks (DNN) (Li et al., 2019; Wang et al., 2020; Zhang et al., 2019) can approximate the
complex relation between circuit parameters and performances. The learnt circuit representations
and the RL formulations enable the transfer learning across different design conditions, including
different technologies and pre/post-layout design stage. However, current methods cannot reach the
design goal under different conditions simultaneously. In this paper, our work effectively addresses
the variations of real-circuits altogether.

Multi-Task RL – Deep reinforcement learning (DRL) is an emerging subfield of RL that can scale
RL algorithms to complex and rich environments. Recently, DRL has many successful applications
such as robotics (Levine et al., 2016), AutoML (He et al., 2018), and chip floor-planning (Mirho-
seini et al., 2021). Multi-task RL focuses on enabling the single agent to solve multiple related
problems, either simultaneously or sequentially (Teh et al., 2017). Learning multiple related tasks
together should facilitate the learning of each individual task (Bengio, 2012; Caruana, 1997; Taylor
& Stone, 2011; Yosinski et al., 2014). But it has also been found that training on multiple tasks can
negatively affect performance on each task. Different kinds of techniques are proposed to solve this
issue including new architectures (Heess et al., 2016; Devin et al., 2017), auxiliary tasks (Jaderberg
et al., 2016), and new optimization schemes (Hessel et al., 2019; Yu et al., 2020). Besides, choosing
which task or tasks to train on at each time step is also important. The task scheduling (Sharma
et al., 2017) is also discussed. The idea behind it is to assign task scheduling probabilities based on
relative performance to a target level. Optimized training task selections can significantly improve
model performance (Bengio et al., 2009). We explored both the optimal task selection and multi-task
training. They are integrated together into the framework to boost the sampling efficiency.

3 PROPOSED PVT VARIATION-AWARE CIRCUIT SIZING

3.1 PROBLEM DEFINITION

Given a fixed circuit topology, we search for a circuit sizing vector whose performance can sat-
isfy the constraints (design targets) across all variations. Then the problem can be formulated as a
constraint satisfaction problem under different conditions.

minimize 0

subject to Fi(X|Tj) < Ci, j = 1, . . . , k
(1)

where

X = X1, X2, ..., Xn

D = D1, D2, ..., Dn

C = C1, C2, ..., Cm

T = T1, T2, ..., Tk
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X , the sizing vector, is an n-dimensional variable which corresponding to n circuit sizing parame-
ters. D is the domain for X . For example, D1 is [0, 1] which means the design space of X1 is [0,
1]. T is the set of k pre-defined PVT corners to cover possible variations in the real world. C is
the constraint set for all circuit metrics. Because we have m metrics, the number of constraints is
also m. Fi(X|Tj) is the ith performance metric of circuit under the jth corner. Fi is a non-linear
mapping between X and the ith metric in the performance. X is the input, and T is the parameter.
We rely on the circuit simulator to provide this mapping. Therefore, our goal is to find anX that can
satisfy any constraints in C under any corner task in T . It is worth noting that choosing which tasks
to optimize is also non-trivial. Spending simulations on each task is wasteful and provides minimal
additional information since the correlation among tasks is ignored. A more interesting way is to
conduct the task selection and multi-task training jointly.

3.2 FRAMEWORK OVERVIEW

An overview of the proposed framework is shown in Figure 2. We consider satisfying constraints
under one PVT corner as a single task. In each iteration, (1) RoDesigner selects a new task subset
from all PVT corner tasks. For the first iteration, a pre-defined nominal corner will be selected as
the first task; (2) The RL agent generates actions and passes them to each environment in the task
subset; (3) The environment denormalizes actions ([-1, 1] range) to actual circuit sizings and refines
them. The sizings will be truncated according to minimum precision, lower and upper bounds of
the technology node if necessary; (4)Simulate the circuit (5) Agent gets the rewards from corner-
specific environments. Optimizations are performed on the actor and critic networks with PCGrad
technique. (6) If all tasks in the subset are passed during the agent evaluation, the sizing solution
will be tested on the full task set. If it passes all tasks, the loop terminates. Otherwise back to (1).
In the meantime, actor-critic model weights and replay buffers are saved for the agent to inherit in
the next iteration.

3.3 AUTOMATIC SIZING WITH MULTI-TASK RL

Multi-task RL is a training paradigm in which the agents are trained with samples from multiple
tasks simultaneously. Shared representations are learnt from a collection of related tasks. These
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Figure 2: RoDesigner Overview. (1) A pruned task subset is generated from the full task set (2)
Multi-task RL agent is trained on task subset (3) Training continues until the produced sizing can
achieve training tasks. Then the sizing is evaluated on the full set. If it passes all the tasks, RoDe-
signer returns the result.
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shared representations increase sample efficiency and can potentially yield a faster learning speed
for related tasks. In our setting, we create a multi-task agent whose critic can predict the value of
task-conditioned action-state pairs. Since the target of the actor is to look for a sizing that passes all
tasks, the actor model is set to be task agnostic. Another benefit from shared representations is its
ability to generalize to unseen corner tasks, which is useful in Monte Carlo corner tests. There are
more discussions in Section 4.

State. The PVT information is embedded in our states, s = (p, v, t), where p is the one-hot repre-
sentation of component type, v is the normalized voltage value and t is the normalized temperature
value.

Reward. Our reward is formulated as:

R =

{
r, r < −0.02
0.2, r ≥ −0.02 (2)

r =

M∑
i=1

min{mi −m∗
i

mi +m∗
i

, 0} (3)

where mi is the current simulated ith performance metric and m∗
i is the corresponding constraint.

The reward is a measure of the relative distance between the current performance metrics and the
corresponding design targets. Once the requirements are met, the reward value is fixed at 0.2. This
reward formulation is motivated by the design goal in the real world. Designers tend not to over-
optimize the circuits. It is more important that designers can fulfill the requirements in a short period
of time.

Action. The action vector is a set of values corresponding to the sizing parameters for each circuit.
They include transistor sizes (width, length) and capacitor values. The details of settings for each
benchmark are illustrated in section 4.

Training. The environment includes the circuit, simulator, and PVT information. Each time we
query the environment, it simulates the circuit and returns the performance with PVT information.
After agent-environment interactions, samples (s, a, r, zi) will be stored in the replay buffers , where
s is the state, a is the action, r is the reward, and zi is the corner task ID. The critic neural network
takes (s, a, zi) as a input and predicts the corresponding value for the current corner task. Relying
on the insight that performance under different corners are related, most of critic neural network
parameters are shared across tasks except a few in the input layer. The task ID is removed from
the inputs of the actor neural network. The training process is modified from DDPG (Lillicrap
et al., 2015). Details are illustrated in Algorithm 1. M is the max optimization episodes and W
is the warm-up episodes. N is the truncated norm noise. Ns is the training batch size. The key
difference from the single-task setting is that we sample a stratified batch from buffers every time
and generate task-specific losses. Also, samples from different tasks are stored in separated tasks.
For the optimization strategy, we use PCGrad (Yu et al., 2020) to address conflicting gradients from
different tasks.

3.4 TASK SPACE PRUNING

The straightforward ways to form a training task set include using the full task set and sampling tasks
uniformly from the full set. Many multi-task algorithms use these two baseline methods to choose
training tasks. In our case, the number of corner tasks is tied to the number of time-consuming
simulations. This motivates us to create small-sized training tasks. Therefore, we apply k-means
clustering (MacQueen et al., 1967) to prune the full task space. Given a circuit sizing, we simulate
the circuit on all corner tests to get the corresponding performance distribution. Performances of
each corner are high-dimensional vectors. We divide the corners into different groups by using the
performances as the features. We select the corner with the lowest reward in each cluster as one of
the training tasks in the next iteration. Relying on the insight that corners in the same cluster share
similar learning dynamics, we only have to select one of them in our training tasks. By doing so, the
task space for multi-task RL training in each iteration is pruned to be a significantly smaller scale
while still being a good representation of the full task space. If there is no sizing given at first, a
pre-defined nominal corner will be chosen as the first corner to train on. An interesting finding from
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Algorithm 1: Proposed Automatic Sizing with Multi-task RL

1 Given critic network Q(S,A,Zi | θQ) and actor network µ(S | θµ) with critic weights θQ and
actor weights θµ ;

2 Given replay buffers {Pi} ;
3 for episode = 1, M do
4 Initialize random process N ; Reset all environments S;
5 if episode ≤W then
6 Warm-up: randomly sample an action Ã;
7 else
8 Select action Ã = µ(S | θµ) +N according to the current policy and exploration noise;
9 Denormalize and refine Ã with design constrains to get A;

10 Simulate the A for each task to get rewards {Ri} ;
11 Store each transition (S,A,R,Zi) in Pi;
12 if episode > W then
13 Sample a stratified batch of (Ŝ, Â, R̂, Ẑi) from {Pi} (batch size = Ns);
14 Update the critic by minimizing K losses with PCGrad:
15 Li =

1
Ns

∑Ns
k=1(R̂k −B −Q(Ŝk, Âk, Ẑi | θQ))2;

16 Update the actor using the K gradients modified by PCGrad:
17 ∇θµJi = PCGrad( 1

Ns

∑Ns
k=1 ∇aQ(S,A,Zi|θQ)|Ŝk,µ(Ŝk)∇θµµ(S|θµ)|Ŝk );

strongARM Latch Folded-Cascode OTATwo-stage OTA

Figure 3: Three analog/mixed-signal benchmarks.

the empirical study results is that the easier corner tasks help to accelerate the learning of other hard
tasks. Therefore, we always add a nominal corner as an auxiliary task in the training task sets at all
time steps. If all the corners are passed, the loop terminates.

4 EXPERIMENTS

4.1 ANALOG/MIXED-SIGNAL CIRCUITS

We experiment with three real-world analog/mixed-signal circuits. They are two-stage operational
transimpedance amplifier (Two-stage OTA), folded-cascode operational transimpedance amplifier
(Folded-Cascode OTA) and strongARM Latch. They are chosen for three reasons. First, they are the
most important and common-used blocks in various systems. Engineers usually spend the longest
time optimizing the performance and robustness of these circuits. Second, they include two rep-
resentative kinds of analog circuits which are the static and dynamic circuits. The two kinds are
dictated by different physic and engineering rules. The third reason is that they have different levels
of variations. Two-stage OTA is with 45nm, and the other two are with older 180nm technology.
45nm has a larger variation. Therefore, we can study the impacts of different variation magnitudes.
Each circuit is a composition of a number of transistors and capacitors. Each transistor has two pa-
rameters, the gate width and length (w, l). Capacitors have one parameter (c), the capacitance value.
The initial design spaces of these devices are given by human designers. To minimize the efforts of
designers, our design space are set to be very large. They have 1014, 1027, and 6.4× 1064 possible
values correspondingly. The circuits are simulated on SPICE-based simulators (Nagel & Pederson,
1973). Two-stage OTA is on Ngspice and BSIM 45nm predictive technology. Folded-Cascode OTA
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and strongARM Latch are on Cadence spectre and TSMC 180nm technology, a commercial simu-
lator tool. For strongARM Latch, we have a published, state-of-the-art human design (Tang et al.,
2020) which can be compared with the solution produced by RoDesigner.

Two-stage OTA. The topology is shown in Figure 3. It has 7 parameters including 6 transistor
widths (w) and 1 capacitor value (c). The range of w is [0.5, 50]∗1µM and [0.1, 10]∗1pF for c.
The total design space is 1014 possible values. The performance metrics are current(i), unity gain-
bandwidth (ugb), phase margin (phm). The corresponding constraints (C) and the PVT corner tests
(T) are showed below. There are 30 corners (5× 3× 2).

T = {TT, SS, FF, FS, SF} × {1.0V, 1.1V, 1.2V } × {0◦C, 100◦C }
C = {i ≤ 5mA, ugb ≥ 15MHz, phm ≥ 60◦}

Folded-Cascode OTA. The topology is shown in Figure 3. It has 20 parameters, including 7
transistor widths (w), 7 lengths (l), 2 capcitor values (c) and 4 transistor ratios (n). The range of
w is [0.24, 150]∗1µM , [0.18, 2]∗1µM for l, [0.1, 2]∗1pF , [0.1, 10]∗pF for different c. The total
design space is 6.4 × 1064 possible values. The performance metrics are power(p), unity gain (g),
phase margin (phm), common-mode rejection ratio (CMRR), power supply rejection ratio (PSRR),
noise (n), unity-gain-bandwidth (ugb). The corresponding constraints (C) and the PVT corner tests
(T) are showed below. There are 20 corners (5× 2× 2).

T = {TT, SS, FF, FS, SF} × {1.6V, 1.8V } × {0◦C, 100◦C }
C = {p ≤ 1mW, ugb ≥ 30MHz, phm ≥ 60◦, n ≤ 30mV, g ≥ 60dB, }

strongARM Latch. The topology is shown in Figure 3. It has 7 parameters, including 6 transistor
widths (w), 1 capcitor values (c). The range of w is [0.22, 50]∗1µM , [0.15, 4.5]∗1pF for c. The
total design space is 1027 possible values. The performance metrics are power(p), set delay (sd),
reset delay (rd), set voltage (sv), reset voltage (rv), noise (n). The corresponding constraints (C) and
the PVT corner tests (T) are showed below. There are 20 corners (5× 2× 2).

T = {TT, SS, FF, FS, SF} × {1.1V, 1.2V } × {0◦C, 100◦C }
C = {p ≤ 4.5uW, n ≤ 50uV, sd ≤ 14ns, rd ≤ 9.1ns, sv ≥ vdd− 0.05V, rv ≤ 0.05V }

4.2 TRAINING SETTINGS

To demonstrate the effectiveness of the proposed RoDesigner, we apply RoDesigner to the above
three circuits and record the simulation time it took to pass all the corner tests. We compare the
results of RoDesigner with Bayesian Optimization (BO) (Snoek et al., 2012), Evolutionary Strategy
(ES) (Hansen, 2016), and Deep Deterministic Policy Gradient (DDPG). For the three baselines,
the variation-aware circuit optimization is considered as a single task. The average reward of all
corner tasks is used to indicate the goodness of the current sizing. BO, ES, and DDPG improve
the average reward until it reaches 0.2. In ES, DDPG, and RoDesigner, the circuit simulation time
accounts for over 95% of the total time. The computation time of BO becomes comparable with
simulation time after many iterations. We compare these methods in terms of the simulation time.
For RL training, we use a training batch size of 64, replay buffer size of 1000, and exploration noise
standard deviation of 0.2. Actor and critic are all 4-layer multilayer perceptions (MLPs). For RL
methods, we evaluate the agent every 10 training steps. All the experiments are conducted on a 6
core CPU. RL methods are implemented with PyTorch (Paszke et al., 2019; Stooke & Abbeel, 2019)

4.3 EVALUATION OF THE CIRCUIT OPTIMIZATION

In all three circuit benchmarks, RoDesigner achieved the smallest simulation cost to accomplish
all the corner tasks. In each benchmark, it passed all the corners in the runs of different random
seeds hence a 100% success rate. The comparison of simulation costs are shown in Figure 4. RoDe-
signer consistently outperforms the baseline methods including ES, BO, and single-task DDPG. The
simulation cost reductions are huge, 26x in Two-Stage OTA, 30x in strongARM Latch, and 14x in

7



Under review as a conference paper at ICLR 2022

Two-Stage OTA

ES 94290

BO 67780

DDPG 218800

RoDesigner 8362

8,362

218,800

67,780

94,290

7004

26x

CO2 Emission (lbs)

strongARM

ES 27450

BO 9160

DDPG 3667

RoDesigner 905

905

3,667

9,160

27,450

1,164

16,667

6,006

10,086

Folded-Cascode OTA

ES 10086

BO 6006

DDPG 16667

RoDesigner 1164

30x 14x

Two-Stage OTA strongARM Latch Folded-Cascode OTA

*

ES

DDPG

RoDesigner
0 50K 100K 150K 200K 0 12K 24K 36K 48K 0 3K 6K 9K 12K

BO

*

* < 100% success rate within the given simulation budget

1

Figure 4: Simulation times for each method to take to first hit reward=0.2

0 10 20 30 40

# Simulation (k)

-1.0

-0.7

-0.4

-0.1

0.2

R
ew

ar
d

Two-Stage OTA

ES (baseline)

BO (baseline)

DDPG (baseline)

RoDesigner

(a)

0 10 20 30 40

# Simulation (k)

-0.3

-0.2

-0.1

0.0

0.1

0.2

R
ew

ar
d

strongARM Latch

ES (baseline)

BO (baseline)

DDPG (baseline)

RoDesigner

(b)

0 10 20 30 40

# Simulation (k)

-1.0

-0.7

-0.4

-0.1

0.2

R
ew

ar
d

Folded-Cascode OTA

ES (baseline)

BO (baseline)

DDPG (baseline)

RoDesigner

(c)

Figure 5: Compare learning curves (average reward vs. # simulation) among baselines and our
proposed RoDesigner. Reward=0.2 indicates all tasks are passed. RoDesigner hits the reward of 0.2
significantly faster than the baseline methods on all benchmarks.

Folded-Cascode OTA. Note that BO becomes slow after having many samples. We ran BO for the
same time with other methods for fair comparisons. We have several findings from the experiment
results. First, all methods spend more simulations on optimizing the Two-Stage OTA which has
larger variations with the 45nm technology. Second, compared to the ES and BO, single-task DDPG
performs better in strongARM Latch while worse in the Two-Stage and Folded-Cascode OTAs. This
is possibly because strongARM Latch is a dynamic circuit that is different from the static OTAs. To
conclude, RoDesigner shows a significant efficiency improvement in the different levels of vari-
ations and circuit benchmarks with distinct natures. The learning curves are shown in Figure 5.
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7,004
35,670

313,200 DDPG
Multi-task DDPG
RoDesigner
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Figure 6: Ablation of applying multi-
task and task space pruning. Using two
together brings the least simulation cost

4.4 ANALYSIS

Multi-Task and Task Space Pruning. We conduct an
ablation study on multi-task and task space pruning. In
Figure 6, We compared simulation costs of DDPG base-
line, multi-task DDPG with full task set, and RoDesigner
(multi-task DDPG with pruned task set). DDPG took
over 300,000 simulations to pass all corner tests. With
the multi-task training, the number of simulations was re-
duced to 35,000. With the pruned task space, the num-
ber of simulations was further cut down to 7,000. We
also visualize the corner performances and the optimiza-
tion trace in the performance plane of three circuit bench-
marks in Figure 7. Noise (n) - Delay (sd) plane is chosen
for strongARM Latch and Bandwidth (ugb) - Phase Mar-
gin (phm) for OTAs. Selected training tasks are denoted by black circles. We can clearly see that
selections are located at the performance boundary. Two snapshots of the performance distribution
during the optimization are also showed. They clearly indicate that distributions moved towards the
feasible set area from t0 to t1 with such pruned task space.

RoDesigner vs. Human Expert. To examine the quality of the solutions from RoDesigner, we
compared them with a state-of-the-art human design. The performance metrics are listed in Table
1. Each metric is shown in the format of (min, max) across corners. For all metrics, RoDesigner
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feasible set
Two-Stage OTA strongARM Latch Folded-Cascode OTA

feasible set

feasible set

Figure 7: Performance distributions of two intermediate sizings during the RoDesigner optimization.
Red and blue markers are performances on different corners at time t0 and t1. Selected training
corners are indicated by black circles.

Table 1: Comparison between RoDesigner’s solution and expert’s solution

Power
(uV)

Set Delay
(ns)

Reset Delay
(ns)

Noise
(uV)

DSV
(V)

Reset Voltage
(nV)

Human Expert Tang et al. (2020) (3.78, 4.69) (6.42, 19.7) (5.02, 9.40) (41.9, 57.3) (0, 0) (8.71, 1.99k)
RoDesigner (2.22, 2.88) (4.46, 13.9) (1.30, 2.3) (45.3, 61.9) (0, 0) (20.4, 2.21k)

performed better excepts for the slightly inferior noise performance. This benchmark, strongARM
Latch, has non-linear behaviors and variation-sensitive performances. A large amount of tuning
efforts is required. It can take days for the expert to achieve the design target. Now RoDesigner can
achieve the same task and produce high-quality solutions within an hour.

# of Monte Carlo Corners

RoDesigner RoDesigner Baseline

20 3049 3049

40 2649 6098

80 3315 12196

100 3486 15245

150 5144 22867

S
im

ul
at

io
ns

2E+03

6.4E+03

1.08E+04

1.52E+04

1.96E+04

2.4E+04

10 48 85 123 160
# of Monte Carlo corners

w/ pruned  
task space

RoDesigner Two-Stage OTA

7,004
35,670

313,200 DDPG
Multi-task DDPG
RoDesigner

S
im

ul
at

io
ns

w/o pruned  
task space

4.4x

Figure 8: Required simulation
steps with more corners

Scale to Large Corner Sets. Here we empirically study how
the simulation cost scales as we take on more and more corner
tasks. In the previous sections, we discussed the fully factorial
corner test for each benchmark. In industry-level circuits, ran-
domly sampled corners, Monte Carlo corners, are also used.
There can be hundreds, even thousands of Monte Carlo cor-
ners needed to perform a thorough verification. Therefore, the
scalability to a large corner set is important. To demonstrate
the scalability of RoDesigner, we conduct Monte Carlo sam-
pling on process variation modelsets {TT, FF, SS, FS, SF},
continuous voltage range [1.0, 1.2] and continuous tempera-
ture range [0°C, 100°C] and form 5 Monte Carlo corner test
sets of different sizes. These Monte Carlo corner sets have 20,
40, 80, 100, 150 corners, respectively. Experiments are done
on Two-Stage OTA benchmark and results are shown in Figure 8. RoDesigner only needs 69% more
simulations when the corner task set becomes 7.5× larger. The simulation cost difference between
RoDesigner and the baseline methods will become 4.4× larger at the scale of 150 corners.

5 CONCLUSION

We present RoDesigner, a variation-aware optimization framework based on multi-task RL. The key
property of RoDesigner is the ability to conduct efficient multi-task learning with pruned training
task space. Therefore, it can effectively design circuits for variations. We show that RoDesigner
can reduce simulation cost by an order of magnitude compared with baselines. It can also scale
to a large number of variation cases. We also show that RoDesigner’s solution is superior to the
state-of-the-art human design in a popular circuit block. As today’s chip design becomes extremely
challenging with the presence of variations, RoDesigner shows the potential to drastically shorten
the circuit design cycle and reduce the cost.
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ETHICS STATEMENT

We do not find insights, methodologies of this work potentially harmful to ethnicity. Automating the
circuit design is important because it can shorten the design cycle. As today’s technology becomes
more advanced and our computational needs becomes more diverse, the design complexity grows
exponentially. The effective automation techniques can address this bottleneck and accelerate the
semiconductor development.

REPRODUCIBILITY STATEMENT

Since the optimization and RL methods have stochasticity, we ran each of methods with three dif-
ferent random seeds. The anonymous code has been put into the supplementary materials. Note the
confidential information of circuit technology has been removed from the materials.
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A APPENDIX

A.1 IMPROVE SAMPLE EFFICIENCY WITH PERFORMANCE PREDICTOR

To further improve the sample efficiency and reduce the simulation times, we propose a supervised
learning method to obtain the performance of multiple corners only with one time of simulation.
Specifically, for each step during the reinforcement learning, we only use the circuit simulator to
simulate one corner, and the performance of other corners is predicted with a performance predictor.

We experimented with the two-stage OTA circuit. We collect a dataset of 10,000 random samples.
Each sample contains the sizing and performance on all the corners. The predictor takes seven
sizings, and four performance metrics on TT (temperature 27.0 and VDD 1.2v) as inputs and directly
regresses the performance metrics of all other 30 corners (120 in dimension). We leverage a six-
layer multi-layer perceptron model with hidden dimension 512. The 10,000 samples are split to
train:valid:test=8:1:1. We use Mean Square Error (MSE) loss, Adam optimizer with 5.0e-4 learning
rate, and weight decay lambda as 1.0e-4. The model is trained for 100 epochs with batch size 64. It
can provide accurate performance estimations with RMSE of around 0.08.

Since the predictor is trained with randomly generated data, it is challenging to provide estima-
tions for high-performance sizings. The predicted rewards of PVT corner tasks guide the agent to
approaching the desired solution. But we still need real simulations to reach the goal ultimately.
Therefore, we only employ the predictor in the early stage (first two task subsets) of the optimiza-
tion. Table 2 shows the number of simulations with or without predictor on the two-stage OTA
circuit. We run twice with different seeds. In the first run, the predictor reduces simulation times
by 7,130; nevertheless, the predictor cannot reduce simulation in the second run. One future step to
improve this is to use the dataset generated with RL or evolutionary search so that the predictor can
provide accurate results for data points near the final goals.

Table 2: Number of Simulations Using Performance Predictor

#sim w/o predictor #sim w/ predictor #sim difference

Run 1 20,839 13,529 -7,130

Run 2 5,049 9,694 +4,645

A.2 RODESIGNER LIBRARY

To optimize circuit by reinforcement learning (RL) and other algorithms, we built RoDesigner
Framework. Each circuit benchmark is wrapped up as an environment including the circuit netlist,
PDK, and the simulator. For RL part, we leverage the open-source library, rlpyt. In summary,
RoDesigner provides the following features: (1) It supports different netlist, PDK, and simulators.
Design targets and testbench can be easily configured by circuit designers by choosing their famil-
iar tools. (2) It supports parallel environment query. Multiple circuit environments with different
PVT settings can be run simultaneously. Also, rlpyt provides parallel workers which are multiple
agent-environment pairs. These parallelisms accelerates the optimization process since simulation
time is dominant in the process. (3) It provides detailed circuit metrics logging for debugging. In
the meantime, rlpyt provides learning diagnostics logging to debug RL dynamics.

We include the code as a .zip file within supplementary materials.
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