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Abstract
Bayesian causal discovery aims to infer the
posterior distribution over causal models from
observed data, quantifying epistemic uncertainty
and benefiting downstream tasks. However, com-
putational challenges arise due to joint inference
over combinatorial space of Directed Acyclic
Graphs (DAGs) and nonlinear functions. In this
work, we introduce a scalable Bayesian causal
discovery framework based on stochastic gradient
Markov Chain Monte Carlo (SG-MCMC) that
directly samples DAGs from the posterior without
any DAG regularization, simultaneously draws
function parameter samples and is applicable
to both linear and nonlinear causal models. To
enable our approach, we derive a novel equiv-
alence to the permutation-based DAG learning,
which opens up possibilities of using any relaxed
gradient estimator defined over permutations. To
our knowledge, this is the first framework apply-
ing gradient-based MCMC sampling for causal
discovery. Empirical evaluations on synthetic and
real-world datasets demonstrate our approach’s ef-
fectiveness compared to state-of-the-art baselines.

1. Introduction
The quest for discovering causal relationships in data-
generating processes lies at the heart of empirical sciences
and decision-making (Pe’er et al., 2001; Sachs et al., 2005;
Van Koten & Gray, 2006). Structural Causal Models
(SCMs) (Pearl, 2009) and their associated Directed Acyclic
Graphs (DAGs) provide a mathematical framework for
modeling such relationships. Knowledge of the underlying
SCM permits predictions of unseen interventions and causal
reasoning, thus making causal discovery – learning an
unknown SCM and its associated DAG from observed data
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– a subject of extensive research (Peters et al., 2017).

In contrast to traditional methods that infer a single graph
or its Markov equivalence class (MEC) (Chickering, 2002;
Spirtes et al., 2000), Bayesian causal discovery (Friedman &
Koller, 2003; Heckerman et al., 2006; Tong & Koller, 2001)
aims to infer a posterior distribution over SCMs and their
DAGs from observed data. This approach encapsulates the
epistemic uncertainty, degree of confidence in every causal
hypothesis, which is particularly valuable for real-world
applications when data is scarce. It is also beneficial for
downstream tasks such as experimental design (Annadani
et al., 2023; Murphy, 2001; Tigas et al., 2022).

The central challenge in Bayesian causal discovery lies in
inferring the posterior distribution over the union of the ex-
ponentially growing (discrete) DAGs space and (continuous)
causal model parameters. Prior works have used Markov
Chain Monte Carlo (MCMC) to directly sample DAGs or
bootstrap traditional discovery methods (Chickering, 2002;
Murphy, 2001; Tong & Koller, 2001), but these methods are
typically limited to linear models which admit closed-form
marginalization over continuous parameters. Recent
approaches have begun to utilize gradient information for
more efficient inference. These approaches are based on
either the DAG regularizer (Zheng et al., 2018) (for e.g.
DIBS (Lorch et al., 2021)) with continuous relaxation of
adjacency matrices, or permutation based methods which
directly infer permutation matrices over nodes through
Variational Inference (VI) (Cundy et al., 2021). DAG
regularizer based methods are usually computationally
expensive due to the DAG constraint and cannot guarantee
DAG generation, while existing permutation based methods
are usually restricted to only linear causal models.

In this work, we propose BayesDAG, which overcomes the
above limitations. Our contributions are:

1. We prove that an augmented space of edge beliefs and
node potentials (W ,p), similar to NoCurl (Yu et al.,
2021), permits equivalent Bayesian inference in DAG
space without the need for any regularizer.

2. We derive an equivalence relation from this augmented
space to permutation-based DAG learning which pro-
vides a general framework for gradient-based posterior
inference.
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3. Based on this general framework, we propose a scal-
able Bayesian causal discovery approach with SG-
MCMC for DAGs and causal model parameters. Our
approach is model-agnostic for linear and non-linear
cases and also offers improved inference quality with
sampling approach (Ma et al., 2015).

2. Background
Structural Causal Model The causal relationships
among d variables X ∈ Rd can represented by a Structural
Causal Model (SCM) which consists of a set of structural
equations (Peters et al., 2017) where each variable Xi is a
function of its direct causes XPai and an exogenous noise
variable ϵi (for e.g Gaussian):

Xi := fi(XPai) + ϵi with ϵi ∼ N (0, σi) (1)

These equations induce a causal graph G = (V ,E), typi-
cally assumed to be a DAG (Pearl, 2009). A directed edge
between a node pair vi, vj ∈ V (i.e., vi → vj) represents
that Xi causes Xj . We use the binary adjacency matrix
G ∈ {0, 1}d×d to represent the causal graph. Given a
dataset D = {x(1), . . . ,x(N)}, DAG G and SCM func-
tional parameters Θ, they induce a unique joint distribu-
tion p(D,Θ,G) = p(D|G,Θ)p(G,Θ) with the prior
p(G,Θ) and likelihood p(D|G,Θ) (Friedman & Koller,
2003). Bayesian causal discovery aims to infer the posterior
p(G,Θ|D) = p(D,Θ,G)/p(D). However, this posterior
is intractable due to super-exponential growth of the possible
DAGs G (Robinson, 1973) and continuously valued model
parameters Θ of nonlinear functions. VI (Zhang et al., 2018)
or SG-MCMC (Gong, 2022; Ma et al., 2015) are two types
of methods developed to tackle general Bayesian inference
problems, but adaptations are required for Bayesian causal
discovery.

NoCurl Characterization Inferring causal graphs is chal-
lenging due to the DAG constraint. Recently, (Yu et al.,
2021) introduced NoCurl, a novel characterization of the
weighted DAG space. They define a potential pi ∈ R for
each node i, grouped as potential vector p ∈ Rd . They also
introduce a gradient operator on p, i.e. (gradp)(i, j) =
pi − pj . Based on the above operation, a mapping that di-
rectly maps from an augmented space (W ,p) to the DAG
space, γ(·, ·) : Rd×d × Rd → Rd×d, was proposed:

γ(W ,p) = W ⊙ ReLU(gradp) (2)

where ReLU(·) is the ReLU activation function and W is a
skew-symmetric continuously weighted matrix. This for-
mulation is complete (Theorem 2.1 in (Yu et al., 2021)), as
any continuously weighted DAG can be represented by a
(W ,p) pair and vice versa. NoCurl translates the learning
of a single weighted DAG to a corresponding (W ,p) pair.

However, direct gradient-based optimization is challenging
due to a highly non-convex loss landscape, which leads to
the reported failure in (Yu et al., 2021). Although NoCurl
appears suitable for our purpose, the failure in directly learn-
ing suggests non-trivial optimizations. We hypothesize that
this arises from the continuously weighted matrix W . In the
following, we introduce our proposed parametrization in-
spired by NoCurl to characterize the binary DAG adjacency
matrix.

3. Sampling the DAGs
3.1. Bayesian Inference in W,p Space

The NoCurl formulation (Equation (2)) focuses on learning
a single weighted DAG, which is not directly useful for
our purpose. We need to address two key questions: (1)
considering only binary adjacency matrices without weights;
(2) ensuring Bayesian inference in (W ,p) is valid.

Consider the mapping τ : {0, 1}d×d × Rd → {0, 1}d×d:

τ(W ,p) = W ⊙ Step(gradp) (3)

where we abuse the term W for binary matrices, and replace
ReLU(·) with Step(·). W acts as mask to disable the edge
existence. Thus, due to the Step, τ can only output a binary
adjacency matrix. We show that performing Bayesian infer-
ence in this modified augmented (W ,p) space is valid, i.e.,
using the posterior p(W ,p|D) to replace p(G|D). This
differs from NoCurl, which focuses on a single graph rather
than the validity for Bayesian inference, requiring a new the-
ory for soundness. We provide the main results and relegate
all proofs and details to the appendix.

Theorem 3.1 (Equivalence of inference in (W ,p) and bi-
nary DAG space). Assume graph G is a binary adjacency
matrix representing a DAG and node potential p does not
contain the same values, i.e. pi ̸= pj ∀i, j. Then, with the
induced joint observational distribution p(D,G), dataset
D, and a corresponding prior p(G), we have

p(G|D) =

∫
pτ (p,W |D)1(G = τ(W ,p))dW dp

(4)

if p(G) =
∫
pτ (p,W )1(G = τ(W ,p))dW dp, where

pτ (W ,p) is the prior, 1(·) is the indicator function, and
pτ (p,W |D) is the posterior distribution over p,W .

This theorem guarantees that instead of performing infer-
ence directly in the constrained space (i.e. DAG space), we
can apply Bayesian inference in a less complex (W ,p)
space where W ∈ {0, 1}d×d and p ∈ Rd.

For inference of p, we adopt a sampling-based approach,
which is asymptotically accurate (Ma et al., 2015) and pro-
vides better inference quality compared to VI (Gong et al.,
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2019; Springenberg et al., 2016; Trippe & Turner, 2018).
In particular, we consider SG-MCMC (refer to Section 4),
which avoids the expensive Metropolis-Hastings acceptance
step and scales to large datasets. We emphasize that any
other suitable sampling algorithms can be directly plugged
in, thanks to the generality of the framework.

3.2. Equivalent Formulation

The mapping τ does not provide meaningful gradient infor-
mation for p due to the piecewise constant Step(·) function.
We address this issue by deriving an equivalence to a
permutation learning problem that enables approximating
the gradient of p.

Intuition The node potential p implicitly defines a topo-
logical ordering through the mapping Step(grad(·)). In par-
ticular, grad(·) outputs a skew-symmetric adjacency matrix,
where each entry specifies the potential difference between
nodes. Step(grad(·)) zeros out the negative potential dif-
ferences (i.e. pi ≤ pj), and only permits the edge direction
from higher potential to the lower one (i.e. pi > pj). This
implicitly defines a sorting operation based on the node
potentials, which can be cast as a particular argmax prob-
lem (Blondel et al., 2020; Kuhn, 1955; Mena et al., 2018;
Niculae et al., 2018) involving a permutation matrix.

Alternative formulation We define L ∈ {0, 1}d×d as a
matrix with lower triangular part to be 1, and vector o =
[1, . . . , d]. We propose the following formulation:

G = W ⊙
[
σ(p)Lσ(p)T

]
,σ(p) = argmaxσ′∈Σd

pT (σ′o)

(5)

Here, Σd represents the space of all d dimensional permuta-
tion matrices. The following theorem states the equivalence
of this formulation to Equation (3).

Theorem 3.2 (Equivalence to NoCurl formulation). Assum-
ing the conditions in Theorem 3.1 are satisfied. Then, for a
given (W ,p), we have

G = W ⊙ Step(gradp) = W ⊙
[
σ(p)Lσ(p)T

]
where G is a DAG and σ(p) is defined in Equation (5).

This theorem translates our proposed operator
Step(grad(p)) into finding a corresponding permuta-
tion matrix σ(p). Although this does not directly solve
the uninformative gradient, it opens the door for approxi-
mating this gradient with the tools from the differentiable
permutation literature (Blondel et al., 2020; Mena et al.,
2018; Niculae et al., 2018). For simplicity, we adopt the
relaxed Gumbel-Sinkhorn approach (Mena et al., 2018),
but we emphasize that this equivalence is general enough
that any past or future approximation methods can be

easily applied. To get the binary permutation matrix, we
apply the Hungarian algorithm (Munkres, 1957) and use a
straight-through estimator for p.

Some of the previous works (Charpentier et al., 2022; Cundy
et al., 2021) have leveraged the Sinkhorn operator to model
variational distributions over permutation matrices. How-
ever, they start with a full rank M , which has been reported
to require over 1000 Sinkhorn iterations to converge (Cundy
et al., 2021). However, our formulation, based on explicit
node potential poT , generates a rank-1 matrix, requiring
much fewer Sinkhorn steps (around 300) in practice, saving
two-thirds of the computational cost.

4. Bayesian Causal Discovery via Sampling
In this section, we delve into two inference algorithms that
are derived from the proposed framework. The first one,
which will be our main focus, combines SG-MCMC and
VI in a Gibbs sampling manner. The second one, which is
based entirely on SG-MCMC with continuous relaxation, is
also derived, but we include its details in Appendix A due
to its inferior empirical performance.

Model Formulation We build upon the model formu-
lation of (Geffner et al., 2022), which combines the ad-
ditive noise model with neural networks. Specifically,
Xi := fi(XPai) + ϵi, where fi adheres to the adjacency
relation specified by G, i.e. ∂fi(x)/∂xj = 0 if no edge
exists between nodes i and j. We define fi as

fi(x) = ζi

 d∑
j=1

Gjilj(xj)

 (6)

where ζi and li are neural networks with parameters Θ,
and G serves as a mask disabling non-parent values. To
reduce the number of neural networks, we adopt a weight-
sharing mechanism: ζi(·) = ζ(ui, ·) and li(·) = l(ui, ·),
with trainable node embeddings ui.

Likelihood of SCM The likelihood can be evaluated
through the noise variable (Geffner et al., 2022):

p(x|G) =

d∏
i=1

pϵi(xi − fi(xPaiG
)) (7)

Prior design We implicitly define the prior p(G) via
p(p,W ). We propose the following for the joint prior:

p(W ,p,Θ) ∝ N (Θ;0, I)N (p;0, αI)N (W ;0, I) exp(−λs∥τ(W ,p)∥2F )

where α controls the initialization scale of p and λs controls
the sparseness of G.
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4.1. Bayesian Inference of W,p,Θ

Wp

Θ

x(i)

i = 1, . . . , N

Figure 1: Graphical model of
the inference problem.

The main challenge lies
in the binary nature
of W ∈ {0, 1}d×d.
We propose a combi-
nation of SG-MCMC
for p,Θ and VI for
W . It should be noted
that our framework can
incorporate any suit-
able discrete sampler if
needed. We employ a
Gibbs sampling proce-
dure (Casella & George, 1992), which iteratively applies
(1) sampling p,Θ ∼ p(p,Θ|D,W ) with SG-MCMC;
(2) updating the variational posterior qϕ(W |p,D) ≈
p(W |p,Θ,D).

We define the posterior p(p,Θ|D,W ) ∝
exp(−U(p,W ,Θ)), where U(p,W ,Θ) =
− log p(p,D,W ,Θ). SG-MCMC in continuous
time defines a specific form of Itô diffusion that maintains
the target distribution invariant (Ma et al., 2015) without
the expensive computation of the MH step. We adopt the
Euler-Maruyama discretization for simplicity and employ
the sampler based on (Gong et al., 2019), which is inspired
by Adam (Kingma & Ba, 2014). Detailed update equations
and gradient derivations can be found in Appendix C.

Variational inference for W We use the variational
posterior qϕ(W |p) to approximate the true posterior
p(W |p,Θ,D). Specifically, we select an independent
Bernoulli distribution with logits defined by the output of a
neural network µϕ(p):

qϕ(W |p) =
∏
ij

Ber(µϕ(p)ij) (8)

To train qϕ, we derive the corresponding evidence lower
bound (ELBO):

ELBO(ϕ) = Eqϕ(W |p) [log p(D,p,Θ|W )]−DKL [qϕ(W |p)∥p(W )]]

(9)
where DKL is the Kullback-Leibler divergence. The deriva-
tion is in Appendix B.6. Algorithm 2 summarizes this infer-
ence procedure.

SG-MCMC with continuous relaxation Furthermore,
we explore an alternative formulation that circumvents the
need for variational inference. Instead, we employ SG-
MCMC to sample W̃ , a continuous relaxation of W , facili-
tating a fully sampling-based approach. For a detailed for-
mulation, please refer to Appendix A. We report its perfor-
mance in Appendix G.2, which surprisingly is inferior to SG-
MCMC+VI. We hypothesize that coupling W ,p through

µϕ is important since changes in p results in changes of the
permutation matrix σ(p), which should also influence W
accordingly during posterior inference. However, through
sampling W̃ with few SG-MCMC steps, this change cannot
be immediately reflected, resulting in inferior performance.
Thus, we focus only on the performance of SG-MCMC+VI
for our experiments.

Computational complexity Our proposed SG-
MCMC+VI offers a notable improvement in computational
cost compared to existing approaches, such as DIBS (Lorch
et al., 2021). The computational complexity of our method
is O(BNp + Npd

3), where B represents the batch size
and Np is the number of parallel SG-MCMC chains. This
former term stems from the forward and backward passes,
and the latter comes from the Hungarian algorithm, which
can be parallelized to further reduce computational cost. In
comparison, DIBS has a complexity of O(N2

pN + Npd
3)

with N ≫ B being the full dataset size. This is due to the
kernel computation involving the entire dataset and the
evaluation of the matrix exponential in the DAG regularizer
(Zheng et al., 2018). As a result, our approach provides
linear scalability w.r.t. Np with substantially smaller batch
size B. Conversely, DIBS exhibits quadratic scaling in
terms of Np and lacks support for mini-batch gradients.

5. Experiments
We aim to study empirically the following aspects: (1) pos-
terior inference quality of BayesDAG in high dimensional
nonlinear causal models with synthetic datasets and (2) per-
formance in semi-synthetic and real world applications.

Baselines and Metrics. We mainly compare
BayesDAG with the following baselines: Bootstrap
GES (BGES) (Chickering, 2002; Friedman et al., 2013),
BCD Nets (Cundy et al., 2021), Differentiable DAG Sam-
pling (DDS (Charpentier et al., 2022)) and DIBS (Lorch
et al., 2021). For evaluation, we compute the expected SHD
(E-SHD), expected orientation F1 score (Edge F1) and
negative log-likelihood of the held-out data (NLL). Our
synthetic data generation and evaluation protocol follows
prior work (Annadani et al., 2021; Geffner et al., 2022;
Lorch et al., 2021). All the experimental details, including
hyperparameters are provided in Appendix F.

5.1. Evaluation on Synthetic Data

We evaluate our method on synthetic data with nonlinear
functional relations, where ground truth graphs are known.
We generate data by randomly sampling DAGs from Erdos-
Rènyi (ER) (Erdős et al., 1960) or Scale-Free (SF) (Barabási
& Albert, 1999) graphs and drawing at random ground truth
MLP parameters for nonlinear functions. We assess perfor-
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Figure 2: Posterior inference of both graph and nonlinear functional parameters on synthetic datasets of nonlinear causal
models with d = 30 and d = 50 variables. BayesDAG gives best results across most metrics and outperforms other
permutation based approaches (BCD and DDS). ↓ denotes lower is better and ↑ denotes higher is better.

mance on 30 random datasets.

Table 1: E-SHD (with 95% CI) for
ER graphs in higher dimensional non-
linear causal models. DIBS becomes
computationally prohibitive for d >
50.

d = 70 d = 100
BGES 355.77 ± 18.02 563.02 ± 27.21
BCD 217.05 ± 9.58 362.66 ± 29.18
DIBS N/A N/A
BaDAG 143.70 ± 11.61 295.92 ± 24.67

Our approach
is the first to
attempt full pos-
terior inference
in nonlinear
models using
permutation-
based inference.
Results for
d = 30 variables
in Figure 2
demonstrate that
BayesDAG significantly outperforms other permutation-
based approaches and DIBS in most of the metrics. For
d = 50, BayesDAG performs comparably to DIBS in ER
but a little worse in SF. However, our method achieves
better NLL on held-out data compared to most baselines
including DIBS for d = 30, 50, ER and SF settings.

We additionally evaluate on d ∈ {70, 100} variables. We
find that our method consistently outperforms the baselines
with d = 70 and in terms of E-SHD with d = 100. Full
results are presented in Appendix G.1. Competitive per-
formance for d > 50 in nonlinear settings further demon-
strates the applicability and computational efficiency of the
proposed approach. In contrast, the only fully Bayesian
nonlinear method, DIBS, is not computationally efficient to
run for d > 50.

5.2. Applications

Evaluation on Semi-Synthetic Data We evaluate our
method on the SynTReN simulator (Van den Bulcke et al.,
2006). This simulator creates synthetic transcriptional regu-
latory networks and produces simulated gene expression
data that approximates real experimental data. Table 2

Table 2: Results (with 95% confidence intervals) on Syn-
tren (semi-synthetic) and Sachs Protein Cells (real-world)
datasets. ↓ denotes lower is better and ↑ denotes higher is
better.

Syntren (d = 20) Sachs Protein Cells (d = 11)
E-SHD (↓) Edge F1 (↑) E-SHD (↓) Edge F1 (↑)

BGES 66.18 ± 9.47 0.21 ± 0.05 16.61 ± 0.44 0.22 ± 0.02
DDS 134.37 ± 4.58 0.13 ± 0.02 34.90 ± 0.73 0.21 ± 0.02
BCD 38.38 ± 7.12 0.15 ± 0.07 17.05 ± 1.93 0.20 ± 0.08
DIBS 46.43 ± 4.12 0.16 ± 0.02 22.3 ± 0.31 0.20 ± 0.01
BaDAG 34.21 ± 2.82 0.20 ± 0.02 18.92 ± 1.0 0.26 ± 0.04

presents the results of all the methods. We find that our
method recovers the true network much better in terms of
E-SHD as well as Edge F1 compared to baselines.

Evaluation on Real Data We also evaluate on a real
dataset which measures the expression level of different
proteins and phospholipids in human cells (called the Sachs
Protein Cells Dataset) (Sachs et al., 2005). The data cor-
responds to a network of protein-protein interactions of 11
different proteins with 17 edges in total among them. There
are 853 observational samples in total, from which we boot-
strap 800 samples of 5 different datasets. Results in Table 2
demonstrate that our method performs well as compared to
the baselines, proving the suitability of the proposed sam-
pling framework to real-world settings.

6. Discussion
In this work, we propose BayesDAG, a novel, scalable
Bayesian causal discovery framework that employs
SG-MCMC (and VI) to infer causal models. We establish
the validity of performing Bayesian inference in the
augmented (W ,p) space and demonstrate its connection to
permutation-based DAG learning. Our method offers direct
DAG sampling in nonlinear models while demonstrating
superior inference accuracy.
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Appendix – BayesDAG: Gradient-Based Posterior Sampling for Causal Discovery

A. Joint Inference with SG-MCMC

W̃ W

p

Θ

x(i)

i = 1, . . . , N

Figure 3: Graphical model with latent variable
W̃ .

In this section, we propose an alternative formulation that enables a
joint inference framework for p,W ,Θ using SG-MCMC, thereby
avoiding the need for variational inference for W .

We adopt a continuous relaxation of W , similar to (Lorch et al., 2021),
by introducing a latent variable W̃ . The graphical model is illustrated
in Figure 3. We can define

p(W |W̃ ) =
∏
i,j

p(Wij |W̃ij) (10)

with p(Wij = 1|W̃ij) = σ(W̃ij) where σ(·) is the sigmoid function.
In other words, W̃ ij defines the existence logits of Wij.

With the introduction of W̃ , the original posterior expectations of
p(p,W ,Θ|D), e.g. during evaluation, can be translated using the following proposition.

Proposition A.1 (Equivalence of posterior expectation). Under the generative model Figure 3, we have

Ep(p,W ,Θ|D) [f(G = τ(p,W ),Θ)] = Ep(p,W̃ ,Θ)

[
Ep(W |W̃ ) [f(G,Θ)p(D,Θ|p,W )]

Ep(W |W̃ ) [p(D,Θ|p,W )]

]
(11)

where f is the target quantity.

This proof is in Appendix B.3.

With this proposition, instead of sampling W , use SG-MCMC to draw W̃ samples. Similar to Section 4.1, to use SG-MCMC
for p, W̃ ,Θ, we need their gradient information. The following proposition specifies the required gradients.

Proposition A.2. With the generative model defined as Figure 3, we have

∇p,Θ,W̃U(p, W̃ ,Θ) =−∇p log p(p)−∇Θ log p(Θ)

−∇W̃ log p(W̃ )−∇p,Θ,W̃ logEp(W |W̃ )[p(D|W ,p,Θ)] (12)

The proof is in Appendix B.4.

With these gradients, we can directly plug in existing SG-MCMC samplers to draw samples for p, W̃ , and Θ in joint
inference (Algorithm 1).

B. Theory
B.1. Proof of Theorem 3.1

For completeness, we recite the theorem here.
Theorem 3.1 (Equivalence of inference in (W ,p) and binary DAG space). Assume graph G is a binary adjacency matrix
representing a DAG and node potential p does not contain the same values, i.e. pi ̸= pj ∀i, j. Then, with the induced joint
observational distribution p(D,G), dataset D and a corresponding prior p(G), we have

p(G|D) =

∫
pτ (p,W |D)1(G = τ(W ,p))dW dp (13)

if p(G) =
∫
pτ (p,W )1(G = τ(W ,p))dW dp, where pτ (W ,p) is the prior, 1(·) is the indicator function and

pτ (p,W |D) is the posterior distribution over p,W .
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Algorithm 1 Joint inference

Input: dataset D, prior p(p, W̃ ,Θ), SG-MCMC sampler update Sampler(·); sampler hyperparameter Ψ; training steps
T .
Output: posterior samples {p, W̃ ,Θ}
Initialize p0, W̃0,Θ0

for t = 1, . . . , T do
Evaluate gradient∇pt−1,W̃t−1,Θt−1

U based on Equation (12).

Update samples pt, W̃t,Θt = Sampler(∇pt−1,W̃t−1,Θt−1
U ; Ψ)

if storing condition met then
{p, W̃ ,Θ} ← pt, W̃t,Θt

end if
end for

Algorithm 2 BayesDAG SG-MCMC+VI Inference

Input: dataset D; prior p(p,W ), p(Θ); SG-MCMC sampler Sampler; sampler hyperparameters Ψ; network µϕ(·);
training iteration T .
Output: samples {Θ,p} and variational posterior qϕ
Initialize Θ(0),p(0), ϕ
for t = 1 . . . , T do

Sample W (t−1) ∼ qϕ(W |p(t−1))
Evaluate∇p,ΘU (Equations (24) and (25)) with Θ(t−1),p(t−1),W (t−1)

Θ(t),p(t) = Sampler(∇p,ΘU ; Ψ)
if storing condition met then
{p,Θ} ← p(t),Θ(t)

end if
Maximize ELBO (Equation (9)) w.r.t. ϕ with p(t),Θ(t)

end for

To prove this theorem, we first prove the following lemma stating the equivalence of τ (Equation (3)) to binary DAG space.

Lemma B.1 (Equivalence of τ to DAG space). Consider d random variables, a node potential vector p ∈ Rd and a binary
matrix W ∈ {0, 1}d×d. Then the following holds:

(a) For any W ∈ {0, 1}d×d, p ∈ Rd, G = τ(W ,p) is a DAG.

(b) For any DAG G ∈ D, where D is the space of all DAGs, there exists a corresponding (W ,p) such that τ(W ,p) = G.

Proof. The main proof directly follows the theorem 2.1 in (Yu et al., 2021). For (a), we show the output from τ(W ,p)
must be a DAG. By leveraging the Lemma 3.4 in (Yu et al., 2021), we can easily obtain that Step(gradp) emits a binary
adjacency matrix representing a DAG. The only difference is that we replace the ReLU(·) with Step(·) but the conclusion
can be directly generalized.

For (b), we show that for any DAG G, there exists a (W ,p) pair s.t. τ(W ,p) = G. To see this, we can observe that p
implicitly defines a topological order in the mapping τ . For any pi > pj , we have j → i after the mapping Step(gradp).
Thus, by leveraging Theorem 3.7 in (Yu et al., 2021), we obtain that there exists a potential vector p ∈ Rd for any DAG G
such that

(gradp)(i, j) > 0 when Gij = 1

Thus, we can choose W in the following way:

W =

{
Wij = 0 if Gij = 0

Wij = 1 if Gij = 1
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Next, let’s prove the Theorem 3.1.

Proof of Theorem 3.1. From Lemma B.1, we see that the mapping is complete. Namely, the (W ,p) space can represent the
entire DAG space. Next, we show that performing Bayesian inference in (W ,p) space can also correspond to the inference
in DAG space.

Assume we have the prior pτ (W ,p). Then through mapping τ , we implicitly define a prior over the DAG G in the
following:

pτ (G) =

∫
pτ (W ,p)1(G = τ(W ,p))dW dp (14)

This basically states that the corresponding prior over G is an accumulation of the corresponding probability associated with
(W ,p) pairs.

Similarly, we can define a corresponding posterior pτ (G|D):

pτ (G|D) =

∫
pτ (W ,p|D)1(G = τ(W ,p))dW dp (15)

Now, let’s show that this posterior pτ (G|D) = p(G|D) if prior matches, i.e. p(G) = pτ (G). From Bayes’s rule, we can
easily write down

pτ (W ,p|D) =
p(D|G = τ(W ,p))p(p,W )∑

G′∈D p(D,G′)
(16)

Then, by substituting Equation (16) into Equation (15), we have

pτ (G|D) =

∫
p(D|G)pτ (W ,p)∑

G′∈D p(D,G′)
1(G = τ(W ,p))dW dp

=

∫
p(D|G)pτ (W ,p)1(G = τ)dW dp∑

G′∈D p(D,G′)
(17)

=
p(D|G)

∫
pτ (W ,p)1(G = τ)dW dp∑

G′∈D p(D,G′)
(18)

=
p(D|G)pτ (G)∑

G′∈D p(D|G′)pτ (G′)

= p(G|D) (19)

where Equation (17) is from the fact that
∑

G′∈D p(D,G′) is independent of (W ,p) due to marginalization. Equation (18)
is obtained because p(D|G) is also independent of (W ,p) due to (1) 1(G = τ(W ,p)) and (2) p(D|G) is a constant
when fixing G. Equation (19) is obtained by applying Bayes’s rule and pτ (G) = p(G).

B.2. Proof of Theorem 3.2

Theorem 3.2 (Equivalence of NoCurl formulation). Assuming the conditions in Theorem 3.1 are satisfied. Then, for a given
(W ,p), we have

G = W ⊙ Step(gradp) = W ⊙
[
σ∗(p)Lσ∗(p)T

]
where G is a DAG and σ∗(p) is defined in Equation (5).

To prove this theorem, we need to first prove the following lemma.

Lemma B.2. For any permutation matrix M ∈ Σd, we have

grad(Mp) = MT grad(p)M

where grad is the operator defined in ??.
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Proof. By definition of grad(·), we have

grad(Mp) = (Mp)i − (Mp)j

= 1(i)TMp− 1(j)TMp

= Mi,:p−Mj,:p

where 1(i) is a one-hot vector with ith entry 1, and Mi,: is the ith row of matrix M . The above is equivalent to computing
the grad with new labels obtained by permuting p with M . Therefore, we can see that grad(Mp) can be computed by
permuting the original grad(p) by matrix M .

grad(Mp) = MT grad(p)M

Proof of Theorem 3.2. Since W plays the same role in both formulations, we focus on the equivalence of Step(grad(·)).
Define a sorted p̃ = σp, where σ ∈ Σd, such that for i < j, we have p̃i > p̃j . Namely, σ is a permutation matrix. Thus,
we have

grad(p) = grad(σT p̃).

By Lemma B.2, we have

grad(σT p̃) = σ grad(p̃)σT .

Since p̃ is an ordered vector. Therefore, grad(p̃) is a skew-symmetric matrix with a positive lower half part.

Therefore, we have

Step(grad(p)) = Step(σ grad(p̃)σT ) = σ Step(grad(p̃))σT = σLσT

This is true because σ is just a permutation matrix that does not alter the sign of grad(p̃).

Since σ is a permutation matrix that sort p value in a ascending order, from Lemma 1 in (Blondel et al., 2020), we have

σ = argmax
σ′∈Σd

pT (σ′o)

B.3. Proof of Proposition A.1

Proof.

Ep(p,W ,Θ|D) [f(G = τ(p,W ),Θ)]

=

∫
p(p,W ,Θ, W̃ |D)f(G,Θ)dpdW dΘdW̃

=

∫
p(p, W̃ ,Θ|D)p(W |p,Θ, W̃ ,D)f(G,Θ)dpdW dΘdW̃

=Ep(p,W̃ ,Θ|D)

[∫
p(D|p,Θ,W )p(p)p(W̃ )p(W |W̃ )p(Θ|p,W )f(G,Θ)dW∫

p(D|p,Θ,W )p(p)p(W̃ )p(W |W̃ )p(Θ|p,W )dW

]

=Ep(p,W̃ ,Θ)

[
Ep(W |W̃ ) [f(G,Θ)p(D,Θ|p,W )]

Ep(W |W̃ ) [p(D,Θ|p,W )]

]
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B.4. Proof of Proposition A.2

Proof.

∇pU(p, W̃ ,Θ) = −∇p log p(p, W̃ ,Θ,D)

= −∇p log p(p)−∇p log p(W̃ ,Θ,D|p)

= −∇p log p(p)−
∇p

∫
p(D|W ,p,Θ)p(Θ|p,W )p(W |W̃ )p(W̃ )dW∫

p(D|W ,p,Θ)p(Θ|p,W )p(W |W̃ )p(W̃ )dW

= −∇p log p(p)−
∇pEp(W |W̃ ) [p(D|W ,p,Θ)]

Ep(W |W̃ ) [p(D|W ,p,Θ)]

= −∇p log p(p)−∇p logEp(W |W̃ ) [p(D|W ,p,Θ)]

Other gradient ∇W̃U and ∇ΘU can be derived using the similar approach, which concludes the proof.

B.5. Proof of Proposition C.1

Proof of Proposition C.1. By definition, we have easily have

∇pU = −∇p log p(p,W ,Θ,D)

= −∇p log p(p,W )−∇p log p(D,Θ|τ(W ,p))

= −∇p log p(p,W )−∇p log p(D|Θ, τ(W ,p)) +∇p log p(Θ|τ(p,W ))︸ ︷︷ ︸
0

Similarly, we have

∇ΘU = −∇Θ log p(p,W ,Θ,D)

= −∇Θ log p(D|Θ, τ(W ,p))−∇Θ log p(Θ|p,W )−∇Θ log p(p,W )︸ ︷︷ ︸
0

= −∇Θ log p(D|Θ, τ(W ,p))−∇Θ log p(Θ)

B.6. Derivation of ELBO

log p(p,Θ,D) = log

∫
p(p,Θ,D,W )dW

= log

∫
qϕ(W |p)
qϕ(W |p)

p(p,Θ,D,W )dW

≥
∫

qϕ(W |p) log p(p,Θ,D|W )dW +

∫
qϕ(W |p) log

p(W )

qϕ(W |p)
dW (20)

= Eqϕ(W |p) [log p(p,Θ,D|W )]−DKL [qϕ(W |p)∥p(W )]

where the Equation (20) is obtained by Jensen’s inequality.

C. SG-MCMC Update
Assume we want to draw samples p ∼ p(p|D,W ,Θ) ∝ exp(−U(p,W ,Θ)) with U(p,W ,Θ) = − log p(p,W ,Θ),
we can compute U by

U(p,W ,Θ) = −
N∑

n=1

log p(xn|G = τ(W ,p),Θ)− log p(p,W ,Θ) (21)
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In practice, we typically use mini-batches S instead of the entire dataset D. Therefore, an approximation is

Ũ(p,W ,Θ) = −|D||S|
∑
n∈S

log p(xn|G = τ(W ,p),Θ)− log p(p,W ,Θ) (22)

where |S| and |D| are the minibatch and dataset sizes, respectively.

(Gong et al., 2019) uses the preconditioning technique on stochastic gradient Hamiltonian Monte Carlo(SG-HMC), similar
to the preconditioning technique in (Li et al., 2016). In particular, they use a moving-average approximation of diagonal
Fisher information to adjust the momentum. The transition dynamics at step t with EM discretization is

B =
1

2
l

Vt = β2Vt−1 + (1− β2)∇pŨ(p,W ,Θ)⊙∇pŨ(p,W ,Θ)

gt =
1√

1 +
√
Vt

rt = β1rt−1 − lgt∇pŨ(p,W ,Θ) + l
∂gt
∂pt

+ s

√
2l(

1− β1

l
−B)η

pt = pt−1 + lgtrt (23)

where l2 is the learning rate; (β1, β2) controls the preconditioning decay rate, η is the Gaussian noise with 0 mean and unit
variance, and s is the hyperparameter controlling the level of injected noise to SG-MCMC. Throughout the paper, we use
(β1, β2) = (0.9, 0.99) for all experiments.

The following proposition specifies the gradients required by SG-MCMC:∇p,ΘU(p,W ,Θ).
Proposition C.1. We have the following gradient equations for SG-MCMC:

∇pU = −∇p log p(p)−∇p log p(D|Θ, τ(W ,p)) (24)

and
∇ΘU = −∇Θ log p(Θ)−∇Θ log p(D|Θ, τ(p,W )) (25)

Refer to Appendix B.5 for details.

D. Gumbel-Sinkhorn Operator
The Sinkhorn operator S(M) on a matrix M (Adams & Zemel, 2011) is defined as a sequence of row and column
normalizations, each is called Sinkhorn iteration. (Mena et al., 2018) showed that the non-differentiable argmax problem

σ = argmax
σ′∈Σd

⟨σ′,M⟩ (26)

can be relaxed through an entropy regularizer with its solution being expressed by S(·). In particular, they showed that
S(M/t) = argmaxσ′∈Bd

⟨σ′,M⟩+ th(σ′), where h(·) is the entropy function. This regularized solution converges to
the solution of Equation (26) when t → 0, i.e. limt→0 S(M/t). Since the Sinkhorn operator is differentiable, S(M/t)
can be viewed as a differentiable approximation to Equation (26), which can be used to obtain the solution of Equation (5).
Specifically, we have

argmax
σ′∈Σd

pT (σ′o) = argmax
σ′∈Σd

⟨σ′,poT ⟩ = lim
t→0
S(po

T

t
) (27)

In practice, we approximate it wth t > 0, resulting in a doubly stochastic matrix. To get the binary permutation matrix,
we apply the Hungarian algorithm (Munkres, 1957). During the backward pass, we use a straight-through estimator for p.

Some of the previous works (Charpentier et al., 2022; Cundy et al., 2021) have leveraged the Sinkhorn operator to model
variational distributions over permutation matrices. However, they start with a full rank M , which has been reported to
require over 1000 Sinkhorn iterations to converge (Cundy et al., 2021). However, our formulation, based on explicit node
potential poT , generates a rank-1 matrix, requiring much fewer Sinkhorn steps (around 300) in practice, saving two-thirds
of the computational cost.
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E. Related Work
Bayesian causal discovery literature has primarily focused on inference in linear models with closed-form posteriors
or marginalized parameters. Early works considered sampling directed acyclic graphs (DAGs) for discrete (Cooper &
Herskovits, 1992; Madigan et al., 1995; Heckerman et al., 2006) and Gaussian random variables (Friedman & Koller, 2003;
Tong & Koller, 2001) using Markov chain Monte Carlo (MCMC) in the DAG space. However, these approaches exhibit
slow mixing and convergence (Eaton & Murphy, 2012; Grzegorczyk & Husmeier, 2008), often requiring restrictions on
number of parents (Kuipers & Moffa, 2017).

Recent advances in variational inference (Zhang et al., 2018) have facilitated graph inference in DAG space, with gradient-
based methods employing the NOTEARS DAG penalty (Zheng et al., 2018).(Annadani et al., 2021) samples DAGs from
autoregressive adjacency matrix distributions, while (Lorch et al., 2021) utilizes Stein variational approach (Liu & Wang,
2016) for DAGs and causal model parameters. (Cundy et al., 2021) proposed a variational inference framework on node
orderings using the gumbel-sinkhorn gradient estimator (Mena et al., 2018). (Deleu et al., 2022; Nishikawa-Toomey et al.,
2022) employ the GFlowNet framework (Bengio et al., 2021) for inferring the DAG posterior. Most methods, except(Lorch
et al., 2021) are restricted to linear models, while (Lorch et al., 2021) has high computational costs and lacks DAG generation
guarantees compared to our method.

In contrast, quasi-Bayesian methods, such as DAG bootstrap (Friedman et al., 2013), demonstrate competitive performance.
DAG bootstrap resamples data and estimates a single DAG using PC (Spirtes et al., 2000), GES (Chickering, 2002), or similar
algorithms, weighting the obtained DAGs by their unnormalized posterior probabilities. Recent neural network-based works
employ variational inference to learn DAG distributions and point estimates for nonlinear model parameters (Charpentier
et al., 2022; Geffner et al., 2022).

F. Experimental Settings
F.1. Baselines

For all the experimental settings, we compare with the following baselines:

• Bootstrap GES (BGES) (Friedman et al., 2013; Chickering, 2002) is a bootstrap based quasi-Bayesian approach for
linear Gaussian models which first resamples with replacement data points at random and then estimates a linear SCM
using the GES algorithm (Chickering, 2002) for each bootstrap set. GES is a score based approach to learn a point
estimate of a linear Gaussian SCM. For all the experimental settings, we use 50 bootstrap sets.

• Differentiable DAG Sampling (DDS) is a VI based approach to learn distribution over DAGs and a point estimate
over the nonlinear functional parameters. DDS performs inference on the node permutation matrices, thus directly
generating DAGs. Gumbel-sinkhorn (Mena et al., 2018) is used for obtaining valid gradients and Hungarian algorithm
is used for the straight-through gradient estimator. In the author provided implementation, for evaluation, a single
permutation matrix is sampled and the logits of the edge beliefs are directly thresholded. In this work, in order to make
the comaprison fair to Bayesian learning methods, we directly sample the binary adjacency matrix based on the edge
logits.

• BCD Nets (Cundy et al., 2021) is a VI based fully Bayesian structure learning approach for linear causal models. BCD
performs inference on both the node permutations through the Gumbel-sinkhorn (Mena et al., 2018) operator as well as
the model parameters through a VI distribution. Both DDS and BCD nets operate directly on full rank initializations to
the Gumbel-sinkhorn operator, unlike our rank-1 initialization, which saves computations in practice.

• DIBS (Lorch et al., 2021) uses SVGD (Liu & Wang, 2016) with the DAG regularizer (Zheng et al., 2018) and bilinear
embeddings to perform inference over both linear and nonlinear causal models. As our data generation process involves
SCM with unequal noise variance, we extend DIBS framework with an inference over noise variance using SVGD,
similar to the original paper.

While DIBS and DDS can handle nonlinear parameterization, approaches like BGES and BCD, which are primarily designed
for linear models still give competitive results when applied on nonlinear data. Given that there are limited number of
baselines in the nonlinear case, and DIBS being the only fully Bayesian nonlinear baseline, we compare with BGES and
BCD for all settings despite their model misspecification.
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F.2. Evaluation Metrics

For higher dimensional settings with nonlinear models, the true posterior is intractable. While in general it is hard to evaluate
the posterior inference quality in high dimensions, prior work has suggested to evaluate on proxy metrics which we adopt in
this work as well (Lorch et al., 2021; Geffner et al., 2022; Annadani et al., 2023). In particular, we evaluate the following
metrics:

• E-SHD: Structural Hamming Distance (SHD) measures the hamming distance between graphs. In particular, it is a
measure of number of edges that are to be added, removed or reversed to get the ground truth from the estimated graph.
Since we have a posterior distribution q(G) over graphs, we measure the expected SHD:

E-SHD := EG∼q(G)[SHD(G,GGT )] ≈ 1

Ne

Ne∑
i=1

[SHD(G(i),GGT )] ,with G(i) ∼ q(G)

where GGT is the ground-truth causal graph.

• Edge F1: It is F1 score of each edge being present or absent in comparison to the true edge set, averaged over all edges.

• NLL: We also measure the negative log-likelihood of the held-out data.

The first two metrics measure the goodness of the graph posterior while the NLL measures the goodness of the joint posterior
over the entire causal model.

F.3. Synthetic Data

As knowledge of ground truth graph is not possible in many real world settings, it is standard across causal discovery to
benchmark in synthetic data settings. Following prior work, we generate synthetic data by first sampling a DAG at random
from either Erdos-Rènyi (ER) (Erdős et al., 1960) or Scale-Free (SF) (Barabási & Albert, 1999) family. We ensure that the
graphs have 2d edges in expectation. For nonlinear models, the nonlinear functions are defined by randomly initialized
Multi-Layer Perceptrons (MLP) with a single hidden layer of 5 nodes and ReLU nonlinearity. The variance of the exogenous
Gaussian noise variable is drawn from an Inverse Gamma prior with concentration α = 1.5 and rate β = 1. For higher
dimensional settings, we consider N = 5000 random samples for training and N = 1000 samples for held-out evaluation.
For all settings, we evaluate on 30 random datasets.

F.4. Hyperparameter Selection

In this section, we will give the details our how to select the hyperparameters for our method and all the baseline models.

We employ a cross-validation-like procedure for hyperparameter tuning in BayesDAG and DIBS to optimize E−SHD value
(for nonlinear setting). For each ER and SF dataset with varying dimensions, we initially generate five tuning datasets.
After determining the optimal hyperparameters, we fix them and evaluate the models on 30 test datasets. For DDS, we
adopt the hyperparameters provided in the original paper (Charpentier et al., 2022). BCD and BGES do not necessitate
hyperparameter tuning since BCD already incorporates the correct prior graph for ER and SF datasets. For semi-synthetic
Syntren and real world Sachs protein cells datasets, we assume the number of edges in the ground truth graphs are known
and we tune our hyperparameters to produce roughly correct number of edges. BCD and DIBS also assume access to the
ground truth edge number and use the graph prior to enforce the number of edges.

Network structure We use one hidden layer MLP with hidden size of max(4∗d, 64) for the nonlinear functional relations,
where d is the dimensionalilty of dataset. We use LeakyReLU as the activation function. We also enable the LayerNorm
and residual connections in the network. In particular, for variational network µϕ in BayesDAG, we apply the LayerNorm
on p before inputting it to the network. We use 2 hidden layer MLP with size 48, LayerNorm and residual connections for
µϕ.

Sparse initialization for BayesDAG For BayesDAG, we additionally allow sparse initialization by sampling a sparse
W from the µϕ. This can be achieved by substracting a constant 1 from the existing logits (i.e. the output from µϕ).
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BayesDAG
λs Scale p Scale Θ Sparse Init.

nonlinear ER d = 20 300 0.01 0.01 False
nonlinear SF d = 20 200 0.1 0.1 False
nonlinear ER d = 30 500 1 0.01 False
nonlinear SF d = 30 300 0.01 0.01 False
nonlinear ER d = 50 500 0.01 0.01 True
nonlinear SF d = 50 300 0.1 0.01 False
nonlinear ER d = 70 700 0.1 0.01 True
nonlinear SF d = 70 300 0.01 0.01 False
nonlinear ER d = 100 700 0.1 0.01 False
nonlinear SF d = 100 700 0.1 0.01 False
SynTren 300 0.1 0.01 False
Sachs Protein Cells 1200 0.1 0.01 False

Table 3: The hyperparameter selection for BayesDAG for each setting.

DIBS
α h latent hθ hσ

nonlinear ER d = 20 0.02 5 1500 10
nonlinear SF d = 20 0.2 5 1500 10
nonlinear ER d = 30 0.2 5 500 1
nonlinear SF d = 30 0.2 5 1000 1
nonlinear ER d = 50 0.2 5 500 10
nonlinear SF d = 50 0.2 5 1500 1
SynTren 0.2 5 500 10
Sachs Protein Cells 0.2 5 500 10

Table 4: The hyperparameter selection for DIBS for each setting.
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Figure 4: Posterior inference of both graph and functional parameters on synthetic datasets of nonlinear causal models with
d = 20 variables. BayesDAG gives best results across all metrics. ↓ denotes lower is better and ↑ denotes higher is better.
For the sake of clarity, DDS has been omitted for E-SHD due to its significantly inferior performance on this metric.

Other hyperparameters For BayesDAG, we run 10 parallel SG-MCMC chains for p and Θ. We implement an adaptive
sinkhorn iteration where the iteration automatically stops when the sum of rows and columns are closed to 1 within the
threshold 0.001 (upto a maximum of 3000 iterations). Typically, we found this to require only around 300 iterations. We set
the sinkhorn temperature t to be 0.2. For the reparametrization of W matrix with Gumbel-softmax trick, we use temperature
0.2. During evaluation, we use 100 SG-MCMC particles extracted from the particle buffer. We use 0.0003 for SG-MCMC
learning rate l and batch size 512. We run 700 epochs to make sure the model is fully converged.

For DIBS, we can only use 20 SVGD particles for evaluation due to the quadratic scaling with the number of particles. We
use 0.1 for Gumbel-softmax temperature. We run 10000 epochs for convergence. The learning rate is selected as 0.01.

Table 3 shows the hyperparameter selection for BayesDAG. Table 4 shows the hyperparameter selection for DIBS.

G. Additional Results
G.1. Performance with higher dimensional datasets

Full results for all the metrics for settings d = 20, d = 70 and d = 100 for nonlinear settings are presented in Figure 4,
Figure 5 and Figure 6. We find that our method consistently outperforms the baselines with d = 70 and in terms of
E-SHD with d = 100. Competitive performance for d > 50 in nonlinear settings further demonstrates the applicability and
computational efficiency of the proposed approach. In contrast, the only fully Bayesian nonlinear method, DIBS, is not
computationally efficient to run for d > 50.

G.2. Performance of SG-MCMC with Continuous Relaxation

We compare the performance of SG-MCMC+VI and SG-MCMC with W̃ on d = 10 ER and SF graph settings. Figure 7
shows the performance comparison. We can observe that SG-MCMC+VI generally outperforms its counterpart in most of
the metrics. We hypothesize that this is because VI network µϕ couples p and W . This coupling effect is crucial since the
changes in p results in the change of permutation matrix, where the W can immediately respond to this change through µϕ.
On the other hand, W̃ can only respond to this change through running SG-MCMC steps on W̃ with fixed p. In theory, this
is the most flexible approach since this coupling do not requires parametric form like µϕ. However in practice, we cannot
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Figure 5: Posterior inference of both graph and functional parameters on synthetic datasets of nonlinear causal models with
d = 70 variables. BayesDAG gives best results across most metrics. ↓ denotes lower is better and ↑ denotes higher is better.
As DIBS and DDS are computationally prohibitive to run for this setting, it has been omitted. BCD has been omitted for
NLL as we observed that it performs significantly worse.
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Figure 6: Posterior inference of both graph and functional parameters on synthetic datasets of nonlinear causal models with
d = 100 variables. BayesDAG gives best results across E-SHD, comparable across NLL but slightly worse for Edge F1. ↓
denotes lower is better and ↑ denotes higher is better. As DIBS and DDS are computationally prohibitive to run for this
setting, it has been omitted. BCD has been omitted for NLL as we observed that it performs significantly worse.
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Figure 7: Performance comparison of SG-MCMC+VI v.s. fully SG-MCMC with W̃ for d = 10 variables.

run many SG-MCMC steps with fixed p for convergence, which results in the inferior performance.

G.3. Ablation Study

We conduct ablation studies on our method using the nonlinear ER d = 30 dataset. Key findings are summarized below. All
ablation studies are conducted using ER d = 30 datasets with the same hyperparameters reported in Appendix F.4.

Initialized p scale Figure 8 investigates the influence of the initialized scale of p. We found that the performance is the
best with α = 0.01 or 10−5, and deteriorates with increasing scales. This is because with larger initialization scale, the
absolute value of the p is large. Longer SG-MCMC updates are needed to reverse the node potential order, which hinders
the exploration of possible permutations, resulting in the convergence to poor local optima.

Number of SG-MCMC chains We examine the impact of the number of parallel SG-MCMC chains in Figure 9. We
observe that the number of chains does not have a significant impact on the E-SHD and Edge F1 scores.

Injected noise level for SG-MCMC In Figures 10 and 11, we study the performance differences arising from various
injected noise levels for p and Θ in the SG-MCMC algorithm (i.e. s of the SG-MCMC formulation in Appendix C).
Interestingly, the noise level of p does not impact the performance as much as the level of Θ. Injecting noise helps improve
the performance, but a smaller noise level should be chosen for Θ to avoid divergence from optima.

H. Code and License
For the baselines, we use the code from the following repositories:

• BGES: We use the code from (Agrawal et al., 2019) from the repository https://github.com/agrawalraj/active_learning
(No license included).

• DDS: We use the code from the official repository https://github.com/sharpenb/Differentiable-DAG-Sampling (No

https://github.com/agrawalraj/active_learning
https://github.com/sharpenb/Differentiable-DAG-Sampling
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Figure 8: Posterior inference quality for d = 30 ER synthetic datasets with different initialized p scale. Best performance is
obtained for 0.01, with larger scales leading to progressively worse performance.

1 5 10 20
Num SG-MCMC Chains

40

60

80

100
E-SHD (↓)

1 5 10 20
Num SG-MCMC Chains

0.4

0.5

0.6

Edge F1 (↑)

1 5 10 20
Num SG-MCMC Chains

40

45

50

55
NLL (↓)

Figure 9: Posterior inference quality for d = 30 ER synthetic datasets with different number of parallel SG-MCMC
chains. We find that the method performs the best with fewer chains, possibly due to easier optimization and computational
complexity.
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Figure 10: Posterior inference quality for d = 30 ER synthetic datasets with different level of injected noise scale for p. We
notice that the method is fairly insensitive to the level of noise injection.
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Figure 11: Posterior inference quality for d = 30 ER synthetic datasets with different level of injected noise scale for Θ. We
notice that the method converges to good solutions with low level of noise injections, leading to superior performance.

license included).

• BCD: We use the code from the official repository https://github.com/ermongroup/BCD-Nets (No license included).

• DIBS: We use the code from the official repository https://github.com/larslorch/dibs (MIT license).

Additionally for the Syntren (Van den Bulcke et al., 2006) and Sachs Protein Cells (Sachs et al., 2005) datasets, we use the
data provided with repository https://github.com/kurowasan/GraN-DAG (MIT license).

https://github.com/ermongroup/BCD-Nets
https://github.com/larslorch/dibs
https://github.com/kurowasan/GraN-DAG

