

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 A SCALABLE DISTRIBUTED FRAMEWORK FOR MULTIMODAL GIGA VOXEL IMAGE REGISTRATION

Anonymous authors
Paper under double-blind review

ABSTRACT

In this work, we propose **FFDP**, a set of IO-aware non-GEMM fused kernels supplemented with a distributed framework for image registration at unprecedented scales. Image registration is an inverse problem fundamental to biomedical and life sciences, but algorithms have not scaled in tandem with image acquisition capabilities. Our framework complements existing model parallelism techniques proposed for large-scale transformer training by optimizing non-GEMM bottlenecks and enabling convolution-aware tensor sharding. We demonstrate unprecedented capabilities by performing multimodal registration of a $100\mu\text{m}$ *ex-vivo* human brain MRI volume at native resolution – an inverse problem more than $570\times$ larger than a standard clinical datum in about a minute using only 8 A6000 GPUs. FFDP accelerates existing state-of-the-art optimization and deep learning registration pipelines by upto $6 - 7\times$ while reducing peak memory consumption by $20 - 59\%$. Comparative analysis on a $250\mu\text{m}$ dataset shows that FFDP can fit upto $64\times$ larger problems than existing SOTA on a single GPU, and highlights both the performance and efficiency gains of FFDP compared to SOTA image registration methods.

1 INTRODUCTION

Image registration (also called ‘image alignment’ or ‘image matching’) is a non-linear inverse problem ubiquitous in biomedical and life sciences. Given d -dimensional images $F : \Omega \rightarrow \mathbb{R}^d$ and $M : \Omega \rightarrow \mathbb{R}^d$ defined on domain Ω (usually a compact subset of \mathbb{R}^d), image registration seeks to find a coordinate transform $\varphi : \Omega \rightarrow \Omega$ that deforms the moving image M to look similar to the fixed image F . Mathematically, we minimize the following objective (Fig. 1):

$$\varphi^* = \arg \min_{\varphi \in G} L(\varphi) \doteq C(F, M \circ \varphi) + R(\varphi) \quad (1)$$

where C is a cost or dissimilarity function, and \circ is the interpolation operator, i.e. $(I \circ g)(x) = I(g(x))$ for all $x \in \Omega$. Popular choices of φ are affine and deformable transforms, i.e. $\varphi(x) = Ax + t$, and $\varphi(x) = x + u(x)$. Modern registration pipelines (Hoffmann et al., 2021; Jena et al., 2024a) consider an affine matching followed by a deformable matching step, resulting in a composite transform $\varphi(x) = Ax + t + u(x)$. u is called the displacement field, modeled as a grid of per-voxel vectors $u(x) \in \mathbb{R}^d$. For an image of size N , the displacement field is a tensor of size dN . We use $[\mathbf{x}]_\Omega$, $A[\mathbf{x}]_\Omega + t$, and $[\mathbf{u}]_\Omega$ to denote the identity grid, grid of affine transformed coordinates, and deformation grid defined on Ω respectively. Common choices of C are mean squared error, Localized Normalized Cross Correlation (Avants et al., 2008a), and Mattes Mutual Information (Mattes et al., 2001). Common choices of R include Sobolev norm of the gradient or warp fields (Beg et al., 2005; Mang et al., 2019; Avants et al., 2008b), total variation, and inverse-consistency (Christensen & Johnson, 2001). To optimize Eq. (1), iterative methods optimize φ^* directly using gradient descent, and deep learning methods learn a deep neural network $\varphi = f_\theta(F, M)$. Image registration establishes a common coordinate system, aligning scans across individuals and atlases (Hering et al., 2022; Marcus et al., 2007; Murphy et al., 2011). This alignment is a prerequisite for multimodal data fusion, cross-subject comparison, morphometric analysis (Das et al., 2009), and construction of large-scale atlases (Wang et al., 2020b). Establishing such voxelwise correspondence is fundamental for studying anatomical variability, detecting pathological signatures (Ravikumar et al., 2021), and advancing precision medicine (Börner et al., 2022; Jonsson et al., 2022). The saliency and centrality of the task across various biomedical and life science applications has spurred numerous methodological

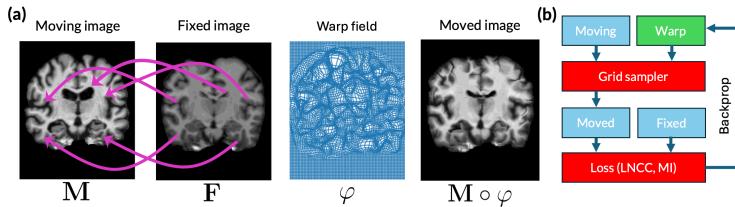


Figure 1: Image Registration Problem. (a): The task is to find a coordinate transform that warps the moving image M to the fixed image F . Individual corresponding points are shown as **violet** arrows; the per-pixel coordinate transform is shown as a warp field φ , and the transformed image $M \circ \varphi$. (b): A typical registration pipeline - the grid sampler warps the moving image, that is then compared to the fixed image using a loss function. **Green** denotes the optimizable warp, **red** denotes the primary bottlenecks that we optimize in this paper.

advances in the field, spanning more than three decades of research (Gee et al., 1993; Tian et al., 2024).

Over the past decade, advances in MRI, CT, PET, STPT, and microscopy have enabled ultra-high-resolution imaging, often more than three orders of magnitude larger than macroscopic biomedical domains (Balchandani & Naidich, 2015; Esquivel et al., 2022; Badawi et al., 2019; Gambarotto et al., 2019; Wassie et al., 2019; Kleven et al., 2023; Wang et al., 2020b; Mansour et al., 2025; Kleinfeld et al., 2011). While a typical clinical registration problem involves $\sim 20M$ parameters, high-resolution ex-vivo human brain scans can require solving up to $11B$ parameters, far beyond the $\sim 50M$ -parameter scale at which current registration methods remain reliable. As a result, state-of-the-art deformable image alignment struggles to scale to the resolutions demanded in modern neuroimaging, computational pathology, developmental biology, and connectomics, creating a substantial performance gap. In parallel, innovations in large-scale transformer training such as IO-aware fused operations (Dao et al., 2022; Dao, 2023; Spector et al., 2025) and 5D parallelism for distributing larger-than-memory workloads (Shoeybi et al., 2019; Li et al., 2023; Jacobs et al., 2024; Li et al., 2024; Zhao et al., 2023; Ansel et al., 2024) optimize GEMM-like workflows. However, the fundamental concepts utilized by these methods (IO-awareness, recomputing and aggregating intermediates on shared memory to minimize high bandwidth memory (HBM) storage, identifying partial aggregates across hosts to minimize communication overheads for distributed optimization) are broadly applicable to a wide class of problems of the non-GEMM nature.

In this paper, we apply these concepts to scale image registration algorithms to match parity with the developments in both increasing resolution of image acquisition *and* compute capabilities. To that end, our contributions are twofold. First, we identify key compute and memory bottlenecks in image registration algorithms, and propose novel components that fit problems upto $64\times$ larger than existing algorithms on a single GPU. Second, we propose **Flash Fused Distributed Primitives** (FFDP), a distributed framework to scale registration to an arbitrary number of GPUs, thereby scaling to ultra high-resolution problems. We present a first-of-its-kind demonstration: aligning a $250\mu m$ in-vivo MRI (Lüsebrink et al., 2017) to a $100\mu m$ ex-vivo human brain FLASH volume (Edlow et al., 2019) – a multimodal registration problem more than $570\times$ larger than a standard clinical datum (Marcus et al., 2007), with over $11.8B$ transform parameters – completed in *one minute* using only 8 A6000 GPUs. FFDP accelerates existing traditional registration pipelines by upto $7.48\times$ while reducing memory consumption by upto 59%, and deep learning pipelines by upto $6.14\times$ while consuming upto 24% less memory. We highlight the necessity of performing high-resolution registration by comparing our method with various SOTA optimization and deep learning baselines on a $250\mu m$ T1-weighted MRI dataset, showing unprecedented performance and gains in efficiency.

2 RELATED WORK

2.1 MEMORY EFFICIENT AND LARGE SCALE OPTIMIZATION

Recent years have also witnessed tremendous innovations in large-scale transformer model training. IO-aware implementations typically include individual fused kernels (Dao et al., 2022; Dao, 2023) and domain-specific languages (Spector et al., 2025; PyTorch, 2025) to minimize launch latency and large memory overheads. To distribute larger-than-memory model training workloads across multiple GPUs, 5D parallelism techniques (Shoeybi et al., 2019; Li et al., 2023; Jacobs et al.,

108 2024; Li et al., 2024; Zhao et al., 2023; Ansel et al., 2024) have been proposed. Many of these
 109 techniques leverage a divide-and-conquer approach to break down a larger GEMM-like operation
 110 like matrix multiplication or attention into smaller sub-problems that can be executed on multiple
 111 GPUs and synchronized to compute the final result. To our knowledge, most of these techniques are
 112 tailored to transformer-specific architectures and GEMM-like operations (self attention, FeedForward,
 113 LayerNorm, etc.) only, and a Model Parallel variant for convolution-aware tensor sharding and
 114 synchronization is not available.

115

116 2.2 LARGE SCALE REGISTRATION IN LIFE SCIENCES AND BIOMEDICAL IMAGING

117

118 **Ex-vivo neuroimaging.** A large body of neuroanatomical studies are performed in conjunction with
 119 high-resolution ex-vivo MRI, blockfacing imaging, and histology to create detailed, microscopic
 120 anatomical references by integrating structural, molecular, and cytoarchitectural information across
 121 imaging modalities (Casamitjana et al., 2025; Ravikumar et al., 2024). In-vivo MRI is typically
 122 limited by resolution due to constraints on scan time. Consequently, high-resolution ex-vivo scans
 123 and blockface imaging are used as a bridge between in-vivo and histology, with the latter used as a
 124 gold standard for ground-truth microscopic tissue characterization and pathology. Numerous studies
 125 on neurodegenerative diseases including Alzheimer’s disease, Parkinson’s, and Multiple Sclerosis use
 126 high resolution ex-vivo MRI and histology to study disease progression and treatment effects (Madsen
 127 et al., 2021; Echávarri et al., 2011; Welton et al., 2023). Most studies only quantify local effects
 128 due to the significant computational cost of registering the entire brain at high resolution. Recently,
 129 multiple large scale consortia including Seattle Alzheimer’s Disease Brain Cell Atlas (SEA-AD) and
 130 the Human Mouse Brain Atlas (HMBA) consortium are aimed at creating detailed, multimodal brain
 131 atlases linking cellular, molecular, and anatomical organization across species and disease states -
 132 combining individual efforts from multiple institutions together into a unified resource. Moreover,
 133 submillimeter whole-brain datasets (Edlow et al., 2019; Lüsebrink et al., 2017; Mahler et al., 2024)
 134 have been acquired with the goal to facilitate the development and validation of new algorithms for
 135 high-res data, provide detailed studies of the brain anatomy, and act as a high-resolution template for
 136 integration with other modalities or individual brain studies. However, existing tools cannot register
 137 these datasets at native resolution due to excessive memory requirements; we show that our method
 138 can register these datasets at native resolution in a minute using only 8 A6000 GPUs (see Section 5.2).
 139 High-resolution imaging *and* registration are essential in these contexts because they enable accurate
 140 cross-modal alignment and preservation of fine anatomical detail that would otherwise be lost through
 141 downsampling.

142

Large-scale registration in model organisms. Over the past decade, imaging across the life
 143 sciences and biomedical domains has progressed from mesoscale surveys to organ- and organism-wide
 144 acquisitions at cellular or even subcellular resolution. These span transparent organisms and small
 145 animal models (e.g., *C. elegans*, zebrafish, adult *Drosophila*) (Varol et al., 2020; Venkatachalam
 146 et al., 2016; Marquart et al., 2017; Gupta et al., 2018; Peng et al., 2011; Brezovec et al., 2024), adult
 147 mouse and rat brains imaged at sub-micron resolutions (Gong et al., 2016; Wang et al., 2020a; Kleven
 148 et al., 2023) using Light Sheet Fluorescence Microscopy (LSFM) and Serial Two-Photon Microscopy
 149 (STPT) imaging. Such modalities routinely generate gigavoxel to teravoxel volumes (Kutten et al.,
 150 2016; Nazib et al., 2018). Their scientific utility, however, hinges on the ability to perform registration
 151 at the native resolution of acquisition, i.e. aligning specimens (or modalities) in a common coordinate
 152 system without sacrificing the fine-scale morphologies including cell bodies, layers, axon bundles,
 153 synaptic neighborhoods, etc. that motivate high-resolution acquisition in the first place (Nazib et al.,
 154 2018; Goubran et al., 2013).

155

156 Across these diverse domains, the unifying requirement demands access to scalable multimodal
 157 registration algorithms - a challenge we address in this work. We provide an extended discussion of
 158 more related work and the necessity of our approach in Section A.

159

160 3 FUSED KERNELS FOR MEMORY EFFICIENT REGISTRATION ON A SINGLE GPU

161

Bottlenecks of a deformable image registration pipeline Our primary objective is to identify
 162 compute and memory bottlenecks in *large-scale* image matching tasks. In identifying these bottlenecks,
 163 training-free optimization methods are better suited than deep networks since the latter has a much
 164 larger activation memory footprint, which forms the primary memory bottleneck (Tazi et al., 2024).

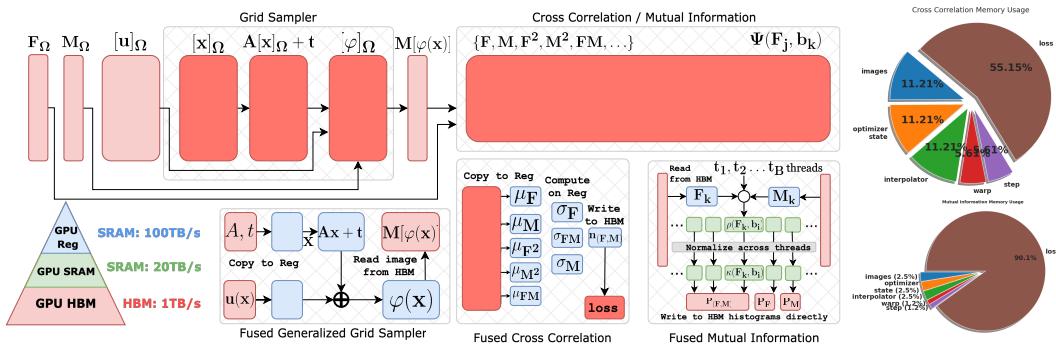


Figure 2: Left: FFDP uses fused kernels to eliminate intermediate HBM memory usage (in **dark red**) for memory-bound workhorse operations (grid_sampler, LNCC, MI) for large-scale image registration. For grid_sampler and LNCC, additional intermediate per-pixel variables (warp coordinates, patchwise statistics) are computed per-pixel in registers (blue). For MI, the Parzen Windowing and histogram aggregation is performed using shared memory (green), avoiding large HBM overheads. **Right:** Pie charts show the breakdown of memory overheads for storing the image, grid, optimizer state, and intermediate variables for MI and LNCC losses.

For instance, for a $250\mu\text{m}$ image pair, a standard deep learning method (Hoffmann et al., 2021) generates an activation map of size 27GB only after the first layer. Extrapolating memory usage for clinical data, existing deep networks will require up to 1.2TB of GPU memory at inference to process these image volumes at native resolution. In contrast, a training-free optimizer can fit this problem in less than 45GB of GPU memory. We use FireANTs (Jena et al., 2024a) as our base framework to identify compute and memory bottlenecks in a typical image registration problem. We analyze the flamegraph of a typical clinical MRI registration task from the *OASIS* brain dataset (Marcus et al., 2007) in Fig. 20. We identify three key memory bottlenecks in image matching pipelines (1) deformable interpolation and warp composition (2) cross-correlation loss, and (3) mutual information loss (see Fig. 2(right)).¹ We first propose efficient designs to fit larger problems on a single GPU, and then extend the framework to distributed registration.

3.1 COMPOSITE IMPLICIT GRID SAMPLER

A fundamental operation used in image registration is the *grid sampler*. This operator allows us to warp an image M using a deformation field $\varphi : \Omega \rightarrow \Omega$ and computes the image $M' : M'(x) = M(\varphi(x))$. Virtually every image registration pipeline uses this operation to warp the moving image using an affine, deformable, or composite transform. For affine and composite transforms, the operator initializes a regular grid $[x]_\Omega$, a grid of size $3N$. The affine grid $A[x]_\Omega + t$ is another grid of size $3N$. If a deformable grid $[\mathbf{u}]_\Omega$ is optimized, then a third grid $A[\mathbf{x}]_\Omega + t + [\mathbf{u}]_\Omega$ is materialized, costing a total of $9N$ overhead for an image of size N . To consolidate these memory overheads, we propose a composite implicit grid sampler. This is a fused CUDA kernel that performs the following operation:

$$\text{fused_grid_sampler}(I; A, t, [\mathbf{u}], S, x_{\text{bounds}})(x) = I(Ax + t + S\mathbf{u}(x))$$

where $A, S \in GL(d, \mathbb{R})$ are affine matrices, t is a translation vector, $[\mathbf{u}]$ is the deformation grid, and x_{bounds} are the bounds of the (implicit) identity grid $[x]_\Omega$. There are three benefits of this approach. First, the kernel avoids materializing any additional grids in HBM, reducing the memory overhead of the kernel from $O(n)$ to $O(1)$ with no loss in runtime or accuracy. Second, when the warp $[\mathbf{u}]_\Omega$ is sharded across hosts in a distributed setting, the identity grid $[x]_\Omega$ needs to be sharded correctly too. Since the identity grid is implicitly defined by its bounds $x_{\text{bounds}} = (x_{\min}, x_{\max}) \in \mathbb{R}^{2d}$, our implementation can be easily used in a distributed optimization setting without instantiating partial shards $[x]_{\Omega_h}$. Finally, the matrix S is used to rescale the deformation field to sample from the coordinates of the sharded images I_h which lie on the grid Ω_h instead of Ω (see Section I.2) without initializing additional memory. The backward pass is very similar to the existing PyTorch implementation, with the exception of the gradient of the affine matrix. We discuss the derivation and pseudocode of the forward and backward pass in the Section H.

¹ A GPU’s memory hierarchy spans multiple tiers: registers (per-thread, single-cycle), shared memory/L1 cache (on-chip, tens of KB, low latency within a block), L2 cache (MBs, shared across SMs, moderate latency), and global memory (**HBM**). Our work focuses on reducing HBM usage for key non-GEMM operations used in image registration, by maximizing register and shared memory usage while minimizing global memory traffic.

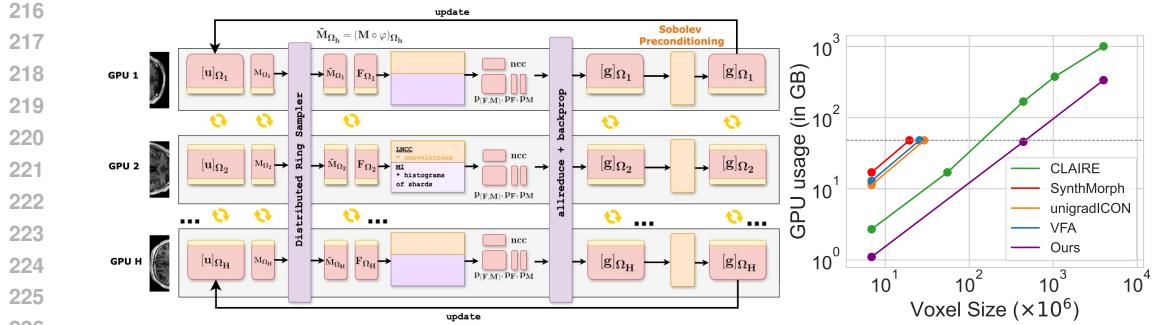


Figure 3: Left: Overview of our distributed framework. GridParallel (GP) shards the fixed and moving images (F, M) and the warp field $[u]$ across multiple GPUs. Yellow blocks and arrows denote synchronized halo boundaries between GPUs, enabling smoothing on images and warp fields without an allgather. The ring sampler (violet) computes interpolated image shards on the fly, avoiding materialization of the full moving image. We then compute losses (MSE, LNCC, MI), compute gradients w.r.t. each warp shard, apply **Sobolev regularization** with GP, and update shards by gradient descent. **Right:** Scaling efficiency compared to deep methods and CLAIRE (Mang et al., 2019), a distributed registration method. Most SOTA deep learning baselines require orders-of-magnitude more memory for the same problem size and scalability is limited to a single GPU (dotted line). Our framework scales to arbitrarily large problem sizes while using about 5× less memory than CLAIRE.

3.2 IMPLICIT PARZEN WINDOWING FOR MUTUAL INFORMATION

Matthes Mutual Information (MI) is one of the most commonly used loss functions for *multimodal* image matching (Chen et al., 2022; Avants et al., 2009; Matthes et al., 2001). For random variables X and Y , MI is the KL divergence between the joint distribution $P(X, Y)$ and product of marginal distributions $P(X)P(Y)$ of the intensities of the two images. For image matching, X and Y are the pixel intensities for the images I, J . The distributions are estimated using a kernel density estimator:

$$P_I(v) = \frac{1}{N} \sum_k \kappa(v - I_k), \quad P_{(I, J)}(v, w) = \frac{1}{N} \sum_k \kappa(v - I_k) \kappa(w - J_k) \quad (2)$$

where κ is a kernel function of choice. Common choices of κ are the Gaussian (Guo, 2019) and 3rd order B-Spline kernels (Thévenaz & Unser, 2000). To empirically compute the KL divergence, the distributions Eq. (2) are discretized over B equally spaced bins on the domain of $u \in I, v \in J$. However, to compute the joint histogram of size B^2 , this method requires materializing the entire Parzen Block $\Psi_I(j, k) = \kappa(b_j - I_k)$ of size $2k_PBN$, where k_P is a kernel-dependent constant. Since $N \gg B$ (B is typically chosen to be 32), this operation becomes a significant memory bottleneck for large N . For instance, a typical clinical image volume ($N \approx 30\text{MB}$) with 32 bins will consume **7.5GB** of HBM - a significantly huge cost that grows much faster for larger problems.

Our efficient implementation leverages the fact that B is small to avoid materializing the tensors $\Psi_I, \Psi_J \in \mathbb{R}^{B \times N}$ altogether and use high-throughput shared memory to compute and accumulate the histogram entries and partial gradients for each image pixel. We provide the detailed derivation in Section G. This leads to an efficient implementation that consumes $O(1)$ additional HBM instead of $O(N)$ (holding B constant). This leads to upto **98%** lesser HBM usage for images considered in our experiments, and an asymptotic 100% reduction in HBM usage for large images (Fig. 7(top-right)).

3.3 EFFICIENT IMPLICIT FUSED CROSS-CORRELATION

Local Normalized Cross-Correlation (LNCC) is used ubiquitously in signal and image processing as a similarity metric. In deformable image registration, it is used as a robust similarity function to compare anatomical similarities (Chen et al., 2022; Hoffmann et al., 2021; Avants et al., 2008b; Wu et al., 2024). Most LNCC implementations are memory-bound due to the large number of intermediate variables. Our analysis in Section F shows that the computational graph adds 16× HBM overhead, and upto another 16× HBM overhead for computing gradients with respect to all intermediates.

To avoid these huge memory overheads, we fuse all the intermediate computation in a fused kernel. Our fused forward pass requires only 5× memory for storing all intermediates (I, J, I^2, J^2, IJ convolved with matrix w). In Section F we analytically derive the gradient and show that the input gradients can be computed by modifying the saved intermediates *in-place*. This leads upto a **76.5% reduction** in memory (see Table 3) and outperforms even `torch.compile` implementations.

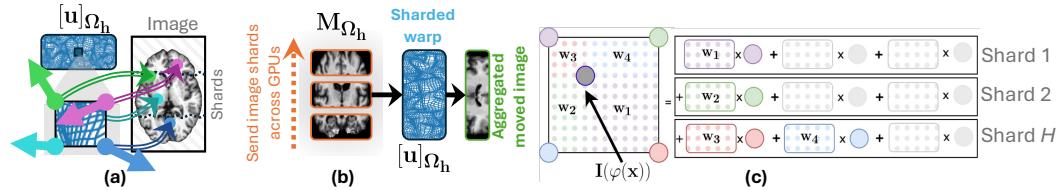


Figure 4: (a) Neighboring coordinates in the warp field may refer to pixel locations on arbitrary image shards due to the deformable nature of the warp field, making distributed interpolation non-trivial. (b) Ring Sampler interleaves fetching of image shards and aggregating the partial sums of interpolated values, avoiding a memory-expensive allgather. (c) Bilinear Interpolation is decomposed into partial sums over image shards, which are accumulated with a ring topology communication, similar to Liu et al. (2024b).

4 EXTENDING IMAGE REGISTRATION TO MULTIPLE GPUs

Our composite implicit grid sampler and improved loss functions allows optimizing problems with image sizes that are upto two magnitudes larger than other baselines on a single A6000 GPU (Fig. 5a). However, many applications using mesoscopic and microscopic data require registration of images that do not fit on a single GPU. Inspired by distributed frameworks for LLM training (Shoeybi et al., 2019; Rajbhandari et al., 2020) and initial work on distributed image registration (Mang et al., 2019), we propose a distributed framework that allows sharding large images across multiple GPUs to efficiently scale to arbitrarily large problem sizes with any similarity loss function.

Distributed Setting. For distributed registration with H hosts or GPUs, we partition the domain $P(\Omega) = \{\Omega_1, \Omega_2, \dots, \Omega_H\}$ such that $|\Omega_i| = N/H$, $\Omega_i \cap \Omega_j = \phi \quad \forall i \neq j$ and $\cup_i \Omega_i = \Omega$. We use $[\mathbf{x}]_{\Omega_h}$, $A[\mathbf{x}]_{\Omega_h} + t$, and $[\mathbf{u}]_{\Omega_h}$ to denote the sharded tensors defined on domain Ω_h .

4.1 GRID PARALLEL FOR BOUNDARY-SYNCHRONIZED IMAGE SHARDING

Techniques like Tensor/Sequence/Expert/Context Parallel have been tremendously successful in distributed optimization by sharding large models and sequences across multiple GPUs (Shoeybi et al., 2019; Li et al., 2023; Liu et al., 2024b;a). However, these techniques work for transformer-like architectures and input sequences where the model parameters and activations do not require boundary synchronization. In contrast, image registration contains operations that require boundary synchronization between image and grid shards to perform mathematically correct convolutions. Examples of such operations include convolutions for calculating LNCC, total variation loss, Sobolev norm of the gradient and warp fields (Mang et al., 2019; Avants et al., 2008b; Beg et al., 2005).

To enable these functionalities and complement existing parallelism techniques, we propose ‘*Grid Parallel*’ (GP) as an abstraction on a tensor. GP shards a tensor across hosts, stores the sharded dimension and bounds as metadata, and provides synchronization operations to augment the tensor with sufficient boundary padding from neighboring shards prior to performing a convolution operation. GP allows us to partition the fixed images, $[\mathbf{u}]$, and the optimizer state $[\mathbf{m}_1], [\mathbf{m}_2]$ – essentially sharding the entire problem across H hosts while allowing the user to apply convolutional operations seamlessly. We compare the performance of GP with naive DTensor sharding in Section D.

4.2 DISTRIBUTED RING SAMPLER

Despite the sharding in GP, the moving image M cannot be sharded across GPUs due to the random-access nature of the `grid_sample` operation applied on M . In general, the warp vector $\varphi(x)$ residing on GPU i can point to coordinates that reside on the sharded image on GPU j for any $j \neq i$. Even for neighboring coordinates $x_s, x_u \in [\mathbf{x}]_i$, the coordinates $\varphi(x_s)$ and $\varphi(x_u)$ can point to different shards $j_1 \neq j_2 \neq i$. This is illustrated in Fig. 4(a). Keeping the entire moving image in memory limits the maximum problem size to $N \leq V$, where V is the memory per GPU, regardless of the number of hosts H . However, we want the maximum problem size to scale with H . Therefore, we propose a distributed `grid_sampler` that allows us to *correctly* interpolate the moving image with sharded images scattered across multiple hosts without performing an `allgather` operation on the moving image.

324

325

(a) Performance comparison across methods and resolutions.

326

Resolution	Method	AvgDice Score \uparrow	InvDice Score \uparrow	AvgHD90 ^{cum} (mm) \downarrow
1 mm	Baseline	0.579 \pm 0.055	0.141 \pm 0.142	1.587 \pm 0.908
	Anatomix	0.796 \pm 0.035	0.386 \pm 0.138	0.468 \pm 0.137
	CLAIRE	0.776 \pm 0.044	0.344 \pm 0.120	0.554 \pm 0.150
	FireANTs	0.822 \pm 0.032	0.435 \pm 0.147	0.393 \pm 0.126
	ITK-dreg	0.662 \pm 0.055	0.199 \pm 0.125	1.002 \pm 0.277
	SynthMorph	0.801 \pm 0.022	0.378 \pm 0.133	0.455 \pm 0.098
	TransMorph	0.851 \pm 0.016	0.468 \pm 0.161	0.310 \pm 0.064
	UniGradICON (IO)	0.826 \pm 0.022	0.391 \pm 0.155	0.384 \pm 0.095
	UniGradICON	0.815 \pm 0.026	0.393 \pm 0.156	0.419 \pm 0.113
500 μ m	VFA	0.851 \pm 0.023	0.494 \pm 0.169	0.323 \pm 0.096
	Ours	0.838 \pm 0.028	0.436 \pm 0.148	0.341 \pm 0.109
	Baseline	0.580 \pm 0.055	0.138 \pm 0.143	1.357 \pm 0.326
	Anatomix [†]	0.758 \pm 0.040	0.325 \pm 0.159	0.619 \pm 0.169
	CLAIRE	0.779 \pm 0.051	0.275 \pm 0.210	0.570 \pm 0.211
	FireANTs	0.841 \pm 0.033	0.489 \pm 0.163	0.340 \pm 0.127
	ITK-dreg	0.699 \pm 0.056	0.240 \pm 0.130	0.834 \pm 0.254
	SynthMorph [†]	0.771 \pm 0.035	0.337 \pm 0.133	0.557 \pm 0.144
	TransMorph [†]	0.759 \pm 0.028	0.300 \pm 0.175	0.624 \pm 0.127
250 μ m	UniGradICON [†]	0.610 \pm 0.044	0.133 \pm 0.122	1.231 \pm 0.262
	UniGradICON (IO) [†]	0.615 \pm 0.047	0.149 \pm 0.136	1.527 \pm 1.495
	VFA [†]	0.805 \pm 0.044	0.419 \pm 0.181	0.462 \pm 0.163
	Ours	0.872 \pm 0.028	0.528 \pm 0.180	0.258 \pm 0.099

347

Figure 5: Registration performance on Faux-OASIS dataset at 1 mm, 500 μ m, and 250 μ m (native 250 μ m); mean \pm std over pairs. \uparrow higher is better; \downarrow lower is better. HD90 values are reported using our cumulative definition (see Sec. K.2). (Green) / (Yellow) = best/second; [†] = patch-based

351

352

Our approach leverages the key observation that (bi/tri)linear interpolation can be decomposed as an aggregate of partial sums of interpolated values on individual image shards. Fig. 4(b) illustrates this example. These individual image shards are sent across hosts in a ring topology, similar to Liu et al. (2024b), and the partial sum is aggregated inplace. This operation only incurs an additional N/H HBM overhead for fetching the sharded image from other hosts, scaling efficiently to arbitrary large problem sizes for sufficiently large H . The detailed derivation and correctness of this operation is shown in Section I.

359

4.3 DISTRIBUTED LOSS FUNCTIONS

360

Since the moved image and fixed image are sharded cross H hosts, the loss function must take this into account to compute the loss function correctly.

364

Mean Squared Error (MSE). Since MSE is a per-pixel loss, we compute the individual MSE on host h and perform an allreduce operation.

366

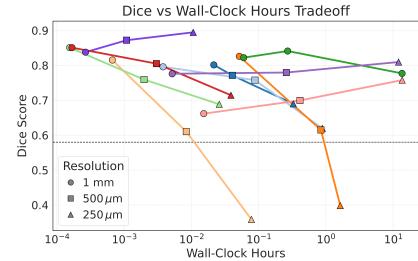
Localized Normalized Cross Correlation (LNCC). The LNCC computes per-pixel patch similarities for each pixel, using a convolution over its neighbors. For sharded images, the patch statistics at the boundary requires a boundary synchronization with its neighboring shards which is provided by our GP implementation. After computing the LNCC for all pixels in each shard, we perform another allreduce to compute the LNCC over the entire image.

371

Mutual Information (MI). The MI loss computes the joint histograms $p_{(I,J)}(x, y)$ and marginals $p_I(x), p_J(y)$. However, these distributions are partial aggregates from the sharded images on each GPU. Eq. (2) can be rewritten as $p_I(v) = \sum_h \frac{N_h}{N} \left(\frac{1}{N_h} \sum_{k \in \Omega_h} \kappa(v - I_k) \right)$, $p_{IJ}(v, w) = \sum_h \frac{N_h}{N} \left(\frac{1}{N_h} \sum_{k \in \Omega_h} \kappa(v - I_k) \kappa(w - J_k) \right)$, where the red terms correspond to the per-host histogram computation. Performing an allreduce to compute the weighted average of these histograms (with weights N_h/N) results in a valid and correct joint and marginal distributions over all hosts.



(b) Accuracy vs. GPU Compute Cost.



(c) Accuracy vs. Wall-clock Time.

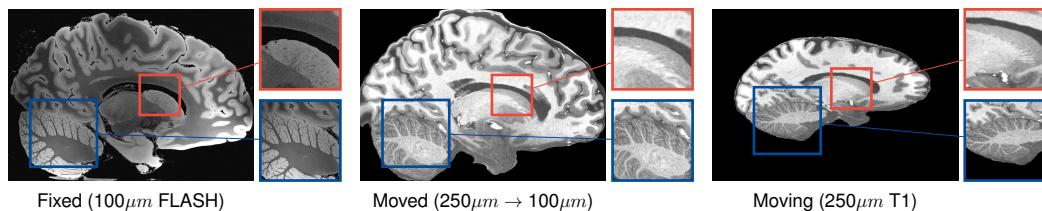


Figure 6: Qualitative comparison on registration of $100\mu\text{m}$ ex-vivo brain MRI ($\text{T1} \rightarrow \text{FLASH}$) image. Fine details like cerebellar white matter are not visible at macroscopic scales, but are aligned at $100\mu\text{m}$. Fixed image is of size $1760 \times 1760 \times 1278$. Best viewed zoomed in. More results in Fig. 11.

This also leads to only a $B^2 + 2B$ communication overhead regardless of N , making a distributed implementation highly practical.

5 EXPERIMENTS

Our primary goals are to (a) accelerate both optimization and neural network based registration workflows, and (b) solve significantly larger image registration problems. We show the efficacy of our method by accelerating existing registration workflows on standard clinical data. This is followed by optimizing a multimodal registration task with more than 11.8B optimizable parameters, an unprecedented result in large-scale registration. We compare the performance and computational efficiency of our method with various state-of-the-art baselines on a simulated $250\mu\text{m}$ ex-vivo brain MRI dataset, followed by ablations on various components of our framework.

Baselines. To accelerate existing registration workflows, we compare against TransMorph (Chen et al., 2022) and FireANTs (Jena et al., 2024a), which are state-of-the-art deep learning and optimization based registration frameworks respectively. In addition, we perform comparative evaluation with two methods explicitly designed for large-scale registration: ITK-DReg (itk) (CPU-based) and CLAIRE (Mang et al., 2019) (multi-GPU), and several SOTA learning-based approaches for clinical data - SynthMorph (Hoffmann et al., 2021), Vector-Field Attention (Liu et al., 2024c), unigradICON (Tian et al., 2024) (with/without instance optimization), anatomix+ConvexAdam (Dey et al., 2025).

5.1 ACCELERATING EXISTING REGISTRATION WORKFLOWS AND ABLATIONS

For deep networks, we train TransMorph-large under three loss configurations: (a) LNCC+Dice, (b) MI+Dice, and (c) LNCC+scaling-and-squaring (Ashburner, 2007) +Dice. For each configuration shown in Table 1, we either use the vanilla PyTorch implementation (Baseline) or our kernels (Ours). For classical optimization, we benchmark runtime and memory against multiple LNCC backends (FireANTs, VoxelMorph/TransMorph, Fast LNCC, `torch.compile`, and Ours) and MI backends (PyTorch and Ours with and without `torch.compile`). Tables 1 and 4 and Fig. 12 show that during network training our kernels converge $6.1\times$ faster with LNCC while using 16.5% less memory, and reduce MI memory usage by 24.7%. Despite being designed for very large images, the runtime and memory benefits are significant for clinical-scale data (i.e., 30MB for OASIS). Optimization frameworks see larger gains: FireANTs achieves up to 95.2% memory savings and $2.6\times$ speedup with MI, and a $7.5\times$ speedup over FastLNCC (Jia et al., 2025) (and $2.9\times$ over FireANTs' LNCC backend which applies separable convolutions on FastLNCC), with 44-59% lower memory usage overall.

5.2 REGISTRATION TO A 100 MICRON EX-VIVO BRAIN MRI VOLUME

To showcase the efficacy of our method on real large scale images, we register a $250\mu\text{m}$ in-vivo MRI image (Lüsebrink et al., 2017) to a $100\mu\text{m}$ ex-vivo FLASH human brain volume (Edlow et al., 2019). This represents an inverse problem with more than 11.2B optimizable parameters (compared to $\sim 20\text{M}$ for clinical datasets), or 44.8GB of GPU memory. The entire problem does not fit on most GPUs, necessitating distributed multimodal registration. We optimize a composite transform - affine followed by a diffeomorphic mapping; details can be found in Section E.1. Multimodal deformable registration took ~ 58 seconds on 8 NVIDIA A6000 GPUs, which is unprecedented at this resolution. Fig. 6 shows qualitative results, highlighting the ability to register highly detailed

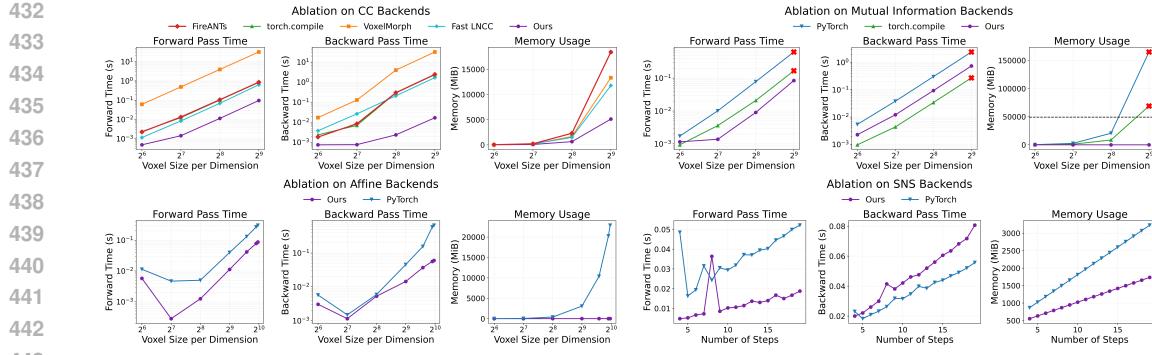


Figure 7: Ablations on key workhorse operations: LNCC, MI, grid_sampler, and scaling-and-squaring operations. Our fused kernels consume significantly less HBM and runtime.

structures such as cerebellar white matter; these structures are not visible at macroscopic scales. The resultant advantages of performing registration at this scale can allow researchers to characterize the neuroanatomy at microscopic resolutions and allow morphometric analysis of cortical layers and subcortical nuclei among other structures.

Registration accuracy in these studies is measured using privately annotated fiducial markers, hindering reproducibility and comparability of methodological advances. Due to lack of scalable frameworks, most high-resolution studies simply run ANTs at a significantly downsampled resolution (Kleven et al., 2023; Mansour et al., 2025; Wang et al., 2020b; Kronman et al., 2024; Bogovic et al., 2020; Edlow et al., 2019) and upsample the warp field to the native resolution.

5.3 COMPARATIVE ANALYSIS ON A SIMULATED EX-VIVO BRAIN MRI DATASET

The faux-OASIS dataset To compare registration performance at high resolutions and leverage existing methods as baselines, we synthesize the *faux-OASIS* dataset, which mimics the anatomical distribution of an MRI dataset at $250\mu\text{m}$ isotropic resolution (more details in Section K). At $250\mu\text{m}$, the deformation field has 1.32B degrees of freedom per image pair, compared to $\sim 20\text{M}$ for OASIS.

Baselines and evaluation. All methods (including CLAIRE and FireANTs without FFDP) run out of memory at $250\mu\text{m}$ resolution. We proposed two modifications

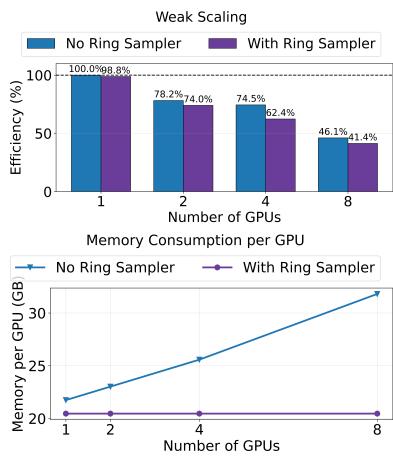
to deep learning based methods to enable them to work on this dataset: (a) inspired by several high-resolution studies (Wang et al., 2020b; Mansour et al., 2025; Edlow et al., 2019), we register the images at a downsampled resolution, and then upsample the deformation field (b) inspired by several histology registration methods (Wodzinski et al., 2024; Lotz et al., 2015; Liang et al., 2021), we perform patchwise registration and mosaicing of the final deformation. We compare the methods at three resolutions: 1mm, $500\mu\text{m}$, and $250\mu\text{m}$. At 1mm, the full image fits within a patch, providing a baseline reference comparable to reported OASIS performance. At higher resolutions, patches are defined by each method’s default input size with stride equal to 50% of the patch size. FireANTs augmented with FFDP is denoted as *Ours*. We report Dice, inverse-weighted Dice (InvDice; Mang et al. (2019)), and average Hausdorff distance capped at 90 percentile (AvgHD90). To compare efficiency, we measure both wall-clock time and GPU-hours.

Results. Fig. 5a summarizes performance metrics. At 1mm, most methods achieve performance consistent with their reported performance on OASIS, including VFA and TransMorph which were trained on the OASIS dataset with label supervision. At higher resolutions, nearly all methods degrade, especially for InvDice and HD90, which emphasize alignment of fine structures. In contrast,

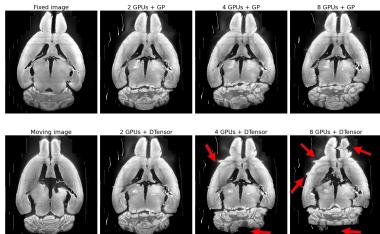
our method improves in accuracy: at $250\mu\text{m}$, we improve Dice by 18.1 points, InvDice by 31.6 points, and reduce AvgHD90 by 62.1%. The correlation between resolution and performance is also observed in (Mang et al., 2019; Mang & Ruthotto, 2017; Nazib et al., 2018); in addition we verify that patch-based methods *degrade* in performance at higher resolutions.

This degradation among patchwise methods is expected; histology-style pipelines typically register consecutive slides with small deformations after affine alignment. At high resolution, patching reduces anatomical context and the patches become progressively more out-of-distribution (see Fig. 19). Patchwise or downsampling strategies are therefore insufficient for ultra-high resolution large-scale registration, and existing deep methods cannot be repurposed to work at higher resolutions efficiently. Accuracy-efficiency tradeoffs in Figs. 5b and 5c show that our method is Pareto-efficient compared to all other methods (CPU, deep learning, and distributed GPU methods), requiring up to $500\times$ fewer GPU-hours compared to alternatives at $250\mu\text{m}$.

5.4 ABLATION STUDIES



(a) Weak scaling and Per-GPU memory consumption of FFDP.



(b) Qualitative ablation of GP synchronization in FFDP on the fMOST mouse brain dataset (Tustison et al., 2024). Red arrows highlight regions affected by incorrect boundary effects due to no GP. See Fig. 10 for more examples.

We ablate on the efficiency of various workhorse operations used in image registration in Fig. 7 and Table 3. We compare our implementations to community-standard PyTorch implementation (Jia et al., 2025; Chen et al., 2022) and `torch.compile` versions. For grid sampler and MI kernels, our kernels have $O(1)$ extra HBM overhead instead of $O(N)$ in the PyTorch implementation. For LNCC, our implementation achieves an average speedup in the forward pass by $5.22\times$ and $56.98\times$ in the backward pass. Our `grid_sampler` also leads to an efficient scaling-and-squaring operation, commonly used in deep learning registration pipelines (Chen et al., 2022), with a memory reduction of 50% compared to the baseline implementation.

Scalability Analysis. We test the weak scaling of our distributed framework by registering synthetic images with increasing voxel sizes. For H GPUs, we instantiate an image pair of size $700 \times 700 \times 700H$ and shard the images, warp, and optimizer state across H GPUs. Fig. 8a shows weak scaling of FFDP with and without ring sampler. Without the ring sampler, the `grid_sample` operation requires storing the moving image of size $700 \times 700 \times 700H$ on each GPU, leading to peak HBM memory increasing linearly with H . This implies the framework would not scale to arbitrarily large problem sizes, regardless of cluster size H . Peak Memory consumption is independent of H with the Ring Sampler, and scaling efficiency is only minimally affected.

Ablation on GP. We ablate the effect of GP by replacing it with DTensor sharding (no boundary sync). Figs. 8b, 9 and 10 show that incorrect boundary synchronization leads to undesirable artifacts in the moved images, and reduces labelmap overlap.

6 CONCLUSION

We propose a novel distributed framework for arbitrarily large image registration problems. Our work identifies and proposes

IO-aware and distributed-friendly implementations of workhorse operations in image registration algorithms, enabling registration of images at arbitrarily large resolutions on a single GPU. Our fused primitives demonstrate compelling results in both improving existing registration pipelines and scaling to arbitrarily large, multimodal problems pertinent in modern life science applications, that were previously infeasible without approximations. FFDP shows unprecedented registration capabilities that will enable researchers to leverage and effectively work with large-scale image volumes and unearth new insights leveraging the large resolution images.

540 REFERENCES

541

542 Allen brain atlas. URL <https://atlas.brain-map.org/>.

543

544 Itk-dreg: A framework for distributed, large-scale image registration. URL <https://itk-dreg.readthedocs.io/en/latest/>.

545

546 Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro, Greg S
547 Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, et al. Tensorflow: Large-scale machine
548 learning on heterogeneous distributed systems. *arXiv preprint arXiv:1603.04467*, 2016.

549

550 Jesper LR Andersson, Mark Jenkinson, Stephen Smith, et al. Non-linear registration, aka spatial
551 normalisation fmrib technical report tr07ja2. *FMRIB Analysis Group of the University of Oxford*, 2
552 (1):1–22, 2007.

553

554 Jason Ansel, Edward Yang, Horace He, Natalia Gimelshein, Animesh Jain, Michael Voznesensky,
555 Bin Bao, Peter Bell, David Berard, Evgeni Burovski, et al. Pytorch 2: Faster machine learning
556 through dynamic python bytecode transformation and graph compilation. In *Proceedings of the*
557 *29th ACM International Conference on Architectural Support for Programming Languages and*
558 *Operating Systems, Volume 2*, pp. 929–947, 2024.

559

560 ANTsX. Antsx: Advanced normalization tools (ants). URL <https://github.com/ANTsX/ANTs>. GitHub repository.

561

562 John Ashburner. A fast diffeomorphic image registration algorithm. *Neuroimage*, 38(1):95–113,
563 2007.

564

565 John Ashburner. Spm: a history. *Neuroimage*, 62(2):791–800, 2012.

566

567 B. B. Avants, C. L. Epstein, M. Grossman, and J. C. Gee. Symmetric diffeomorphic image registration
568 with cross-correlation: evaluating automated labeling of elderly and neurodegenerative brain.
569 *Medical Image Analysis*, 12(1):26–41, February 2008a. ISSN 1361-8423. doi: 10.1016/j.media.
570 2007.06.004.

571

572 B. B. Avants, C. L. Epstein, M. Grossman, and J. C. Gee. Symmetric diffeomorphic image
573 registration with cross-correlation: Evaluating automated labeling of elderly and neurodegenerative
574 brain. *Medical Image Analysis*, 12(1):26–41, February 2008b. ISSN 1361-8415. doi: 10.1016/
575 j.media.2007.06.004. URL <https://www.sciencedirect.com/science/article/pii/S1361841507000606>.

576

577 Brian B. Avants, P. Thomas Schoenemann, and James C. Gee. Lagrangian frame diffeomorphic
578 image registration: Morphometric comparison of human and chimpanzee cortex. *Medical Image
579 Analysis*, 10(3):397–412, June 2006. ISSN 13618415. doi: 10.1016/j.media.2005.03.005. URL
580 <https://linkinghub.elsevier.com/retrieve/pii/S1361841505000411>.

581

582 Brian B Avants, Nick Tustison, Gang Song, et al. Advanced normalization tools (ants). *Insight j*, 2
583 (365):1–35, 2009.

584

585 Ramsey D Badawi, Hongcheng Shi, Pengcheng Hu, Shuguang Chen, Tianyi Xu, Patricia M Price,
586 Yu Ding, Benjamin A Spencer, Lorenzo Nardo, Weiping Liu, et al. First human imaging studies
587 with the explorer total-body pet scanner. *Journal of Nuclear Medicine*, 60(3):299–303, 2019.

588

589 Guha Balakrishnan, Amy Zhao, Mert R. Sabuncu, John Guttag, and Adrian V. Dalca. VoxelMorph: A
590 Learning Framework for Deformable Medical Image Registration. *IEEE Transactions on Medical
591 Imaging*, 38(8):1788–1800, August 2019. ISSN 0278-0062, 1558-254X. doi: 10.1109/TMI.2019.
592 2897538. URL <http://arxiv.org/abs/1809.05231>. arXiv:1809.05231 [cs].

593

594 P Balchandani and TP Naidich. Ultra-high-field mr neuroimaging. *American Journal of Neuroradiology*,
595 36(7):1204–1215, 2015.

596

597 Erin S Beck, Pascal Sati, Varun Sethi, Tobias Kober, Blake Dewey, Pavan Bhargava, Govind Nair,
598 Irene C Cortese, and Daniel Salo Reich. Improved visualization of cortical lesions in multiple
599 sclerosis using 7t mp2rage. *American Journal of Neuroradiology*, 39(3):459–466, 2018.

594 M Faisal Beg, Michael I Miller, Alain Trouv , and Laurent Younes. Computing large deformation
 595 metric mappings via geodesic flows of diffeomorphisms. *International journal of computer vision*,
 596 61:139–157, 2005.

597

598 Ganesh Bikshand and Jay Shah. A case study in cuda kernel fusion: Implementing flashattention-2
 599 on nvidia hopper architecture using the cutlass library. *arXiv preprint arXiv:2312.11918*, 2023.

600

601 Benjamin Billot, Douglas N Greve, Oula Puonti, Axel Thielscher, Koen Van Leemput, Bruce Fischl,
 602 Adrian V Dalca, Juan Eugenio Iglesias, et al. Synthseg: Segmentation of brain mri scans of any
 603 contrast and resolution without retraining. *Medical image analysis*, 86:102789, 2023.

604

605 John A Bogovic, Hideo Otsuna, Larissa Heinrich, Masayoshi Ito, Jennifer Jeter, Geoffrey Meissner,
 606 Aljoscha Nern, Jennifer Colonell, Oz Malkesman, Kei Ito, et al. An unbiased template of the
 607 drosophila brain and ventral nerve cord. *Plos one*, 15(12):e0236495, 2020.

608

609 Katy B rner, Andreas Bueckle, Bruce W Herr, Leonard E Cross, Ellen M Quardokus, Elizabeth G
 610 Record, Yingnan Ju, Jonathan C Silverstein, Kristen M Browne, Sanjay Jain, et al. Tissue
 611 registration and exploration user interfaces in support of a human reference atlas. *Communications
 Biology*, 5(1):1369, 2022.

612

613 Bella E Brezovec, Andrew B Berger, Yukun A Hao, Feng Chen, Shaul Druckmann, and Thomas R
 614 Clandinin. Mapping the neural dynamics of locomotion across the drosophila brain. *Current
 Biology*, 34(4):710–726, 2024.

615

616 Xiaohuan Cao, Jianhua Yang, Jun Zhang, Dong Nie, Minjeong Kim, Qian Wang, and Dinggang
 617 Shen. Deformable image registration based on similarity-steered cnn regression. In *Medical Image
 618 Computing and Computer Assisted Intervention- MICCAI 2017: 20th International Conference,
 619 Quebec City, QC, Canada, September 11-13, 2017, Proceedings, Part I 20*, pp. 300–308. Springer,
 620 2017.

621

622 Adri  Casamitjana, Matteo Mancini, Eleanor Robinson, Lo c Peter, Roberto Annunziata, Juri
 623 Althonayan, Shauna Crampsie, Emily Blackburn, Benjamin Billot, Alessia Atzeni, et al. A
 624 probabilistic histological atlas of the human brain for mri segmentation. *Nature*, pp. 1–8, 2025.

625

626 Junyu Chen, Eric C. Frey, Yufan He, William P. Segars, Ye Li, and Yong Du. TransMorph: Transformer
 627 for unsupervised medical image registration. *Medical Image Analysis*, 82:102615, November 2022.
 628 ISSN 13618415. doi: 10.1016/j.media.2022.102615. URL <http://arxiv.org/abs/2111.10480>. arXiv:2111.10480 [cs, eess].

629

630 Tianqi Chen, Thierry Moreau, Ziheng Jiang, Lianmin Zheng, Eddie Yan, Haichen Shen, Meghan
 631 Cowan, Leyuan Wang, Yuwei Hu, Luis Ceze, Carlos Guestrin, and Arvind Krishnamurthy. TVM:
 632 An automated End-to-End optimizing compiler for deep learning. In *13th USENIX Symposium on
 633 Operating Systems Design and Implementation (OSDI 18)*, pp. 578–594, Carlsbad, CA, October
 634 2018. USENIX Association. ISBN 978-1-939133-08-3. URL <https://www.usenix.org/conference/osdi18/presentation/chen>.

635

636 Gary E Christensen and Hans J Johnson. Consistent image registration. *IEEE transactions on medical
 637 imaging*, 20(7):568–582, 2001.

638

639 Gilberto Corso, Gabriel MF Ferreira, and Thomas M Lewinsohn. Mutual information as a general
 640 measure of structure in interaction networks. *Entropy*, 22(5):528, 2020.

641

642 Tri Dao. Flashattention-2: Faster attention with better parallelism and work partitioning. *arXiv
 643 preprint arXiv:2307.08691*, 2023.

644

645 Tri Dao, Dan Fu, Stefano Ermon, Atri Rudra, and Christopher R . Flashattention: Fast and memory-
 646 efficient exact attention with io-awareness. *Advances in neural information processing systems*, 35:
 647 16344–16359, 2022.

648

649 Sandhitsu R Das, Brian B Avants, Murray Grossman, and James C Gee. Registration based cortical
 650 thickness measurement. *Neuroimage*, 45(3):867–879, 2009.

648 Chris Davis and A Murat Maga. Image registration and template based annotation of great ape skulls.
 649 In *American Journal of Physical Anthropology*, volume 165, pp. 60–61. WILEY 111 RIVER ST,
 650 HOBOKEN 07030-5774, NJ USA, 2018.

651 Bob D De Vos, Floris F Berendsen, Max A Viergever, Hessam Sokooti, Marius Staring, and Ivana
 652 Išgum. A deep learning framework for unsupervised affine and deformable image registration.
 653 *Medical image analysis*, 52:128–143, 2019.

654 Neel Dey, Benjamin Billot, Hallee E. Wong, Clinton Wang, Mengwei Ren, Ellen Grant, Adrian V
 655 Dalca, and Polina Golland. Learning general-purpose biomedical volume representations using
 656 randomized synthesis. In *The Thirteenth International Conference on Learning Representations*,
 657 2025. URL <https://openreview.net/forum?id=xOmC5LiVuN>.

658 Juechu Dong, Boyuan Feng, Driss Guessous, Yanbo Liang, and Horace He. Flex attention: A
 659 programming model for generating optimized attention kernels. *arXiv preprint arXiv:2412.05496*,
 660 2024.

661 Carmen Echávarri, P Aalten, Harry BM Uylings, HIL Jacobs, Pieter Jelle Visser, EHBM Gronenschild,
 662 FRJ Verhey, and S Burgmans. Atrophy in the parahippocampal gyrus as an early biomarker of
 663 alzheimer’s disease. *Brain Structure and Function*, 215(3):265–271, 2011.

664 Brian L Edlow, Azma Mareyam, Andreas Horn, Jonathan R Polimeni, Thomas Witzel, M Dylan
 665 Tisdall, Jean C Augustinack, Jason P Stockmann, Bram R Diamond, Allison Stevens, et al. 7 tesla
 666 mri of the ex vivo human brain at 100 micron resolution. *Scientific data*, 6(1):244, 2019.

667 Andrea Esquivel, Andrea Ferrero, Achille Miletto, Francis Baffour, Kelly Horst, Prabhakar Shantha
 668 Rajiah, Akitoshi Inoue, Shuai Leng, Cynthia McCollough, and Joel G Fletcher. Photon-counting
 669 detector ct: key points radiologists should know. *Korean journal of radiology*, 23(9):854, 2022.

670 Fenja Falta, Christoph Großbröhmer, Alessa Hering, Alexander Bigalke, and Matthias P Heinrich.
 671 Lung250m-4b: A combined 3d dataset for CT- and point cloud-based intra-patient lung registration.
 672 In *Thirty-seventh Conference on Neural Information Processing Systems Datasets and Benchmarks*
 673 *Track*, 2023. URL <https://openreview.net/forum?id=FC0dsvguFi>.

674 Miriam Friedel, Matthijs C van Eede, Jon Pipitone, M Mallar Chakravarty, and Jason P Lerch. Pydpiper:
 675 a flexible toolkit for constructing novel registration pipelines. *Frontiers in neuroinformatics*, 8:67,
 676 2014.

677 Sarah F Frisken. Surfacenets for multi-label segmentations with preservation of sharp boundaries.
 678 *The Journal of computer graphics techniques*, 11(1):34, 2022.

679 Brett M Frye, Suzanne Craft, Thomas C Register, Jeongchul Kim, Christopher T Whitlow, Richard A
 680 Barcus, Samuel N Lockhart, Kiran Kumar Solingapuram Sai, and Carol A Shively. Early alzheimer’s
 681 disease-like reductions in gray matter and cognitive function with aging in nonhuman primates.
 682 *Alzheimer’s & Dementia: Translational Research & Clinical Interventions*, 8(1):e12284, 2022.

683 Davide Gambarotto, Fabian U Zwettler, Maeva Le Guennec, Marketa Schmidt-Cernohorska, Denis
 684 Fortun, Susanne Borgers, Jörn Heine, Jan-Gero Schloetel, Matthias Reuss, Michael Unser, et al.
 685 Imaging cellular ultrastructures using expansion microscopy (u-exm). *Nature methods*, 16(1):
 686 71–74, 2019.

687 James C Gee, Martin Reivich, and Ruzena Bajcsy. Elastically deforming a three-dimensional atlas to
 688 match anatomical brain images. 1993.

689 Hui Gong, Dongli Xu, Jing Yuan, Xiangning Li, Congdi Guo, Jie Peng, Yuxin Li, Lindsay A Schwarz,
 690 Anan Li, Bihe Hu, et al. High-throughput dual-colour precision imaging for brain-wide connectome
 691 with cytoarchitectonic landmarks at the cellular level. *Nature communications*, 7(1):12142, 2016.

692 Maged Goubran, Cathie Crukley, Sandrine De Ribaupierre, Terence M Peters, and Ali R Khan. Image
 693 registration of ex-vivo mri to sparsely sectioned histology of hippocampal and neocortical temporal
 694 lobe specimens. *Neuroimage*, 83:770–781, 2013.

695 Courtney K Guo. *Multi-modal image registration with unsupervised deep learning*. PhD thesis,
 696 Massachusetts Institute of Technology, 2019.

702 Tripti Gupta, Gregory D Marquart, Eric J Horstick, Kathryn M Tabor, Sinisa Pajevic, and Harold A
 703 Burgess. Morphometric analysis and neuroanatomical mapping of the zebrafish brain. *Methods*,
 704 150:49–62, 2018.

705 Alessa Hering, Keelin Murphy, and Bram van Ginneken. Learn2reg challenge: Ct lung registration -
 706 training data, 2020. URL <https://doi.org/10.5281/zenodo.3835682>.

708 Alessa Hering, Lasse Hansen, Tony CW Mok, Albert CS Chung, Hanna Siebert, Stephanie Häger,
 709 Annkristin Lange, Sven Kuckertz, Stefan Heldmann, Wei Shao, et al. Learn2reg: comprehensive
 710 multi-task medical image registration challenge, dataset and evaluation in the era of deep learning.
 711 *IEEE Transactions on Medical Imaging*, 42(3):697–712, 2022.

712 Malte Hoffmann, Benjamin Billot, Douglas N Greve, Juan Eugenio Iglesias, Bruce Fischl, and
 713 Adrian V Dalca. Synthmorph: learning contrast-invariant registration without acquired images.
 714 *IEEE transactions on medical imaging*, 41(3):543–558, 2021.

716 Junhao Hu, Weijie Gan, Zhixin Sun, Hongyu An, and Ulugbek S. Kamilov. A Plug-and-Play
 717 Image Registration Network, March 2024. URL <http://arxiv.org/abs/2310.04297>.
 718 arXiv:2310.04297 [eess].

719 Phillip Isola, Daniel Zoran, Dilip Krishnan, and Edward H Adelson. Crisp boundary detection using
 720 pointwise mutual information. In *European conference on computer vision*, pp. 799–814. Springer,
 721 2014.

723 Sam Ade Jacobs, Masahiro Tanaka, Chengming Zhang, Minjia Zhang, Reza Yazdani Aminadabi,
 724 Shuaiwen Leon Song, Samyam Rajbhandari, and Yuxiong He. System optimizations for enabling
 725 training of extreme long sequence transformer models. In *Proceedings of the 43rd ACM Symposium
 726 on Principles of Distributed Computing*, PODC '24, pp. 121–130, New York, NY, USA, 2024.
 727 Association for Computing Machinery. ISBN 9798400706684. doi: 10.1145/3662158.3662806.
 728 URL <https://doi.org/10.1145/3662158.3662806>.

729 Rohit Jena, Pratik Chaudhari, and James C Gee. Fireants: Adaptive riemannian optimization for
 730 multi-scale diffeomorphic registration. *arXiv preprint arXiv:2404.01249*, 2024a.

731 Rohit Jena, Deeksha Sethi, Pratik Chaudhari, and James C. Gee. Deep learning in medical
 732 image registration: Magic or mirage? In A. Globerson, L. Mackey, D. Bel-
 733 grave, A. Fan, U. Paquet, J. Tomeczak, and C. Zhang (eds.), *Advances in Neural In-
 734 formation Processing Systems*, volume 37, pp. 108331–108353. Curran Associates, Inc.,
 735 2024b. URL https://proceedings.neurips.cc/paper_files/paper/2024/file/c3fe2a07ec47b89c50e89706d2e23358-Paper-Conference.pdf.

738 Rohit Jena, Pratik Chaudhari, and James C. Gee. Deep implicit optimization enables robust
 739 learnable features for deformable image registration. *Medical Image Analysis*, 103:103577,
 740 2025. ISSN 1361-8415. doi: <https://doi.org/10.1016/j.media.2025.103577>. URL <https://www.sciencedirect.com/science/article/pii/S1361841525001240>.

742 Xi Jia, Joseph Bartlett, Tianyang Zhang, Wenqi Lu, Zhaowen Qiu, and Jinming Duan. U-net vs
 743 transformer: Is u-net outdated in medical image registration? *arXiv preprint arXiv:2208.04939*,
 744 2022.

745 Xi Jia et al. A naive trick to accelerate training of lncc-based deep image registration models.
 746 *Preprints*, February 2025. doi: 10.20944/preprints202502.2200.v1.

748 Bailiang Jian, Jiazen Pan, Morteza Ghahremani, Daniel Rueckert, Christian Wachinger, and Benedikt
 749 Wiestler. Mamba? catch the hype or rethink what really helps for image registration. *arXiv preprint
 750 arXiv:2407.19274*, 2024.

751 Hanna Jonsson, Simon Ekstrom, Robin Strand, Mette A Pedersen, Daniel Molin, Hakan Ahlstrom,
 752 and Joel Kullberg. An image registration method for voxel-wise analysis of whole-body oncological
 753 pet-ct. *Scientific Reports*, 12(1):18768, 2022.

755 Michael I Jordan and Robert A Jacobs. Hierarchical mixtures of experts and the em algorithm. *Neural
 756 computation*, 6(2):181–214, 1994.

756 Ankita Joshi and Yi Hong. Diffeomorphic Image Registration using Lipschitz Continuous Residual
 757 Networks. pp. 13.

758

759 Justin W Kenney, Patrick E Steadman, Olivia Young, Meng Ting Shi, Maris Polanco, Saba Dubaishi,
 760 Kristopher Covert, Thomas Mueller, and Paul W Frankland. A 3d adult zebrafish brain atlas (azba)
 761 for the digital age. *Elife*, 10:e69988, 2021.

762 Stefan Klein, Marius Staring, Keelin Murphy, Max A Viergever, and Josien PW Pluim. Elastix: a
 763 toolbox for intensity-based medical image registration. *IEEE transactions on medical imaging*, 29
 764 (1):196–205, 2009.

765

766 David Kleinfeld, Arjun Bharioke, Pablo Blinder, Davi D Bock, Kevin L Briggman, Dmitri B
 767 Chklovskii, Winfried Denk, Moritz Helmstaedter, John P Kaufhold, Wei-Chung Allen Lee, et al.
 768 Large-scale automated histology in the pursuit of connectomes. *Journal of Neuroscience*, 31(45):
 769 16125–16138, 2011.

770 Heidi Kleven, Ingvild E Bjerke, Francisco Clascá, Henk J Groenewegen, Jan G Bjaalie, and Trygve B
 771 Leergaard. Waxholm space atlas of the rat brain: a 3d atlas supporting data analysis and integration.
 772 *Nature methods*, 20(11):1822–1829, 2023.

773

774 Julian Krebs, Tommaso Mansi, Hervé Delingette, Li Zhang, Florin C Ghesu, Shun Miao, Andreas K
 775 Maier, Nicholas Ayache, Rui Liao, and Ali Kamen. Robust non-rigid registration through
 776 agent-based action learning. In *Medical Image Computing and Computer Assisted Intervention-
 777 MICCAI 2017: 20th International Conference, Quebec City, QC, Canada, September 11-13, 2017,
 778 Proceedings, Part I* 20, pp. 344–352. Springer, 2017.

779 Fae N Kronman, Josephine K Liwang, Rebecca Betty, Daniel J Vanselow, Yuan-Ting Wu, Nicholas J
 780 Tustison, Ashwin Bhandiwad, Steffy B Manjila, Jennifer A Minteer, Donghui Shin, et al. De-
 781 velopmental mouse brain common coordinate framework. *Nature communications*, 15(1):9072,
 782 2024.

783 Kwame S. Kutten, Joshua T. Vogelstein, Nicolas Charon, Li Ye, Karl Deisseroth M.D., and Michael I.
 784 Miller. Deformably registering and annotating whole CLARITY brains to an atlas via masked
 785 LDDMM. In Peter Schelkens, Touradj Ebrahimi, Gabriel Cristóbal, Frédéric Truchetet, and
 786 Pasi Saarikko (eds.), *Optics, Photonics and Digital Technologies for Imaging Applications IV*,
 787 volume 9896. International Society for Optics and Photonics, SPIE, 2016. doi:
 788 10.1117/12.2227444. URL <https://doi.org/10.1117/12.2227444>.

789 Joel Lamy-Poirier. Breadth-first pipeline parallelism. *Proceedings of Machine Learning and Systems*,
 790 5:48–67, 2023.

791

792 Leo Lebrat, Rodrigo Santa Cruz, Frederic de Gournay, Darren Fu, Pierrick Bourgeat, Jurgen Fripp,
 793 Clinton Fookes, and Olivier Salvado. CorticalFlow: A Diffeomorphic Mesh Transformer Network
 794 for Cortical Surface Reconstruction. In *Advances in Neural Information Processing Systems*, vol-
 795 ume 34, pp. 29491–29505. Curran Associates, Inc., 2021. URL <https://papers.nips.cc/paper/2021/hash/f6b5f8c32c65fee991049a55dc97d1ce-Abstract.html>.

796

797 Dacheng Li, Rulin Shao, Anze Xie, Eric P. Xing, Xuezhe Ma, Ion Stoica, Joseph E. Gonzalez, and
 798 Hao Zhang. DISTFLASHATTN: Distributed memory-efficient attention for long-context LLMs
 799 training. In *First Conference on Language Modeling*, 2024. URL <https://openreview.net/forum?id=pUEDkZyPd1>.

800

801 Shenggui Li, Fuzhao Xue, Chaitanya Baranwal, Yongbin Li, and Yang You. Sequence parallelism:
 802 Long sequence training from system perspective. In Anna Rogers, Jordan Boyd-Graber, and Naoaki
 803 Okazaki (eds.), *Proceedings of the 61st Annual Meeting of the Association for Computational
 804 Linguistics (Volume 1: Long Papers)*, Toronto, Canada, July 2023. Association for Computational
 805 Linguistics. doi: 10.18653/v1/2023.acl-long.134. URL <https://aclanthology.org/2023.acl-long.134/>.

806

807 Cher-Wei Liang, Ruey-Feng Chang, Pei-Wei Fang, and Chiao-Min Chen. Improving algorithm for the
 808 alignment of consecutive, whole-slide, immunohistochemical section images. *Journal of Pathology
 809 Informatics*, 12(1):29, 2021.

810 Jiayong Liang, Xiaoping Liu, Kangning Huang, Xia Li, Dagang Wang, and Xianwei Wang. Automatic
 811 registration of multisensor images using an integrated spatial and mutual information (smi) metric.
 812 *IEEE transactions on geoscience and remote sensing*, 52(1):603–615, 2013.

813 Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang Zhao,
 814 Chengqi Deng, Chenyu Zhang, Chong Ruan, et al. Deepseek-v3 technical report. *arXiv preprint*
 815 *arXiv:2412.19437*, 2024a.

816 Hao Liu, Matei Zaharia, and Pieter Abbeel. Ringattention with blockwise transformers for near-infinite
 817 context. In *The Twelfth International Conference on Learning Representations*, 2024b. URL
 818 <https://openreview.net/forum?id=WsRHpHH4s0>.

819 Yihao Liu, Junyu Chen, Lianrui Zuo, Aaron Carass, and Jerry L Prince. Vector field attention for
 820 deformable image registration. *Journal of Medical Imaging*, 11(6):064001–064001, 2024c.

821 Josephine K Liwang, Hannah C Bennett, Hyun-Jae Pi, and Yongsoo Kim. Protocol for using serial
 822 two-photon tomography to map cell types and cerebrovasculature at single-cell resolution in the
 823 whole adult mouse brain. *STAR protocols*, 4(1):102048, 2023.

824 Josephine K Liwang, Fae N Kronman, Hyun-Jae Pi, Yuan-Ting Wu, Daniel J Vanselow, Steffy B
 825 Manjila, Deniz Parmaksiz, Donghui Shin, Yoav Ben-Simon, Michael Taormina, et al. epdevatlas:
 826 mapping gabaergic cells and microglia in the early postnatal mouse brain. *Nature Communications*,
 827 16(1):9538, 2025.

828 William E Lorensen and Harvey E Cline. Marching cubes: A high resolution 3d surface construction
 829 algorithm. In *Seminal graphics: pioneering efforts that shaped the field*, pp. 347–353. 1998.

830 Johannes Lotz, Janine Olesch, Benedikt Müller, Thomas Polzin, P Galuschka, JM Lotz, Stefan
 831 Heldmann, Hendrik Laue, Margarita González-Vallinas, Arne Warth, et al. Patch-based nonlinear
 832 image registration for gigapixel whole slide images. *IEEE Transactions on Biomedical Engineering*,
 833 63(9):1812–1819, 2015.

834 Xin Luo, Zhigang Liu, Mingsheng Shang, Jungang Lou, and MengChu Zhou. Highly-accurate
 835 community detection via pointwise mutual information-incorporated symmetric non-negative
 836 matrix factorization. *IEEE Transactions on Network Science and Engineering*, 8(1):463–476, 2021.
 837 doi: 10.1109/TNSE.2020.3040407.

838 Falk Lüsebrink, Alessandro Sciarra, Hendrik Mattern, Renat Yakupov, and Oliver Speck. T1-weighted
 839 in vivo human whole brain mri dataset with an ultrahigh isotropic resolution of 250 μm . *Scientific*
 840 *data*, 4(1):1–12, 2017.

841 Mads AJ Madsen, Vanessa Wiggemann, Stephan Bramow, Jeppe Romme Christensen, Finn
 842 Sellebjerg, and Hartwig R Siebner. Imaging cortical multiple sclerosis lesions with ultra-high field
 843 mri. *NeuroImage: Clinical*, 32:102847, 2021.

844 Lucas Mahler, Julius Steiglechner, Benjamin Bender, Tobias Lindig, Dana Ramadan, Jonas Bause,
 845 Florian Birk, Rahel Heule, Edyta Charyasz, Michael Erb, et al. Ultracortex: Submillimeter
 846 ultra-high field 9.4 t brain mr image collection and manual cortical segmentations. *arXiv preprint*
 847 *arXiv:2406.18571*, 2024.

848 Andreas Mang and Lars Ruthotto. A lagrangian gauss–newton–krylov solver for mass-and intensity-
 849 preserving diffeomorphic image registration. *SIAM Journal on Scientific Computing*, 39(5):
 850 B860–B885, 2017.

851 Andreas Mang, Amir Gholami, Christos Davatzikos, and George Biros. CLAIRE: A distributed-
 852 memory solver for constrained large deformation diffeomorphic image registration. *SIAM Journal*
 853 *on Scientific Computing*, 41(5):C548–C584, January 2019. ISSN 1064-8275, 1095-7197. doi:
 854 10.1137/18M1207818. URL <http://arxiv.org/abs/1808.04487>. arXiv:1808.04487
 855 [cs, math].

856 Harrison Mansour, Ryan Azrak, James J Cook, Kathryn J Hornburg, Yi Qi, Yuqi Tian, Robert W
 857 Williams, Fang-Cheng Yeh, Leonard E White, and G Allan Johnson. The duke mouse brain atlas:
 858 Mri and light sheet microscopy stereotaxic atlas of the mouse brain. *Science Advances*, 11(18):
 859 eadq8089, 2025.

864 Daniel S Marcus, Tracy H Wang, Jamie Parker, John G Csernansky, John C Morris, and Randy L
 865 Buckner. Open access series of imaging studies (oasis): cross-sectional mri data in young,
 866 middle aged, nondemented, and demented older adults. *Journal of cognitive neuroscience*, 19(9):
 867 1498–1507, 2007.

868

869 Gregory D Marquart, Kathryn M Tabor, Eric J Horstick, Mary Brown, Alexandra K Geoca, Nicholas F
 870 Polys, Damian Dalle Nogare, and Harold A Burgess. High-precision registration between zebrafish
 871 brain atlases using symmetric diffeomorphic normalization. *GigaScience*, 6(8):gix056, 2017.

872 David Mattes, David R Haynor, Hubert Vesselle, Thomas K Lewellyn, and William Eubank. Nonrigid
 873 multimodality image registration. In *Medical imaging 2001: image processing*, volume 4322, pp.
 874 1609–1620. Spie, 2001.

875

876 Michael P Milham, Lei Ai, Bonhwang Koo, Ting Xu, Céline Amiez, Fabien Balezeau, Mark G Baxter,
 877 Erwin LA Blezer, Thomas Brochier, Aihua Chen, et al. An open resource for non-human primate
 878 imaging. *Neuron*, 100(1):61–74, 2018.

879

880 Tony C. W. Mok and Albert C. S. Chung. Large Deformation Diffeomorphic Image Registration with
 881 Laplacian Pyramid Networks, June 2020. URL <http://arxiv.org/abs/2006.16148>.
 882 arXiv:2006.16148 [cs, eess].

883

884 Tony CW Mok and Albert Chung. Affine medical image registration with coarse-to-fine vision
 885 transformer. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
 Recognition*, pp. 20835–20844, 2022.

886

887 Keelin Murphy, Bram Van Ginneken, Joseph M Reinhardt, Sven Kabus, Kai Ding, Xiang Deng,
 888 Kunlin Cao, Kaifang Du, Gary E Christensen, Vincent Garcia, et al. Evaluation of registration
 889 methods on thoracic ct: the empire10 challenge. *IEEE transactions on medical imaging*, 30(11):
 890 1901–1920, 2011.

891

892 Abdullah Nazib, James Galloway, Clinton Fookes, and Dimitri Perrin. Performance of registration
 893 tools on high-resolution 3d brain images. In *2018 40th Annual International Conference of
 894 the IEEE Engineering in Medicine and Biology Society (EMBC)*, pp. 566–569, 2018. doi:
 895 10.1109/EMBC.2018.8512403.

896

897 OpenAI. Triton. <https://openai.com/index/triton/>, 2021.

898

899 Hanchuan Peng, Phuong Chung, Fuhui Long, Lei Qu, Arnim Jenett, Andrew M Seeds, Eugene W
 900 Myers, and Julie H Simpson. Brainaligner: 3d registration atlases of drosophila brains. *Nature
 901 methods*, 8(6):493–498, 2011.

902

903 Zhen Peng, Minnan Luo, Wenbing Huang, Jundong Li, Qinghua Zheng, Fuchun Sun, and Junzhou
 904 Huang. Learning representations by graphical mutual information estimation and maximization.
 905 *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 45(1):722–737, 2023. doi:
 906 10.1109/TPAMI.2022.3147886.

907

908 PyTorch. Fusing convolution and batch norm using custom function. https://docs.pytorch.org/tutorials/intermediate/custom_function_conv_bn_tutorial.html,
 909 2023. Created July 22, 2021; Last updated April 18, 2023; Last verified November 5, 2024.

910

911 PyTorch. Helion. <https://pytorch.org/blog/helion/>, 2025.

912

913 Penghui Qi, Xinyi Wan, Guangxing Huang, and Min Lin. Zero bubble pipeline parallelism. *arXiv
 914 preprint arXiv:2401.10241*, 2023.

915

916 Huaqi Qiu, Chen Qin, Andreas Schuh, Kerstin Hammernik, and Daniel Rueckert. Learning
 917 diffeomorphic and modality-invariant registration using b-splines. 2021.

918

919 Quan Quan, Qingsong Yao, Heqin Zhu, and S Kevin Zhou. Igu-aug: Information-guided unsupervised
 920 augmentation and pixel-wise contrastive learning for medical image analysis. *IEEE Transactions
 921 on Medical Imaging*, 2024.

918 Samyam Rajbhandari, Jeff Rasley, Olatunji Ruwase, and Yuxiong He. Zero: Memory optimizations
 919 toward training trillion parameter models. In *SC20: International Conference for High Performance*
 920 *Computing, Networking, Storage and Analysis*, pp. 1–16, 2020. doi: 10.1109/SC41405.2020.00024.
 921

922 Sadhana Ravikumar, Laura E. M. Wisse, Sydney Lim, Ranjit Ittyerah, Long Xie, Madigan L. Bedard,
 923 Sandhitsu R. Das, Edward B. Lee, M. Dylan Tisdall, Karthik Prabhakaran, Jacqueline Lane,
 924 John A. Detre, Gabor Mizsei, John Q. Trojanowski, John L. Robinson, Theresa Schuck, Murray
 925 Grossman, Emilio Artacho-Pérula, Maria Mercedes Iñiguez de Onzoño Martin, María del Mar
 926 Arroyo Jiménez, Monica Muñoz, Francisco Javier Molina Romero, Maria del Pilar Marcos Rabal,
 927 Sandra Cebada Sánchez, José Carlos Delgado González, Carlos de la Rosa Prieto, Marta Córcoles
 928 Parada, David J. Irwin, David A. Wolk, Ricardo Insua, and Paul A. Yushkevich. Ex vivo mri
 929 atlas of the human medial temporal lobe: characterizing neurodegeneration due to tau pathology.
 930 *Acta Neuropathologica Communications*, 9(1):173, 2021. ISSN 2051-5960. doi: 10.1186/
 931 s40478-021-01275-7. URL <https://doi.org/10.1186/s40478-021-01275-7>.

932 Sadhana Ravikumar, Amanda E Denning, Sydney Lim, Eunice Chung, Niyousha Sadeghpour, Ranjit
 933 Ittyerah, Laura EM Wisse, Sandhitsu R Das, Long Xie, John L Robinson, et al. Postmortem
 934 imaging reveals patterns of medial temporal lobe vulnerability to tau pathology in alzheimer's
 935 disease. *Nature Communications*, 15(1):4803, 2024.

936 Marc-Michel Rohé, Manasi Datar, Tobias Heimann, Maxime Sermesant, and Xavier Pennec. Svf-net:
 937 learning deformable image registration using shape matching. In *Medical Image Computing and*
 938 *Computer Assisted Intervention- MICCAI 2017: 20th International Conference, Quebec City, QC,*
 939 *Canada, September 11-13, 2017, Proceedings, Part I 20*, pp. 266–274. Springer, 2017.

940

941 Suman Sarkar and Biswajit Pandey. A study on the statistical significance of mutual information
 942 between morphology of a galaxy and its large-scale environment. *Monthly Notices of the Royal*
 943 *Astronomical Society*, 497(4):4077–4090, 2020.

944

945 Will Schroeder and Spiros Tsakiris. Really fast isocontouring. <https://www.kitware.com/really-fast-isocontouring/>, June 13 2023. Kitware blog / announcement.

946

947 Jay Shah, Ganesh Bikshandi, Ying Zhang, Vijay Thakkar, Pradeep Ramani, and Tri Dao. Flashattention-
 948 3: Fast and accurate attention with asynchrony and low-precision. *Advances in Neural Information*
 949 *Processing Systems*, 37:68658–68685, 2024.

950

951 Noam Shazeer, *Azalia Mirhoseini, *Krzysztof Maziarz, Andy Davis, Quoc Le, Geoffrey Hinton,
 952 and Jeff Dean. Outrageously large neural networks: The sparsely-gated mixture-of-experts layer.
 953 In *International Conference on Learning Representations*, 2017. URL <https://openreview.net/forum?id=B1ckMDqlg>.

954

955 Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper, and Bryan
 956 Catanzaro. Megatron-lm: Training multi-billion parameter language models using model parallelism.
 957 *arXiv preprint arXiv:1909.08053*, 2019.

958

959 Henrik Skibbe, Muhammad Febrian Rachmadi, Ken Nakae, Carlos Enrique Gutierrez, Junichi Hata,
 960 Hiromichi Tsukada, Charissa Poon, Matthias Schlachter, Kenji Doya, Piotr Majka, et al. The
 961 brain/minds marmoset connectivity resource: An open-access platform for cellular-level tracing
 962 and tractography in the primate brain. *PLoS biology*, 21(6):e3002158, 2023.

963

964 Hessam Sokooti, Bob De Vos, Floris Berendsen, Boudewijn PF Lelieveldt, Ivana Išgum, and Marius
 965 Staring. Nonrigid image registration using multi-scale 3d convolutional neural networks. In
 966 *Medical Image Computing and Computer Assisted Intervention- MICCAI 2017: 20th International*
 967 *Conference, Quebec City, QC, Canada, September 11-13, 2017, Proceedings, Part I 20*, pp.
 968 232–239. Springer, 2017.

969

970 Benjamin Frederick Spector, Simran Arora, Aaryan Singhal, Arjun Parthasarathy, Daniel Y Fu, and
 971 Christopher Re. Thunderkittens: Simple, fast, and \$\\textit{Adorable}\$\$ kernels. In *The Thirteenth*
 972 *International Conference on Learning Representations*, 2025. URL <https://openreview.net/forum?id=OfJfVOSUra>.

972 Bane Sullivan and Alexander Kaszynski. PyVista: 3D plotting and mesh analysis through a streamlined
 973 interface for the Visualization Toolkit (VTK). *Journal of Open Source Software*, 4(37):1450, May
 974 2019. doi: 10.21105/joss.01450. URL <https://doi.org/10.21105/joss.01450>.

975 Kathryn M Tabor, Gregory D Marquart, Christopher Hurt, Trevor S Smith, Alexandra K Geoca,
 976 Ashwin A Bhandiwad, Abhignya Subedi, Jennifer L Sinclair, Hannah M Rose, Nicholas F Polys,
 977 et al. Brain-wide cellular resolution imaging of cre transgenic zebrafish lines for functional
 978 circuit-mapping. *Elife*, 8:e42687, 2019.

980 Nouamane Tazi, Ferdinand Mom, Haojun Zhao, Phuc Nguyen, Mohamed Mekkouri, Leandro Werra,
 981 and Thomas Wolf. The ultra-scale playbook: Training LLMs on GPU clusters, 2024. URL <https://huggingface.co/blog/the-ultra-scale-playbook>. HuggingFace Blog.

983 Philippe Thévenaz and Michael Unser. Optimization of mutual information for multiresolution image
 984 registration. *IEEE transactions on image processing*, 9(12):2083–2099, 2000.

985 Lin Tian, Hastings Greer, Roland Kwitt, François-Xavier Vialard, Raúl San José Estépar, Sylvain Bouix,
 986 Richard Rushmore, and Marc Niethammer. unigradicon: A foundation model for medical image
 987 registration. In *International Conference on Medical Image Computing and Computer-Assisted
 988 Intervention*, pp. 749–760. Springer, 2024.

989 Lazaros C Triarhou. Dopamine and parkinson’s disease. In *Madame curie bioscience database
 990 [internet]*. Landes Bioscience, 2013.

992 Nicholas J Tustison and Brian B Avants. Explicit b-spline regularization in diffeomorphic image
 993 registration. *Frontiers in neuroinformatics*, 7:39, 2013.

995 Nicholas J Tustison, Min Chen, Fae N Kronman, Jeffrey T Duda, Clare Gamlin, Mia G Tustison,
 996 Michael Kunst, Rachel Dalley, Staci Sorenson, Quanxin Wang, et al. The antsx ecosystem for
 997 mapping the mouse brain. *bioRxiv*, pp. 2024–05, 2024.

998 Erdem Varol, Amin Nejatbakhsh, Ruoxi Sun, Gonzalo Mena, Eviatar Yemini, Oliver Hobert, and
 999 Liam Paninski. Statistical atlas of *C. elegans* neurons. In *Medical Image Computing and Computer
 1000 Assisted Intervention–MICCAI 2020: 23rd International Conference, Lima, Peru, October 4–8,
 1001 2020, Proceedings, Part V 23*, pp. 119–129. Springer, 2020.

1002 Vivek Venkatachalam, Ni Ji, Xian Wang, Christopher Clark, James Kameron Mitchell, Mason Klein,
 1003 Christopher J Tabone, Jeremy Florman, Hongfei Ji, Joel Greenwood, et al. Pan-neuronal imaging
 1004 in roaming *caenorhabditis elegans*. *Proceedings of the National Academy of Sciences*, 113(8):
 1005 E1082–E1088, 2016.

1007 Guoxia Wang, Jinle Zeng, Xiyuan Xiao, Siming Wu, Jiabin Yang, Lujing Zheng, Zeyu Chen,
 1008 Jiang Bian, Dianhai Yu, and Haifeng Wang. Flashmask: Efficient and rich mask extension of
 1009 flashattention. *arXiv preprint arXiv:2410.01359*, 2024.

1010 Quanxin Wang, Song-Lin Ding, Yang Li, Josh Royall, David Feng, Phil Lesnar, Nile Graddis,
 1011 Maitham Naeemi, Benjamin Facer, Anh Ho, Tim Dolbeare, Brandon Blanchard, Nick Dee,
 1012 Wayne Wakeman, Karla E. Hirokawa, Aaron Szafer, Susan M. Sunkin, Seung Wook Oh, Amy
 1013 Bernard, John W. Phillips, Michael Hawrylycz, Christof Koch, Hongkui Zeng, Julie A. Harris,
 1014 and Lydia Ng. The Allen Mouse Brain Common Coordinate Framework: A 3D Reference Atlas.
 1015 *Cell*, 181(4):936–953.e20, May 2020a. ISSN 00928674. doi: 10.1016/j.cell.2020.04.007. URL
 1016 <https://linkinghub.elsevier.com/retrieve/pii/S0092867420304025>.

1017 Quanxin Wang, Song-Lin Ding, Yang Li, Josh Royall, David Feng, Phil Lesnar, Nile Graddis, Maitham
 1018 Naeemi, Benjamin Facer, Anh Ho, et al. The allen mouse brain common coordinate framework: a
 1019 3d reference atlas. *Cell*, 181(4):936–953, 2020b.

1020 Asmamaw T Wassie, Yongxin Zhao, and Edward S Boyden. Expansion microscopy: principles and
 1021 uses in biological research. *Nature methods*, 16(1):33–41, 2019.

1023 Thomas Welton, Septian Hartono, Yao-Chia Shih, Stefan T Schwarz, Yue Xing, Eng-King Tan,
 1024 Dorothee P Auer, Noam Harel, and Ling-Ling Chan. Ultra-high-field 7t mri in parkinson’s disease:
 1025 ready for clinical use?—a narrative review. *Quantitative Imaging in Medicine and Surgery*, 13(11):
 7607, 2023.

1026 Marek Wodzinski, Niccolo Marini, Manfredo Atzori, and Henning Müller. Deeperhistreg: robust
 1027 whole slide images registration framework. *arXiv preprint arXiv:2404.14434*, 2024.

1028

1029 Yifan Wu, Tom Z. Jiahao, Jiancong Wang, Paul A. Yushkevich, M. Ani Hsieh, and James C. Gee.
 1030 NODEO: A Neural Ordinary Differential Equation Based Optimization Framework for Deformable
 1031 Image Registration. *arXiv:2108.03443 [cs]*, February 2022. URL <http://arxiv.org/abs/2108.03443>. arXiv: 2108.03443.

1032

1033 Yifan Wu, Mengjin Dong, Rohit Jena, Chen Qin, and James C Gee. Neural ordinary differen-
 1034 tial equation based sequential image registration for dynamic characterization. *arXiv preprint*
 1035 *arXiv:2404.02106*, 2024.

1036

1037 Xiao Yang, Roland Kwitt, Martin Styner, and Marc Niethammer. Quicksilver: Fast predictive image
 1038 registration—a deep learning approach. *NeuroImage*, 158:378–396, 2017.

1039

1040 Jingyang Yuan, Huazuo Gao, Damai Dai, Junyu Luo, Liang Zhao, Zhengyan Zhang, Zhenda Xie,
 1041 YX Wei, Lean Wang, Zhiping Xiao, et al. Native sparse attention: Hardware-aligned and natively
 1042 trainable sparse attention. *arXiv preprint arXiv:2502.11089*, 2025.

1043

1044 Liutong Zhang, Lei Zhou, Ruiyang Li, Xianyu Wang, Boxuan Han, and Hongen Liao. Cascaded feature
 1045 warping network for unsupervised medical image registration. In *2021 IEEE 18th International*
Symposium on Biomedical Imaging (ISBI), pp. 913–916. IEEE, 2021.

1046

1047 Shengyu Zhao, Yue Dong, Eric I-Chao Chang, and Yan Xu. Recursive cascaded networks for
 1048 unsupervised medical image registration. In *Proceedings of the IEEE/CVF International Conference*
on Computer Vision (ICCV), October 2019a.

1049

1050 Shengyu Zhao, Tingfung Lau, Ji Luo, I Eric, Chao Chang, and Yan Xu. Unsupervised 3d end-to-end
 1051 medical image registration with volume tweening network. *IEEE journal of biomedical and health*
informatics, 24(5):1394–1404, 2019b.

1052

1053 Shuai Zhao, Yang Wang, Zheng Yang, and Deng Cai. Region mutual information loss for semantic
 1054 segmentation. *Advances in Neural Information Processing Systems*, 32, 2019c.

1055

1056 Yanli Zhao, Andrew Gu, Rohan Varma, Liang Luo, Chien-Chin Huang, Min Xu, Less Wright, Hamid
 1057 Shojanazeri, Myle Ott, Sam Shleifer, et al. Pytorch fsdp: experiences on scaling fully sharded data
 1058 parallel. *arXiv preprint arXiv:2304.11277*, 2023.

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080 **A RELATED WORKS**
10811082 **A.1 MEMORY EFFICIENT AND LARGE SCALE OPTIMIZATION**
1083

1084 Recent advances in large scale transformer-based model training has amassed significant attention
 1085 and efforts to alleviate key bottlenecks in both memory and compute efficiency. Activation memory
 1086 forms a key bottleneck in many deep learning training pipelines, and recent advances propose fused
 1087 operations (Dao et al., 2022; Dao, 2023; Shah et al., 2024; PyTorch, 2023; Bikshandi & Shah, 2023;
 1088 Dong et al., 2024) to significantly reduce HBM usage without approximations. Other techniques
 1089 propose sub-quadratic approximations to the quadratic complexity of the attention operation and
 1090 propose highly efficient and IO-aware fused kernels (Yuan et al., 2025; Dong et al., 2024; Wang
 1091 et al., 2024). However, as these models and their inputs get increasingly larger in size, they do
 1092 not fit on a single GPU. Various distributed techniques like Tensor Parallel (Shoeybi et al., 2019),
 1093 Sequence Parallel (Li et al., 2023; Jacobs et al., 2024; Li et al., 2024), pipeline parallel (Qi et al.,
 1094 2023; Lamy-Poirier, 2023; Liu et al., 2024a), fully-sharded data parallel (FSDP2) (Ansel et al., 2024;
 1095 Zhao et al., 2023; Rajbhandari et al., 2020) have been proposed that distribute (shard) the model and
 1096 its inputs across multiple GPUs for transformer-like models. Another research area approaches the
 1097 problem of scaling large models by building compilers and intermediate representations to enable
 1098 writing optimized kernels at runtime OpenAI (2021); Ansel et al. (2024); Spector et al. (2025);
 1099 Chen et al. (2018); Abadi et al. (2016). To our knowledge, most of these techniques are tailored to
 1100 transformer-specific architectures and GEMM-like operations (self attention, feedforward, batchnorm,
 1101 etc.) only, and a Tensor/Model Parallel variant for convolution-aware sharding is not available.
 1102 However, other disciplines including biomedical and clinical imaging, life sciences, climate modeling,
 1103 drug discovery, genomics, geosciences, robotics leverage other key components that do not fit in the
 1104 transformer-specific framework, or are GEMM-like in nature. We focus on the compute and memory
 1105 bottlenecks in the image registration problem, that is a key component in a variety of biomedical and
 1106 life science applications.

1107 **A.2 LARGE SCALE REGISTRATION IN LIFE SCIENCES AND BIOMEDICAL IMAGING**
11081109 **A.2.1 *Ex-vivo* NEUROIMAGING AND HISTOLOGY FOR NEUROANATOMICAL AND PATHOLOGICAL STUDIES.**
1110

1111 A large body of neuroanatomical studies are performed in conjunction with ex-vivo and blockface
 1112 imaging and histology to create detailed, multi-scale anatomical references by integrating structural,
 1113 molecular, and cytoarchitectural information across imaging modalities (Casamitjana et al., 2025;
 1114 Ravikumar et al., 2024). In-vivo MRI scans are typically limited by resolution due to constraints
 1115 on scan time and motion artifacts associated with longer scan times. This makes in-vivo MRI
 1116 scans unsuitable for studying the microstructural changes associated with neurodegenerative disease
 1117 progression. Registration of fine anatomical details like cortical layers, axonal projections, or
 1118 individual nuclei are useful to understand neuropathology, and such analyses are not possible at
 1119 macroscopic clinical scales. Therefore, high-resolution ex-vivo scans and blockface imaging are used
 1120 as a bridge between in-vivo and histology, with the latter used as a gold standard for ground-truth
 1121 microscopic tissue characterization and pathology. Many complementary stains are used to visualize
 1122 neuropathological features, including protein aggregates, neuronal loss, gliosis, and myelin integrity.
 1123 Accurate registration of these structures is important to improve our understanding of morphological
 1124 effects of pathology. For example, Alzheimer’s Disease (AD) is characterized by cortical atrophy
 1125 in the medial temporal lobes, particularly hippocampus, entorhinal cortex, and parahippocampal
 1126 gyrus (Ravikumar et al., 2024; Echávarri et al., 2011). Accurate atrophy quantification of these
 1127 structures can only be reliably performed at ~ 0.5 mm or better resolution MRI or ex vivo imaging,
 1128 necessitating high resolution registration. Parkinson’s Disease (PD) is characterized by degeneration
 1129 of DA neurons in the substantia nigra (Triarhou, 2013) and subthalamic nucleus that are small (~ 5 - 10
 1130 mm), requiring < 0.7 mm isotropic or ex vivo imaging for volumetry or susceptibility mapping for
 1131 accurate delineation (Welton et al., 2023). Multiple Schelosis is characterized by cortical lesions
 1132 (Madsen et al., 2021; Beck et al., 2018) that cannot be delineated at the in-vivo resolution and typically
 1133 requires high resolution ex-vivo imaging and histopathology integration. Except in-vivo imaging, all
 1134 other modalities are very high resolution typically ranging from $500\mu\text{m}$ up to $100\mu\text{m}$ (Ravikumar
 1135 et al., 2024; Echávarri et al., 2011; Welton et al., 2023; Madsen et al., 2021) for ex vivo imaging
 1136 and $\sim 10\mu\text{m}$ for histology sections. High-resolution imaging and registration are essential in these
 1137 contexts because they enable accurate cross-modal alignment and preservation of fine anatomical

1134 detail that would otherwise be lost through downsampling. Most of these studies, however, limit
 1135 their analyses to localized effects due to the significant computational cost of registering the entire
 1136 brain at high resolution. Recently, projects like Allen Brain Atlas (all) and multiple large scale
 1137 consortia including Seattle Alzheimer’s Disease Brain Cell Atlas (SEA-AD) consortium and the
 1138 Human Mouse Brain Atlas (HMBA) consortium are aimed at creating detailed, multimodal brain
 1139 atlases linking cellular, molecular, and anatomical organization across species and disease states -
 1140 combining individual efforts from multiple institutions together into a unified resource. Achieving
 1141 this multimodal organization at the whole brain level requires high-resolution registration tools to
 1142 accurately align diverse imaging modalities while preserving fine-scale cytoarchitectural detail.

1143 Most in-vivo to histology registration workflows require registration of an in-vivo image to its
 1144 ex-vivo counterpart. The $100\mu\text{m}$ ex-vivo and $250\mu\text{m}$ in-vivo images released in Edlow et al. (2019);
 1145 Lüsebrink et al. (2017) are intended to be used as high-resolution templates to enable accurate
 1146 studies, but lack of computationally efficient methods restricts their broad usage in the neuroimaging
 1147 community. Our paper performs a native-scale registration on a modest GPU server with 8 A6000
 1148 GPUs to showcase the distributed capabilities, democratizing the use of such high resolution data for
 1149 advancing the state of neuropathology studies.

1150 1151 A.2.2 HIGH RESOLUTION PULMONARY IMAGING ENABLES SUBVOXEL LANDMARK LOCALIZATION.

1152 Pulmonary CT mapping is a key component of lung disease diagnosis and treatment, and accurate
 1153 landmark tracking requires registration at high resolution. Lung CT images can be acquired at
 1154 submillimeter resolution (Murphy et al., 2011), but deep learning methods often require downsampling
 1155 to accommodate their memory requirements (Falta et al., 2023; Hering et al., 2020). In the LungCT
 1156 Learn2Reg challenge, the Lung CT images have a resolution of 1.25-1.75mm and the top performing
 1157 methods achieve an average landmark error of 1.83mm. However, in the EMPIRE10 challenge,
 1158 the average physical resolution of the images is 0.7mm and the average landmark error of most top
 1159 methods (FireANTs, DISCO) is around 0.649mm, reaching subvoxel landmark localization. This
 1160 demonstrates that with an appropriately high resolution, top methods can achieve subvoxel accuracy
 1161 in landmark errors without learning. Moreover, due to the large voxel sizes in the EMPIRE10 dataset
 1162 (with average voxel size of $412.8 \times 317.2 \times 364.9$, about $5 \times$ larger than OASIS brain MRI on average),
 1163 most top performing methods are iterative methods, sometimes used in conjunction with patch based
 1164 feature extractors. This retrospective analysis shows the direct impact of using higher resolution to
 1165 improve landmark accuracy in pulmonary imaging, and the benefits of using native-scale registration.

1166 1167 A.2.3 LARGE SCALE REGISTRATION IN MODEL ORGANISMS.

1168 Over the past decade, imaging across the life sciences and biomedical domains has progressed
 1169 from mesoscale surveys to organ- and organism-wide acquisitions at cellular or even subcellular
 1170 resolution. These span transparent organisms and small animal models (e.g., *C. elegans*, zebrafish,
 1171 adult *Drosophila*) (Varol et al., 2020; Venkatachalam et al., 2016; Marquart et al., 2017; Gupta
 1172 et al., 2018; Peng et al., 2011; Brezovec et al., 2024), whole-rodent brains imaged at micron or
 1173 submicron sampling (Gong et al., 2016; Wang et al., 2020a), and non-human primate (NHP) and
 1174 human ex vivo MRI at hundreds of microns (Skibbe et al., 2023; Milham et al., 2018; Edlow et al.,
 1175 2019; Lüsebrink et al., 2017). Such modalities routinely generate giga- to teravoxel volumes (Kutten
 1176 et al., 2016; Nazib et al., 2018). Their scientific utility, however, hinges on the ability to perform
 1177 registration at the native resolution of acquisition, i.e. aligning specimens (or modalities) in a common
 1178 coordinate system without sacrificing the fine-scale morphologies-cell bodies, layers, axon bundles,
 1179 synaptic neighborhoods- that motivate high-resolution acquisition in the first place (Nazib et al.,
 1180 2018; Goubran et al., 2013).

1181 **Cellular-resolution atlases in model organisms.** In *C. elegans*, statistical atlases of neuron positions
 1182 require aligning whole-animal volumes to preserve the fidelity of closely apposed cells (Varol et al.,
 1183 2020; Venkatachalam et al., 2016). In zebrafish, deformable registration with cellular-level precision
 1184 and minimal perturbation of tissue morphology enables pooling of gene expression, single-neuron
 1185 morphologies, and brain-wide activity (Marquart et al., 2017; Gupta et al., 2018). In adult *Drosophila*,
 1186 whole-brain registration underpins large-scale databases and enables structure-function integration
 1187 (for example, aligning two-photon functional volumes to EM-derived connectomes) (Peng et al., 2011;
 1188 Brezovec et al., 2024).

1188 **Whole-brain rodent imaging** Large scale efforts like NIH’s Brain Research through Advancing
 1189 Innovative Neurotechnologies (BRAIN) Initiative - Cell Census Network (BICCN) aims to provide
 1190 researchers and the public with a comprehensive reference of the diverse cell types in human, mouse,
 1191 and non-human primate brain, and researchers collect a wide range of multimodal data including MRI,
 1192 sectioning tomography, microscopy, antibody stains (e.g. calbindin), and spatial transcriptomics.
 1193 In rodents, fMOST pipelines yield whole-brain images at micron sampling (e.g., $0.32\mu\text{m}$ voxels
 1194 generating $>10\text{TB}$ datasets) for tracing long-range axons and quantifying cytoarchitecture (Gong
 1195 et al., 2016). Constructing stereotaxic spaces such as the Allen CCFv3 and Waxholm rat atlas requires
 1196 deformable registration that preserves layers and boundaries (Wang et al., 2020a; Kleven et al., 2023;
 1197 Kronman et al., 2024). Currently, there is a huge gap between the resolution at which data is acquired
 1198 and the resolution at which templates are created. For example, STPT images can be collected at
 1199 less than $1\mu\text{m}$ resolution (Liwang et al., 2023), but the Allen CCFv3 template is generated at $10\mu\text{m}$
 1200 by upsampling the registrations from $25\mu\text{m}$ due to compute constraints. Extrapolating the runtime
 1201 reported in the method used to generate the CCFv3 template (Wang et al., 2020a), registration will
 1202 require about 19 hours for a single pair or about 7.26 CPU-years for a single iteration of template
 1203 matching - and is therefore impossible to curate without access to huge HPC clusters. This is
 1204 contrasted to our method that can perform registration in about a minute or two on a modest server
 1205 rack with 8 GPUs (or 5.48 GPU days for a single iteration of template building) - saving a significant
 1206 amount of time and resources. Certain phenomena of interest like cellular organization and brain-wide
 1207 connectomes are emergent only at very high resolutions, necessitating computational tools that can
 1208 scale with the data.

1208 The lack of computational tools for large-scale registration has a trickle-down effect on follow up
 1209 studies as well. For instance, ANTsX pipelines for mouse brain registration to the CCFv3 atlas is
 1210 performed at $50\mu\text{m}$ instead of $10\mu\text{m}$ for compute reasons (Tustison et al., 2024). Developmental
 1211 atlases also register the CCFv3 at resolutions significantly downsampled from the original $10\mu\text{m}$
 1212 template (Kronman et al., 2024; Liwang et al., 2025) citing lack of computational resources as one of
 1213 the primary reasons.

1214 **Zebrafish** Initially adopted as a developmental biology model because of its ease of domestication,
 1215 high fecundity, and transparent early life stages, the zebrafish has gained broader prominence with
 1216 advances in brain imaging, molecular genetic tools, and behavioral assays (Kenney et al., 2021). For
 1217 the AZBA template (Kenney et al., 2021), the raw images are collected at $4\mu\text{m}$ but was resampled
 1218 to $8\mu\text{m}$ ($8\times$ downsampling) due to system constraints. The tools used for the registration (Friedel
 1219 et al., 2014) do not recommend running locally and only on a distributed cluster. Brain-wide cellular
 1220 resolution imaging of transgenic zebrafish lines (Tabor et al., 2019) is performed on large clusters like
 1221 Biowulf Linux cluster at the National Institutes of Health, significantly reducing accessibility of these
 1222 imaging resources to researchers, signifying an unmet need for efficient and distributed multimodal
 1223 registration frameworks.

1224 Across these diverse domains, the unifying requirement demands access to scalable multimodal
 1225 registration algorithms - a challenge we address in this work.

1228 A.3 DEFORMABLE IMAGE REGISTRATION

1229 Given two images $F : \Omega \rightarrow \mathbb{R}^d$ and $M : \Omega \rightarrow \mathbb{R}^d$ defined on domain Ω (usually a compact subset
 1230 of \mathbb{R}^d), Deformable Image Registration (DIR) refers to an inverse problem to find a transformation
 1231 $\varphi : \Omega \rightarrow \Omega$ that warps the moving image M to the fixed image F . Prior to deep learning, the inverse
 1232 problem was solved using iterative solvers (Klein et al., 2009; Tustison & Avants, 2013; Andersson
 1233 et al., 2007; Ashburner, 2012; Avants et al., 2006), and has been made significantly more scalable
 1234 by recent advances in GPU-based libraries (Mang et al., 2019; Mang & Ruthotto, 2017; Jena et al.,
 1235 2024a). Meanwhile, earliest deep learning for image registration (DLIR) methods (Cao et al., 2017;
 1236 Krebs et al., 2017; Rohé et al., 2017; Sokooti et al., 2017) used supervised learning to predict a
 1237 transformation field using pseudo ground truth transformations. However, since the inverse problem
 1238 is generally ill-posed, unsupervised and weakly supervised learning methods (Balakrishnan et al.,
 1239 2019; Zhao et al., 2019b;a; Joshi & Hong; De Vos et al., 2019; Mok & Chung, 2020; Zhang et al.,
 1240 2021; Qiu et al., 2021; Lebrat et al., 2021; Jia et al., 2022; Mok & Chung, 2022) became dominant.
 1241 However, these methods perform virtually identically to iterative solvers in the unsupervised setting,
 1242 and show relatively brittle performance under domain shift (Jena et al., 2024b; Jian et al., 2024; Jena

et al., 2025). Other recent work has shown increased reliability under domain shift (Liu et al., 2024c; Chen et al., 2022). Another line of work combines neural priors with iterative solvers to leverage learnable features with strong convergence properties and robustness of solvers (Wu et al., 2024; Hu et al., 2024; Wu et al., 2022; Zhao et al., 2019a;b). However, almost all deep learning-based methods typically work reliably only at a macroscopic resolution, with most methods working only at a standard resolution of 1mm or $192 \times 160 \times 224$ voxels, and running out of memory on larger images, even on other macroscopic problems like lung or full body CT unless they are significantly downsampled (Falta et al., 2023). This is a significant limitation given modern real life applications including the ultra-high-resolution image acquisition techniques used for *ex-vivo* neuroanatomical and developmental biology studies, spanning subcellular structures and connectomes in species like *C.elegans* (Varol et al., 2020; Venkatachalam et al., 2016), zebrafish (Marquart et al., 2017; Gupta et al., 2018), adult *Drosophila* (Bogovic et al., 2020; Brezovec et al., 2024; Peng et al., 2011), rodents (Wang et al., 2020b; Mansour et al., 2025; Kleven et al., 2023; Kronman et al., 2024), and non-human primates (Skibbe et al., 2023; Davis & Maga, 2018; Frye et al., 2022). The scale of these problems is often two to three orders of magnitude larger than the scale of existing deep learning methods. A simple extrapolation shows that existing deep learning methods will require ≈ 1.87 TB of GPU memory to train a model on a $250\mu\text{m}$ *ex-vivo* brain dataset, making them impractical for training on larger problems. (Mang et al., 2019; Mang & Ruthotto, 2017) propose a distributed framework for registering arbitrarily large images, but is limited to MSE loss function and a one-parameter subgroup of diffeomorphic transforms (stationary velocity field), which is less flexible than the entire space of diffeomorphic transforms (Mang et al., 2019; Jena et al., 2024a). Moreover, they show results on upto 256 GPUs which indicates room for improvement in terms of scaling efficiency. In our work, we propose a distributed framework that is upto an order of magnitude more efficient than (Mang et al., 2019) on large problems.

B LIMITATIONS AND FUTURE WORK

One of the limitations of the proposed framework is the relatively poor weak scaling of the method in the distributed setting (41% on 8 GPUs without NVLink or Infiniband). Even so, for most life science applications feasibility is the first step towards scalable, distributed, multimodal registration, and future work will focus on improving the weak scaling of the method. Another active avenue for future work is to enable Virtual GridParallel (VGP) to use fewer GPUs by sequentially offloading and onloading consecutive shards from CPU onto a single GPU. Deformable Registration of the $100\mu\text{m}$ volume in Appendix 5.2 took only *one minute* on 8 A6000 GPUs, but equivalently it would take around 15-20 minutes to register this pair on a single A6000 GPU with VGP, accounting for repeated CPU offloading. This is an acceptable timeframe for large-scale studies, allowing researchers to prototype and iterate on large-scale image volumes as well with a single GPU. Other avenues for future work include collecting labeled data at high-resolution for various real-world life science applications and performing comparative studies on these datasets.

C LLM USAGE

We use an LLM (minimally) to polish the manuscript and improve clarity of ideas and organization. All LLM-generated text is thoroughly reviewed, proofread, and revised by the first author of the paper.

D CORRECTNESS OF GRID PARALLEL IMPLEMENTATION

The GridParallel framework aims to add additional synchronization primitives for performing mathematically correct convolutions across image or grid shards. These convolutions are required to compute the LNCC loss, and applying Sobolev preconditioning of the warp field and its gradient. Without GP synchronization, the implementation is equivalent to a DTensor sharding (Ansel et al., 2024). To our knowledge, existing Model Parallel and FSDP techniques are exclusively built for model weights and activations for linear and self.-attention layers and do not support this functionality. The pseudocode for convolution with GP synchronization is provided in Algorithm 1.

To ablate the effect of GridParallel synchronization, we register images at $500\mu\text{m}$ resolution from the faux-OASIS dataset with and without the GridParallel synchronization to measure the effect on

1296 performance. Results in Fig. 9 show only a minimal drop in performance with DTensor sharding.
 1297 We posit that this is because the faux OASIS dataset does not contain real-world noise and other
 1298 artifacts that can degrade performance with incorrect boundary synchronization. To study the effect
 1299 of GP synchronization on a more challenging dataset, we register images at $10\mu\text{m}$ resolution from
 1300 the fluorescence micro-optical sectioning tomography (fMOST) mouse brain dataset (Tustison et al.,
 1301 2024) with and without the GridParallel synchronization to measure the effect on performance.
 1302 This dataset contains image volumes of size $1202 \times 1078 \times 627$ voxels, or a displacement field of
 1303 9.74GB. The data contains a myriad of complex artifacts, namely stripe artifacts, boundary halo
 1304 effects, and speckle noise from image stitching and reconstruction. We run FireANTs with multi-scale
 1305 optimization at scales 16, 8, 4, 2, $1 \times$ downsampling for 200, 200, 200, 100, 50 iterations. We use
 1306 our Fused LNCC implementation with a window size of 7, and a learning rate of 0.5. Smoothing
 1307 regularizations are set to $\sigma_{\text{grad}} = 1.0$ and $\sigma_{\text{warp}} = 0.5$. We ablate on 2, 4 and 8 GPUs.
 1308

1309 Since we do not have ground truth annotations
 1310 for this dataset, we only make qualitative ob-
 1311 servations. Unlike the faux-OASIS dataset,
 1312 the fMOST dataset is more challenging with
 1313 high levels of image heterogeneity and com-
 1314 plex anatomical structures. Fig. 10 shows that
 1315 the performance without GP synchronization
 1316 is significantly affected as a function of GPUs.
 1317 Specifically, the boundaries introduce undesir-
 1318 able artifacts due to mathematically incorrect
 1319 smoothing and LNCC losses computed across
 1320 shard. GP synchronization produces qualita-
 1321 tively better results regardless of the number of
 1322 GPUs used to shard the problem.

Algorithm 1 Convolution with GP synchronization

1323 **Require:** T (tensor), r (rank), k kernel size, W kernel filter, sharding index sh , GP size gp_size
 1324 1: $\text{pad} \leftarrow (k - 1)/2$
 1325 2: $\text{bl} \leftarrow \text{None}$
 1326 3: $\text{br} \leftarrow \text{None}$
 1327 4: **if** $r > 0$ **then**
 1328 5: $\text{bl} \leftarrow \text{get_boundary}(r - 1, \text{pad})$
 1329 6: **end if**
 1330 7: **if** $r < gp_size$ **then**
 1331 8: $\text{br} \leftarrow \text{get_boundary}(r + 1, \text{pad})$
 1332 9: **end if**
 10: $T_{\text{pad}} \leftarrow \text{concat}([\text{bl}, T, \text{br}], \text{dim} = sh)$
 11: $\text{out} \leftarrow \text{conv}(T_{\text{pad}}, W)$
 1333 12: $\text{crop_from_left} \leftarrow 0$
 1334 13: $\text{crop_from_right} \leftarrow 0$
 1335 14: **if** $r > 0$ **then**
 1336 15: $\text{crop_from_left} \leftarrow \text{pad}$
 1337 16: **end if**
 1338 17: **if** $r < gp_size$ **then**
 1339 18: $\text{crop_from_right} \leftarrow \text{pad}$
 1340 19: **end if**
 20: $\text{out} \leftarrow \text{crop}(\text{out}, (\text{crop_from_left}, \text{crop_from_right}), \text{dim} = sh)$
 21: **return** out

 1344
 1345
 1346 **E ACCELERATING TRANSMORPH**
 1347 **TRAINING**
 1348
 1349 In this section, we plot the performance of TransMorph training with and without our fused operations.
 Table 1 summarizes the performance of TransMorph training with and without our fused operations

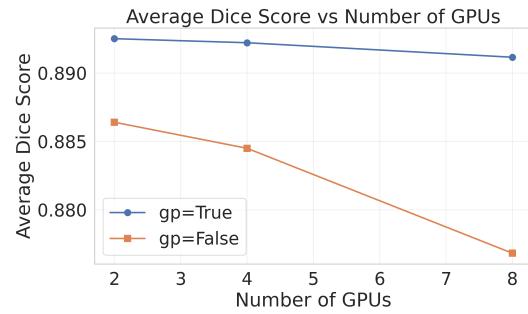
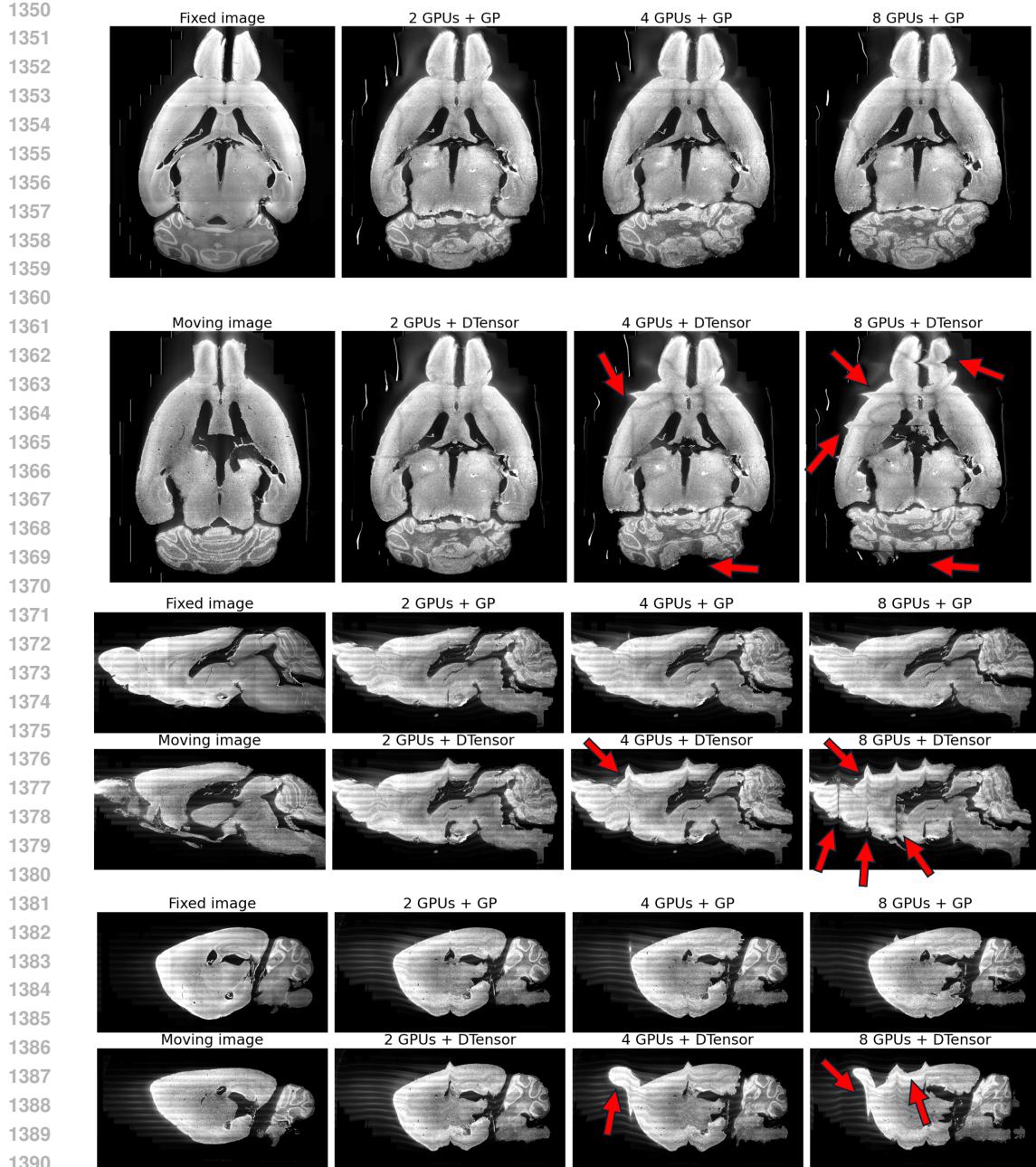


Figure 9: Quantitative ablation of GP synchronization on the faux-OASIS dataset.



1391 **Figure 10:** Qualitative ablation of GP synchronization in FFDP on the fMOST mouse brain dataset. Red arrows
 1392 highlight regions affected by incorrect boundary effects due to no synchronization.

1393
 1394 for three commonly used configurations. We further plot the validation performance across these
 1395 settings with respect to Wall clock time in Fig. 12. Our fused operations demonstrate efficiency with
 1396 fast convergence while reducing memory usage.

1397
 1398
 1399 **E.1 REGISTRATION TO A 100 MICRON EX-VIVO BRAIN MRI VOLUME**

1400
 1401 In this section, we describe the parameters used for the registration of a $250\mu\text{m}$ in-vivo T1-weighted
 1402 MRI volume described in Lüsebrink et al. (2017) to the $100\mu\text{m}$ ex-vivo brain FLASH volume
 1403 described in Edlow et al. (2019). First, we perform an multi-scale affine registration at 3mm, 2mm,
 1mm, $500\mu\text{m}$ resolutions for 500, 250, 100, 100 iterations respectively, using the Fused Mutual

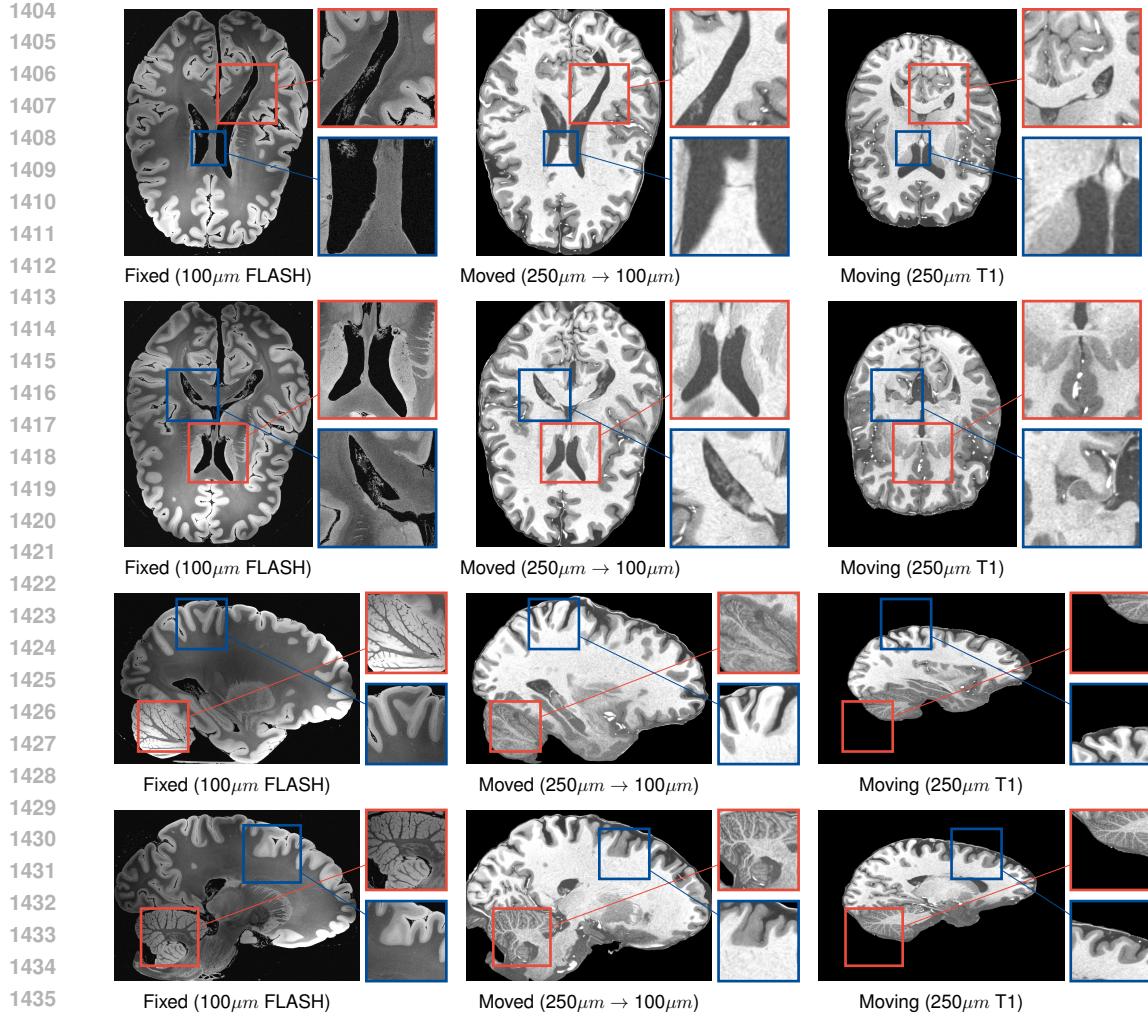


Figure 11: Qualitative comparison of registration results from $250\mu\text{m}$ T1 (Lüsebrink et al., 2017) to $100\mu\text{m}$ ex-vivo FLASH (Edlow et al., 2019). Intricate structures like cerebellar white matter and GM-WM interfaces are not very discernable at 1mm, but can be aligned at $100\mu\text{m}$ with our method.

Figure 12: Ablation on TransMorph training runtime with and without our fused operations. For LNCC, our method converges in about 30 hours, while the baseline converges in about a week.

Information loss. This step takes about 12 seconds to run on a single NVIDIA A6000 GPU. The second step was to run multi-scale deformable optimization with scales 3.2mm, 1.6mm, 0.8mm, 0.4mm, 0.2mm, 0.1mm (scale factors of 32, 16, 8, 4, 2, 1) for 250, 100, 100, 100, 50, 20 iterations respectively, using the fused LNCC loss. This step took about 58 seconds on 8 NVIDIA A6000 GPUs. Qualitative results are shown in Fig. 11.

1458
 1459 **Table 2: Qualitative Comparison of Methods.** We compare the methods on qualitative features such as GPU
 1460 support, multimodal capabilities, ability to run for unequal sizes of fixed and moving images, non-standard image
 1461 sizes, whether the model can work with full context for larger images, whether the model supports multi-GPU
 1462 training, and whether the model supports arbitrary loss functions. Deep learning methods support multimodal
 1463 registration only if they are trained on multiple modalities. CLAIRE requires the image sizes to be divisible
 1464 by the number of GPUs, and does not support arbitrary loss functions. Our method supports all of the above
 1465 features, leading to a seamless experience for users with minimal data preprocessing overhead.

Method	GPU support	Multimodal	$N \neq M$	Non-std sizes	Full Context	Multi-GPU	Supported Similarty functions
Deep learning	✓	✓?	✗	✗	✗	✗	Fixed at training
ITK-DReg	✗	✓	✓	✓	✗	✗	ITK-filters
CLAIRE	✓	✗	✗	✓?	✓	✓	MSE only
Ours	✓	✓	✓	✓	✓	✓	Any

F AN EFFICIENT FUSED LOCAL NORMALIZED CROSS CORRELATION LOSS

1470 Local Normalized Cross Correlation (LNCC) loss is ubiquitously used throughout the image
 1471 registration literature(Liu et al., 2024c; Avants et al., 2008b; 2009; ANTsX; Jena et al., 2024a; Wu
 1472 et al., 2024; Hu et al., 2024; Wu et al., 2022; Zhao et al., 2019a;b), owing to its robust behavior to
 1473 unimodal and multimodal images alike. This operation is a key memory-bound bottleneck in image
 1474 registration pipelines. Few approaches have been proposed to provide improved implementations (Jia
 1475 et al., 2025; Chen et al., 2022), but we note that these implementations are still memory intensive and
 1476 thus not scalable. We address this bottleneck by analytically deriving a fused implementation that is
 1477 memory efficient and scalable.

1478 **Definition of LNCC loss.** Given two images F and M , and a radially symmetric averaging
 1479 convolution filter W such that $\sum_k w_k = 1$, we define the Local Normalized Cross Correlation
 1480 (LNCC) loss as:

$$\mathcal{L} = \frac{1}{N} \sum_i n_i \quad , \quad n_i = \frac{A_i^2}{B_i C_i + \epsilon} \quad (3)$$

1481 where

$$\mu_i^F, \mu_i^M = \sum_k w_{ik} F_k, \sum_k w_{ik} M_k \quad (4)$$

$$A_i = \sum_k w_{ik} (F_k - \mu_i^F)(M_k - \mu_i^M) \quad (5)$$

$$B_i = \sum_k w_{ik} (F_k - \mu_i^F)^2 \quad (6)$$

$$C_i = \sum_k w_{ik} (M_k - \mu_i^M)^2 \quad (7)$$

1482 Here, we use overloaded notation $w_{ik} = w_{(i-k)} = w_{(k-i)} = w_{ki}$ due to radial symmetry of w . We
 1483 can expand Eqs. (5) to (7) as follows:

$$A_i = \left(\sum_k w_{ik} F_k M_k \right) - \mu_i^F \mu_i^M = \mu_i^{FM} - \mu_i^F \mu_i^M \quad (8)$$

$$B_i = \left(\sum_k w_{ik} F_k^2 \right) - (\mu_i^F)^2 = \mu_i^{F^2} - (\mu_i^F)^2 \quad (9)$$

$$C_i = \left(\sum_k w_{ik} M_k^2 \right) - (\mu_i^M)^2 = \mu_i^{M^2} - (\mu_i^M)^2 \quad (10)$$

1484 **Algorithm 2** outlines a vanilla PyTorch implementation of the LNCC loss function. The computational
 1485 overhead of the algorithm arises due to many intermediates stored in high-bandwidth memory

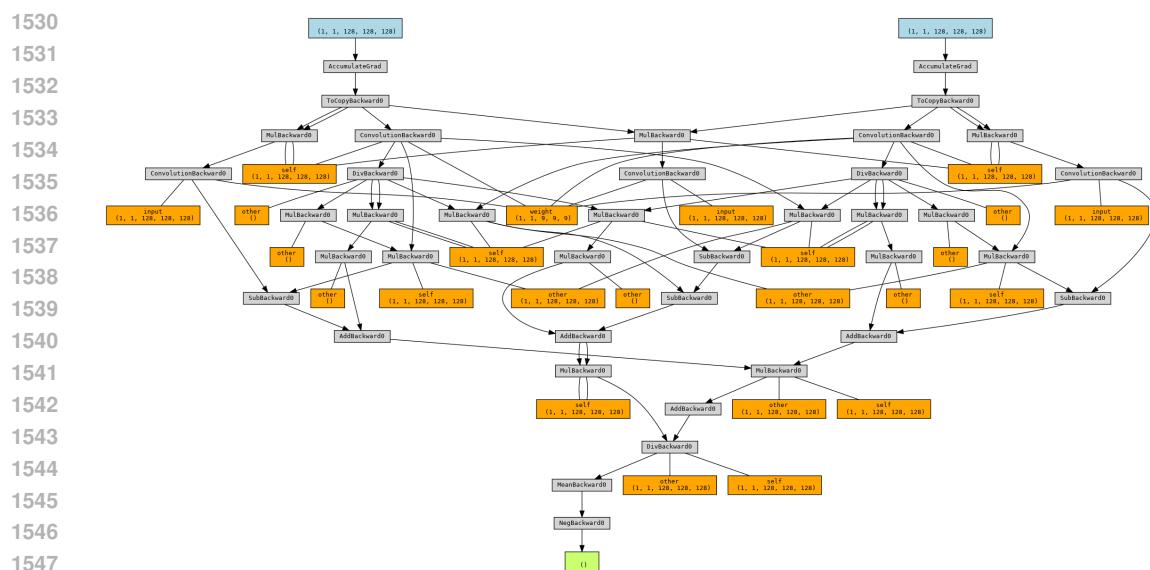


Figure 13: Computational graph of the vanilla PyTorch implementation of the LNCC loss function. **Blue** nodes denote the input images, **Orange** nodes denote intermediate tensors that are stored in HBM, **Gray** nodes denote operations on the computational graph, and **Green** node denotes the final loss. **Orange** nodes are the primary memory bottleneck.

(HBM). Specifically, the quantities $W * \text{state}$, I^2 , J^2 , IJ , σ_I^2 , σ_J^2 , σ_{IJ} , μ_I^2 , μ_J^2 , $\mu_I \mu_J$, $\sigma_I^2 \sigma_J^2$, $(\sigma_I^2 \sigma_J^2 + \epsilon)$, σ_{IJ}^2 , $\sigma_{IJ}^2 / (\sigma_I^2 \sigma_J^2 + \epsilon)$ are all stored as intermediate tensors, each of size N , totalling a $16N$ memory overhead in addition to storing `state`. The computational graph of the vanilla PyTorch implementation is shown in Fig. 13. During the backward pass, the backprop algorithm computes the gradient with respect to each of these variables costing an additional $16N$ memory overhead. A `torch.compile` implementation fuses some of the arithmetic, but leaves a lot of room for improvement (see Fig. 7). We present an algorithm that only requires an additional intermediate variable `state` of size $5N$, saving upto $27N$ memory.

F.1 AN EFFICIENT FUSED LNCC IMPLEMENTATION

1564 During the forward pass, we initialize a state variable of size $5N$. To minimize HBM reads from
 1565 F and M , we write a fused kernel to initialize the state variable using only one HBM read from F
 and M . The code in Line 4-9 are elementwise operations, and can be fused into another kernel. The

forward pass therefore consumes only $5N$ additional memory. The pseudocode for the efficient fused LNCC implementation is shown in [Algorithm 3](#).

Efficient Backward Pass In a vanilla PyTorch implementation, the gradients are computed for each intermediate variables in the reverse order in the computational DAG shown in [Fig. 13](#). Typically, our implementation would also require defining the backward pass by computing the gradients with respect to the intermediate variables, and then propagating them to the input images. However, we derive the backpropagation with respect to I and J , given the gradient $g_i = \frac{\partial L}{\partial n_i}$ to avoid calculating intermediate gradients. Using the chain rule, we have:

$$\frac{\partial L}{\partial F_k} = \sum_i \frac{\partial L}{\partial n_i} \frac{\partial n_i}{\partial F_k} \quad (11)$$

$$= \sum_i g_i \left(\frac{2A_i}{B_i C_i} \frac{\partial A_i}{\partial F_k} - \frac{A_i}{B_i^2 C_i} \frac{\partial B_i}{\partial F_k} \right) \quad (12)$$

$$(13)$$

which can be simplified to:

$$\frac{\partial \mu_i^F}{\partial F_k} = \frac{\partial \mu_i^M}{\partial M_k} = w_{ik} \quad (14)$$

$$\frac{\partial A_i}{\partial F_k} = \frac{\partial (\sum_k w_{ik} F_k M_k - \mu_i^F \mu_i^M)}{\partial F_k} = w_{ik} (M_k - \mu_i^M) \quad (15)$$

and

$$\frac{\partial B_i}{\partial F_k} = \frac{\partial (\sum_k w_{ik} F_k^2 - (\mu_i^F)^2)}{\partial F_k} = 2w_{ik} (F_k - \mu_i^F) \quad (16)$$

Substituting these results to [Eq. \(12\)](#) we have:

$$= \sum_i g_i \left(\frac{2A_i}{B_i C_i} (w_{ik} (M_k - \mu_i^M)) - \frac{A_i^2}{B_i^2 C_i} 2w_{ik} (F_k - \mu_i^F) \right) \quad (17)$$

$$= \sum_i \frac{2g_i A_i}{B_i C_i} w_{ik} \left[M_k - \frac{F_k A_i}{B_i} + \mu_i^F \frac{A_i}{B_i} - \mu_i^M \right] \quad (18)$$

Using the property $w_{ik} = w_{ki}$, and letting $\gamma_i = \frac{2g_i A_i}{B_i C_i}$, we rewrite the previous equation as:

$$= M_k \cdot \left(\sum_i w_{ki} \gamma_i \right) - F_k \cdot \left(\sum_i w_{ki} \frac{\gamma_i A_i}{B_i} \right) + \sum_i w_{ki} \gamma_i \left(\frac{\mu_i^F A_i}{B_i} - \mu_i^M \right) \quad (19)$$

$$= M_k \cdot (w * \gamma)_k - F_k \cdot (w * \gamma_{AB})_k + (w * \gamma_{FM})_k \quad (20)$$

where $\gamma_{AB} = \gamma_i \frac{\mu_i^F A_i}{B_i}$, $\gamma_{FM} = \gamma_i \cdot \left(\frac{\mu_i^F A_i}{B_i} - \mu_i^M \right)$ - and $*$ is the convolution operation. Similarly, the gradient with respect to the moving image M_k is:

$$\frac{\partial L}{\partial M_k} = F_k \left(\sum_i w_{ki} \gamma_i \right) - M_k \left(\sum_i w_{ki} \frac{\gamma_i A_i}{C_i} \right) + \sum_i w_{ki} \gamma_i \left(\frac{\mu_i^M A_i}{C_i} - \mu_i^F \right) \quad (21)$$

$$= F_k \cdot (w * \gamma)_k - M_k \cdot (w * \gamma_{AC})_k + (w * \gamma_{MF})_k \quad (22)$$

where $\gamma_{AC} = \gamma_i \frac{\mu_i^M A_i}{C_i}$, $\gamma_{MF} = \gamma_i \cdot \left(\frac{\mu_i^M A_i}{C_i} - \mu_i^F \right)$. To compute the gradients with respect to F and M , we need to compute five tensors of the γ family, namely γ , γ_{AB} , γ_{AC} , γ_{FM} , and γ_{MF} . This is followed by performing a convolution with all the tensors, and computing elementwise operations given by [Eq. \(20\)](#) and [Eq. \(22\)](#). The γ family of tensors are simple elementwise operations on the state variable, and therefore can be computed by modifying the `state` variable *inplace* to avoid initializing additional HBM memory.

1620 **Algorithm 3** Fused LNCC Implementation

1621 **Require:** F (fixed image), M (moving image), w (window size), ϵ (smoothing term)

1622 1: **function** FORWARD(F, M, w, ϵ)

1623 2: Define convolution filter W of size $w \times w \times w$ with $\sum W[i] = 1$

1624 3: $\text{state} \leftarrow \text{fused_create_interm}(F, M)$ \triangleright Single HBM read: (F, M, F^2, M^2, FM)

1625 4: $\text{state} \leftarrow W * \text{state}$ \triangleright Convolution on all channels

1626 5: $\text{LNCC} \leftarrow \text{fusedcc_kernel}(\text{state}, \epsilon)$ \triangleright Computes Eqs. (8) to (10) followed by Eq. (3)

1627 6: **return** LNCC

1628 7: **end function**

1629 8:

1630 9: **function** BACKWARD($g = \frac{\partial \mathcal{L}}{\partial n}$, state, F, M, W , use_ants_approximation)

1631 10: $\text{state} \leftarrow \text{fused_compute_gamma}(g, \text{state})$ \triangleright Computes γ family of tensors *inplace*

1632 11: **if** use_ants_approximation **then**

1633 12: no-op \triangleright ANTs approximation: skip convolutions

1634 13: **else**

1635 14: $\text{state} \leftarrow W * \text{state}$ \triangleright Convolution on all intermediates

1636 15: **end if**

1637 16: $\frac{\partial L}{\partial F} \leftarrow M \odot \gamma - F \odot \gamma_{AB} + \gamma_{FM}$ \triangleright Eq. (20) computed in fused kernel

1638 17: $\frac{\partial L}{\partial M} \leftarrow F \odot \gamma - M \odot \gamma_{AC} + \gamma_{MF}$ \triangleright Eq. (22) computed in fused kernel

1639 18: **return** $\frac{\partial L}{\partial F}, \frac{\partial L}{\partial M}$

1640 19: **end function**

1641

1642 **Table 3:** Speedup and memory usage of different LNCC backends

N	Method	Forward Time (s)	Forward Speedup	Backward Time (s)	Backward Speedup	Memory (MB)	Memory Reduction (%)
64	Fast LNCC	0.001	2.95	0.003	4.86	21	61.9
	FireANTs	0.003	7.18	0.002	3.07	25	68
	VoxelMorph	0.06	158.76	0.016	24.10	17	52.9
	torch.compile	0.003	6.83	0.002	2.30	24	66.7
128	Ours	< 0.001	1.00	0.001	1.00	8	0
	Fast LNCC	0.008	5.88	0.026	34.09	168	61.9
	FireANTs	0.013	9.04	0.008	10.73	200	68
	VoxelMorph	0.482	341.65	0.126	168.33	136	52.9
256	torch.compile	0.012	8.67	0.007	8.95	192	66.7
	Ours	0.001	1.00	0.001	1.00	64	0
	Fast LNCC	0.069	6.19	0.204	82.52	1344	61.9
	FireANTs	0.103	9.25	0.294	118.80	2176	76.5
512	VoxelMorph	3.905	351.54	3.903	1577.37	1536.2	66.7
	torch.compile	0.1	9.02	0.284	114.74	2176	76.5
	Ours	0.011	1.00x	0.002	1.00x	512	0
	Fast LNCC	0.627	6.56	1.657	98.75	10752	61.9
1024	FireANTs	0.856	8.95	2.396	142.77	17408	76.5
	VoxelMorph	31.335	327.71	31.665	1887.14	12288.2	66.7
	torch.compile	0.829	8.67	2.312	137.80	17408	76.5
	Ours	0.096	1.00	0.017	1.00	4096	0

1661 **ANTs gradient approximation.** In the ANTs implementation, the gradient computation skips
1662 performing the convolution of the γ family of tensors. We implement this as an additional flag that the
1663 user can toggle as an option for faster backward passes. All our experiments use this approximation.

1664

1665 **F.2 PERFORMANCE**

1666 We compare the performance of our fused implementation to various backend implementations. Fig. 7
1667 shows the speedup and memory usage over different image sizes; we tabulate the results here. For
1668 this experiment, we initialize two random images of size $N_v \times N_v \times N_v$ and compute the runtime
1669 and memory usage for the forward and backward passes. Results are in Table 3. Our implementation
1670 consistently achieves upto $6 \times$ forward time speedup and $\sim 98 \times$ backward time speedup compared to
1671 (Jia et al., 2025) and consumes upto 76% less memory than a compiled PyTorch implementation and
1672 61.9% less than a groupwise convolution implementation (Jia et al., 2025).

1674 G A HIGHLY EFFICIENT MUTUAL INFORMATION IMPLEMENTATION

1675
 1676 Mutual Information (MI) is one of the most commonly used loss functions for *multimodal* image
 1677 matching (Chen et al., 2022; Avants et al., 2009; Mattes et al., 2001). Beyond multimodal image
 1678 matching, MI is a cornerstone operation in computer vision (Isola et al., 2014; Zhao et al., 2019c),
 1679 contrastive learning (Quan et al., 2024), remote sensing (Liang et al., 2013), graph learning (Peng
 1680 et al., 2023), ecological and social community interactions (Luo et al., 2021; Corso et al., 2020), and
 1681 cosmological dynamics (Sarkar & Pandey, 2020). In biomedical imaging and life sciences, MI is
 1682 used for multimodal image alignment using the assumption that pixels in multimodal images codify
 1683 some nonlinear function of the underlying tissue type.

1684 **Vanilla MI implementation** Given images I and J , Mattes MI considers the intensities from the
 1685 images as samples from probability distributions p_I and p_J that encode some imaging physics. The
 1686 intensity pairs (I_k, J_k) are considered to be samples from the joint distribution p_{IJ} . If the images are
 1687 aligned, then I_k and J_k are highly ‘predictable’ from each other, implying a low conditional entropy
 1688 $H(I|J)$, or equivalently a large distance from the distribution p_{IPJ} which models the joint distribution
 1689 if samples from I and J were independent. This is precisely the mutual information criteria. Since
 1690 the samples I_k, J_k follow some unknown distributions, we use a kernel density estimator using kernel
 1691 κ to estimate the empirical distributions of the joint and marginal distributions. To compute empirical
 1692 MI, the continuous kernel density estimates are discretized into a probability mass function (PMF)
 1693 with a finite number of bins. The number of bins B is a hyperparameter that is used to define bin
 1694 centers $b_i \in [0, 1]$ for $i = \{1, \dots, B\}$, assuming that the intensities are scaled to the range $[0, 1]$.

1695 To compute the discrete PMF with autodifferentiation, we compute a Parzen Block $\Psi_I \in$
 1696 $\mathbb{R}^{B \times N}$, s.t. $\Psi_I(i, k) = \kappa(b_i - I_k)$. This forms the memory bottleneck in computing the Mattes
 1697 MI similarity criteria. In the following, we provide a fused implementation that avoids the $O(NB)$
 1698 cost of the Parzen Block, making our implementation only $O(1)$ additional HBM overhead.

1700 G.1 IMPLICIT MI IMPLEMENTATION

1701 We implement custom forward and backward passes to compute the joint and marginal histograms
 1702 p_{IJ}, p_I, p_J from I and J directly, avoiding the $O(NB)$ cost of the Parzen Block. We derive the
 1703 backward pass first, followed by the forward pass followed by an efficient approximate estimator of
 1704 the histograms leading to a faster forward pass.

1706 G.1.1 BACKWARD PASS

1707 We are interested in computing the gradients $\frac{\partial L}{\partial I}, \frac{\partial L}{\partial J}$ given $\frac{\partial L}{\partial p_{IJ}}, \frac{\partial L}{\partial p_I}, \frac{\partial L}{\partial p_J}$. We denote $\omega(b_i - I_k) =$
 1708 $\frac{\partial \kappa(b_i - I_k)}{\partial I_k}$.

$$1712 \quad \frac{\partial L}{\partial I_k} = \sum_{m,n} \frac{\partial L}{\partial p_{IJ}[m,n]} \frac{\partial p_{IJ}[m,n]}{\partial I_k} + \sum_n \frac{\partial L}{\partial p_I[n]} \frac{\partial p_I[n]}{\partial I_k} \quad (23)$$

$$1715 \quad = \sum_{m,n} g_{IJ}[m,n] (\omega(b_m - I_k) \kappa(b_n - J_k)) + \sum_n g_I[n] (\omega(b_n - I_k)) \quad (24)$$

$$1718 \quad = \sum_n \left[\textcolor{red}{g_I[n] \omega(b_n - I_k)} + \sum_m g_{IJ}[m,n] \omega(b_m - I_k) \right] = \sum_n \zeta_1[n] + \zeta_2[n] \quad (25)$$

1721 where $\zeta_1[n] = g_I[n] \omega(b_n - I_k)$ and $\zeta_2[n] = \sum_m g_{IJ}[m,n] \omega(b_m - I_k)$.

1722 To compute this backward pass efficiently, we launch $\lceil N/B \rceil$ threadblocks and partition each
 1723 threadblock in groups of B threads, and compute the partial gradients $\zeta_1[n], \zeta_2[n]$ on each thread.
 1724 Each group loads the values of I_k, J_k into register memory. we first compute the quantities
 1725 $\kappa(b_n - I_k), \kappa(b_n - J_k), \omega(b_n - I_k), \omega(b_n - J_k)$ on thread n and use four shared memory arrays
 1726 to store them. On thread n , we compute the partial gradient $\zeta_1[n] = g_I[n] \omega(b_n - I_k)$ and
 1727 $\zeta_2[n] = \sum_m g_{IJ}[m,n] \omega(b_m - I_k)$ using a for-loop over the index $m \in \{1, \dots, B\}$. Finally, on each
 1728 thread we store the value $\zeta_1[n] + \zeta_2[n]$ on shared memory indexed at n , followed by a $O(\log(n))$

parallel sum over partitioned threads to compute the gradient $\frac{\partial L}{\partial I_k} = \sum_n \zeta_1[n] + \zeta_2[n]$. A similar argument is used to compute the gradient over $\frac{\partial L}{\partial J_k}$. This leads to a faster backward pass than the vanilla PyTorch implementation using no additional HBM overhead [Fig. 7\(b\)](#).

Generalization to novel kernels Note that unlike the vanilla implementation, where some choices of κ are more memory intensive than others (for example, the BSpline kernel has $k_P = 14$ versus $k_P = 4$ for the Gaussian kernel), the memory overhead of our implementation does not depend on the analytical form of κ . To generalize the Implicit MI implementation to novel kernels, the user can specify the form of κ and its derivative ω in the forward and backward passes without any additional considerations.

G.1.2 FORWARD PASS

The forward pass is computed similarly. Note that the individual contributions from I_k, J_k to the joint histogram $p_{IJ}[m, n]$ are $p_{IJ}[m, n] = \kappa(b_m - I_k)\kappa(b_n - J_k)$ for all $m, n \in \{1, \dots, B\}$. The marginal histograms $p_I[n], p_J[n]$ are computed as $p_I[n] = \kappa(b_n - I_k)$ and $p_J[n] = \kappa(b_n - J_k)$ for all $n \in \{1, \dots, B\}$. Similar to the backward pass, we launch $\lceil N/B \rceil$ threadblocks and partition the threadblock in groups of B threads. Each group of B threads loads the values of I_k, J_k into register memory. On thread n , we compute the quantities $\kappa(b_n - I_k), \kappa(b_n - J_k)$ and store them in shared memory. Thread n can add these quantities into the HBM for histogram entries $p_I[n], p_J[n]$ directly. For computing the joint histogram $p_{IJ}[m, n]$, thread n loops over $m \in \{1, \dots, B\}$ and adds the quantities $\kappa(b_m - I_k)\kappa(b_n - J_k)$ into the HBM for histogram entries $p_{IJ}[m, n]$. Since all values of $\kappa(b_m - I_k), \kappa(b_n - J_k)$ are stored in shared memory, this operation is not bottlenecked by slow HBM reads. To avoid HBM write contentions, we write these values into intermediate histogram buffers of sizes $C \times B \times B, C \times B$ (where C is a constant of choice), and sum along the C dimension. However, this is still a relatively slow operation due to computation of $\kappa(b_m - I_k), \kappa(b_n - J_k)$ and making NB^2 HBM writes. We propose an efficient approximate forward pass that launches only N instead of NB threads, and makes only $3N$ HBM writes.

An approximate histogram estimator Given a kernel κ , we can write $\kappa(b_m - I_k) = \int_t \delta(b_m - I_k - t)\kappa(t)dt = \delta(b_m - I_k) * \kappa$, where δ is the Dirac delta function with the property $\int_{x=-\infty}^{\infty} \delta(x)f(x)dx = f(0)$ for any function f . Using the principle of superposition, we can write $p_I[m] = \frac{1}{N} \sum_k \kappa(b_m - I_k) = \frac{1}{N} \sum_k \kappa * \delta(b_m - I_k) = \kappa * \left(\frac{1}{N} \sum_k \delta(b_m - I_k) \right)$.

In the continuous case, p_I can be obtained *exactly* by calculating the Dirac delta distribution $p_I^\delta(b) = \frac{1}{N} \sum_k \delta(b - I_k)$ and convolving it with the kernel κ . However, in the discrete case, this value is inexact. To see this, consider a value I_k that is in bin m , i.e. $\|I_k - b_m\| < \frac{1}{2B}$. The exact value of the PMF due to this sample is $\kappa(b_m - I_k)$. However, the approximate value of the PMF is $\kappa(0)$ since $\delta(b_m - I_k) = 1$ for all $I_k : \|I_k - b_m\| < \frac{1}{2B}$ due to binning, and convolving with κ returns $\kappa(0)$. Since $\|I_k - b_m\| < \frac{1}{2B}$, we can assume that $\|\kappa(0) - \kappa(b_m - I_k)\|$ is small.

To implement this histogram computation efficiently, we launch N threads and in each thread k , compute the bin indices $m^* = \lfloor I_k B \rfloor, n^* = \lfloor J_k B \rfloor$ for each thread, avoiding computation of *soft entries* $\kappa(b_m - I_k), \kappa(b_n - J_k)$ altogether. We simply add 1 to the histogram entries $p_{IJ}[m^*, n^*], p_I[m^*], p_J[n^*]$ in the aggregated histogram buffers, avoiding writing into HBM entries for all $(m, n) \in \{1, \dots, B\}^2$. This reduces the number of HBM writes from $NB^2 + 2NB$ to $3N$. For $B = 32$, this represents $362 \times$ less HBM writes. After performing the average, we convolve this histogram with the kernel κ to get the approximate PMF. Since the convolution is done on a B and $B \times B$ sized histograms, this operation is cheap. This implementation leads to faster runtime, consistent performance for both TransMorph and FireANTs (see [Table 1](#)).

H COMPOSITE IMPLICIT GRID SAMPLER

I RING SAMPLER FOR SCALABLE DISTRIBUTED INTERPOLATION

The random-access nature of deformable interpolation making scaling a difficult challenge for arbitrarily large problem sizes. Given a configuration of sharded images and warp fields across H

1782 **Algorithm 4** Grid Sampler Implementation

1783

1784 **Require:** J_h (moving image shard), $[\mathbf{u}]_j$ (warp field shard), A_h (rescaled affine), t_h (rescaled
1785 translation), S_h (diag. scale)

1786 1: **function** FORWARD($J_h, A_h, t_h, S_h, [\mathbf{u}]_j$)

1787 2: $\text{out} \leftarrow \text{zeros_like}([\mathbf{u}]_j[0])$

1788 3: **for all** target voxels (z, y, x) **in parallel (one thread per voxel)** **do**

1789 4: $X \leftarrow (x, y, z)$

1790 5: $X_{\text{aff}} \leftarrow A_h X + t_h$ \triangleright affine transform only

1791 6: $X_{\text{disp}} \leftarrow S_h [\mathbf{u}]_j[:, z, y, x]$ \triangleright add scaled displacement

1792 7: $X_{\text{src}} \leftarrow X_{\text{aff}} + X_{\text{disp}}$

1793 8: $\text{out}[z, y, x] \leftarrow \text{trilinear_interpolate}(J_h, X_{\text{src}})$ $\text{zero padding at bounds}$

1794 9: **end for**

1795 10: **return** out

1796 11: **end function**

1797 12:

1798 13: **function** BACKWARD($g = \frac{\partial \mathcal{L}}{\partial \text{out}}$, $J_h, A_h, t_h, S_h, [\mathbf{u}]_j$)

1799 14: Initialize $g_{J_h} = 0$, $g_{[\mathbf{u}]_j} = 0$, $g_{A_h} = 0$, $g_{t_h} = 0$

1800 15: **for all** target voxels (z, y, x) **in parallel (one thread per voxel)** **do**

1801 16: Recompute $X, X_{\text{aff}}, X_{\text{disp}}, X_{\text{src}}$

1802 17: Compute tri-linear weights $w_{b_x b_y b_z}$ and $\frac{\partial v}{\partial X_{\text{src}}}$

1803 18: Accumulate g_{J_h} into 8 neighbors using $w_{***} \cdot g[z, y, x]$ (bounds-checked, zero-padded)

1804 19: $g_{[\mathbf{u}]_j[:, z, y, x]} += S_h \frac{\partial v}{\partial X_{\text{src}}} g[z, y, x]$

1805 20: $g_{A_h} += \left(\frac{\partial v}{\partial X_{\text{src}}} g[z, y, x] \right) X^\top$

1806 21: $g_{t_h} += \frac{\partial v}{\partial X_{\text{src}}} g[z, y, x]$

1807 22: **end for**

1808 23: **return** $g_{J_h}, g_{[\mathbf{u}]_j}, g_{A_h}, g_{t_h}$

1809 24: **end function**

hosts, neighboring voxels in the sharded warp field can point to pixels in arbitrary regions in the image, illustrated in [Fig. 4\(a\)](#). Moreover, the control points for interpolation can be irregularly distributed across different hosts, illustrated in [Fig. 4\(b\)](#). This makes computation of the interpolated image challenging for displacements that point to pixels between boundaries of different hosts. One approach to avoid this problem is to store the entire moving image on each GPU to compute the interpolated image. However, this approach is impractical once the image size exceeds the memory per GPU. To achieve weak scaling, the HBM overhead per GPU must be proportional to N/H . To alleviate this problem, we propose a ring sampler that avoids the need to store the entire moving image on each GPU by decomposing linear interpolation into partial sums. This produces mathematically correct interpolated images regardless of the nature of the warp field, without storing the entire moving image on each GPU.

I.1 DERIVATION

Consider a d -linear interpolation of an image I defined on Ω using warp coordinates $[\mathbf{u}]_\Omega$ defined on Ω .

$$I = \sum_{b \in \{0,1\}^n} \left(\prod_{k=1}^n (1 - \alpha_k)^{1-b_k} \alpha_k^{b_k} \right) I[i_1 + b_1, i_2 + b_2, \dots, i_n + b_n] \quad (26)$$

where $i_k = \lfloor \varphi(x)_k \rfloor$, $\alpha_k = \varphi(x)_k - i_k$, for $k = 1, \dots, d$. Let the individual pixels $I[i_1 + b_1, i_2 + b_2, \dots, i_n + b_n]$ be partitioned across H hosts. Since each pixel belongs to exactly one host, we can write $\sum_{h=1}^H \mathbb{I}(\mathbf{i} + \mathbf{b} \in [x]_h) = 1$ and multiply with $I[\mathbf{i} + \mathbf{b}]$ to get:

$$I = \sum_{b \in \{0,1\}^n} \left(\prod_{k=1}^n (1 - \alpha_k)^{1-b_k} \alpha_k^{b_k} \right) \left(I[\mathbf{i} + \mathbf{b}] * \left(\sum_{h=1}^H \mathbb{I}(\mathbf{i} + \mathbf{b} \in [x]_h) \right) \right) \quad (27)$$

$$= \sum_{h=1}^H \sum_{b \in \{0,1\}^n} \left(\prod_{k=1}^n (1 - \alpha_k)^{1-b_k} \alpha_k^{b_k} \right) (I[\mathbf{i} + \mathbf{b}] * \mathbb{I}(\mathbf{i} + \mathbf{b} \in [x]_h)) \quad (28)$$

$$= \sum_{h=1}^H I_h \quad (29)$$

where

$$I_h = \sum_{b \in \{0,1\}^n} \left(\prod_{k=1}^n (1 - \alpha_k)^{1-b_k} \alpha_k^{b_k} \right) I[\mathbf{i} + \mathbf{b}] * \mathbb{I}(\mathbf{i} + \mathbf{b} \in [x]_h) \quad (30)$$

$$= \sum_{b \in \{0,1\}^n} \left(\prod_{k=1}^n (1 - \alpha_k)^{1-b_k} \alpha_k^{b_k} \right) J_h[\mathbf{i} + \mathbf{b}] \quad (31)$$

where $J_h[\mathbf{x}] = I[\mathbf{x}]$ if $\mathbf{x} \in [x]_h$ else 0. Image J_h is therefore *identical* to the sharded image I on host h . Eq. (31) refers to performing trilinear interpolation on the shard I_h (with zero padding) since the sum is only over coordinates that reside in $[x]_h$. This means the warped image in Eq. (26) can be obtained by performing interpolation over the shards individually and adding the warped images together. This is illustrated in Fig. 4(c). Coordinates residing between multiple shards will accumulate partial sums from each sharded image, and no additional consideration is needed for boundary conditions. The communication protocol in this algorithm is similar to Ring Attention (Liu et al., 2024b), where image shards are passed across hosts, and partial results are accumulated into the final result. Our algorithm requires a memory overhead of only N/H to store the sharded image from host $j \neq i$. Our pseudocode is provided in Algorithm 5.

1.2 IMPLEMENTATION CONSIDERATIONS

Rescaling the warp function to sample sharded images Interpolating from sharded images requires one additional consideration. The grid sampler interpolates an image I defined on Ω using warp coordinates $[\mathbf{u}]_\Omega$ defined on Ω . However, the sharded image J_h is defined on the domain Ω_h , and therefore any warped coordinate $\varphi(x) \in \Omega$ must be rescaled to the corresponding coordinates in $\varphi_h(x) \in \Omega_h$. From the implementation standpoint, the leftmost coordinate of J_h is x_{\min}^h when the entire image I is passed to `grid_sampler`. However, when J_h is provided as input to `grid_sampler`, the leftmost pixel of J_h is located at $[-1, -1, \dots, -1]$ according to PyTorch convention. Since our optimization variables $A, t, [\mathbf{u}]$ refer to locations on Ω , and not Ω_h , we need to rescale these variables appropriately when sampling from J_h .

The rescaling corresponds to a diagonal scaling matrix S_h and translation t_h such that $S_h x_{\min}^h + t_h = x_{\min}^\Omega$ and $S_h x_{\max}^h + t_h = x_{\max}^\Omega$. The resampled warp function to sample from J_h becomes $\varphi_h(x) = S_h(Ax + t + u(x)) + t_h = (A'_h x + t'_h) + S_h u(x)$, where $A'_h, t'_h = S_h A, (S_h t + t_h)$. Therefore, we must sample J_h using the transform $A'_h[\mathbf{x}]_{\Omega_h} + t'_h + S_h[\mathbf{u}]_{\Omega_h}$. In the vanilla grid sampler implementation, the intermediate grid $S_h[\mathbf{u}]_{\Omega_h}$ and its gradient consume another $6N/H$ memory. Combined with the N/H overhead for storing the received image shard, we add a total of $7N/H$ memory overhead, which is less than N for $H \geq 8$, making the algorithm impractical for fewer GPUs (say $H = 4$).

To prevent this $6N/H$ additional overhead, we extend the generalized grid sampler as mentioned Appendix 3.1 to sample from a transform of the form $A[\mathbf{x}] + t + S[\mathbf{u}]$ directly. This computes the value $Su(x)$ directly inside the CUDA kernel, and the backward pass also computes and accumulates the gradient w.r.t. $u(x)$ directly, avoiding the $6N/H$ overhead.

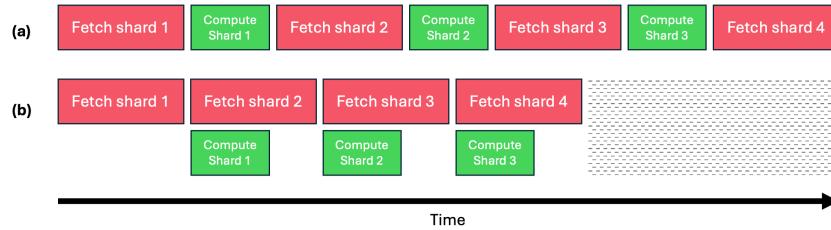
Interleaved communication An important implementation detail is the interleaving of communication and computation in the ring sampler. While we compute the partial moved image aggregate, the next image shard can be fetched asynchronously in the background. This is illustrated in Fig. 14.

1890 **Algorithm 5** Ring Sampler Implementation

```

1891 Require:  $M_j$  (moving image shard),  $[\mathbf{u}]_j$  (warp field shard),  $(A, t)$  (affine transform)
1892 1: function FORWARD( $M_j, [\mathbf{u}]_j, (A, t)$ )
1893 2: Define  $\text{moved}_j = 0$ 
1894 3: for  $h = 1$  to  $H$  do
1895 4:  $J_h \leftarrow \text{send\_and\_recv}(M_j, h)$   $\triangleright$  Send and receive the image shard from offset  $h$ 
1896 5: Compute diagonal  $S_h, t_h$  such that  $S_h x_{\min}^h + t_h = x_{\min}^\Omega$  and  $S_h x_{\max}^h + t_h = x_{\max}^\Omega$ 
1897 6: Rescale affine transform  $A_h \leftarrow S_h A, t_h \leftarrow S_h t + t_h$ 
1898 7:  $\text{moved}_j \leftarrow \text{moved}_j + \text{grid\_sampler}(J_h; A_h, t_h, S_h, [\mathbf{u}]_j)$   $\triangleright$  Avoid computing
1899  $S_h [\mathbf{u}]_j$  explicitly
1900 8: end for
1901 9: return  $\text{moved}_j$ 
1902 10: end function
1903 11:
1904 12: function BACKWARD( $g = \frac{\partial \mathcal{L}}{\partial \text{moved}_j}, \text{moved}_j, M_j, [\mathbf{u}]_j, (A, t)$ )
1905 13: Define  $g_{[\mathbf{u}]_j} = 0, g_A = 0, g_t = 0, g_{M_j} = 0$ 
1906 14: for  $h = 1$  to  $H$  do
1907 15:  $J_h \leftarrow \text{send\_and\_recv}(M_j, h)$   $\triangleright$  Send and receive the image shard from offset  $h$ 
1908 16: Compute diagonal  $S_h, t_h$  such that  $S_h x_{\min}^h + t_h = x_{\min}^\Omega$  and  $S_h x_{\max}^h + t_h = x_{\max}^\Omega$ 
1909 17: Rescale affine transform  $A_h \leftarrow S_h A, t_h \leftarrow S_h t + t_h$ 
1910 18: if requires_grad( $M_j$ ) then
1911 19:  $g_{\text{inp}} \leftarrow \text{zeros\_like}(M_j)$ 
1912 20: else
1913 21:  $g_{\text{inp}} \leftarrow \text{None}$ 
1914 22: end if
1915 23: Compute backward_grid_sampler( $g, J_h, A_h, t_h, S_h, [\mathbf{u}]_j, g_{[\mathbf{u}]_j}, g_A, g_t, g_{\text{inp}}$ )
1916 24: if requires_grad( $M_j$ ) then
1917 25:  $g'_{M_j} = \text{send\_and\_recv}(g_{\text{inp}}, -h)$ 
1918 26:  $g_{M_j} \leftarrow g_{M_j} + g'_{M_j}$ 
1919 27: end if
1920 28: end for
1921 29: return  $g_{[\mathbf{u}]_j}, g_A, g_t, g_{M_j}$ 
1922 30: end function

```



1932 **Figure 14:** Interleaved communication (red) and computation (green) in the ring sampler. gray denotes time
1933 saved by interleaving communication and computation.

1934 **I.3 ALTERNATIVE DESIGNS**

1935 A naive approach can be to route the coordinate $\varphi(x_i) \in [\mathbf{x}]_j$ to GPU j and retrieve the image
1936 coordinate, similar to routing tokens using expert parallelism (EP) used for Mixture-of-Experts (MoEs)
1937 (Shazeer et al., 2017; Jordan & Jacobs, 1994). However, this approach has two major drawbacks in
1938 our setting. First, due to the deformable nature of φ , the partitioning of coordinates across hosts
1939 is generally uneven. In the worst case, a single GPU can receive all $3N$ coordinates leading to an
1940 indirect `allgather` operation resulting in OOMs or uneven GPU utilization across hosts. Second,
1941 coordinates that point to regions between two multiple image boundaries need to be sent to variable
1942 number of hosts, which is non-trivial to implement. These two factors make both the forward and
1943

1944 backward pass implementations cumbersome. Inspired by (Liu et al., 2024b), we propose a distributed
 1945 ring sampler that decomposes the computation into partial sums, leading to a simple implementation
 1946 without degraded scaling performance Fig. 8.
 1947

1948

1949

1950

1951

1952

1953 J CORRECTNESS OF IMPLEMENTATION

1954

1955

1956

1957

1958 All code is checked for numerical correctness by comparing the results with PyTorch implementations
 1959 using unit and integration tests. Code and generated data will be made available to the community.
 1960

1961

1962

1963

1964

1965

1966 J.1 ABLATION ON FIREANTS SPEEDUP

1967

1968

1969 We run FireANTS with different backends for LNCC and MI loss functions on the OASIS validation
 1970 set (Marcus et al., 2007; Hering et al., 2022). We measure the end-to-end runtime, peak memory
 1971 usage (except the fixed and moving images), and Dice score. We ablate on both Greedy and SyN
 1972 algorithms; in the case of SyN, additional gradients may be required. Results in Table 4 show that
 1973 our implementation achieves a significant speedup over the baseline implementations. Although the
 1974 `torch.compile` version of LNCC is faster than other variants, it leads to brittle performance.
 1975

1976

1977

1978

1979

1980 **Table 4: Extended Results on accelerated registration on FireANTS:** Accelerating FireANTS registration with
 1981 various computation backends and registration algorithms (Greedy and SyN). Our implementations maintain
 1982 accuracy while substantially reducing runtime and peak memory usage. (Green) / (Yellow) = best/second;
 1983 Speedup and memory reduction are computed with respect to our kernels. Our fused kernels maintain accuracy
 1984 while substantially reducing runtime and peak memory usage.
 1985

Algorithm	Method	Backend	Dice Score \uparrow	Runtime (s) \downarrow	Memory (MB) \downarrow	Speedup \uparrow	Mem. Reduction (%) \uparrow
Greedy	LNCC	VXM/TM	76.96 \pm 3.60	57.08 \pm 2.45	1418.5 \pm 0.0	113.47	59.29
	LNCC	FastLNCC	76.96 \pm 3.60	3.76 \pm 0.16	1026.3 \pm 0.0	7.48	43.73
	LNCC	FireANTS	72.81 \pm 3.87	1.44 \pm 0.08	1044.5 \pm 0.0	2.87	44.71
	LNCC	<code>torch.compile</code>	69.35 \pm 4.09	0.82 \pm 0.04	860.7 \pm 0.0	1.63	32.90
	LNCC	Ours	78.67 \pm 3.04	0.50 \pm 0.01	577.5 \pm 0.0	1.00	0.00
Greedy	MI	PyTorch	75.88 \pm 3.45	7.51 \pm 0.37	12206.3 \pm 0.0	2.59	95.27
	MI	<code>torch.compile</code>	75.88 \pm 3.45	1.05 \pm 0.05	3865.5 \pm 0.0	0.36	85.06
	MI	Ours	75.87 \pm 3.44	2.90 \pm 0.16	577.5 \pm 0.0	1.00	0.00
	MI	Ours + <code>torch.compile</code>	75.93 \pm 3.47	2.95 \pm 0.16	657.3 \pm 0.0	1.02	12.13
SyN	LNCC	VXM/TM	76.69 \pm 2.88	63.57 \pm 0.58	1892.0 \pm 0.0	65.92	50.05
	LNCC	FastLNCC	76.70 \pm 2.88	4.27 \pm 0.05	1486.7 \pm 0.0	4.43	36.43
	LNCC	FireANTS	74.70 \pm 2.93	2.55 \pm 0.10	1616.4 \pm 0.0	2.65	41.54
	LNCC	<code>torch.compile</code>	71.65 \pm 3.41	1.46 \pm 0.04	1472.0 \pm 0.0	1.51	35.80
	LNCC	Ours	78.79 \pm 2.82	0.96 \pm 0.08	945.0 \pm 0.0	1.00	0.00
SyN	MI	PyTorch	76.74 \pm 2.58	12.84 \pm 0.66	17720.8 \pm 0.0	2.96	94.67
	MI	<code>torch.compile</code>	76.76 \pm 2.58	2.40 \pm 0.13	7758.9 \pm 0.0	0.55	87.82
	MI	Ours	76.86 \pm 2.59	4.34 \pm 0.28	945.0 \pm 0.0	1.00	0.00
	MI	Ours + <code>torch.compile</code>	77.00 \pm 2.57	4.56 \pm 0.24	1104.5 \pm 0.0	1.05	14.44

1998
1999
2000
2001
2002
2003
Table 5: Extended Efficiency Results on faux-OASIS-dataset: Comparison of registration methods across
multiple resolutions. Reported metrics include average Dice similarity coefficient (higher is better), wall-clock
runtime, GPU cost (measured in GB-hours), relative speedup, and GPU cost reduction with respect to FireANTs
+ FFDP(Ours). GPU usage (e.g., single GPU, multi-GPU, or CPU) is annotated alongside the cost values.

Resolution	Method	Avg Dice Score \uparrow	Wall Clock \downarrow (10^{-2} Hours)	GPU Cost \downarrow (10^{-2} GB-Hours)	Speedup	GPU Cost Reduction (%)
1 mm	TransMorph	0.851 \pm 0.016	0.015	0.262 ¹	0.56 \times	87.81
	VFA	0.851 \pm 0.023	0.017	0.216 ¹	0.63 \times	85.18
	Ours	0.838 \pm 0.028	0.027	0.032 ¹	1.00 \times	0.00
	UniGradICON-IO	0.826 \pm 0.022	5.167	58.498 ¹	194.07 \times	99.95
	FireANTs	0.822 \pm 0.032	0.060	0.141 ¹	2.25 \times	48.83
	UniGradICON-noIO	0.815 \pm 0.026	0.067	0.238 ¹	2.50 \times	86.55
	SynthMorph	0.801 \pm 0.022	2.155	99.061 ¹	80.93 \times	99.97
	Anatomix	0.796 \pm 0.035	0.379	2.656 ¹	14.24 \times	98.80
	CLAIRE	0.776 \pm 0.044	0.518	1.389 ¹	19.47 \times	97.70
	ITK-dreg	0.662 \pm 0.055	1.527	1.017 ^{CPU}	57.37 \times	–
500 μ m	Ours	0.872 \pm 0.028	0.109	0.862 ¹	1.00 \times	0.00
	FireANTs	0.841 \pm 0.033	0.270	4.136 ¹	2.48 \times	48.22
	VFA	0.805 \pm 0.044	0.302	3.896 ¹	2.78 \times	77.87
	CLAIRE	0.779 \pm 0.051	25.903	396.169 ¹	238.04 \times	99.78
	SynthMorph	0.771 \pm 0.035	4.068	187.049 ¹	37.39 \times	99.54
	TransMorph	0.759 \pm 0.028	0.198	3.501 ¹	1.82 \times	75.38
	Anatomix	0.758 \pm 0.040	8.837	310.818 ¹	81.21 \times	99.72
	ITK-dreg	0.699 \pm 0.056	41.259	207.466 ^{CPU}	379.17 \times	–
	UniGradICON-IO	0.615 \pm 0.047	84.538	1072.657 ¹	776.89 \times	99.92
	UniGradICON	0.610 \pm 0.044	0.842	3.545 ¹	7.73 \times	75.69
250 μ m	Ours	0.895 \pm 0.029	1.065	47.059 ¹	1.00 \times	0.00
	CLAIRE	0.809 \pm 0.054	1207.536	159 046.981 ⁴	1133.84 \times	99.97
	FireANTs	0.777 \pm 0.064	13.588	253.295 ¹	11.73 \times	81.42
	VFA	0.714 \pm 0.066	3.872	49.939 ¹	3.64 \times	5.77
	SynthMorph	0.690 \pm 0.052	32.808	1507.133 ¹	30.80 \times	96.88
	TransMorph	0.689 \pm 0.044	2.597	45.965 ¹	2.44 \times	–2.38
	Anatomix	0.620 \pm 0.031	88.480	3112.015 ¹	83.07 \times	98.49
	UniGradICON-IO	0.398 \pm 0.062	163.812	2539.721 ¹	153.80 \times	98.15
	UniGradICON	0.359 \pm 0.044	7.811	55.057 ¹	7.33 \times	14.53
	ITK-dreg	0.758 \pm 0.046	1363.868	33 065.677 ^{CPU}	1280.63 \times	–

K ADDITIONAL DETAILS ON THE SIMULATED EX-VIVO BRAIN MRI DATASET

In this section, we provide additional details on the synthetic data generation pipeline for the faux-OASIS dataset, followed by baseline configurations, and finally compare performance-efficiency tradeoffs and show qualitative results.

K.1 SYNTHETIC DATA GENERATION PIPELINE

To emulate high resolution (250 μ m isotropic) T1 weighted images, we use the standard OASIS validation dataset to generate synthetic images. Our method is inspired by Billot et al. (2023); Dey et al. (2025) to use the labelmaps as a starting point and synthesize images that are faithful to the labelmaps. The synthetic data generation pipeline is illustrated in Fig. 15. Specifically, our pipeline has three stages:

1. **Compute per-label intensity statistics:** For each label, we consider all the intensities in the voxels belonging to the label. We store mean and standard deviation of the intensities for each label computed over the entire OASIS validation set.
2. **Geometry-preserving upsampling of labels:** We use the labelmaps at 1mm isotropic and perform surface-based upsampling to resample the labelmaps with subvoxel accuracy (Sullivan & Kaszynski, 2019).
3. **Intensity painting:** We use the per-label intensity statistics and the voxelized labelmaps at 250 μ m isotropic to synthesize the images.

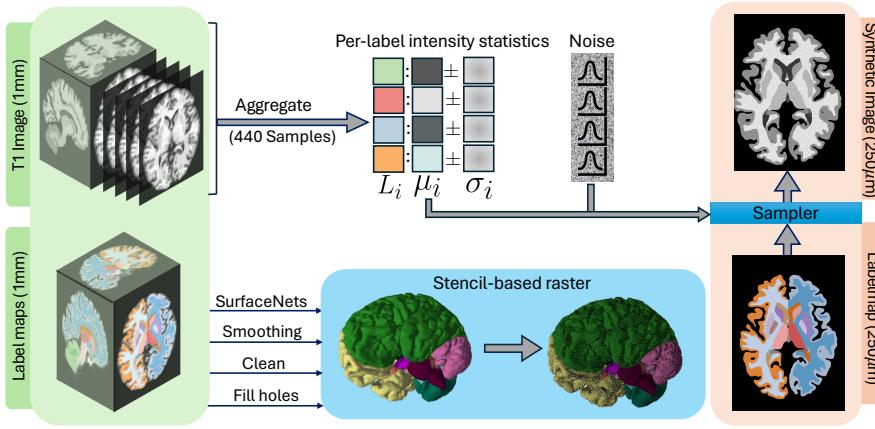


Figure 15: Synthetic data generation pipeline for faux-OASIS. Coarse anatomical labels undergo geometry-preserving upsampling via surface reconstruction, followed by statistical intensity painting to produce high-resolution MR images at 0.25 mm.

Following the generation of 250 μ m images, we downsample the images to 500 μ m and 1mm isotropic to show the effect on performance with downsampled images.

We describe the pipeline in detail below.

Per-label intensity statistics. Contrary to other synthetic data generation pipelines Dey et al. (2025); Billot et al. (2023), we do not want to generate randomized intensities for each image and want to simulate the T1-weighted images. Towards this end, we compute the per-label intensity statistics for all images in the OASIS validation set.

Geometry-preserving upsampling of labelmaps. Given an image volume and labelmap pair (I, L) , we upsample the labelmap to 250 μ m isotropic L_{\uparrow} . However, naively upsampling the label voxel grid and thresholding typically causes blocky artifacts (Frisken, 2022; Lorensen & Cline, 1998; Schroeder & Tsalikis, 2023), which has led to many sophisticated subvoxel-accurate surface reconstruction algorithms. We use PyVista’s SurfaceNets algorithm (Frisken, 2022) to extract surface contours from 3D image label maps. Specifically, an `ImageData` object with labels is converted into `cell data` using `contour_labels` (VTK SurfaceNets) to obtain per-label surfaces S_{ℓ} that respect voxel geometry and avoid block artifacts with voxel based interpolation. The generated surface is smoothed using a constrained Taubin/Windowed-Sinc smoothing with conservative iterations (typically 16-30, relaxation ≈ 0.5), then use `clean` and `fill_holes` to remove slivers and pinholes while preserving anatomical shape fidelity. The surface S_{ℓ} is voxelized to obtain a binary mask M_{ℓ} , then the labelmap L_{\uparrow} is assembled as

$$L_{\uparrow}(\mathbf{p}) = \begin{cases} \ell & \text{if } M_{\ell}(\mathbf{p}) = 1 \text{ for some } \ell \geq 1, \\ 0 & \text{otherwise.} \end{cases}$$

Finally, image-stencil-based rasterization (`voxelize_binary_mask`) is performed into the target `ImageData` at $t = 0.25$ mm. When surfaces overlap, later labels in the loop take precedence; we process labels in anatomical priority order to ensure critical structures are preserved. All steps for labelmap upsampling are implemented with PyVista/VTK for robustness and reproducibility.

Synthesizing the image. For each label, we fill the voxels with intensities sampled from a normal distribution with the mean and standard deviation of the intensities corresponding to the label.

Given $\{(\mu_{\ell}, \sigma_{\ell})\}$, we synthesize the image by i.i.d. draws within each region:

$$I_{\text{syn}}(\mathbf{p}) \sim \mathcal{N}(\mu_{L_{\uparrow}(\mathbf{p})}, \sigma_{L_{\uparrow}(\mathbf{p})}^2), \quad \mathbf{p} \in \Omega_t.$$

We follow this step with a Gaussian smoothing with $\sigma = 0.75$ voxels to impart local coherence without washing out label edges. Background ($L_{\uparrow}=0$) is set to zero.

2106 **Algorithm 6** High-Resolution MR Synthesis Pipeline

2107 **Require:** L , spacings s , affine A , stats $\{(\mu_\ell, \sigma_\ell)\}_{\ell=1}^K$, target spacing t

2108 1: Compute $\tilde{N}_x, \tilde{N}_y, \tilde{N}_z$ and \tilde{A} as above

2109 2: $L_\uparrow \leftarrow 0$ on Ω_t

2110 3: **for** $\ell = 1$ to K **do**

2111 4: $S_\ell \leftarrow \text{SURFACENETS}(L=\ell)$; smooth & fill holes

2112 5: $M_\ell \leftarrow \text{VOXELIZE}(S_\ell, \Omega_t)$

2113 6: $L_\uparrow[\text{where } M_\ell=1] \leftarrow \ell$ ▷ Assign label to voxelized region

2114 7: **end for**

2115 8: $I_{\text{syn}} \leftarrow 0$

2116 9: **for** $\ell = 1$ to K **do**

2117 10: $U \leftarrow \{\mathbf{p} \mid L_\uparrow(\mathbf{p}) = \ell\}$

2118 11: $I_{\text{syn}}[U] \leftarrow \text{NORMAL}(\mu_\ell, \sigma_\ell^2)$ ▷ IID draws

2119 12: **end for**

2120 13: $I_{\text{syn}} \leftarrow \text{GAUSSIANBLUR}(I_{\text{syn}}, \sigma=0.75)$

2121 14: **return** $(I_{\text{syn}}, L_\uparrow, \tilde{A})$

2123 **Randomization and metadata.** All stochastic draws are seeded per subject (seed = `base_seed`
 2124 + `subject_id`) for exact reproducibility.² All outputs are written as NIfTI files with same origin
 2125 and directions as the original images, but with a voxel spacing of $t = 0.25$ mm.

2126

2127 K.2 BASELINES

2128

2129 We augment FireANTs (Jena et al., 2024a) with FFDP to enable scalable image registration at high
 2130 resolutions. The methods and their hyperparameter settings are described below:

- 2132 • **CLAIRE**(Mang et al., 2019): CLAIRE is a velocity-based diffeomorphic registration
 2133 framework optimized for distributed GPU/CPU execution via MPI. We use the official
 2134 repository inside a custom multi-GPU Docker image that adds CUDA-aware Open MPI
 2135 (v4.0.3; CUDA 11), since the official container supports only single-GPU runs. We launch
 2136 one MPI rank per GPU and bind each rank to a distinct device via a lightweight wrapper that
 2137 maps `OMPI_COMM_WORLD_RANK` to `CUDA_VISIBLE_DEVICES`, enabling data-parallel
 2138 execution across N GPUs. We keep default solver settings, request deformation maps
 2139 (`-defmap`), and set the continuation parameter `-betacont 7.75e-04` following the
 2140 official examples; all other hyperparameters use documented defaults, including the iteration
 2141 cap (`-maxit 50`). Full-resolution runs use 4 GPUs (4 ranks), while half/quarter resolutions
 2142 use a single GPU (1 rank).
- 2143 • **ITK-DReg(itk)**: ITK-DReg is a CPU-based, distributed, out-of-memory registration
 2144 framework built on ITK and `dask.distributed`, formulating registration as block-
 2145 wise map-reduce. We use the `itk_dreg` pipeline with Elastix in deformable-only B-
 2146 spline mode: the metric is `AdvancedNormalizedCorrelation` with three pyramid levels
 2147 (`NumberOfResolutions=3, GridSpacingSchedule=[4, 2, 1]`), optimized via
 2148 `AdaptiveStochasticGradientDescent` with `MaximumNumberOfIterations=500`. We
 2149 use random sampling with `NumberOfSpatialSamples=5000` (refreshed each iteration).
 2150 Registration operates in voxel units with `FinalGridSpacingInVoxels=20` and
 2151 `BSplineTransformSplineOrder=3`. To scale to high resolutions, the fixed
 2152 image is tiled into 256^3 -voxel chunks with 25% overlap per axis; per-block results are
 2153 reduced to a global displacement field defined on a grid subsampled by a factor of
 2154 4. ITK threading is set via `SetGlobalDefaultNumberOfThreads=24` (reported
 2155 `GetGlobalMaximumNumberOfThreads=128`).
- 2156 • **FireANTs + FFDP (Ours)**(Jena et al., 2024a): We use the official repository and scripts,
 2157 except for our proposed modules (grid sampler, LNCC, and Mutual Information). We
 2158 perform registration using the multi-scale of $4\text{mm}, 2\text{mm}, 1\text{mm}, 500\mu\text{m}$, and $250\mu\text{m}$ for
 2159 $200, 200, 200, 100, 25$ iterations. We also truncate the optimization at 1mm and $500\mu\text{m}$
 2160 resolutions to verify the performance of the method at downsampled resolutions. We use

²We use `base_seed = 2025` in our experiments.

2160 our Fused LNCC implementation with a window size of 7, and a learning rate of 0.5. The
 2161 smoothing kernels are chosen with a $\sigma_{warp} = 0.5$ pixels, and $\sigma_{grad} = 1.0$ pixels.
 2162

2163 We also evaluate against state-of-the-art deep learning methods:
 2164

- 2165 • **SynthMorph**(Hoffmann et al., 2021): SynthMorph uses an acquisition-free synthetic data
 2166 generation pipeline to train a registration network. We use the default `mri_synthmorph`
 2167 script provided by the vendor. Since all images are affine-aligned, we use the deformable
 2168 registration mode `-m deform` with a regularization weight of `-r 0.25`.
- 2169 • **Vector-Field Attention** (Liu et al., 2024c): Vector-Field Attention (VFA) is a weakly-
 2170 supervised learning-based method utilizing a novel attention module to retrieve per-pixel
 2171 correspondence based on feature similarity. We evaluate using the pretrained model (trained
 2172 on OASIS data with weak label supervision) provided in the official repository.
- 2173 • **UnigradICON** (Tian et al., 2024): UnigradICON is a foundational registration model by
 2174 training on a composite dataset consisting of lung CT, knee MRI, Abdomen CT, brain MRI,
 2175 totalling more than 3 million image pairs, of which 4000 image pairs are sampled per epoch
 2176 to mitigate data imbalance. The model is trained with a bidirectional similarity loss and
 2177 an inverse consistency loss. UnigradICON also provides an instance optimization based
 2178 postprocessing step to improve the registration performance. We use the pretrained model
 2179 and scripts provided in the official repository, and compare performance with and without
 2180 the instance optimization step.
- 2181 • **TransMorph** (Chen et al., 2022): TransMorph is one of the first successful applica-
 2182 tion of transformer-based architectures for image registration, marking a departure from
 2183 traditional convolutional architectures. Compared to other convolutional architectures,
 2184 TransMorph demonstrates higher performance under domain shift Jian et al. (2024); Jena
 2185 et al. (2025; 2024b) among the deep learning methods. We use the pretrained model
 2186 (`TransMorph-Large` trained on the OASIS dataset) that is provided in the official
 2187 repository.
- 2188 • **Anatomix + ConvexAdam** (Dey et al., 2025): Anatomix is a feature extractor that is trained
 2189 to anticipate strong domain shift at training time and uses contrastive learning to extract
 2190 domain-agnostic features that mitigate the effect of nuisance factors. Anatomix shows strong
 2191 results on zero-shot registration on abdomen and myocardium. We use the pretrained model
 2192 and scripts provided in the official repository.

2194 We also acknowledge Quicksilver (Yang et al., 2017) as a relevant baseline that performs patch-based
 2195 registration. However, despite our best efforts with containerizing the environment (the dependencies
 2196 are no longer available or supported on modern hardware), we were unable to run this baseline on our
 2197 system.

2198 All deep learning methods are tested on 1mm , $500\mu\text{m}$, and $250\mu\text{m}$ resolutions. On $500\mu\text{m}$ and
 2199 $250\mu\text{m}$ resolutions, all methods run out of memory on a single NVIDIA A6000 GPU, and the methods
 2200 do not provide infrastructure to run on multiple GPUs. We adopt the patch-based registration strategy
 2201 adopted by the literature on high-resolution registration methods for histology (Wodzinski et al., 2024;
 2202 Lotz et al., 2015; Liang et al., 2021) as additional baselines with the above deep learning models
 2203 as registration backends. We choose (Hoffmann et al., 2021; Dey et al., 2025; Tian et al., 2024) as
 2204 general-purpose deep learning methods to mitigate the effect of domain shift due to patch-based
 2205 registration at higher resolutions, and (Liu et al., 2024c; Chen et al., 2022) as methods that are trained
 2206 with weak label supervision on the OASIS dataset to verify performance at 1mm resolution and
 2207 observe the performance at higher resolutions.

2208
 2209 • **Robust HD90 (Cumulative)** Hausdorff distance is a widely adopted boundary-based metric in
 2210 medical image registration. The conventional definition of HD90 (the 90th percentile Hausdorff
 2211 distance) simply reports the 90th percentile, but does not provide an average performance for all
 2212 surface boundaries. In contrast, we employ a modified formulation, which we denote as *cumulative*
 2213 *HD90*, designed to provide a more stable and comprehensive estimate. Specifically, rather than
 selecting the single distance value at the 90th percentile, we compute the mean of all surface distances

2214 up to the 90th percentile. Formally, given sorted distances $\{d_i\}_{i=1}^N$, we compute
 2215

$$2216 \quad \text{HD}_{90}^{\text{cu}} = \frac{1}{k} \sum_{i=1}^k d_i, \quad k = \lfloor 0.9 N \rfloor.$$

2219 Distances are computed bidirectionally between ground-truth and predicted surfaces using isotropic
 2220 voxel spacing, and the final HD90 is defined as the maximum of the two directional estimates.
 2221

2222 K.3 ADDITIONAL RESULTS AND DISCUSSION

2224 **Table 5** shows the performance comparison for all methods at different resolutions. All methods using
 2225 full-context (CLAIRE, ITK-DReg, FireANTs) show improvement in performance with resolution,
 2226 while all deep learning methods degrade in performance due to (a) progressive domain shift at higher
 2227 resolutions, even for models trained on multiple or synthetic data, and (b) unlike image registration for
 2228 histology slides, volumetric datasets like these require large deformations, and patch-based methods
 2229 do not provide the context to perform well at higher resolutions. In terms of efficiency, our method is
 2230 substantially more efficient, both on terms of wall clock time, and the total GPU-hours consumed.
 2231

2232 Although CLAIRE proposes a distributed GPU framework, the usage of scaling-and-squaring (which
 2233 requires performing an integral and its adjoint computation every iteration) and other line search
 2234 subroutines consume a considerable amount of resources. On the faux-OASIS dataset at full resolution,
 2235 CLAIRE runs out of memory with 1 and 2 GPUs, and does not work on 3 GPUs due to indivisibility
 2236 of the image size by 3. So the minimum number of GPUs required to run CLAIRE is 4. Our
 2237 method runs on a single GPU, but does not require the image sizes to be divisible by the number of
 2238 GPUs, or any other qualitative constraints, allowing researchers to simply plug in their inputs and run
 2239 their workflows. For large-scale volumetric image registration problems, our method achieves three
 2240 orders of magnitude of speedup over CLAIRE while enabling multimodal support and arbitrarily loss
 2241 functions of choice.
 2242

2243 K.4 QUALITATIVE RESULTS

2244 Qualitative results are shown in [Figs. 16 to 18](#). With the exception of CLAIRE, ITK-DReg, and Ours,
 2245 all methods get progressively worse as the resolution increases.
 2246
 2247
 2248
 2249
 2250
 2251
 2252
 2253
 2254
 2255
 2256
 2257
 2258
 2259
 2260
 2261
 2262
 2263
 2264
 2265
 2266
 2267

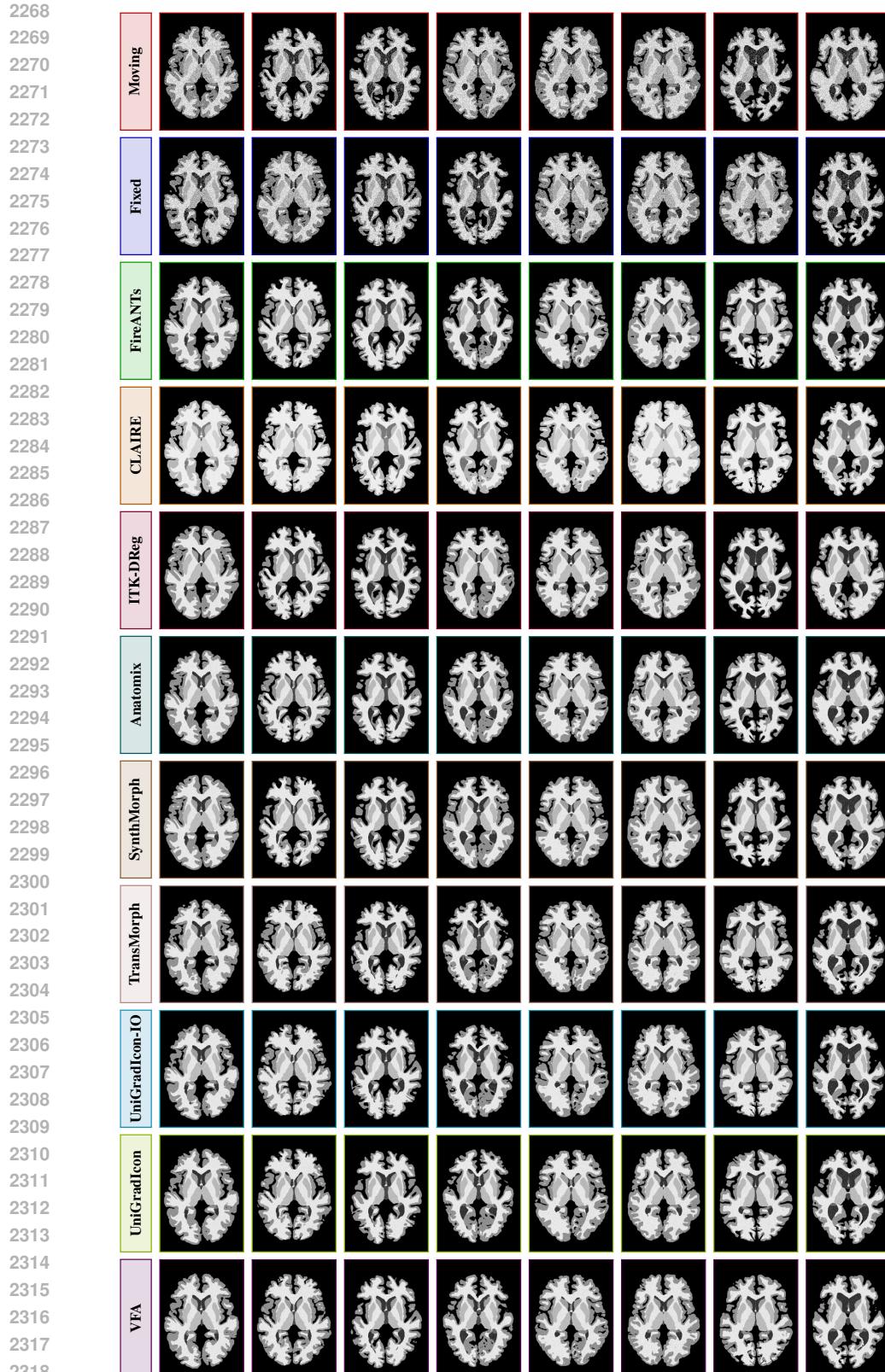
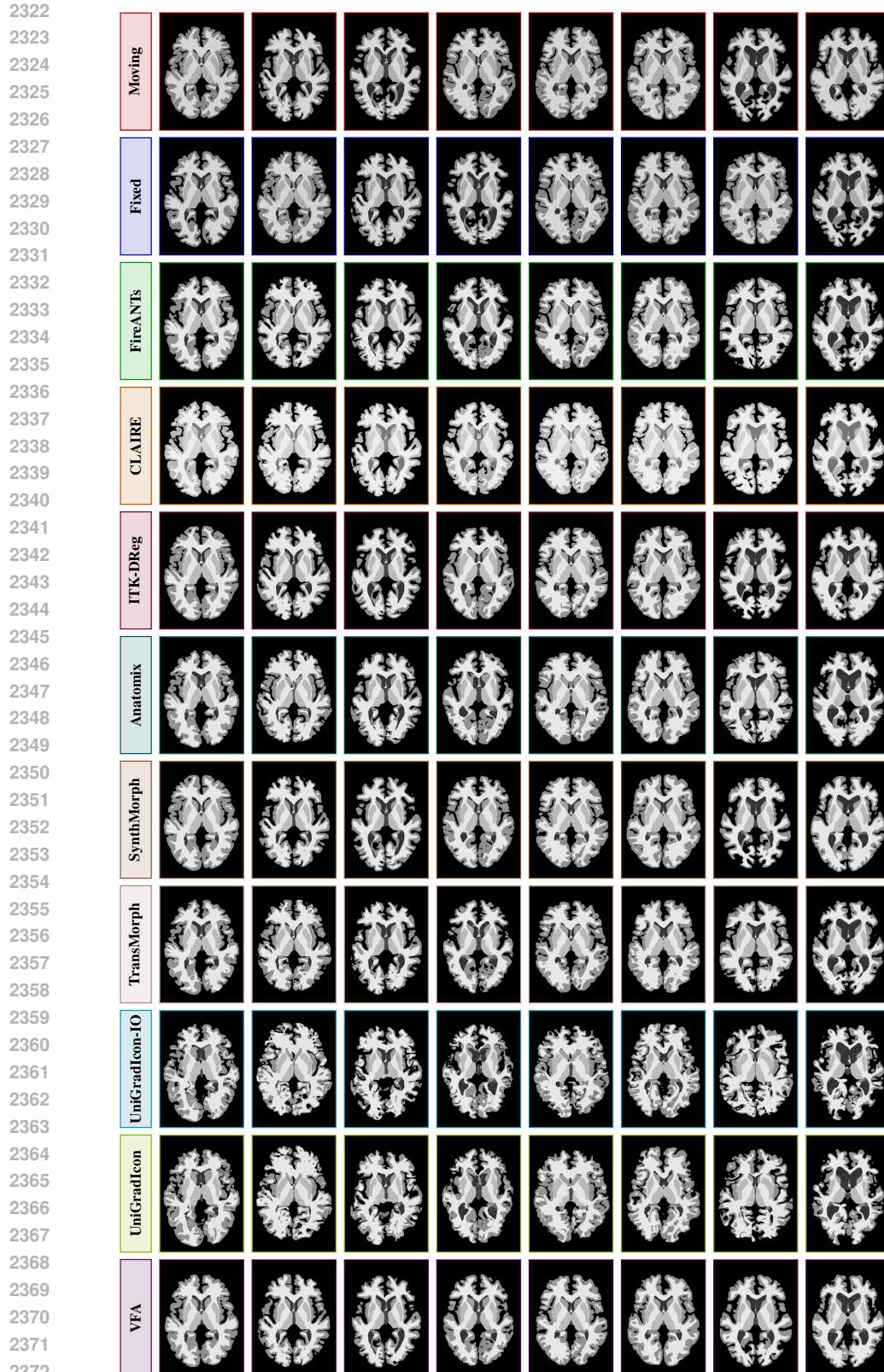


Figure 16: Qualitative comparison of registration results at **1 mm**. Each row corresponds to the moving image, fixed image, or one of the registration methods, with 8 representative slices per row. The comparisons illustrate visual alignment quality and anatomical consistency across methods.



2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375

Figure 17: Qualitative comparison of registration results at **500um**. Each row corresponds to the moving image, fixed image, or one of the registration methods, with 8 representative slices per row. The comparisons illustrate visual alignment quality and anatomical consistency across methods.

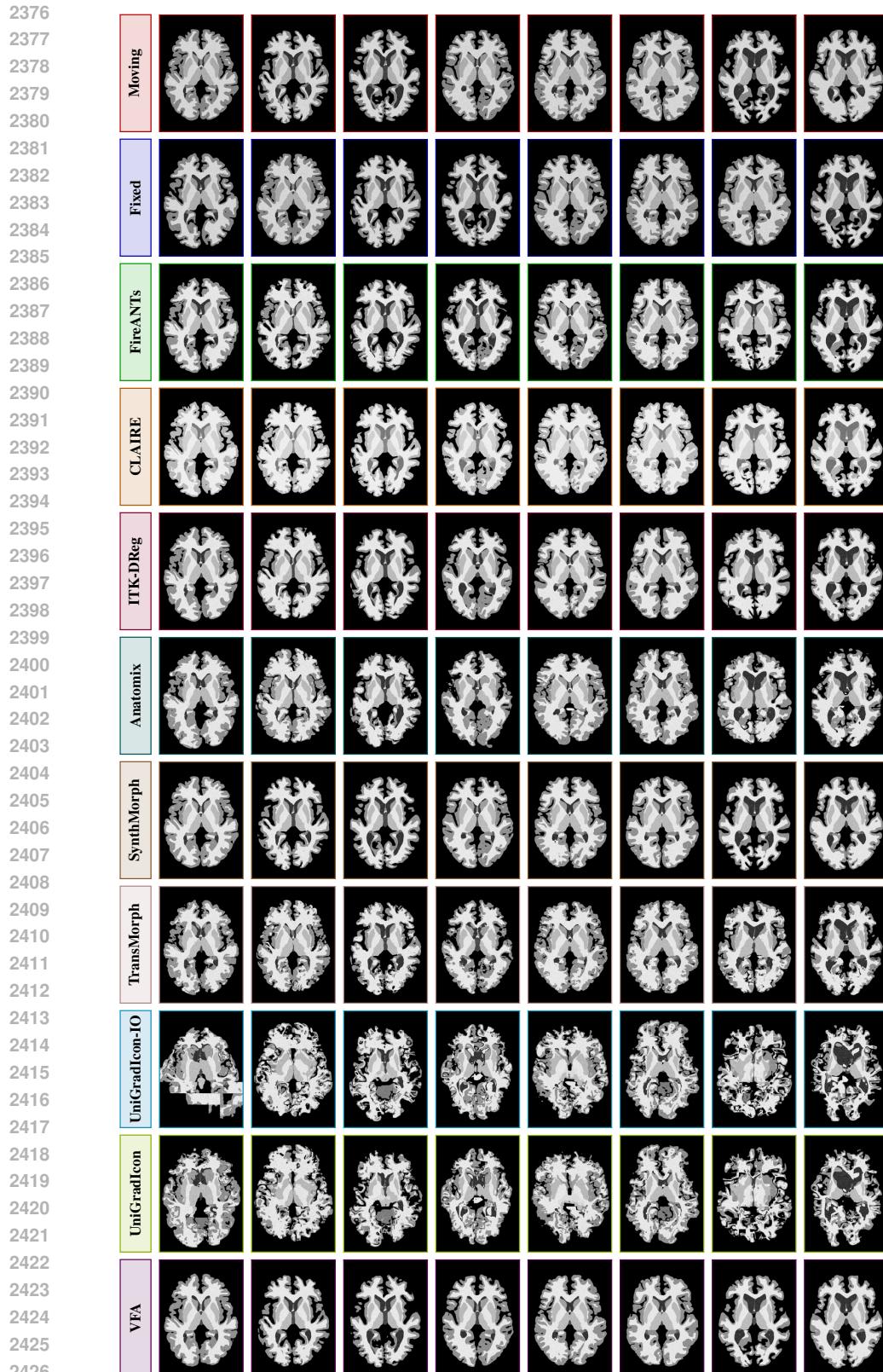


Figure 18: Qualitative comparison of registration results at **250um**. Each row corresponds to the moving image, fixed image, or one of the registration methods, with 8 representative slices per row. The comparisons illustrate visual alignment quality and anatomical consistency across methods.



Figure 19: Patch pairs seen during registration for patch-based methods: For the 1mm isotropic images, there is only a single patch, i.e. the entire image. Deep learning methods utilize the global spatial context to perform accurate registration. At 500 μ m isotropic, the patches still have large spatial context, but the images are out-of-distribution, leading to *degraded* performance Fig. 5a. At 250 μ m isotropic, there is no meaningful spatial context and the patches are completely out-of-distribution, leading to poor performance for all patch-based methods.

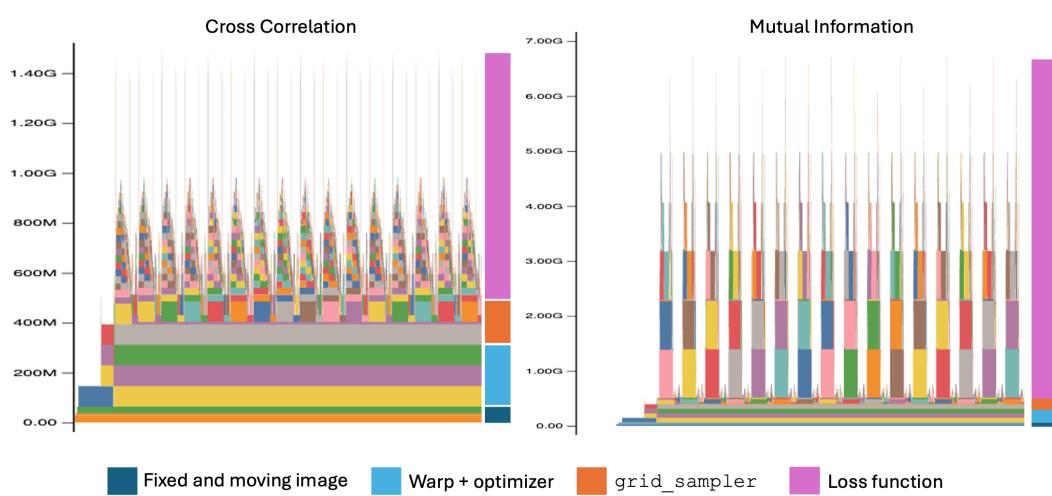


Figure 20: Flamegraph of FireANTs for Cross Correlation (left) and Mutual Information (right) losses on the OASIS dataset. The flamegraph is annotated on the right with colored blocks denoting the memory overheads for the fixed and moving images, the warp field and its optimizer state, the `grid_sampler` operation, and the loss function. Most of the computational overhead is due to the loss function, followed by the `grid_sampler` operation. This motivates the use of fused kernels to eliminate intermediate memory overheads.