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Abstract

In this work, we propose FFDP, a set of IO-aware non-GEMM fused kernels
supplemented with a distributed framework for image registration at unprecedented
scales. Image registration is an inverse problem fundamental to biomedical and
life sciences, but algorithms have not scaled in tandem with image acquisition
capabilities. Our framework complements existing model parallelism techniques
proposed for large-scale transformer training by optimizing non-GEMM bottlenecks
and enabling convolution-aware tensor sharding. We demonstrate unprecedented
capabilities by performing multimodal registration of a 100µm ex-vivo human
brain MRI volume at native resolution – an inverse problem more than 570× larger
than a standard clinical datum in about a minute using only 8 A6000 GPUs. FFDP
accelerates existing state-of-the-art optimization and deep learning registration
pipelines by upto 6− 7× while reducing peak memory consumption by 20− 59%.
Comparative analysis on a 250µm dataset shows that FFDP can fit upto 64× larger
problems than existing SOTA on a single GPU, and highlights both the performance
and efficiency gains of FFDP compared to SOTA image registration methods.

1 Introduction

Image registration (also called ‘image alignment’ or ‘image matching’) is a non-linear inverse
problem ubiquitous in biomedical and life sciences. Given d-dimensional images F : Ω→ Rd and
M : Ω→ Rd defined on domain Ω (usually a compact subset of Rd), image registration seeks to find
a coordinate transform φ : Ω → Ω that deforms the moving image M to look similar to the fixed
image F . Mathematically, we minimize the following objective (Fig. 1):

φ∗ = argmin
φ∈G

L(φ)
.
= C(F,M ◦ φ) +R(φ) (1)

where C is a cost or dissimilarity function, and ◦ is the interpolation operator, i.e. (I ◦g)(x) = I(g(x))
for all x ∈ Ω. Popular choices of φ are affine and deformable transforms, i.e. φ(x) = Ax + t,
and φ(x) = x + u(x). Modern registration pipelines (Hoffmann et al., 2021; Jena et al., 2024a)
consider an affine matching followed by a deformable matching step, resulting in a composite
transform φ(x) = Ax+ t+ u(x). u is called the displacement field, modeled as a grid of per-voxel
vectors u(x) ∈ Rd. For an image of size N , the displacement field is a tensor of size dN . We use
[x]Ω, A[x]Ω + t, and [u]Ω to denote the identity grid, grid of affine transformed coordinates, and
deformation grid defined on Ω respectively. Common choices of C are mean squared error, Localized
Normalized Cross Correlation (Avants et al., 2008a), and Mattes Mutual Information (Mattes et al.,
2001). Common choices of R include Sobolev norm of the gradient or warp fields (Beg et al., 2005;
Mang et al., 2019; Avants et al., 2008b), total variation, and inverse-consistency (Christensen &
Johnson, 2001). To optimize Eq. (1), iterative methods optimize φ∗ directly using gradient descent,
and deep learning methods learn a deep neural network φ = fθ(F,M). Image registration establishes
a common coordinate system, aligning scans across individuals and atlases (Hering et al., 2022;
Marcus et al., 2007; Murphy et al., 2011). This alignment is a prerequisite for multimodal data fusion,
cross-subject comparison, morphometric analysis (Das et al., 2009), and construction of large-scale
atlases (Wang et al., 2020b). Establishing such voxelwise correspondence is fundamental for studying
anatomical variability, detecting pathological signatures (Ravikumar et al., 2021), and advancing
precision medicine (Börner et al., 2022; Jonsson et al., 2022). The saliency and centrality of the
task across various biomedical and life science applications has spurred numerous methodological
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Figure 1: Image Registration Problem. (a): The task is to find a coordinate transform that warps the moving
image M to the fixed image F . Individual corresponding points are shown as violet arrows; the per-pixel
coordinate transform is shown as a warp field φ, and the transformed image M ◦ φ. (b): A typical registration
pipeline - the grid sampler warps the moving image, that is then compared to the fixed image using a loss function.
Green denotes the optimizable warp, red denotes the primary bottlenecks that we optimize in this paper.

advances in the field, spanning more than three decades of research (Gee et al., 1993; Tian et al.,
2024).

Over the past decade, advances in MRI, CT, PET, STPT, and microscopy have enabled ultra-high-
resolution imaging, often more than three orders of magnitude larger than macroscopic biomedical
domains (Balchandani & Naidich, 2015; Esquivel et al., 2022; Badawi et al., 2019; Gambarotto
et al., 2019; Wassie et al., 2019; Kleven et al., 2023; Wang et al., 2020b; Mansour et al., 2025;
Kleinfeld et al., 2011). While a typical clinical registration problem involves ∼20M parameters,
high-resolution ex-vivo human brain scans can require solving up to 11B parameters, far beyond
the ∼50M-parameter scale at which current registration methods remain reliable. As a result,
state-of-the-art deformable image alignment struggles to scale to the resolutions demanded in modern
neuroimaging, computational pathology, developmental biology, and connectomics, creating a
substantial performance gap. In parallel, innovations in large-scale transformer training such as
IO-aware fused operations (Dao et al., 2022; Dao, 2023; Spector et al., 2025) and 5D parallelism for
distributing larger-than-memory workloads (Shoeybi et al., 2019; Li et al., 2023; Jacobs et al., 2024;
Li et al., 2024; Zhao et al., 2023; Ansel et al., 2024) optimize GEMM-like workflows. However,
the fundamental concepts utilized by these methods (IO-awareness, recomputing and aggregating
intermediates on shared memory to minimize high bandwidth memory (HBM) storage, identifying
partial aggregates across hosts to minimize communication overheads for distributed optimization)
are broadly applicable to a wide class of problems of the non-GEMM nature.

In this paper, we apply these concepts to scale image registration algorithms to match parity with
the developments in both increasing resolution of image acquisition and compute capabilities. To
that end, our contributions are twofold. First, we identify key compute and memory bottlenecks in
image registration algorithms, and propose novel components that fit problems upto 64× larger than
existing algorithms on a single GPU. Second, we propose Flash Fused Distributed Primitives (FFDP),
a distributed framework to scale registration to an arbitrary number of GPUs, thereby scaling to ultra
high-resolution problems. We present a first-of-its-kind demonstration: aligning a 250µm in-vivo
MRI (Lüsebrink et al., 2017) to a 100µm ex-vivo human brain FLASH volume (Edlow et al., 2019) –
a multimodal registration problem more than 570× larger than a standard clinical datum (Marcus
et al., 2007), with over 11.8B transform parameters – completed in one minute using only 8 A6000
GPUs. FFDP accelerates existing traditional registration pipelines by upto 7.48× while reducing
memory consumption by upto 59%, and deep learning pipelines by upto 6.14× while consuming
upto 24% less memory. We highlight the necessity of performing high-resolution registration by
comparing our method with various SOTA optimization and deep learning baselines on a 250µm
T1-weighted MRI dataset, showing unprecedented performance and gains in efficiency.

2 Related Work

2.1 Memory Efficient and Large Scale Optimization

Recent years have also witnessed tremendous innovations in large-scale transformer model training.
IO-aware implementations typically include individual fused kernels (Dao et al., 2022; Dao, 2023)
and domain-specific languages (Spector et al., 2025; PyTorch, 2025) to minimize launch latency
and large memory overheads. To distribute larger-than-memory model training workloads across
multiple GPUs, 5D parallelism techniques (Shoeybi et al., 2019; Li et al., 2023; Jacobs et al.,
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2024; Li et al., 2024; Zhao et al., 2023; Ansel et al., 2024) have been proposed. Many of these
techniques leverage a divide-and-conquer approach to break down a larger GEMM-like operation
like matrix multiplication or attention into smaller sub-problems that can be executed on multiple
GPUs and synchronized to compute the final result. To our knowledge, most of these techniques are
tailored to transformer-specific architectures and GEMM-like operations (self attention, FeedForward,
LayerNorm, etc.) only, and a Model Parallel variant for convolution-aware tensor sharding and
synchronization is not available.

2.2 Large Scale Registration in Life Sciences and Biomedical Imaging

Ex-vivo neuroimaging. A large body of neuroanatomical studies are performed in conjunction with
high-resolution ex-vivo MRI, blockfacing imaging, and histology to create detailed, microscopic
anatomical references by integrating structural, molecular, and cytoarchitectural information across
imaging modalities (Casamitjana et al., 2025; Ravikumar et al., 2024). In-vivo MRI is typically
limited by resolution due to constraints on scan time. Consequently, high-resolution ex-vivo scans
and blockface imaging are used as a bridge between in-vivo and histology, with the latter used as a
gold standard for ground-truth microscopic tissue characterization and pathology. Numerous studies
on neurodegenerative diseases including Alzheimer’s disease, Parkinson’s, and Multiple Sclerosis use
high resolution ex-vivo MRI and histology to study disease progression and treatment effects (Madsen
et al., 2021; Echávarri et al., 2011; Welton et al., 2023). Most studies only quantify local effects
due to the significant computational cost of registering the entire brain at high resolution. Recently,
multiple large scale consortia including Seattle Alzheimer’s Disease Brain Cell Atlas (SEA-AD) and
the Human Mouse Brain Atlas (HMBA) consortium are aimed at creating detailed, multimodal brain
atlases linking cellular, molecular, and anatomical organization across species and disease states -
combining individual efforts from multiple institutions together into a unified resource. Moreover,
submillimeter whole-brain datasets (Edlow et al., 2019; Lüsebrink et al., 2017; Mahler et al., 2024)
have been acquired with the goal to facilitate the development and validation of new algorithms for
high-res data, provide detailed studies of the brain anatomy, and act as a high-resolution template for
integration with other modalities or individual brain studies. However, existing tools cannot register
these datasets at native resolution due to excessive memory requirements; we show that our method
can register these datasets at native resolution in a minute using only 8 A6000 GPUs (see Section 5.2).
High-resolution imaging and registration are essential in these contexts because they enable accurate
cross-modal alignment and preservation of fine anatomical detail that would otherwise be lost through
downsampling.

Large-scale registration in model organisms. Over the past decade, imaging across the life
sciences and biomedical domains has progressed from mesoscale surveys to organ- and organism-wide
acquisitions at cellular or even subcellular resolution. These span transparent organisms and small
animal models (e.g., C. elegans, zebrafish, adult Drosophila) (Varol et al., 2020; Venkatachalam
et al., 2016; Marquart et al., 2017; Gupta et al., 2018; Peng et al., 2011; Brezovec et al., 2024), adult
mouse and rat brains imaged at sub-micron resolutions (Gong et al., 2016; Wang et al., 2020a; Kleven
et al., 2023) using Light Sheet Fluorescence Microscopy (LSFM) and Serial Two-Photon Microscopy
(STPT) imaging. Such modalities routinely generate gigavoxel to teravoxel volumes (Kutten et al.,
2016; Nazib et al., 2018). Their scientific utility, however, hinges on the ability to perform registration
at the native resolution of acquisition, i.e. aligning specimens (or modalities) in a common coordinate
system without sacrificing the fine-scale morphologies including cell bodies, layers, axon bundles,
synaptic neighborhoods, etc. that motivate high-resolution acquisition in the first place (Nazib et al.,
2018; Goubran et al., 2013).

Across these diverse domains, the unifying requirement demands access to scalable multimodal
registration algorithms - a challenge we address in this work. We provide an extended discussion of
more related work and the necessity of our approach in Section A.

3 Fused Kernels for Memory Efficient Registration on a Single GPU

Bottlenecks of a deformable image registration pipeline Our primary objective is to identify
compute and memory bottlenecks in large-scale image matching tasks. In identifying these bottlenecks,
training-free optimization methods are better suited than deep networks since the latter has a much
larger activation memory footprint, which forms the primary memory bottleneck (Tazi et al., 2024).
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Figure 2: Left: FFDP uses fused kernels to eliminate intermediate HBM memory usage (in dark red) for
memory-bound workhorse operations (grid sampler, LNCC, MI) for large-scale image registration. For
grid sampler and LNCC, additional intermediate per-pixel variables (warp coordinates, patchwise statistics)
are computed per-pixel in registers (blue). For MI, the Parzen Windowing and histogram aggregation is performed
using shared memory (green), avoiding large HBM overheads. Right: Pie charts show the breakdown of memory
overheads for storing the image, grid, optimizer state, and intermediate variables for MI and LNCC losses.

For instance, for a 250µm image pair, a standard deep learning method (Hoffmann et al., 2021)
generates an activation map of size 27GB only after the first layer. Extrapolating memory usage for
clinical data, existing deep networks will require upto 1.2TB of GPU memory at inference to process
these image volumes at native resolution. In contrast, a training-free optimizer can fit this problem
in less than 45GB of GPU memory. We use FireANTs (Jena et al., 2024a) as our base framework
to identify compute and memory bottlenecks in a typical image registration problem. We analyze
the flamegraph of a typical clinical MRI registration task from the OASIS brain dataset (Marcus
et al., 2007) in Fig. 20. We identify three key memory bottlenecks in image matching pipelines (1)
deformable interpolation and warp composition (2) cross-correlation loss, and (3) mutual information
loss (see Fig. 2(right)). 1 We first propose efficient designs to fit larger problems on a single GPU,
and then extend the framework to distributed registration.

3.1 Composite Implicit Grid Sampler
A fundamental operation used in image registration is the grid sampler. This operator allows us to warp
an image M using a deformation field φ : Ω→ Ω and computes the image M ′ : M ′(x) = M(φ(x)).
Virtually every image registration pipeline uses this operation to warp the moving image using
an affine, deformable, or composite transform. For affine and composite transforms, the operator
initializes a regular grid [x]Ω, a grid of size 3N . The affine grid A[x]Ω + t is another grid of size 3N .
If a deformable grid [u]Ω is optimized, then a third grid A[x]Ω + t+ [u]Ω is materialized, costing a
total of 9N overhead for an image of size N . To consolidate these memory overheads, we propose a
composite implicit grid sampler. This is a fused CUDA kernel that performs the following operation:

fused grid sampler(I;A, t, [u], S, xbounds)(x) = I(Ax+ t+ Su(x))

where A,S ∈ GL(d,R) are affine matrices, t is a translation vector, [u] is the deformation grid, and
xbounds are the bounds of the (implicit) identity grid [x]Ω. There are three benefits of this approach.
First, the kernel avoids materializing any additional grids in HBM, reducing the memory overhead
of the kernel from O(n) to O(1) with no loss in runtime or accuracy. Second, when the warp [u]Ω
is sharded across hosts in a distributed setting, the identity grid [x]Ω needs to be sharded correctly
too. Since the identity grid is implicitly defined by its bounds xbounds = (xmin, xmax) ∈ R2d,
our implementation can be easily used in a distributed optimization setting without instantiating
partial shards [x]Ωh

. Finally, the matrix S is used to rescale the deformation field to sample from
the coordinates of the sharded images Ih which lie on the grid Ωh instead of Ω (see Section I.2)
without initializing additional memory. The backward pass is very similar to the existing PyTorch
implementation, with the exception of the gradient of the affine matrix. We discuss the derivation and
pseudocode of the forward and backward pass in the Section H.

1A GPU’s memory hierarchy spans multiple tiers: registers (per-thread, single-cycle), shared memory/L1
cache (on-chip, tens of KB, low latency within a block), L2 cache (MBs, shared across SMs, moderate latency),
and global memory (HBM). Our work focuses on reducing HBM usage for key non-GEMM operations used in
image registration, by maximizing register and shared memory usage while minimizing global memory traffic.
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Figure 3: Left: Overview of our distributed framework. GridParallel (GP) shards the fixed and moving images
(F,M) and the warp field [u] across multiple GPUs. Yellow blocks and arrows denote synchronized halo
boundaries between GPUs, enabling smoothing on images and warp fields without an allgather. The ring sampler
(violet) computes interpolated image shards on the fly, avoiding materialization of the full moving image. We
then compute losses (MSE, LNCC, MI), compute gradients w.r.t. each warp shard, apply Sobolev regularization
with GP, and update shards by gradient descent. Right: Scaling efficiency compared to deep methods and
CLAIRE (Mang et al., 2019), a distributed registration method. Most SOTA deep learning baselines require
orders-of-magnitude more memory for the same problem size and scalability is limited to a single GPU (dotted
line). Our framework scales to arbitrarily large problem sizes while using about 5× less memory than CLAIRE.

3.2 Implicit Parzen Windowing for Mutual Information
Mattes Mutual Information (MI) is one of the most commonly used loss functions for multimodal
image matching (Chen et al., 2022; Avants et al., 2009; Mattes et al., 2001). For random variables
X and Y , MI is the KL divergence between the joint distribution P (X,Y ) and product of marginal
distributions P (X)P (Y ) of the intensities of the two images. For image matching, X and Y are the
pixel intensities for the images I, J . The distributions are estimated using a kernel density estimator:

PI(v) =
1

N

∑
k

κ(v − Ik), P(I,J)(v, w) =
1

N

∑
k

κ(v − Ik)κ(w − Jk) (2)

where κ is a kernel function of choice. Common choices of κ are the Gaussian (Guo, 2019) and
3rd order B-Spline kernels (Thévenaz & Unser, 2000). To empirically compute the KL divergence,
the distributions Eq. (2) are discretized over B equally spaced bins on the domain of u ∈ I, v ∈ J .
However, to compute the joint histogram of size B2, this method requires materializing the entire
Parzen Block ΨI(j, k) = κ(bj− Ik) of size 2kPBN , where kP is a kernel-dependent constant. Since
N >> B (B is typically chosen to be 32), this operation becomes a significant memory bottleneck
for large N . For instance, a typical clinical image volume (N ≈ 30MB) with 32 bins will consume
7.5GB of HBM - a significantly huge cost that grows much faster for larger problems.

Our efficient implementation leverages the fact that B is small to avoid materializing the tensors
ΨI ,ΨJ ∈ RB×N altogether and use high-throughput shared memory to compute and accumulate the
histogram entries and partial gradients for each image pixel. We provide the detailed derivation in
Section G. This leads to an efficient implementation that consumes O(1) additional HBM instead of
O(N) (holding B constant). This leads to upto 98% lesser HBM usage for images considered in our
experiments, and an asymptotic 100% reduction in HBM usage for large images (Fig. 7(top-right)).

3.3 Efficient Implicit Fused Cross-Correlation
Local Normalized Cross-Correlation (LNCC) is used ubiquitously in signal and image processing
as a similarity metric. In deformable image registration, it is used as a robust similarity function to
compare anatomical similarities (Chen et al., 2022; Hoffmann et al., 2021; Avants et al., 2008b; Wu
et al., 2024). Most LNCC implementations are memory-bound due to the large number of intermediate
variables. Our analysis in Section F shows that the computational graph adds 16× HBM overhead,
and upto another 16× HBM overhead for computing gradients with respect to all intermediates.

To avoid these huge memory overheads, we fuse all the intermediate computation in a fused kernel.
Our fused forward pass requires only 5× memory for storing all intermediates (I, J, I2, J2, IJ
convolved with matrix w). In Section F we analytically derive the gradient and show that the input
gradients can be computed by modifying the saved intermediates in-place. This leads upto a 76.5%
reduction in memory (see Table 3) and outperforms even torch.compile implementations.
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Figure 4: (a) Neighboring coordinates in the warp field may refer to pixel locations on arbitrary image
shards due to the deformable nature of the warp field, making distributed interpolation non-trivial. (b) Ring
Sampler interleaves fetching of image shards and aggregating the partial sums of interpolated values, avoiding
a memory-expensive allgather. (c) Bilinear Interpolation is decomposed into partial sums over image shards,
which are accumulated with a ring topology communication, similar to Liu et al. (2024b).

4 Extending image registration to multiple GPUs

Our composite implicit grid sampler and improved loss functions allows optimizing problems with
image sizes that are upto two magnitudes larger than other baselines on a single A6000 GPU (Fig. 5a).
However, many applications using mesoscopic and microscopic data require registration of images
that do not fit on a single GPU. Inspired by distributed frameworks for LLM training (Shoeybi et al.,
2019; Rajbhandari et al., 2020) and initial work on distributed image registration (Mang et al., 2019),
we propose a distributed framework that allows sharding large images across multiple GPUs to
efficiently scale to arbitrarily large problem sizes with any similarity loss function.

Distributed Setting. For distributed registration with H hosts or GPUs, we partition the domain
P (Ω) = {Ω1,Ω2, . . .ΩH} such that |Ωi| = N/H , Ωi ∩ Ωj = ϕ ∀i ̸= j and ∪iΩi = Ω. We use
[x]Ωh

, A[x]Ωh
+ t, and [u]Ωh

to denote the sharded tensors defined on domain Ωh.

4.1 Grid Parallel for Boundary-Synchronized Image Sharding

Techniques like Tensor/Sequence/Expert/Context Parallel have been tremendously successful in
distributed optimization by sharding large models and sequences across multiple GPUs (Shoeybi
et al., 2019; Li et al., 2023; Liu et al., 2024b;a). However, these techniques work for transformer-
like architectures and input sequences where the model parameters and activations do not require
boundary synchronization. In contrast, image registration contains operations that require boundary
synchronization between image and grid shards to perform mathematically correct convolutions.
Examples of such operations include convolutions for calculating LNCC, total variation loss, Sobolev
norm of the gradient and warp fields (Mang et al., 2019; Avants et al., 2008b; Beg et al., 2005).

To enable these functionalities and complement existing parallelism techniques, we propose ‘Grid
Parallel’ (GP) as an abstraction on a tensor. GP shards a tensor across hosts, stores the sharded
dimension and bounds as metadata, and provides synchronization operations to augment the tensor
with sufficient boundary padding from neighboring shards prior to performing a convolution operation.
GP allows us to partition the fixed images, [u], and the optimizer state [m1], [m2] – essentially
sharding the entire problem across H hosts while allowing the user to apply convolutional operations
seamlessly. We compare the performance of GP with naive DTensor sharding in Section D.

4.2 Distributed Ring Sampler

Despite the sharding in GP, the moving image M cannot be sharded across GPUs due to the
random-access nature of the grid sample operation applied on M . In general, the warp vector
φ(x) residing on GPU i can point to coordinates that reside on the sharded image on GPU j for any
j ̸= i. Even for neighboring coordinates xs, xu ∈ [x]i, the coordinates φ(xs) and φ(xu) can point to
different shards j1 ̸= j2 ̸= i. This is illustrated in Fig. 4(a). Keeping the entire moving image in
memory limits the maximum problem size to N ≤ V , where V is the memory per GPU, regardless
of the number of hosts H . However, we want the maximum problem size to scale with H . Therefore,
we propose a distributed grid sampler that allows us to correctly interpolate the moving image
with sharded images scattered across multiple hosts without performing an allgather operation
on the moving image.
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(a) Performance comparison across methods and resolutions.
Resolution Method AvgDice Score ↑ InvDice Score ↑ AvgHD90cum (mm) ↓

1mm

Baseline 0.579± 0.055 0.141± 0.142 1.587± 0.908

Anatomix 0.796± 0.035 0.386± 0.138 0.468± 0.137

CLAIRE 0.776± 0.044 0.344± 0.120 0.554± 0.150

FireANTs 0.822± 0.032 0.435± 0.147 0.393± 0.126

ITK-dreg 0.662± 0.055 0.199± 0.125 1.002± 0.277

SynthMorph 0.801± 0.022 0.378± 0.133 0.455± 0.098

TransMorph 0.851± 0.016 0.468± 0.161 0.310± 0.064

UniGradICON (IO) 0.826± 0.022 0.391± 0.155 0.384± 0.095

UniGradICON 0.815± 0.026 0.393± 0.156 0.419± 0.113

VFA 0.851± 0.023 0.494± 0.169 0.323± 0.096

Ours 0.838± 0.028 0.436± 0.148 0.341± 0.109

500 µm

Baseline 0.580± 0.055 0.138± 0.143 1.357± 0.326

Anatomix† 0.758± 0.040 0.325± 0.159 0.619± 0.169

CLAIRE 0.779± 0.051 0.275± 0.210 0.570± 0.211

FireANTs 0.841± 0.033 0.489± 0.163 0.340± 0.127

ITK-dreg 0.699± 0.056 0.240± 0.130 0.834± 0.254

SynthMorph† 0.771± 0.035 0.337± 0.133 0.557± 0.144

TransMorph† 0.759± 0.028 0.300± 0.175 0.624± 0.127

UniGradICON† 0.610± 0.044 0.133± 0.122 1.231± 0.262

UniGradICON (IO)† 0.615± 0.047 0.149± 0.136 1.527± 1.495

VFA† 0.805± 0.044 0.419± 0.181 0.462± 0.163

Ours 0.872± 0.028 0.528± 0.180 0.258± 0.099

250 µm

Baseline 0.580± 0.055 0.136± 0.141 1.409± 0.322

Anatomix† 0.620± 0.031 0.161± 0.115 1.179± 0.190

CLAIRE 0.809± 0.054 0.378± 0.133 0.570± 0.211

FireANTs† 0.777± 0.064 0.341± 0.199 0.629± 0.295

ITK-dreg 0.758± 0.048 0.299± 0.125 0.613± 0.191

SynthMorph† 0.690± 0.052 0.243± 0.164 0.882± 0.239

TransMorph† 0.689± 0.044 0.191± 0.132 0.973± 0.245

UniGradICON (IO)† 0.398± 0.062 0.063± 0.071 3.491± 3.198

UniGradICON† 0.359± 0.044 0.045± 0.056 2.992± 0.670

VFA† 0.714± 0.066 0.281± 0.216 0.821± 0.300

Ours 0.895± 0.029 0.597± 0.204 0.216± 0.098

(b) Accuracy vs. GPU Compute Cost.

(c) Accuracy vs. Wall-clock Time.

Figure 5: Registration performance on Faux-OASIS dataset at 1mm, 500µm, and 250µm (native 250µm);
mean ± std over pairs. ↑ higher is better; ↓ lower is better. HD90 values are reported using our cumulative
definition (see Sec. K.2). (Green)/ (Yellow) = best/second; †= patch-based

Our approach leverages the key observation that (bi/tri)linear interpolation can be decomposed as an
aggregate of partial sums of interpolated values on individual image shards. Fig. 4(b) illustrates this
example. These individual image shards are sent across hosts in a ring topology, similar to Liu et al.
(2024b), and the partial sum is aggregated inplace. This operation only incurs an additional N/H
HBM overhead for fetching the sharded image from other hosts, scaling efficiently to arbitrary large
problem sizes for sufficiently large H . The detailed derivation and correctness of this operation is
shown in Section I.

4.3 Distributed Loss Functions

Since the moved image and fixed image are sharded cross H hosts, the loss function must take this
into account to compute the loss function correctly.

Mean Squared Error (MSE). Since MSE is a per-pixel loss, we compute the individual MSE on
host h and perform an allreduce operation.

Localized Normalized Cross Correlation (LNCC). The LNCC computes per-pixel patch similarities
for each pixel, using a convolution over its neighbors. For sharded images, the patch statistics at the
boundary requires a boundary synchronization with its neighboring shards which is provided by our
GP implementation. After computing the LNCC for all pixels in each shard, we perform another
allreduce to compute the LNCC over the entire image.

Mutual Information (MI). The MI loss computes the joint histograms p(I,J)(x, y) and marginals
pI(x), pJ(y). However, these distributions are partial aggregates from the sharded images on
each GPU. Eq. (2) can be rewritten as pI(v) =

∑
h

Nh

N

(
1
Nh

∑
k∈Ωh

κ(v − Ik)
)
, pIJ(v, w) =∑

h
Nh

N

(
1
Nh

∑
k∈Ωh

κ(v − Ik)κ(w − Jk)
)

, where the red terms correspond to the per-host histogram
computation. Performing an allreduce to compute the weighted average of these histograms
(with weights Nh/N ) results in a valid and correct joint and marginal distributions over all hosts.
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Fixed (100µm FLASH) Moved (250µm→ 100µm) Moving (250µm T1)

Fixed (100µm FLASH) Moved (250µm→ 100µm) Moving (250µm T1)
Fixed (100µm FLASH) Moved (250µm→ 100µm) Moving (250µm T1)

Fixed (100µm FLASH) Moved (250µm→ 100µm) Moving (250µm T1)
Fixed (100µm FLASH) Moved (250µm→ 100µm) Moving (250µm T1)

Fixed (100µm FLASH) Moved (250µm→ 100µm) Moving (250µm T1)
Fixed (100µm FLASH) Moved (250µm→ 100µm) Moving (250µm T1)Figure 6: Qualitative comparison on registration of 100µm ex-vivo brain MRI (T1 → FLASH) image. Fine

details like cerebellar white matter are not visible at macroscopic scales, but are aligned at 100µm. Fixed image
is of size 1760× 1760× 1278. Best viewed zoomed in. More results in Fig. 11.

This also leads to only a B2 + 2B communication overhead regardless of N , making a distributed
implementation highly practical.

5 Experiments

Our primary goals are to (a) accelerate both optimization and neural network based registration
workflows, and (b) solve significantly larger image registration problems. We show the efficacy
of our method by accelerating existing registration workflows on standard clinical data. This is
followed by optimizing a multimodal registration task with more than 11.8B optimizable parameters,
an unprecedented result in large-scale registration. We compare the performance and computational
efficiency of our method with various state-of-the-art baselines on a simulated 250µm ex-vivo brain
MRI dataset, followed by ablations on various components of our framework.

Baselines. To accelerate existing registration workflows, we compare against TransMorph (Chen
et al., 2022) and FireANTs (Jena et al., 2024a), which are state-of-the-art deep learning and optimization
based registration frameworks respectively. In addition, we perform comparative evaluation with two
methods explicitly designed for large-scale registration: ITK-DReg (itk) (CPU-based) and CLAIRE
(Mang et al., 2019) (multi-GPU), and several SOTA learning-based approaches for clinical data -
SynthMorph (Hoffmann et al., 2021), Vector-Field Attention (Liu et al., 2024c), unigradICON (Tian
et al., 2024) (with/without instance optimization), anatomix+ConvexAdam (Dey et al., 2025).

5.1 Accelerating existing registration workflows and ablations

For deep networks, we train TransMorph-large under three loss configurations: (a) LNCC+Dice,
(b) MI+Dice, and (c) LNCC+scaling-and-squaring (Ashburner, 2007) +Dice. For each configuration
shown in Table 1, we either use the vanilla PyTorch implementation (Baseline) or our kernels (Ours).
For classical optimization, we benchmark runtime and memory against multiple LNCC backends
(FireANTs, VoxelMorph/TransMorph, Fast LNCC, torch.compile, and Ours) and MI backends
(PyTorch and Ours with and without torch.compile). Tables 1 and 4 and Fig. 12 show that
during network training our kernels converge 6.1× faster with LNCC while using 16.5% less memory,
and reduce MI memory usage by 24.7%. Despite being designed for very large images, the runtime
and memory benefits are significant for clinical-scale data (i.e., 30MB for OASIS). Optimization
frameworks see larger gains: FireANTs achieves up to 95.2% memory savings and 2.6× speedup with
MI, and a 7.5× speedup over FastLNCC (Jia et al., 2025) (and 2.9× over FireANTs’ LNCC backend
which applies separable convolutions on FastLNCC), with 44-59% lower memory usage overall.

5.2 Registration to a 100 micron ex-vivo brain MRI volume

To showcase the efficacy of our method on real large scale images, we register a 250µm in-vivo
MRI image (Lüsebrink et al., 2017) to a 100 µm ex-vivo FLASH human brain volume (Edlow et al.,
2019). This represents an inverse problem with more than 11.2B optimizable parameters (compared
to ∼20M for clinical datasets), or 44.8GB of GPU memory. The entire problem does not fit on
most GPUs, necessitating distributed multimodal registration. We optimize a composite transform
- affine followed by a diffeomorphic mapping; details can be found in Section E.1. Multimodal
deformable registration took ∼58 seconds on 8 NVIDIA A6000 GPUs, which is unprecedented at
this resolution. Fig. 6 shows qualitative results, highlighting the ability to register highly detailed
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Figure 7: Ablations on key workhorse operations: LNCC, MI, grid sampler, and scaling-and-squaring
operations. Our fused kernels consume significantly less HBM and runtime.

structures such as cerebellar white matter; these structures are not visible at macroscopic scales. The
resultant advantages of performing registration at this scale can allow researchers to characterize the
neuroanatomy at microscopic resolutions and allow morphometric analysis of cortical layers and
subcortical nuclei among other structures.

Registration accuracy in these studies is measured using privately annotated fiducial markers, hindering
reproducibility and comparability of methodological advances. Due to lack of scalable frameworks,
most high-resolution studies simply run ANTs at a significantly downsampled resolution (Kleven
et al., 2023; Mansour et al., 2025; Wang et al., 2020b; Kronman et al., 2024; Bogovic et al., 2020;
Edlow et al., 2019) and upsample the warp field to the native resolution.

5.3 Comparative Analysis on a Simulated ex-vivo Brain MRI Dataset

Table 1: Accelerating TransMorph (Top) and FireANTs
(Bottom) training with various computation backends.

Variant Loss Diffeomorphic Training Time (h) GPU Mem (GB) Val DSC
Baseline LNCC ✗ 171.20 20.01 86.74
Ours LNCC ✗ 27.84 16.95 87.23
Baseline LNCC ✓ 171.42 21.28 86.55
Ours LNCC ✓ 27.93 17.34 87.09
Baseline MI ✗ 26.09 22.34 86.74
Ours MI ✗ 24.94 16.80 86.80
Loss Backend Dice Score ↑ Runtime (s) ↓ Memory (MB) ↓
LNCC FireANTs 78.81 ± 3.87 1.44 ± 0.08 1044.5 ± 0.0
LNCC FastLNCC 76.96 ± 3.60 3.76 ± 0.16 1026.3 ± 0.0
LNCC VXM/TM 76.96 ± 3.60 57.08 ± 2.45 1418.5 ± 0.0
LNCC torch.compile 69.35 ± 4.09 0.82 ± 0.04 860.7 ± 0.0
LNCC Ours 78.67 ± 3.04 0.50 ± 0.01 577.5 ± 0.0
MI PyTorch 75.88 ± 3.45 7.51 ± 0.37 12206.3 ± 0.0
MI torch.compile 75.88 ± 3.45 1.05 ± 0.05 3865.5 ± 0.0
MI Ours 75.88 ± 3.44 2.90 ± 0.16 577.5 ± 0.0
MI torch.compile+Ours 75.93 ± 3.47 2.95 ± 0.16 657.3 ± 0.0

The faux-OASIS dataset To compare regis-
tration performance at high resolutions and
leverage existing methods as baselines, we
synthesize the faux-OASIS dataset, which
mimics the anatomical distribution of an
MRI dataset at 250µm isotropic resolution
(more details in Section K). At 250µm, the
deformation field has 1.32B degrees of free-
dom per image pair, compared to ∼20M
for OASIS.

Baselines and evaluation. All methods
(including CLAIRE and FireANTs without
FFDP) run out of memory at 250µm res-
olution. We proposed two modifications
to deep learning based methods to enable them to work on this dataset: (a) inspired by several
high-resolution studies (Wang et al., 2020b; Mansour et al., 2025; Edlow et al., 2019), we register
the images at a downsampled resolution, and then upsample the deformation field (b) inspired by
several histology registration methods (Wodzinski et al., 2024; Lotz et al., 2015; Liang et al., 2021),
we perform patchwise registration and mosaicing of the final deformation. We compare the methods
at three resolutions: 1mm, 500µm, and 250µm. At 1mm, the full image fits within a patch, providing
a baseline reference comparable to reported OASIS performance. At higher resolutions, patches are
defined by each method’s default input size with stride equal to 50% of the patch size. FireANTs
augmented with FFDP is denoted as Ours. We report Dice, inverse-weighted Dice (InvDice; Mang
et al. (2019)), and average Haussdorf distance capped at 90 percentile (AvgHD90). To compare
efficiency, we measure both wall-clock time and GPU-hours.

Results. Fig. 5a summarizes performance metrics. At 1mm, most methods achieve performance
consistent with their reported performance on OASIS, including VFA and TransMorph which were
trained on the OASIS dataset with label supervision. At higher resolutions, nearly all methods
degrade, especially for InvDice and HD90, which emphasize alignment of fine structures. In contrast,

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

our method improves in accuracy: at 250µm, we improve Dice by 18.1 points, InvDice by 31.6
points, and reduce AvgHD90 by 62.1%. The correlation between resolution and performance is also
observed in (Mang et al., 2019; Mang & Ruthotto, 2017; Nazib et al., 2018); in addition we verify
that patch-based methods degrade in performance at higher resolutions.

This degradation among patchwise methods is expected; histology-style pipelines typically register
consecutive slides with small deformations after affine alignment. At high resolution, patching reduces
anatomical context and the patches become progressively more out-of-distribution (see Fig. 19).
Patchwise or downsampling strategies are therefore insufficient for ultra-high resolution large-scale
registration, and existing deep methods cannot be repurposed to work at higher resolutions efficiently.
Accuracy-efficiency tradeoffs in Figs. 5b and 5c show that our method is Pareto-efficient compared to
all other methods (CPU, deep learning, and distributed GPU methods), requiring up to 500× fewer
GPU-hours compared to alternatives at 250µm.

5.4 Ablation Studies

(a) Weak scaling and Per-GPU memory
consumption of FFDP.

(b) Qualitative ablation of GP synchro-
nization in FFDP on the fMOST mouse
brain dataset (Tustison et al., 2024). Red
arrows highlight regions affected by incor-
rect boundary effects due to no GP. See
Fig. 10 for more examples.

Figure 8: Scaling and GP ablations.

We ablate on the efficiency of various workhorse opera-
tions used in image registration in Fig. 7 and Table 3. We
compare our implementations to community-standard Py-
Torch implementation (Jia et al., 2025; Chen et al., 2022)
and torch.compile versions. For grid sampler and MI
kernels, our kernels have O(1) extra HBM overhead in-
stead of O(N) in the PyTorch implementation. For LNCC,
our implementation achieves an average speedup in the
forward pass by 5.22× and 56.98× in the backward pass.
Our grid sampler also leads to an efficient scaling-and-
squaring operation, commonly used in deep learning registra-
tion pipelines (Chen et al., 2022), with a memory reduction
of 50% compared to the baseline implementation.

Scalability Analysis. We test the weak scaling of our dis-
tributed framework by registering synthetic images with in-
creasing voxel sizes. For H GPUs, we instantiate an image
pair of size 700× 700× 700H and shard the images, warp,
and optimizer state across H GPUs. Fig. 8a shows weak
scaling of FFDP with and without ring sampler. Without the
ring sampler, the grid sample operation requires storing
the moving image of size 700× 700× 700H on each GPU,
leading to peak HBM memory increasing linearly with H .
This implies the framework would not scale to arbitrarily large
problem sizes, regardless of cluster size H . Peak Memory
consumption is independent of H with the Ring Sampler, and
scaling efficiency is only minimally affected.

Ablation on GP. We ablate the effect of GP by replacing
it with DTensor sharding (no boundary sync). Figs. 8b, 9
and 10 show that incorrect boundary synchronization leads
to undesirable artifacts in the moved images, and reduces
labelmap overlap.

6 Conclusion

We propose a novel distributed framework for arbitrarily large
image registration problems. Our work identifies and proposes

IO-aware and distributed-friendly implementations of workhorse operations in image registration
algorithms, enabling registration of images at arbitrarily large resolutions on a single GPU. Our fused
primitives demonstrate compelling results in both improving existing registration pipelines and scaling
to arbitrarily large, multimodal problems pertinent in modern life science applications, that were
previously infeasible without approximations. FFDP shows unprecedented registration capabilities
that will enable researchers to leverage and effectively work with large-scale image volumes and
unearth new insights leveraging the large resolution images.
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A Related Works

A.1 Memory Efficient and Large Scale Optimization

Recent advances in large scale transformer-based model training has amassed significant attention
and efforts to alleviate key bottlenecks in both memory and compute efficiency. Activation memory
forms a key bottleneck in many deep learning training pipelines, and recent advances propose fused
operations (Dao et al., 2022; Dao, 2023; Shah et al., 2024; PyTorch, 2023; Bikshandi & Shah, 2023;
Dong et al., 2024) to significantly reduce HBM usage without approximations. Other techniques
propose sub-quadratic approximations to the quadratic complexity of the attention operation and
propose highly efficient and IO-aware fused kernels (Yuan et al., 2025; Dong et al., 2024; Wang
et al., 2024). However, as these models and their inputs get increasingly larger in size, they do
not fit on a single GPU. Various distributed techniques like Tensor Parallel (Shoeybi et al., 2019),
Sequence Parallel (Li et al., 2023; Jacobs et al., 2024; Li et al., 2024), pipeline parallel (Qi et al.,
2023; Lamy-Poirier, 2023; Liu et al., 2024a), fully-sharded data parallel (FSDP2) (Ansel et al., 2024;
Zhao et al., 2023; Rajbhandari et al., 2020) have been proposed that distribute (shard) the model and
its inputs across multiple GPUs for transformer-like models. Another research area approaches the
problem of scaling large models by building compilers and intermediate representations to enable
writing optimized kernels at runtime OpenAI (2021); Ansel et al. (2024); Spector et al. (2025);
Chen et al. (2018); Abadi et al. (2016). To our knowledge, most of these techniques are tailored to
transformer-specific architectures and GEMM-like operations (self attention, feedforward, batchnorm,
etc.) only, and a Tensor/Model Parallel variant for convolution-aware sharding is not available.
However, other disciplines including biomedical and clinical imaging, life sciences, climate modeling,
drug discovery, genomics, geosciences, robotics leverage other key components that do not fit in the
transformer-specific framework, or are GEMM-like in nature. We focus on the compute and memory
bottlenecks in the image registration problem, that is a key component in a variety of biomedical and
life science applications.

A.2 Large Scale Registration in Life Sciences and Biomedical Imaging

A.2.1 Ex-vivo neuroimaging and histology for neuroanatomical and pathological studies.

A large body of neuroanatomical studies are performed in conjunction with ex-vivo and blockface
imaging and histology to create detailed, multi-scale anatomical references by integrating structural,
molecular, and cytoarchitectural information across imaging modalities (Casamitjana et al., 2025;
Ravikumar et al., 2024). In-vivo MRI scans are typically limited by resolution due to constraints
on scan time and motion artifacts associated with longer scan times. This makes in-vivo MRI
scans unsuitable for studying the microstructural changes associated with neurodegenerative disease
progression. Registration of fine anatomical details like cortical layers, axonal projections, or
individual nuclei are useful to understand neuropathology, and such analyses are not possible at
macroscopic clinical scales. Therefore, high-resolution ex-vivo scans and blockface imaging are used
as a bridge between in-vivo and histology, with the latter used as a gold standard for ground-truth
microscopic tissue characterization and pathology. Many complementary stains are used to visualize
neuropathological features, including protein aggregates, neuronal loss, gliosis, and myelin integrity.
Accurate registration of these structures is important to improve our understanding of morphological
effects of pathology. For example, Alzheimer’s Disease (AD) is characterized by cortical atrophy
in the medial temporal lobes, particularly hippocampus, entorhinal cortex, and parahippocampal
gyrus (Ravikumar et al., 2024; Echávarri et al., 2011). Accurate atrophy quantification of these
structures can only be reliably performed at ∼0.5 mm or better resolution MRI or ex vivo imaging,
necessitating high resolution registration. Parkinson’s Disease (PD) is characterized by degeneration
of DA neurons in the substantia nigra (Triarhou, 2013) and subthalamic nucleus that are small (∼5-10
mm), requiring <0.7 mm isotropic or ex vivo imaging for volumetry or susceptibility mapping for
accurate delineation (Welton et al., 2023). Multiple Schelosis is characterized by cortical lesions
(Madsen et al., 2021; Beck et al., 2018) that cannot be delineated at the in-vivo resolution and typically
requires high resolution ex-vivo imaging and histopathology integration. Except in-vivo imaging, all
other modalities are very high resolution typically ranging from 500µm up to 100µm (Ravikumar
et al., 2024; Echávarri et al., 2011; Welton et al., 2023; Madsen et al., 2021) for ex vivo imaging
and ∼ 10µm for histology sections. High-resolution imaging and registration are essential in these
contexts because they enable accurate cross-modal alignment and preservation of fine anatomical
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detail that would otherwise be lost through downsampling. Most of these studies, however, limit
their analyses to localized effects due to the significant computational cost of registering the entire
brain at high resolution. Recently, projects like Allen Brain Atlas (all) and multiple large scale
consortia including Seattle Alzheimer’s Disease Brain Cell Atlas (SEA-AD) consortium and the
Human Mouse Brain Atlas (HMBA) consortium are aimed at creating detailed, multimodal brain
atlases linking cellular, molecular, and anatomical organization across species and disease states -
combining individual efforts from multiple institutions together into a unified resource. Achieving
this multimodal organization at the whole brain level requires high-resolution registration tools to
accurately align diverse imaging modalities while preserving fine-scale cytoarchitectural detail.

Most in-vivo to histology registration workflows require registration of an in-vivo image to its
ex-vivo counterpart. The 100µm ex-vivo and 250µm in-vivo images released in Edlow et al. (2019);
Lüsebrink et al. (2017) are intended to be used as high-resolution templates to enable accurate
studies, but lack of computationally efficient methods restricts their broad usage in the neuroimaging
community. Our paper performs a native-scale registration on a modest GPU server with 8 A6000
GPUs to showcase the distributed capabilities, democratizing the use of such high resolution data for
advancing the state of neuropathology studies.

A.2.2 High resolution pulmonary imaging enables subvoxel landmark localization.

Pulmonary CT mapping is a key component of lung disease diagnosis and treatment, and accurate
landmark tracking requires registration at high resolution. Lung CT images can be acquired at
submillimeter resolution (Murphy et al., 2011), but deep learning methods often require downsampling
to accommodate their memory requirements (Falta et al., 2023; Hering et al., 2020). In the LungCT
Learn2Reg challenge, the Lung CT images have a resolution of 1.25-1.75mm and the top performing
methods achieve an average landmark error of 1.83mm. However, in the EMPIRE10 challenge,
the average physical resolution of the images is 0.7mm and the average landmark error of most top
methods (FireANTs, DISCO) is around 0.649mm, reaching subvoxel landmark localization. This
demonstrates that with an appropriately high resolution, top methods can achieve subvoxel accuracy
in landmark errors without learning. Moreover, due to the large voxel sizes in the EMPIRE10 dataset
(with average voxel size of 412.8×317.2×364.9, about 5× larger than OASIS brain MRI on average),
most top performing methods are iterative methods, sometimes used in conjunction with patch based
feature extractors. This retrospective analysis shows the direct impact of using higher resolution to
improve landmark accuracy in pulmonary imaging, and the benefits of using native-scale registration.

A.2.3 Large scale registration in model organisms.

Over the past decade, imaging across the life sciences and biomedical domains has progressed
from mesoscale surveys to organ- and organism-wide acquisitions at cellular or even subcellular
resolution. These span transparent organisms and small animal models (e.g., C. elegans, zebrafish,
adult Drosophila) (Varol et al., 2020; Venkatachalam et al., 2016; Marquart et al., 2017; Gupta
et al., 2018; Peng et al., 2011; Brezovec et al., 2024), whole-rodent brains imaged at micron or
submicron sampling (Gong et al., 2016; Wang et al., 2020a), and non-human primate (NHP) and
human ex vivo MRI at hundreds of microns (Skibbe et al., 2023; Milham et al., 2018; Edlow et al.,
2019; Lüsebrink et al., 2017). Such modalities routinely generate giga- to teravoxel volumes (Kutten
et al., 2016; Nazib et al., 2018). Their scientific utility, however, hinges on the ability to perform
registration at the native resolution of acquisition, i.e. aligning specimens (or modalities) in a common
coordinate system without sacrificing the fine-scale morphologies-cell bodies, layers, axon bundles,
synaptic neighborhoods– that motivate high-resolution acquisition in the first place (Nazib et al.,
2018; Goubran et al., 2013).

Cellular-resolution atlases in model organisms. In C. elegans, statistical atlases of neuron positions
require aligning whole-animal volumes to preserve the fidelity of closely apposed cells (Varol et al.,
2020; Venkatachalam et al., 2016). In zebrafish, deformable registration with cellular-level precision
and minimal perturbation of tissue morphology enables pooling of gene expression, single-neuron
morphologies, and brain-wide activity (Marquart et al., 2017; Gupta et al., 2018). In adult Drosophila,
whole-brain registration underpins large-scale databases and enables structure–function integration
(for example, aligning two-photon functional volumes to EM-derived connectomes) (Peng et al., 2011;
Brezovec et al., 2024).
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Whole-brain rodent imaging Large scale efforts like NIH’s Brain Research through Advancing
Innovative Neurotechnologies (BRAIN) Initiative - Cell Census Network (BICCN) aims to provide
researchers and the public with a comprehensive reference of the diverse cell types in human, mouse,
and non-human primate brain, and researchers collect a wide range of multimodal data including MRI,
sectioning tomography, microscopy, antibody stains (e.g. calbindin), and spatial transcriptomics.
In rodents, fMOST pipelines yield whole-brain images at micron sampling (e.g., 0.32µm voxels
generating >10TB datasets) for tracing long-range axons and quantifying cytoarchitecture (Gong
et al., 2016). Constructing stereotaxic spaces such as the Allen CCFv3 and Waxholm rat atlas requires
deformable registration that preserves layers and boundaries (Wang et al., 2020a; Kleven et al., 2023;
Kronman et al., 2024). Currently, there is a huge gap between the resolution at which data is acquired
and the resolution at which templates are created. For example, STPT images can be collected at
less than 1µm resolution (Liwang et al., 2023), but the Allen CCFv3 template is generated at 10µm
by upsampling the registrations from 25µm due to compute constraints. Extrapolating the runtime
reported in the method used to generate the CCFv3 template (Wang et al., 2020a), registration will
require about 19 hours for a single pair or about 7.26 CPU-years for a single iteration of template
matching - and is therefore impossible to curate without access to huge HPC clusters. This is
contrasted to our method that can perform registration in about a minute or two on a modest server
rack with 8 GPUs (or 5.48 GPU days for a single iteration of template building) - saving a significant
amount of time and resources. Certain phenomena of interest like cellular organization and brain-wide
connectomes are emergent only at very high resolutions, necessitating computational tools that can
scale with the data.

The lack of computational tools for large-scale registration has a trickle-down effect on follow up
studies as well. For instance, ANTsX pipelines for mouse brain registration to the CCFv3 atlas is
performed at 50µm instead of 10µm for compute reasons (Tustison et al., 2024). Developmental
atlases also register the CCFv3 at resolutions significantly downsampled from the original 10µm
template (Kronman et al., 2024; Liwang et al., 2025) citing lack of computational resources as one of
the primary reasons.

Zebrafish Initially adopted as a developmental biology model because of its ease of domestication,
high fecundity, and transparent early life stages, the zebrafish has gained broader prominence with
advances in brain imaging, molecular genetic tools, and behavioral assays (Kenney et al., 2021). For
the AZBA template (Kenney et al., 2021), the raw images are collected at 4µm but was resampled
to 8µm (8× downsampling) due to system constraints. The tools used for the registration (Friedel
et al., 2014) do not recommend running locally and only on a distributed cluster. Brain-wide cellular
resolution imaging of transgenic zebrafish lines (Tabor et al., 2019) is performed on large clusters like
Biowulf Linux cluster at the National Institutes of Health, significantly reducing accessibility of these
imaging resources to researchers, signifying an unmet need for efficient and distributed multimodal
registration frameworks.

Across these diverse domains, the unifying requirement demands access to scalable multimodal
registration algorithms - a challenge we address in this work.

A.3 Deformable Image Registration

Given two images F : Ω→ Rd and M : Ω→ Rd defined on domain Ω (usually a compact subset
of Rd), Deformable Image Registration (DIR) refers to an inverse problem to find a transformation
φ : Ω→ Ω that warps the moving image M to the fixed image F . Prior to deep learning, the inverse
problem was solved using iterative solvers (Klein et al., 2009; Tustison & Avants, 2013; Andersson
et al., 2007; Ashburner, 2012; Avants et al., 2006), and has been made significantly more scalable
by recent advances in GPU-based libraries (Mang et al., 2019; Mang & Ruthotto, 2017; Jena et al.,
2024a). Meanwhile, earliest deep learning for image registation (DLIR) methods (Cao et al., 2017;
Krebs et al., 2017; Rohé et al., 2017; Sokooti et al., 2017) used supervised learning to predict a
transformation field using pseudo ground truth transformations. However, since the inverse problem
is generally ill-posed, unsupervised and weakly supervised learning methods (Balakrishnan et al.,
2019; Zhao et al., 2019b;a; Joshi & Hong; De Vos et al., 2019; Mok & Chung, 2020; Zhang et al.,
2021; Qiu et al., 2021; Lebrat et al., 2021; Jia et al., 2022; Mok & Chung, 2022) became dominant.
However, these methods perform virtually identically to iterative solvers in the unsupervised setting,
and show relatively brittle performance under domain shift(Jena et al., 2024b; Jian et al., 2024; Jena
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et al., 2025). Other recent work has shown increased reliability under domain shift (Liu et al., 2024c;
Chen et al., 2022). Another line of work combines neural priors with iterative solvers to leverage
learnable features with strong convergence properties and robustness of solvers (Wu et al., 2024;
Hu et al., 2024; Wu et al., 2022; Zhao et al., 2019a;b). However, almost all deep learning-based
methods typically work reliably only at a macroscopic resolution, with most methods working only
at a standard resolution of 1mm or 192× 160× 224 voxels, and running out of memory on larger
images, even on other macroscopic problems like lung or full body CT unless they are significantly
downsampled (Falta et al., 2023). This is a significant limitation given modern real life applications
including the ultra-high-resolution image acquisition techniques used for ex-vivo neuroanatomical
and developmental biology studies, spanning subcellular structures and connectomes in species like
C.elegans (Varol et al., 2020; Venkatachalam et al., 2016), zebrafish (Marquart et al., 2017; Gupta
et al., 2018), adult Drosophila (Bogovic et al., 2020; Brezovec et al., 2024; Peng et al., 2011), rodents
(Wang et al., 2020b; Mansour et al., 2025; Kleven et al., 2023; Kronman et al., 2024), and non-human
primates (Skibbe et al., 2023; Davis & Maga, 2018; Frye et al., 2022). The scale of these problems
is often two to three orders of magnitude larger than the scale of existing deep learning methods.
A simple extrapolation shows that existing deep learning methods will require ≈ 1.87 TB of GPU
memory to train a model on a 250µm ex-vivo brain dataset, making them impractical for training on
larger problems. (Mang et al., 2019; Mang & Ruthotto, 2017) propose a distributed framework for
registering arbitrarily large images, but is limited to MSE loss function and a one-parameter subgroup
of diffeomorphic transforms (stationary velocity field), which is less flexible than the entire space of
diffeomorphic transforms (Mang et al., 2019; Jena et al., 2024a). Moreover, they show results on upto
256 GPUs which indicates room for improvement in terms of scaling efficiency. In our work, we
propose a distributed framework that is upto an order of magnitude more efficient than (Mang et al.,
2019) on large problems.

B Limitations and Future Work

One of the limitations of the proposed framework is the relatively poor weak scaling of the method
in the distributed setting (41% on 8 GPUs without NVLink or Infiniband). Even so, for most life
science applications feasibility is the first step towards scalable, distributed, multimodal registration,
and future work will focus on improving the weak scaling of the method. Another active avenue for
future work is to enable Virtual GridParallel (VGP) to use fewer GPUs by sequentially offloading
and onloading consecutive shards from CPU onto a single GPU. Deformable Registration of the 100
µm volume in Appendix 5.2 took only one minute on 8 A6000 GPUs, but equivalently it would
take around 15-20 minutes to register this pair on a single A6000 GPU with VGP, accounting for
repeated CPU offloading. This is an acceptable timeframe for large-scale studies, allowing researchers
to prototype and iterate on large-scale image volumes as well with a single GPU. Other avenues
for future work include collecting labeled data at high-resolution for various real-world life science
applications and performing comparative studies on these datasets.

C LLM Usage

We use an LLM (minimally) to polish the manuscript and improve clarity of ideas and organization.
All LLM-generated text is thoroughly reviewed, proofread, and revised by the first author of the paper.

D Correctness of Grid Parallel Implementation

The GridParallel framework aims to add additional synchronization primitives for performing
mathematically correct convolutions across image or grid shards. These convolutions are required to
compute the LNCC loss, and applying Sobolev preconditioning of the warp field and its gradient.
Without GP synchronization, the implementation is equivalent to a DTensor sharding (Ansel et al.,
2024). To our knowledge, existing Model Parallel and FSDP techniques are exclusively built for
model weights and activations for linear and self.-attention layers and do not support this functionality.
The pseudocode for convolution with GP synchronization is provided in Algorithm 1.

To ablate the effect of GridParallel synchronization, we register images at 500µm resolution from
the faux-OASIS dataset with and without the GridParallel synchronization to measure the effect on
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performance. Results in Fig. 9 show only a minimal drop in performance with DTensor sharding.
We posit that this is because the faux OASIS dataset does not contain real-world noise and other
artifacts that can degrade performance with incorrect boundary synchronization. To study the effect
of GP synchronization on a more challenging dataset, we register images at 10µm resolution from
the fluorescence micro-optical sectioning tomography (fMOST) mouse brain dataset (Tustison et al.,
2024) with and without the GridParallel synchronization to measure the effect on performance.
This dataset contains image volumes of size 1202× 1078× 627 voxels, or a displacement field of
9.74GB. The data contains a myriad of complex artifacts, namely stripe artifacts, boundary halo
effects, and speckle noise from image stitching and reconstruction. We run FireANTs with multi-scale
optimization at scales 16, 8, 4, 2, 1× downsampling for 200, 200, 200, 100, 50 iterations. We use
our Fused LNCC implementation with a window size of 7, and a learning rate of 0.5. Smoothing
regularizations are set to σgrad = 1.0 and σwarp = 0.5. We ablate on 2, 4 and 8 GPUs.

Figure 9: Quantitative ablation of GP synchronization
on the faux-OASIS dataset.

Since we do not have ground truth annotations
for this dataset, we only make qualitative ob-
servations. Unlike the faux-OASIS dataset,
the fMOST dataset is more challenging with
high levels of image heterogeneity and com-
plex anatomical structures. Fig. 10 shows that
the performance without GP synchronization
is significantly affected as a function of GPUs.
Specifically, the boundaries introduce undesir-
able artifacts due to mathematically incorrect
smoothing and LNCC losses computed across
shard. GP synchronization produces qualita-
tively better results regardless of the number of
GPUs used to shard the problem.

Algorithm 1 Convolution with GP synchronization
Require: T (tensor), r (rank), k kernel size, W kernel filter, sharding index sh, GP size gp size

1: pad← (k − 1)/2
2: bl← None
3: br← None
4: if r > 0 then
5: bl← get boundary(r − 1, pad)
6: end if
7: if r < gp size then
8: br← get boundary(r + 1, pad)
9: end if

10: Tpad ← concat([bl, T, br], dim = sh)
11: out← conv(Tpad,W )
12: crop from left← 0
13: crop from right← 0
14: if r > 0 then
15: crop from left← pad
16: end if
17: if r < gp size then
18: crop from right← pad
19: end if
20: out← crop(out, (crop from left, crop from right), dim = sh)
21: return out

E Accelerating TransMorph
training

In this section, we plot the performance of TransMorph training with and without our fused operations.
Table 1 summarizes the performance of TransMorph training with and without our fused operations
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Figure 10: Qualitative ablation of GP synchronization in FFDP on the fMOST mouse brain dataset. Red arrows
highlight regions affected by incorrect boundary effects due to no synchronization.

for three commonly used configurations. We further plot the validation performance across these
settings with respect to Wall clock time in Fig. 12. Our fused operations demonstrate efficiency with
fast convergence while reducing memory usage.

E.1 Registration to a 100 micron ex-vivo brain MRI volume

In this section, we describe the parameters used for the registration of a 250µm in-vivo T1-weighted
MRI volume described in Lüsebrink et al. (2017) to the 100µm ex-vivo brain FLASH volume
described in Edlow et al. (2019). First, we perform an multi-scale affine registration at 3mm, 2mm,
1mm, 500µm resolutions for 500, 250, 100, 100 iterations respectively, using the Fused Mutual
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Fixed (100µm FLASH) Moved (250µm→ 100µm) Moving (250µm T1)
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Fixed (100µm FLASH) Moved (250µm→ 100µm) Moving (250µm T1)
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Figure 11: Qualitative comparison of registration results from 250µm T1 (Lüsebrink et al., 2017) to 100µm
ex-vivo FLASH (Edlow et al., 2019). Intricate structures like cerebellar white matter and GM-WM interfaces are
not very discernable at 1mm, but can be aligned at 100µm with our method.

Figure 12: Ablation on TransMorph training runtime with and without our fused operations. For LNCC, our
method converges in about 30 hours, while the baseline converges in about a week.

Information loss. This step takes about 12 seconds to run on a single NVIDIA A6000 GPU. The
second step was to run multi-scale deformable optimization with scales 3.2mm, 1.6mm, 0.8mm,
0.4mm, 0.2mm, 0.1mm (scale factors of 32, 16,8, 4, 2, 1) for 250, 100, 100, 100, 50, 20 iterations
respectively, using the fused LNCC loss. This step took about 58 seconds on 8 NVIDIA A6000 GPUs.
Qualitative results are shown in Fig. 11.
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Table 2: Qualitative Comparison of Methods. We compare the methods on qualitative features such as GPU
support, multimodal capabilities, ability to run for unequal sizes of fixed and moving images, non-standard image
sizes, whether the model can work with full context for larger images, whether the model supports multi-GPU
training, and whether the model supports arbitrary loss functions. Deep learning methods support multimodal
registration only if they are trained on multiple modalities. CLAIRE requires the image sizes to be divisible
by the number of GPUs, and does not support arbitrary loss functions. Our method supports all of the above
features, leading to a seamless experience for users with minimal data preprocessing overhead.

Method GPU Multimodal N ̸= M Non-std sizes Full Multi- Supported
support Context GPU Similarty functions

Deep learning ✓ ✓? ✗ ✗ ✗ ✗ Fixed at training
ITK-DReg ✗ ✓ ✓ ✓ ✗ ✗ ITK-filters
CLAIRE ✓ ✗ ✗ ✓? ✓ ✓ MSE only
Ours ✓ ✓ ✓ ✓ ✓ ✓ Any

F An efficient Fused Local Normalized Cross Correlation loss

Local Normalized Cross Correlation (LNCC) loss is ubiquitously used throughout the image
registration literature(Liu et al., 2024c; Avants et al., 2008b; 2009; ANTsX; Jena et al., 2024a; Wu
et al., 2024; Hu et al., 2024; Wu et al., 2022; Zhao et al., 2019a;b), owing to its robust behavior to
unimodal and multimodal images alike. This operation is a key memory-bound bottleneck in image
registration pipelines. Few approaches have been proposed to provide improved implementations (Jia
et al., 2025; Chen et al., 2022), but we note that these implementations are still memory intensive and
thus not scalable. We address this bottleneck by analytically deriving a fused implementation that is
memory efficient and scalable.

Definition of LNCC loss. Given two images F and M , and a radially symmetric averaging
convolution filter W such that

∑
k wk = 1 , we define the Local Normalized Cross Correlation

(LNCC) loss as:

L =
1

N

∑
i

ni , ni =
A2

i

BiCi + ϵ
(3)

where

µF
i , µ

M
i =

∑
k

wikFk,
∑
k

wikMk (4)

Ai =
∑
k

wik(Fk − µF
i )(Mk − µM

i ) (5)

Bi =
∑
k

wik(Fk − µF
i )

2 (6)

Ci =
∑
k

wik(Mk − µM
i )2 (7)

Here, we use overloaded notation wik = w(i−k) = w(k−i) = wki due to radial symmetry of w. We
can expand Eqs. (5) to (7) as follows:

Ai =

(∑
k

wikFkMk

)
− µF

i µ
M
i = µFM

i − µF
i µ

M
i (8)

Bi =

(∑
k

wikF
2
k

)
− (µF

i )
2 = µF 2

i − (µF
i )

2 (9)

Ci =

(∑
k

wikM
2
k

)
− (µM

i )2 = µM2

i − (µM
i )2 (10)

Algorithm 2 outlines a vanilla PyTorch implementation of the LNCC loss function. The computational
overhead of the algorithm arises due to many intermediates stored in high-bandwidth memory
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Algorithm 2 Vanilla PyTorch LNCC implementation
Require: F (input image), M (reference image), w (window size), reduction (reduction type)

1: Define a radially symmetric convolution filter W of size w × w × w with
∑

W [i] = 1
2: Define state = (F,M,F 2,M2, FM) ▷ Elementwise operations
3: Compute state = W ∗ state ▷ Convolution
4: Get µF = state[0] ▷ Local mean of F
5: Get µM = state[1] ▷ Local mean of M
6: Compute σ2

F = state[2]− µ2
F ▷ Local variance of F

7: Compute σ2
M = state[3]− µ2

M ▷ Local variance of M
8: Compute σFM = state[4]− µF · µM ▷ Local covariance of F and M

9: Compute LNCC =
σ2
FM

σ2
Fσ2

M+ϵ
▷ Add small ϵ to avoid division by zero

10: if reduction == NONE then
11: return LNCC
12: else
13: Compute loss: Loss = 1−mean(LNCC)
14: return Loss
15: end if

Figure 13: Computational graph of the vanilla PyTorch implementation of the LNCC loss function. Blue nodes
denote the input images, Orange nodes denote intermediate tensors that are stored in HBM, Gray nodes denote
operations on the computational graph, and Green node denotes the final loss. Orange nodes are the primary
memory bottleneck.

(HBM). Specifically, the quantitiesW ∗state, I2, J2, IJ, σ2
I , σ

2
J , σIJ , µ

2
I , µ

2
J , µIµJ , σ

2
Iσ

2
J , (σ

2
Iσ

2
J+

ϵ), σ2
IJ , σ

2
IJ/(σ

2
Iσ

2
J + ϵ) are all stored as intermediate tensors, each of size N , totalling a 16N

memory overhead in addition to storing state. The computational graph of the vanilla PyTorch
implementation is shown in Fig. 13. During the backward pass, the backprop algorithm computes
the gradient with respect to each of these variables costing an additional 16N memory overhead.
A torch.compile implementation fuses some of the arithmetic, but leaves a lot of room for
improvement (see Fig. 7). We present an algorithm that only requires an additional intermediate
variable state of size 5N , saving upto 27N memory.

F.1 An efficient fused LNCC implementation

During the forward pass, we initialize a state variable of size 5N . To minimize HBM reads from
F and M , we write a fused kernel to initialize the state variable using only one HBM read from F
and M . The code in Line 4-9 are elementwise operations, and can be fused into another kernel. The
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forward pass therefore consumes only 5N additional memory. The pseudocode for the efficient fused
LNCC implementation is shown in Algorithm 3.

Efficient Backward Pass In a vanilla PyTorch implementation, the gradients are computed for each
intermediate variables in the reverse order in the computational DAG shown in Fig. 13. Typically,
our implementation would also require defining the backward pass by computing the gradients with
respect to the intermediate variables, and then propagating them to the input images. However, we
derive the backpropagation with respect to I and J , given the gradient gi = ∂L

∂ni
to avoid calculating

intermediate gradients. Using the chain rule, we have:
∂L

∂Fk
=
∑
i

∂L

∂ni

∂ni

∂Fk
(11)

=
∑
i

gi

(
2Ai

BiCi

∂Ai

∂Fk
− Ai

B2
i Ci

∂Bi

∂Fk

)
(12)

(13)

which can be simplified to:

∂µF
i

∂Fk
=

∂µM
i

∂Mk
= wik (14)

∂Ai

∂Fk
=

∂
(∑

k wikFkMk − µF
i µ

M
i

)
∂Fk

= wik

(
Mk − µM

i

)
(15)

and
∂Bi

∂Fk
=

∂
(∑

k wikF
2
k − (µF

i )
2
)

∂Fk
= 2wik(Fk − µF

i ) (16)

Substituting these results to Eq. (12) we have:

=
∑
i

gi

(
2Ai

BiCi

(
wik

(
Mk − µM

i

))
− A2

i

B2
i Ci

2wik(Fk − µF
i )

)
(17)

=
∑
i

2giAi

BiCi
wik

[
Mk −

FkAi

Bi
+ µF

i

Ai

Bi
− µM

i

]
(18)

Using the property wik = wki, and letting γi =
2giAi

BiCi
, we rewrite the previous equation as:

= Mk ·

(∑
i

wkiγi

)
− Fk ·

(∑
i

wki
γiAi

Bi

)
+
∑
i

wkiγi

(
µF
i Ai

Bi
− µM

i

)
(19)

= Mk · (w ∗ γ)k − Fk · (w ∗ γAB)k + (w ∗ γFM )k (20)

where γAB = γi
µF
i Ai

Bi
, γFM = γi ·

(
µF
i Ai

Bi
− µM

i

)
- and ∗ is the convolution operation. Similarly,

the gradient with respect to the moving image Mk is:

∂L

∂Mk
= Fk

(∑
i

wkiγi

)
−Mk

(∑
i

wki
γiAi

Ci

)
+
∑
i

wkiγi

(
µM
i Ai

Ci
− µF

i

)
(21)

= Fk · (w ∗ γ)k −Mk · (w ∗ γAC)k + (w ∗ γMF )k (22)

where γAC = γi
µM
i Ai

Ci
, γMF = γi ·

(
µM
i Ai

Ci
− µF

i

)
. To compute the gradients with respect to F and

M , we need to compute five tensors of the γ family, namely γ, γAB , γAC , γFM , and γMF . This is
followed by performing a convolution with all the tensors, and computing elementwise operations
given by Eq. (20) and Eq. (22). The γ family of tensors are simple elementwise operations on the
state variable, and therefore can be computed by modifying the state variable inplace to avoid
initializing additional HBM memory.
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Algorithm 3 Fused LNCC Implementation
Require: F (fixed image), M (moving image), w (window size), ϵ (smoothing term)

1: function Forward(F , M , w, ϵ)
2: Define convolution filter W of size w × w × w with

∑
W [i] = 1

3: state← fused create interm(F,M) ▷ Single HBM read: (F,M,F 2,M2, FM)
4: state←W ∗ state ▷ Convolution on all channels
5: LNCC← fusedcc kernel(state, ϵ) ▷ Computes Eqs. (8) to (10) followed by Eq. (3)
6: return LNCC
7: end function
8:
9: function Backward(g = ∂L

∂n , state, F , M , W , use ants approximation)
10: state← fused compute gamma(g,state) ▷ Computes γ family of tensors inplace
11: if use ants approximation then
12: no-op ▷ ANTs approximation: skip convolutions
13: else
14: state←W ∗ state ▷ Convolution on all intermediates
15: end if
16: ∂L

∂F ←M ⊙ γ − F ⊙ γAB + γFM ▷ Eq. (20) computed in fused kernel
17: ∂L

∂M ← F ⊙ γ −M ⊙ γAC + γMF ▷ Eq. (22) computed in fused kernel
18: return ∂L

∂F , ∂L
∂M

19: end function

Table 3: Speedup and memory usage of different LNCC backends

N Method Forward Forward Backward Backward Memory (MB) Memory
Time (s) Speedup Time (s) Speedup Reduction (%)

64

Fast LNCC 0.001 2.95 0.003 4.86 21 61.9
FireANTs 0.003 7.18 0.002 3.07 25 68
VoxelMorph 0.06 158.76 0.016 24.10 17 52.9
torch.compile 0.003 6.83 0.002 2.30 24 66.7
Ours < 0.001 1.00 0.001 1.00 8 0

128

Fast LNCC 0.008 5.88 0.026 34.09 168 61.9
FireANTs 0.013 9.04 0.008 10.73 200 68
VoxelMorph 0.482 341.65 0.126 168.33 136 52.9
torch.compile 0.012 8.67 0.007 8.95 192 66.7
Ours 0.001 1.00 0.001 1.00 64 0

256

Fast LNCC 0.069 6.19 0.204 82.52 1344 61.9
FireANTs 0.103 9.25 0.294 118.80 2176 76.5
VoxelMorph 3.905 351.54 3.903 1577.37 1536.2 66.7
torch.compile 0.1 9.02 0.284 114.74 2176 76.5
Ours 0.011 1.00x 0.002 1.00x 512 0

512

Fast LNCC 0.627 6.56 1.657 98.75 10752 61.9
FireANTs 0.856 8.95 2.396 142.77 17408 76.5
VoxelMorph 31.335 327.71 31.665 1887.14 12288.2 66.7
torch.compile 0.829 8.67 2.312 137.80 17408 76.5
Ours 0.096 1.00 0.017 1.00 4096 0

ANTs gradient approximation. In the ANTs implementation, the gradient computation skips
performing the convolution of the γ family of tensors. We implement this as an additional flag that the
user can toggle as an option for faster backward passes. All our experiments use this approximation.

F.2 Performance

We compare the performance of our fused implementation to various backend implementations. Fig. 7
shows the speedup and memory usage over different image sizes; we tabulate the results here. For
this experiment, we initialize two random images of size Nv ×Nv ×Nv and compute the runtime
and memory usage for the forward and backward passes. Results are in Table 3. Our implementation
consistently achieves upto 6× forward time speedup and ∼ 98× backward time speedup compared to
(Jia et al., 2025) and consumes upto 76% less memory than a compiled PyTorch implementation and
61.9% less than a groupwise convolution implementation (Jia et al., 2025).
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G A highly efficient Mutual Information implementation

Mutual Information (MI) is one of the most commonly used loss functions for multimodal image
matching (Chen et al., 2022; Avants et al., 2009; Mattes et al., 2001). Beyond multimodal image
matching, MI is a cornerstone operation in computer vision (Isola et al., 2014; Zhao et al., 2019c),
contrastive learning (Quan et al., 2024), remote sensing (Liang et al., 2013), graph learning (Peng
et al., 2023), ecological and social community interactions (Luo et al., 2021; Corso et al., 2020), and
cosmological dynamics (Sarkar & Pandey, 2020). In biomedical imaging and life sciences, MI is
used for multimodal image alignment using the assumption that pixels in multimodal images codify
some nonlinear function of the underlying tissue type.

Vanilla MI implementation Given images I and J , Mattes MI considers the intensities from the
images as samples from probability distributions pI and pJ that encode some imaging physics. The
intensity pairs (Ik, Jk) are considered to be samples from the joint distribution pIJ . If the images are
aligned, then Ik and Jk are highly ‘predictable’ from each other, implying a low conditional entropy
H(I|J), or equivalently a large distance from the distribution pIpJ which models the joint distribution
if samples from I and J were independent. This is precisely the mutual information criteria. Since
the samples Ik, Jk follow some unknown distributions, we use a kernel density estimator using kernel
κ to estimate the empirical distributions of the joint and marginal distributions. To compute empirical
MI, the continuous kernel density estimates are discretized into a probability mass function (PMF)
with a finite number of bins. The number of bins B is a hyperparameter that is used to define bin
centers bi ∈ [0, 1] for i = {1, . . . , B}, assuming that the intensities are scaled to the range [0, 1].

To compute the discrete PMF with autodifferentiation, we compute a Parzen Block ΨI ∈
RB×N , s.t.ΨI(i, k) = κ(bi − Ik). This forms the memory bottleneck in computing the Mattes
MI similarity criteria. In the following, we provide a fused implementation that avoids the O(NB)
cost of the Parzen Block, making our implementation only O(1) additional HBM overhead.

G.1 Implicit MI implementation

We implement custom forward and backward passes to compute the joint and marginal histograms
pIJ , pI , pJ from I and J directly, avoiding the O(NB) cost of the Parzen Block. We derive the
backward pass first, followed by the forward pass followed by an efficient approximate estimator of
the histograms leading to a faster forward pass.

G.1.1 Backward pass

We are interested in computing the gradients ∂L
∂I ,

∂L
∂J given ∂L

∂pIJ
, ∂L
∂pI

, ∂L
∂pJ

. We denote ω(bi − Ik) =
∂κ(bi−Ik)

∂Ik
.

∂L

∂Ik
=
∑
m,n

∂L

∂pIJ [m,n]

∂pIJ [m,n]

∂Ik
+
∑
n

∂L

∂pI [n]

∂pI [n]

∂Ik
(23)

=
∑
m,n

gIJ [m,n] (ω(bm − Ik)κ(bn − Jk)) +
∑
n

gI [n] (ω(bn − Ik)) (24)

=
∑
n

[
gI [n]ω(bn − Ik) +

∑
m

gIJ [m,n]ω(bm − Ik)

]
=
∑
n

ζ1[n] + ζ2[n] (25)

where ζ1[n] = gI [n]ω(bn − Ik) and ζ2[n] =
∑

m gIJ [m,n]ω(bm − Ik).

To compute this backward pass efficiently, we launch ⌈N/B⌉ threadblocks and partition each
threadblock in groups of B threads, and compute the partial gradients ζ1[n], ζ2[n] on each thread.
Each group loads the values of Ik, Jk into register memory. we first compute the quantities
κ(bn − Ik), κ(bn − Jk), ω(bn − Ik), ω(bn − Jk) on thread n and use four shared memory arrays
to store them. On thread n, we compute the partial gradient ζ1[n] = gI [n]ω(bn − Ik) and
ζ2[n] =

∑
m gIJ [m,n]ω(bm − Ik) using a for-loop over the index m ∈ {1, . . . , B}. Finally, on each

thread we store the value ζ1[n] + ζ2[n] on shared memory indexed at n, followed by a O(log(n))
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parallel sum over partitioned threads to compute the gradient ∂L
∂Ik

=
∑

n ζ1[n] + ζ2[n]. A similar
argument is used to compute the gradient over ∂L

∂Jk
. This leads to a faster backward pass than the

vanilla PyTorch implementation using no additional HBM overhead Fig. 7(b).

Generalization to novel kernels Note that unlike the vanilla implementation, where some choices
of κ are more memory intensive than others (for example, the BSpline kernel has kP = 14 versus
kP = 4 for the Gaussian kernel), the memory overhead of our implementation does not depend on
the analytical form of κ. To generalize the Implicit MI implementation to novel kernels, the user can
specify the form of κ and its derivative ω in the forward and backward passes without any additional
considerations.

G.1.2 Forward Pass

The forward pass is computed similarly. Note that the individual contributions from Ik, Jk to the
joint histogram pIJ [m,n] are pIJ [m,n] = κ(bm − Ik)κ(bn − Jk) for all m,n ∈ {1, . . . , B}. The
marginal histograms pI [n], pJ [n] are computed as pI [n] = κ(bn − Ik) and pJ [n] = κ(bn − Jk) for
all n ∈ {1, . . . , B}. Similar to the backward pass, we launch ⌈N/B⌉ threadblocks and partition the
threadblock in groups of B threads. Each group of B threads loads the values of Ik, Jk into register
memory. On thread n, we compute the quantities κ(bn − Ik), κ(bn − Jk) and store them in shared
memory. Thread n can add these quantities into the HBM for histogram entries pI [n], pJ [n] directly.
For computing the joint histogram pIJ [m,n], thread n loops over m ∈ {1, . . . , B} and adds the
quantities κ(bm − Ik)κ(bn − Jk) into the HBM for histogram entries pIJ [m,n]. Since all values
of κ(bm − Ik), κ(bn − Jk) are stored in shared memory, this operation is not bottlenecked by slow
HBM reads. To avoid HBM write contentions, we write these values into intermediate histogram
buffers of sizes C×B×B,C×B (where C is a constant of choice), and sum along the C dimension.
However, this is still a relatively slow operation due to computation of κ(bm − Ik), κ(bn − Jk) and
making NB2 HBM writes. We propose an efficient approximate forward pass that launches only N
instead of NB threads, and makes only 3N HBM writes.

An approximate histogram estimator Given a kernel κ, we can write κ(bm−Ik) =
∫
t
δ(bm−Ik−

t)κ(t)dt = δ(bm−Ik)∗κ, where δ is the Dirac delta function with the property
∫∞
x=−∞ δ(x)f(x)dx =

f(0) for any function f . Using the principle of superposition, we can write pI [m] = 1
N

∑
k κ(bm −

Ik) =
1
N

∑
k κ ∗ δ(bm − Ik) = κ ∗

(
1
N

∑
k δ(bm − Ik)

)
.

In the continuous case, pI can be obtained exactly by calculating the Dirac delta distribution
pδI(b) =

1
N

∑
k δ(b − Ik) and convolving it with the kernel κ. However, in the discrete case, this

value is inexact. To see this, consider a value Ik that is in bin m, i.e. ∥Ik − bm∥ < 1
2B . The exact

value of the PMF due to this sample is κ(bm − Ik). However, the approximate value of the PMF
is κ(0) since δ(bm − Ik) = 1 for all Ik : ∥Ik − bm∥ < 1

2B due to binning, and convolving with κ

returns κ(0). Since ∥Ik − bm∥ < 1
2B , we can assume that ∥κ(0)− κ(bm − Ik)∥ is small.

To implement this histogram computation efficiently, we launch N threads and in each thread
k, compute the bin indices m∗ = ⌊IkB⌋, n∗ = ⌊JkB⌋ for each thread, avoiding computation
of soft entries κ(bm − Ik), κ(bn − Jk) altogether. We simply add 1 to the histogram entries
pIJ [m

∗, n∗], pI [m
∗], pJ [n

∗] in the aggregated histogram buffers, avoiding writing into HBM entries
for all (m,n) ∈ {1, . . . , B}2. This reduces the number of HBM writes from NB2 + 2NB to 3N .
For B = 32, this represents 362× less HBM writes. After performing the average, we convolve
this histogram with the kernel κ to get the approximate PMF. Since the convolution is done on a B
and B ×B sized histograms, this operation is cheap. This implementation leads to faster runtime,
consistent performance for both TransMorph and FireANTs (see Table 1).

H Composite Implicit Grid Sampler

I Ring Sampler for scalable distributed interpolation

The random-access nature of deformable interpolation making scaling a difficult challenge for
arbitrarily large problem sizes. Given a configuration of sharded images and warp fields across H
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Algorithm 4 Grid Sampler Implementation
Require: Jh (moving image shard), [u]j (warp field shard), Ah (rescaled affine), th (rescaled

translation), Sh (diag. scale)
1: function Forward(Jh, Ah, th, Sh, [u]j)
2: out← zeros like([u]j [0])
3: for all target voxels (z, y, x) in parallel (one thread per voxel) do
4: X ← (x, y, z)
5: Xaff ← AhX + th ▷ affine transform only
6: Xdisp ← Sh [u]j [:, z, y, x] ▷ add scaled displacement
7: Xsrc ← Xaff +Xdisp
8: out[z, y, x]← trilinear interpolate(Jh, Xsrc) zero padding at bounds
9: end for

10: return out
11: end function
12:
13: function Backward(g = ∂L

∂out , Jh, Ah, th, Sh, [u]j)
14: Initialize gJh

= 0, g[u]j = 0, gAh
= 0, gth = 0

15: for all target voxels (z, y, x) in parallel (one thread per voxel) do
16: Recompute X, Xaff, Xdisp, Xsrc
17: Compute tri-linear weights wbxbybz and ∂v

∂Xsrc

18: Accumulate gJh
into 8 neighbors using w∗∗∗ · g[z, y, x] (bounds-checked, zero-padded)

19: g[u]j [:, z, y, x] += Sh
∂v

∂Xsrc
g[z, y, x]

20: gAh
+=

(
∂v

∂Xsrc
g[z, y, x]

)
X⊤

21: gth += ∂v
∂Xsrc

g[z, y, x]
22: end for
23: return gJh

, g[u]j , gAh
, gth

24: end function

hosts, neighboring voxels in the sharded warp field can point to pixels in arbitrary regions in the image,
illustrated in Fig. 4(a). Moreover, the control points for interpolation can be irregularly distributed
across different hosts, illustrated in Fig. 4(b). This makes computation of the interpolated image
challenging for displacements that point to pixels between boundaries of different hosts. One approach
to avoid this problem is to store the entire moving image on each GPU to compute the interpolated
image. However, this approach is impractical once the image size exceeds the memory per GPU. To
achieve weak scaling, the HBM overhead per GPU must be proportional to N/H . To alleviate this
problem, we propose a ring sampler that avoids the need to store the entire moving image on each
GPU by decomposing linear interpolation into partial sums. This produces mathematically correct
interpolated images regardless of the nature of the warp field, without storing the entire moving image
on each GPU.

I.1 Derivation

Consider a d-linear interpolation of an image I defined on Ω using warp coordinates [u]Ω defined on
Ω.

I =
∑

b∈{0,1}n

(
n∏

k=1

(1− αk)
1−bk αbk

k

)
I
[
i1 + b1, i2 + b2, . . . , in + bn

]
(26)

where ik = ⌊φ(x)k⌋, αk = φ(x)k − ik, for k = 1, . . . , d. Let the individual pixels
I
[
i1 + b1, i2 + b2, . . . , in + bn

]
be partitioned across H hosts. Since each pixel belongs to exactly

one host, we can write
∑H

h=1 I(i+ b ∈ [x]h) = 1 and multiply with I[i+ b] to get:
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I =
∑

b∈{0,1}n

(
n∏

k=1

(1− αk)
1−bk αbk

k

) (
I
[
i+ b] ∗

(
H∑

h=1

I(i+ b ∈ [x]h)

))
(27)

=

H∑
h=1

∑
b∈{0,1}n

(
n∏

k=1

(1− αk)
1−bk αbk

k

) (
I
[
i+ b] ∗ I(i+ b ∈ [x]h)

)
(28)

=

H∑
h=1

Ih (29)

where

Ih =
∑

b∈{0,1}n

(
n∏

k=1

(1− αk)
1−bk αbk

k

)
I
[
i+ b] ∗ I(i+ b ∈ [x]h) (30)

=
∑

b∈{0,1}n

(
n∏

k=1

(1− αk)
1−bk αbk

k

)
Jh
[
i+ b] (31)

where Jh
[
x] = I[x] if x ∈ [x]h else 0. Image Jh is therefore identical to the sharded image I on

host h. Eq. (31) refers to performing trilinear interpolation on the shard Ih (with zero padding)
since the sum is only over coordinates that reside in [x]h. This means the warped image in Eq. (26)
can be obtained by performing interpolation over the shards individually and adding the warped
images together. This is illustrated in Fig. 4(c). Coordinates residing between multiple shards will
accumulate partial sums from each sharded image, and no additional consideration is needed for
boundary conditions. The communication protocol in this algorithm is similar to Ring Attention (Liu
et al., 2024b), where image shards are passed across hosts, and partial results are accumulated into
the final result. Our algorithm requires a memory overhead of only N/H to store the sharded image
from host j ̸= i. Our pseudocode is provided in Algorithm 5.

I.2 Implementation Considerations

Rescaling the warp function to sample sharded images Interpolating from sharded images
requires one additional consideration. The grid sampler interpolates an image I defined on Ω
using warp coordinates [u]Ω defined on Ω. However, the sharded image Jh is defined on the
domain Ωh, and therefore any warped coordinate φ(x) ∈ Ω must be rescaled to the corresponding
coordinates in φh(x) ∈ Ωh. From the implementation standpoint, the leftmost coordinate of Jh is
xh
min when the entire image I is passed to grid sampler. However, when Jh is provided as input

to grid sampler, the leftmost pixel of Jh is located at [−1,−1, . . . ,−1] according to PyTorch
convention. Since our optimization variables A, t, [u] refer to locations on Ω, and not Ωh, we need to
rescale these variables appropriately when sampling from Jh.

The rescaling corresponds to a diagonal scaling matrix Sh and translation th such that Shx
h
min+ th =

xΩ
min and Shx

h
max + th = xΩ

max. The resampled warp function to sample from Jh becomes
φh(x) = Sh(Ax + t + u(x)) + th = (A′

hx + t′h) + Shu(x). where A′
h, t

′
h = ShA, (Sht + th).

Therefore, we must sample Jh using the transform A′
h[x]Ωh

+ t′h + Sh[u]Ωh
. In the vanilla grid

sampler implementation, the intermediate grid Sh[u]Ωh
and its gradient consume another 6N/H

memory. Combined with the N/H overhead for storing the received image shard, we add a total
of 7N/H memory overhead, which is less than N for H ≥ 8, making the algorithm impractical for
fewer GPUs (say H = 4).

To prevent this 6N/H additional overhead, we extend the generalized grid sampler as mentioned
Appendix 3.1 to sample from a transform of the form A[x] + t+ S[u] directly. This computes the
value Su(x) directly inside the CUDA kernel, and the backward pass also computes and accumulates
the gradient w.r.t. u(x) directly, avoiding the 6N/H overhead.

Interleaved communication An important implementation detail is the interleaving of communica-
tion and computation in the ring sampler. While we compute the partial moved image aggregate, the
next image shard can be fetched asynchronously in the background. This is illustrated in Fig. 14.

35



1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2026

Algorithm 5 Ring Sampler Implementation
Require: Mj (moving image shard), [u]j (warp field shard), (A, t) (affine transform)

1: function Forward(Mj , [u]j , (A, t))
2: Define movedj = 0
3: for h = 1 to H do
4: Jh ← send and recv(Mj , h) ▷ Send and receive the image shard from offset h
5: Compute diagonal Sh, th such that Shx

h
min + th = xΩ

min and Shx
h
max + th = xΩ

max
6: Rescale affine transform Ah ← ShA, th ← Sht+ th
7: movedj ← movedj + grid sampler(Jh;Ah, th, Sh, [u]j) ▷ Avoid computing

Sh[u]j explicitly
8: end for
9: return movedj

10: end function
11:
12: function Backward(g = ∂L

∂movedj
, movedj , Mj , [u]j , (A, t))

13: Define g[u]j = 0, gA = 0, gt = 0, gMj = 0

14: for h = 1 to H do
15: Jh ← send and recv(Mj , h) ▷ Send and receive the image shard from offset h
16: Compute diagonal Sh, th such that Shx

h
min + th = xΩ

min and Shx
h
max + th = xΩ

max
17: Rescale affine transform Ah ← ShA, th ← Sht+ th
18: if requires grad(Mj) then
19: ginp ← zeros like(Mj)
20: else
21: ginp ← None
22: end if
23: Compute backward grid sampler(g, Jh, Ah, th, Sh, [u]j , g[u]j , gA, gt, ginp)
24: if requires grad(Mj) then
25: g′Mj

= send and recv(ginp,−h)
26: gMj ← gMj + g′Mj

27: end if
28: end for
29: return g[u]j , gA, gt, gMj

30: end function

Figure 14: Interleaved communication (red) and computation (green) in the ring sampler. gray denotes time
saved by interleaving communication and computation.

I.3 Alternative Designs

A naive approach can be to route the coordinate φ(xi) ∈ [x]j to GPU j and retrieve the image
coordinate, similar to routing tokens using expert parallelism (EP) used for Mixture-of-Experts (MoEs)
(Shazeer et al., 2017; Jordan & Jacobs, 1994). However, this approach has two major drawbacks in
our setting. First, due to the deformable nature of φ, the partitioning of coordinates across hosts
is generally uneven. In the worst case, a single GPU can receive all 3N coordinates leading to an
indirect allgather operation resulting in OOMs or uneven GPU utilization across hosts. Second,
coordinates that point to regions between two multiple image boundaries need to be sent to variable
number of hosts, which is non-trivial to implement. These two factors make both the forward and
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backward pass implementations cumbersome. Inspired by (Liu et al., 2024b), we propose a distributed
ring sampler that decomposes the computation into partial sums, leading to a simple implementation
without degraded scaling performance Fig. 8.

J Correctness of Implementation

All code is checked for numerical correctness by comparing the results with PyTorch implementations
using unit and integration tests. Code and generated data will be made available to the community.

J.1 Ablation on FireANTs speedup

We run FireANTs with different backends for LNCC and MI loss functions on the OASIS validation
set (Marcus et al., 2007; Hering et al., 2022). We measure the end-to-end runtime, peak memory
usage (except the fixed and moving images), and Dice score. We ablate on both Greedy and SyN
algorithms; in the case of SyN, additional gradients may be required. Results in Table 4 show that
our implementation achieves a significant speedup over the baseline implementations. Although the
torch.compile version of LNCC is faster than other variants, it leads to brittle performance.

Table 4: Extended Results on accelerated registration on FireANTs: Accelerating FireANTs registration with
various computation backends and registration algorithms (Greedy and SyN). Our implementations maintain
accuracy while substantially reducing runtime and peak memory usage. (Green)/ (Yellow) = best/second;
Speedup and memory reduction are computed with respect to our kernels. Our fused kernels maintain accuracy
while substantially reducing runtime and peak memory usage.

Algorithm Method Backend Dice Score ↑ Runtime (s) ↓ Memory (MB) ↓ Speedup ↑ Mem. Reduction (%) ↑

Greedy

LNCC VXM/TM 76.96 ± 3.60 57.08 ± 2.45 1418.5 ± 0.0 113.47 59.29
LNCC FastLNCC 76.96 ± 3.60 3.76 ± 0.16 1026.3 ± 0.0 7.48 43.73
LNCC FireANTs 72.81 ± 3.87 1.44 ± 0.08 1044.5 ± 0.0 2.87 44.71
LNCC torch.compile 69.35 ± 4.09 0.82 ± 0.04 860.7 ± 0.0 1.63 32.90
LNCC Ours 78.67 ± 3.04 0.50 ± 0.01 577.5 ± 0.0 1.00 0.00

Greedy

MI PyTorch 75.88 ± 3.45 7.51 ± 0.37 12206.3 ± 0.0 2.59 95.27
MI torch.compile 75.88 ± 3.45 1.05 ± 0.05 3865.5 ± 0.0 0.36 85.06
MI Ours 75.87 ± 3.44 2.90 ± 0.16 577.5 ± 0.0 1.00 0.00
MI Ours + torch.compile 75.93 ± 3.47 2.95 ± 0.16 657.3 ± 0.0 1.02 12.13

SyN

LNCC VXM/TM 76.69 ± 2.88 63.57 ± 0.58 1892.0 ± 0.0 65.92 50.05
LNCC FastLNCC 76.70 ± 2.88 4.27 ± 0.05 1486.7 ± 0.0 4.43 36.43
LNCC FireANTs 74.70 ± 2.93 2.55 ± 0.10 1616.4 ± 0.0 2.65 41.54
LNCC torch.compile 71.65 ± 3.41 1.46 ± 0.04 1472.0 ± 0.0 1.51 35.80
LNCC Ours 78.79 ± 2.82 0.96 ± 0.08 945.0 ± 0.0 1.00 0.00

SyN

MI PyTorch 76.74 ± 2.58 12.84 ± 0.66 17720.8 ± 0.0 2.96 94.67
MI torch.compile 76.76 ± 2.58 2.40 ± 0.13 7758.9 ± 0.0 0.55 87.82
MI Ours 76.86 ± 2.59 4.34 ± 0.28 945.0 ± 0.0 1.00 0.00
MI Ours + torch.compile 77.00 ± 2.57 4.56 ± 0.24 1104.5 ± 0.0 1.05 14.44
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Table 5: Extended Efficiency Results on faux-OASIS-dataset: Comparison of registration methods across
multiple resolutions. Reported metrics include average Dice similarity coefficient (higher is better), wall-clock
runtime, GPU cost (measured in GB-hours), relative speedup, and GPU cost reduction with respect to FireANTs
+ FFDP(Ours). GPU usage (e.g., single GPU, multi-GPU, or CPU) is annotated alongside the cost values.

Resolution Method Avg Dice Score ↑ Wall Clock ↓
(10−2 Hours)

GPU Cost ↓
(10−2 GB-Hours) Speedup GPU Cost

Reduction (%)

1mm

TransMorph 0.851± 0.016 0.015 0.2621 0.56× 87.81

VFA 0.851± 0.023 0.017 0.2161 0.63× 85.18

Ours 0.838± 0.028 0.027 0.0321 1.00× 0.00

UniGradICON-IO 0.826± 0.022 5.167 58.4981 194.07× 99.95

FireANTs 0.822± 0.032 0.060 0.1411 2.25× 48.83

UniGradICON-noIO 0.815± 0.026 0.067 0.2381 2.50× 86.55

SynthMorph 0.801± 0.022 2.155 99.0611 80.93× 99.97

Anatomix 0.796± 0.035 0.379 2.6561 14.24× 98.80

CLAIRE 0.776± 0.044 0.518 1.3891 19.47× 97.70

ITK-dreg 0.662± 0.055 1.527 1.017CPU 57.37× –

500 µm

Ours 0.872± 0.028 0.109 0.8621 1.00× 0.00

FireANTs 0.841± 0.033 0.270 4.1361 2.48× 48.22

VFA 0.805± 0.044 0.302 3.8961 2.78× 77.87

CLAIRE 0.779± 0.051 25.903 396.1691 238.04× 99.78

SynthMorph 0.771± 0.035 4.068 187.0491 37.39× 99.54

TransMorph 0.759± 0.028 0.198 3.5011 1.82× 75.38

Anatomix 0.758± 0.040 8.837 310.8181 81.21× 99.72

ITK-dreg 0.699± 0.056 41.259 207.466CPU 379.17× –
UniGradICON-IO 0.615± 0.047 84.538 1072.6571 776.89× 99.92

UniGradICON 0.610± 0.044 0.842 3.5451 7.73× 75.69

250 µm

Ours 0.895± 0.029 1.065 47.0591 1.00× 0.00

CLAIRE 0.809± 0.054 1207.536 159 046.9814 1133.84× 99.97

FireANTs 0.777± 0.064 13.588 253.2951 11.73× 81.42

VFA 0.714± 0.066 3.872 49.9391 3.64× 5.77

SynthMorph 0.690± 0.052 32.808 1507.1331 30.80× 96.88

TransMorph 0.689± 0.044 2.597 45.9651 2.44× −2.38
Anatomix 0.620± 0.031 88.480 3112.0151 83.07× 98.49

UniGradICON-IO 0.398± 0.062 163.812 2539.7211 153.80× 98.15

UniGradICON 0.359± 0.044 7.811 55.0571 7.33× 14.53

ITK-dreg 0.758± 0.046 1363.868 33 065.677CPU 1280.63× –

K Additional Details on the simulated ex-vivo brain MRI dataset

In this section, we provide additional details on the synthetic data generation pipeline for the faux-
OASIS dataset, followed by baseline configurations, and finally compare performance-efficiency
tradeoffs and show qualitative results.

K.1 Synthetic Data Generation Pipeline

To emulate high resolution (250µm isotropic) T1 weighted images, we use the standard OASIS
validation dataset to generate synthetic images. Our method is inspired by Billot et al. (2023); Dey
et al. (2025) to use the labelmaps as a starting point and synthesize images that are faithful to the
labelmaps. The synthetic data generation pipeline is illustrated in Fig. 15. Specifically, our pipeline
has three stages:

1. Compute per-label intensity statistics: For each label, we consider all the intensities in the
voxels belonging to the label. We store mean and standard deviation of the intensities for
each label computed over the entire OASIS validation set.

2. Geometry-preserving upsampling of labels: We use the labelmaps at 1mm isotropic
and perform surface-based upsampling to resample the labelmaps with subvoxel accuracy
(Sullivan & Kaszynski, 2019).

3. Intensity painting: We use the per-label intensity statistics and the voxelized labelmaps at
250µm isotropic to synthesize the images.
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Figure 15: Synthetic data generation pipeline for faux-OASIS. Coarse anatomical labels undergo geometry-
preserving upsampling via surface reconstruction, followed by statistical intensity painting to produce high-
resolution MR images at 0.25mm.

Following the generation of 250µm images, we downsample the images to 500µm and 1mm isotropic
to show the effect on performance with downsampled images.

We describe the pipeline in detail below.

Per-label intensity statistics. Contrary to other synthetic data generation pipelinesDey et al. (2025);
Billot et al. (2023), we do not want to generate randomized intensities for each image and want to
simulate the T1-weighted images. Towards this end, we compute the per-label intensity statistics for
all images in the OASIS validation set.

Geometry-preserving upsampling of labelmaps. Given an image volume and labelmap pair (I, L),
we upsample the labelmap to 250µm isotropic L↑. However, naively upsampling the label voxel grid
and thresholding typically causes blocky artifacts (Frisken, 2022; Lorensen & Cline, 1998; Schroeder
& Tsalikis, 2023), which has led to many sophisticated subvoxel-accurate surface reconstruction
algorithms. We use PyVista’s SurfaceNets algorithm (Frisken, 2022) to extract surface contours
from 3D image label maps. Specifically, an ImageData object with labels is converted into cell
data using contour labels (VTK SurfaceNets) to obtain per-label surfaces Sℓ that respect voxel
geometry and avoid block artifacts with voxel based interpolation. The generated surface is smoothed
using a constrained Taubin/Windowed-Sinc smoothing with conservative iterations (typically 16-30,
relaxation≈ 0.5), then use clean and fill holes to remove slivers and pinholes while preserving
anatomical shape fidelity. The surface Sℓ is voxelized to obtain a binary mask Mℓ, then the labelmap
L↑ is assembled as

L↑(p) =

{
ℓ if Mℓ(p) = 1 for some ℓ ≥ 1,

0 otherwise.

Finally, image-stencil-based rasterization (voxelize binary mask) is performed into the target
ImageData at t = 0.25mm.When surfaces overlap, later labels in the loop take precedence; we
process labels in anatomical priority order to ensure critical structures are preserved. All steps for
labelmap upsampling are implemented with PyVista/VTK for robustness and reproducibility.

Synthesizing the image. For each label, we fill the voxels with intensities sampled from a normal
distribution with the mean and standard deviation of the intensities corresponding to the label.

Given {(µℓ, σℓ)}, we synthesize the image by i.i.d. draws within each region:

Isyn(p) ∼ N
(
µL↑(p), σ

2
L↑(p)

)
, p ∈ Ωt.

We follow this step with a Gaussian smoothing with σ = 0.75 voxels to impart local coherence
without washing out label edges. Background (L↑=0) is set to zero.
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Algorithm 6 High-Resolution MR Synthesis Pipeline

Require: L, spacings s, affine A, stats {(µℓ, σℓ)}Kℓ=1, target spacing t

1: Compute Ñx, Ñy, Ñz and Ã as above
2: L↑ ← 0 on Ωt

3: for ℓ = 1 to K do
4: Sℓ ← SurfaceNets(L=ℓ); smooth & fill holes
5: Mℓ ← Voxelize(Sℓ,Ωt)
6: L↑[where Mℓ=1]← ℓ ▷ Assign label to voxelized region
7: end for
8: Isyn ← 0
9: for ℓ = 1 to K do

10: U ← {p | L↑(p) = ℓ}
11: Isyn[U ]← Normal(µℓ, σ

2
ℓ ) ▷ IID draws

12: end for
13: Isyn ← GaussianBlur(Isyn, σ=0.75)

14: return (Isyn, L↑, Ã)

Randomization and metadata. All stochastic draws are seeded per subject (seed = base seed
+ subject id) for exact reproducibility.2 All outputs are written as NIfTI files with same origin
and directions as the original images, but with a voxel spacing of t = 0.25mm.

K.2 Baselines

We augment FireANTs (Jena et al., 2024a) with FFDP to enable scalable image registration at high
resolutions. The methods and their hyperparameter settings are described below:

• CLAIRE(Mang et al., 2019): CLAIRE is a velocity-based diffeomorphic registration
framework optimized for distributed GPU/CPU execution via MPI. We use the official
repository inside a custom multi-GPU Docker image that adds CUDA-aware Open MPI
(v4.0.3; CUDA 11), since the official container supports only single-GPU runs. We launch
one MPI rank per GPU and bind each rank to a distinct device via a lightweight wrapper that
maps OMPI COMM WORLD RANK to CUDA VISIBLE DEVICES, enabling data-parallel
execution across N GPUs. We keep default solver settings, request deformation maps
(-defmap), and set the continuation parameter -betacont 7.75e-04 following the
official examples; all other hyperparameters use documented defaults, including the iteration
cap (-maxit 50). Full-resolution runs use 4 GPUs (4 ranks), while half/quarter resolutions
use a single GPU (1 rank).

• ITK-DReg(itk): ITK-DReg is a CPU-based, distributed, out-of-memory registration
framework built on ITK and dask.distributed, formulating registration as block-
wise map–reduce. We use the itk dreg pipeline with Elastix in deformable-only B-
spline mode: the metric is AdvancedNormalizedCorrelation with three pyramid levels
(NumberOfResolutions=3, GridSpacingSchedule=[4,2,1]), optimized via
AdaptiveStochasticGradientDescent with MaximumNumberOfIterations=500. We
use random sampling with NumberOfSpatialSamples=5000 (refreshed each itera-
tion). Registration operates in voxel units with FinalGridSpacingInVoxels=20
and BSplineTransformSplineOrder=3. To scale to high resolutions, the fixed
image is tiled into 2563-voxel chunks with 25% overlap per axis; per-block results are
reduced to a global displacement field defined on a grid subsampled by a factor of
4. ITK threading is set via SetGlobalDefaultNumberOfThreads=24 (reported
GetGlobalMaximumNumberOfThreads=128).

• FireANTs + FFDP (Ours)(Jena et al., 2024a): We use the official repository and scripts,
except for our proposed modules (grid sampler, LNCC, and Mutual Information). We
perform registration using the multi-scale of 4mm, 2mm, 1mm, 500µm, and 250µm for
200, 200, 200, 100, 25 iterations. We also truncate the optimization at 1mm and 500µm
resolutions to verify the performance of the method at downsampled resolutions. We use

2We use base seed = 2025 in our experiments.
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our Fused LNCC implementation with a window size of 7, and a learning rate of 0.5. The
smoothing kernels are chosen with a σwarp = 0.5 pixels, and σgrad = 1.0 pixels.

We also evaluate against state-of-the-art deep learning methods:

• SynthMorph(Hoffmann et al., 2021): SynthMorph uses an acquisition-free synthetic data
generation pipeline to train a registration network. We use the default mri synthmorph
script provided by the vendor. Since all images are affine-aligned, we use the deformable
registration mode -m deform with a regularization weight of -r 0.25.

• Vector-Field Attention (Liu et al., 2024c): Vector-Field Attention (VFA) is a weakly-
supervised learning-based method utilizing a novel attention module to retrieve per-pixel
correspondence based on feature similarity. We evaluate using the pretrained model (trained
on OASIS data with weak label supervision) provided in the official repository.

• UnigradICON (Tian et al., 2024): UnigradICON is a foundational registration model by
training on a composite dataset consisting of lung CT, knee MRI, Abdomen CT, brain MRI,
totalling more than 3 million image pairs, of which 4000 image pairs are sampled per epoch
to mitigate data imbalance. The model is trained with a bidirectional similarity loss and
an inverse consistency loss. UnigradICON also provides an instance optimization based
postprocessing step to improve the registration performance. We use the pretrained model
and scripts provided in the official repository, and compare performance with and without
the instance optimization step.

• TransMorph (Chen et al., 2022): TransMorph is one of the first successful applica-
tion of transformer-based architectures for image registration, marking a departure from
traditional convolutional architectures. Compared to other convolutional architectures,
TransMorph demonstrates higher performance under domain shift Jian et al. (2024); Jena
et al. (2025; 2024b) among the deep learning methods. We use the pretrained model
(TransMorph-Large trained on the OASIS dataset) that is provided in the official
repository.

• Anatomix + ConvexAdam (Dey et al., 2025): Anatomix is a feature extractor that is trained
to anticipate strong domain shift at training time and uses contrastive learning to extract
domain-agnostic features that mitigate the effect of nuisance factors. Anatomix shows strong
results on zero-shot registration on abdomen and myocardium. We use the pretrained model
and scripts provided in the official repository.

We also acknowledge Quicksilver (Yang et al., 2017) as a relevant baseline that performs patch-based
registration. However, despite our best efforts with containerizing the environment (the dependencies
are no longer available or supported on modern hardware), we were unable to run this baseline on our
system.

All deep learning methods are tested on 1mm, 500µm, and 250µm resolutions. On 500µm and
250µm resolutions, all methods run out of memory on a single NVIDIA A6000 GPU, and the methods
do not provide infrastructure to run on multiple GPUs. We adopt the patch-based registration strategy
adopted by the literature on high-resolution registration methods for histology (Wodzinski et al., 2024;
Lotz et al., 2015; Liang et al., 2021) as additional baselines with the above deep learning models
as registration backends. We choose (Hoffmann et al., 2021; Dey et al., 2025; Tian et al., 2024) as
general-purpose deep learning methods to mitigate the effect of domain shift due to patch-based
registration at higher resolutions, and (Liu et al., 2024c; Chen et al., 2022) as methods that are trained
with weak label supervision on the OASIS dataset to verify performance at 1mm resolution and
observe the performance at higher resolutions.

Robust HD90 (Cumulative) Hausdorff distance is a widely adopted boundary-based metric in
medical image registration. The conventional definition of HD90 (the 90th percentile Hausdorff
distance) simply reports the 90th percentile, but does not provide an average performance for all
surface boundaries. In contrast, we employ a modified formulation, which we denote as cumulative
HD90, designed to provide a more stable and comprehensive estimate. Specifically, rather than
selecting the single distance value at the 90th percentile, we compute the mean of all surface distances
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up to the 90th percentile. Formally, given sorted distances {di}Ni=1, we compute

HDcu
90 =

1

k

k∑
i=1

di, k = ⌊0.9N⌋.

Distances are computed bidirectionally between ground-truth and predicted surfaces using isotropic
voxel spacing, and the final HD90 is defined as the maximum of the two directional estimates.

K.3 Additional Results and Discussion

Table 5 shows the performance comparison for all methods at different resolutions. All methods using
full-context (CLAIRE, ITK-DReg, FireANTs) show improvement in performance with resolution,
while all deep learning methods degrade in performance due to (a) progressive domain shift at higher
resolutions, even for models trained on multiple or synthetic data, and (b) unlike image registration for
histology slides, volumetric datasets like these require large deformations, and patch-based methods
do not provide the context to perform well at higher resolutions. In terms of efficiency, our method is
substantially more efficient, both on terms of wall clock time, and the total GPU-hours consumed.

Although CLAIRE proposes a distributed GPU framework, the usage of scaling-and-squaring (which
requires performing an integral and its adjoint computation every iteration) and other line search
subroutines consume a considerable amount of resources. On the faux-OASIS dataset at full resolution,
CLAIRE runs out of memory with 1 and 2 GPUs, and does not work on 3 GPUs due to indivisibility
of the image size by 3. So the minimum number of GPUs required to run CLAIRE is 4. Our
method runs on a single GPU, but does not require the image sizes to be divisible by the number of
GPUs, or any other qualitative constraints, allowing researchers to simply plug in their inputs and run
their workflows. For large-scale volumetric image registration problems, our method achieves three
orders of magnitude of speedup over CLAIRE while enabling multimodal support and arbitrarily loss
functions of choice.

K.4 Qualitative Results

Qualitative results are shown in Figs. 16 to 18. With the exception of CLAIRE, ITK-DReg, and Ours,
all methods get progressively worse as the resolution increases.
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Figure 16: Qualitative comparison of registration results at 1 mm. Each row corresponds to the moving
image, fixed image, or one of the registration methods, with 8 representative slices per row. The comparisons
illustrate visual alignment quality and anatomical consistency across methods.
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Figure 17: Qualitative comparison of registration results at 500um. Each row corresponds to the moving
image, fixed image, or one of the registration methods, with 8 representative slices per row. The comparisons
illustrate visual alignment quality and anatomical consistency across methods.
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Figure 18: Qualitative comparison of registration results at 250um. Each row corresponds to the moving
image, fixed image, or one of the registration methods, with 8 representative slices per row. The comparisons
illustrate visual alignment quality and anatomical consistency across methods.
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Figure 19: Patch pairs seen during registration for patch-based methods: For the 1mm isotropic images,
there is only a single patch, i.e. the entire image. Deep learning methods utilize the global spatial context to
perform accurate registration. At 500µm isotropic, the patches still have large spatial context, but the images are
out-of-distribution, leading to degraded performance Fig. 5a. At 250µm isotropic, there is no meaningful spatial
context and the patches are completely out-of-distribution, leading to poor performance for all patch-based
methods.

Figure 20: Flamegraph of FireANTs for Cross Correlation (left) and Mutual Information (right) losses on the
OASIS dataset. The flamegraph is annotated on the right with colored blocks denoting the memory overheads
for the fixed and moving images, the warp field and its optimizer state, the grid sampler operation, and the
loss function. Most of the computational overhead is due to the loss function, followed by the grid sampler
operation. This motivates the use of fused kernels to eliminate intermediate memory overheads.
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