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Abstract
Buildings consume 40% of global energy, with
HVAC systems responsible for up to half of that
demand (IEA, 2024). As energy use grows, opti-
mizing HVAC efficiency is critical to meeting cli-
mate goals (Santamouris, 2016). While reinforce-
ment learning (RL) offers a promising alternative
to rule-based control, real-world adoption is lim-
ited by poor sample efficiency and generalisation
(Nagy et al., 2023). We introduce HVAC-GRACE,
a graph-based RL framework that models build-
ings as heterogeneous graphs and integrates spa-
tial message passing directly into temporal GRU
gates. This enables each zone to learn control
actions informed by both its own history and its
structural context. Our architecture supports zero-
shot transfer by learning topology-agnostic func-
tions—but initial experiments reveal this benefit
depends on sufficient conditioned zone connec-
tivity to maintain gradient flow. These findings
highlight the promise and requirements of scal-
able, transferable building control.

1. Introduction and Related Work
Most buildings use rule-based thermostats with static set-
points, despite advanced strategies that could significantly
reduce HVAC energy consumption (Drgoňa et al., 2020)
and provide grid flexibility while reducing emissions (Zhou
et al., 2023). While model-based, data-driven, and learning-
based methods show promise, they lack generalisation and
require extensive training, limiting deployment across build-
ings (Wang & Hong, 2020; Nagy et al., 2023).

Model Predictive Control requires costly building-specific
models, while RL suffers from sample inefficiency, often
needing years of training (Krishna et al., 2023) during which
buildings experience suboptimal performance (Zhang et al.,

1Anonymous Institution, Anonymous City, Anonymous Region,
Anonymous Country. Correspondence to: Anonymous Author
<anon.email@domain.com>.

Preliminary work. Under review by the International Conference
on Machine Learning (ICML). Do not distribute.

2021). Pretraining in simulation is impractical due to sim-
ulator development costs. Furthermore, policies struggle
to transfer between buildings due to varying characteristics
(Zisman et al., 2023; Zhang et al., 2022), requiring retraining
for each deployment. Recent RL and transfer-learning stud-
ies (Xu et al., 2020; Berkes, 2024) and morphology-aware
methods in robotics (Wang et al., 2018; Huang et al., 2020;
Gupta et al., 2022) show that structure helps, but buildings
pose unique heterogeneity and coupling challenges.

Our work addresses a fundamental limitation: treating build-
ings as generic control problems using flat policies applied
to concatenated state vectors that ignore inherent structural
organisation. Buildings exhibit complex spatial and tempo-
ral relationships—zones have thermal adjacency determin-
ing heat transfer, weather affects zones differently based
on orientation and insulation, and HVAC equipment has
local effects propagating through structure. These relation-
ships remain consistent across conditions, suggesting that
structure-aware policies could transfer more effectively than
those learning implicit representations from scratch.

Research in robotics demonstrates that structure-aware ap-
proaches improve RL performance. NerveNet (Wang et al.,
2018) showed that encoding morphological structure as
graphs enables better sample efficiency and generalisation
by sharing parameters across similar components and ex-
plicitly modeling physical relationships. This trend extends
to other morphology-aware methods: SMP (Huang et al.,
2020) leverages graph representations for similar benefits,
while Metamorph (Gupta et al., 2022) uses morphology-
aware transformers to capture structural dependencies.

However, buildings present distinct challenges: heteroge-
neous node types with different thermal properties, complex
multi-timescale dynamics, and variable control topologies
requiring specialised architectural considerations.

Contributions: We introduce HVAC-GRACE (Graph
Reinforcement Adaptive Control Engine), the first graph-
based RL framework for building control.

We contribute (i) a heterogeneous graph representation for
HVAC, (ii) a unified spatial–temporal Graph RNN with
topology-agnostic functions, and (iii) empirical design in-
sights showing that adequate conditioned-zone connectivity
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(≈ 50%) is required for effective graph RL.

2. Methodology
2.1. Problem Formulation

We formulate HVAC control as a Markov Decision Process
(S,A,P, r, γ) where: S includes zone temperatures, out-
door weather (temperature, humidity), time features (hour,
day of year), and HVAC energy consumption (electricity,
gas);A represents heating and cooling temperature setpoints
for each controllable zone; P defines physics-based tran-
sitions through EnergyPlus (DOE, 2024) simulation; the
reward r(s, a) balances energy consumption and comfort
violations; and γ is the discount factor.

The agent learns a stochastic policy πθ(at|st) that
maximizes expected discounted return J(θ) =
Eπθ

∑∞
t=0 γ

tr(st, at).

2.2. Heterogeneous Building Graph Construction

We represent buildings as heterogeneous directed graphs
G = (V, E) with three node types:

Conditioned zones (Vc): Indoor spaces with thermostat
control that receive local observations and generate control
actions. Unconditioned zones (Vu): Indoor spaces with-
out active temperature control that provide thermal context.
Outdoor environment (Vo): A single node aggregating
weather conditions and temporal features.

Edge relationships E capture thermal connections: thermal
adjacency edges connect zones sharing surfaces, environ-
mental influence edges connect outdoor nodes to zones with
exterior surfaces, and self-loop edges enable temporal state
maintenance.

2.3. Temporal-Spatial Policy Architecture

Our policy processes heterogeneous building states through
two integrated stages, where spatial and temporal processing
are unified within Graph RNN cells.

Stage 1: Input Processing and Heterogeneous Graph
Construction Raw observations from the building simu-
lation must be transformed into a structured graph rep-
resentation that captures the building’s thermal topology.
Raw observations are first processed through type-specific
input MLPs and parsed into heterogeneous graph format:
xt = InputMLP(parsed obs), where observations are struc-
tured as node dictionaries with zone temperatures, weather
data, and temporal features mapped to their respective node
types. This preprocessing is essential because building
zones have different thermal characteristics (conditioned
vs. unconditioned vs. outdoor) and require type-specific
feature encoding to capture their distinct thermal behaviours

and control capabilities.

Stage 2: Integrated Spatial-Temporal Processing via
Graph RNN Traditional approaches handle temporal and
spatial dependencies separately: RNNs capture temporal
patterns but ignore spatial relationships (Lipton et al., 2015),
while GNNs capture spatial relationships but struggle with
long-term temporal dependencies (Scarselli et al., 2009).
However, in buildings these dependencies are tightly cou-
pled—how a zone’s temperature evolves depends critically
on what neighbouring zones are doing.

Our Graph RNN unifies these relationships by replacing
each GRU gate with a heterogeneous GNN. Standard GRU
gates (reset, update, and new gates) are the core mechanism
in RNNs for controlling how temporal memory is updated
at each timestep. By implementing these gates as GNNs
instead of simple linear transformations, we enable spa-
tial context from neighbouring nodes to influence temporal
memory updates.

Each heterogeneous GNN (HeteroGNN) performs type-
specific message passing: (1) compute messages using func-
tions f (type(u),type(v))

msg (hu) that encode thermal physics rela-
tionships, (2) aggregate messages m̄v = AGG({mu→v :
u ∈ N (v)}), and (3) update node representations via
f

type(v)
update (hv, m̄v). Instead of zones updating memory in iso-

lation, gates perform message passing across the building
graph::

rtraw = HeteroGNNreset(x
t, E) (1)

ztraw = HeteroGNNupdate(x
t, E) (2)

nt
raw = HeteroGNNnew(x

t, E) (3)

GNN outputs combine with previous hidden states through
type-specific transformations:

rtv = σ(rtraw,v +W type(v)
r ht−1

v ) (4)

ztv = σ(ztraw,v +W type(v)
z ht−1

v ) (5)

h̃t
v = tanh(nt

raw,v + rtv ⊙W
type(v)
h ht−1

v ) (6)

ht
v = (1− ztv)⊙ h̃t

v + ztv ⊙ ht−1
v (7)

This enables spatial context to influence temporal memory
updates. When Zone B computes its reset gate while adja-
cent Zone A is heating, the message function processes Zone
A’s state, affecting how Zone B updates its thermal mem-
ory—anticipating heat transfer and enabling coordinated
control decisions.

Stage 3: Type-Specific Action Generation After process-
ing through the Graph RNN, specialised policy heads gen-
erate control actions for conditioned zones only. For each
conditioned zone v ∈ Vc, we output Gaussian action distri-
bution parameters:

µv, log σv = f conditioned
policy (ht

v)
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Actions are sampled as av ∼ N (µv, exp(log σv)). Figure 1
shows the framework for the successful implementation of
HVAC-GRACE.

Figure 1. The integration of heterogeneous message-passing GNNs
within temporal GRU gates. This combined spatial-temporal model
provides a principled method for learning dynamic thermal inter-
actions across building zones.

2.4. Transferable Architecture

HVAC-GRACE is designed for zero-shot transfer by
learning type-specific functions that operate over node
types, rather than fixed input positions. Traditional RL
policies rely on fixed-dimensional state vectors a =
fMLP([x1, x2, . . . , xn]), making them incompatible with
changing building topologies.

In contrast, our Graph RNN uses message functions
f
(type(u),type(v))
msg , update functions f type(v)

update , and policy heads
f conditioned

policy that generalise across graph structures. These
compact MLPs remain invariant to the number of zones
or layout, enabling policy transfer without architectural
changes.

3. Experimental Setup
Implementation: We demonstrate our approach using a
6-zone commercial building model (a Small Hotel layout
with only 1 conditioned zone and 5 unconditioned zones)
simulated with EnergyPlus (DOE, 2024) through Minergym,
a Gym-compatible environment. The current preliminary
experiments focus on a scenario with Typical Meteorolog-
ical Year (TMY) weather data for Pike County, Alabama
(hot-humid climate) for training, with generalisation evalua-
tion on Montreal, Quebec weather data (continental climate)
to assess climate transferability. Comprehensive experi-
ments involving multiple building topologies, diverse cli-
mate zones, and systematic comparisons to baselines are
underway, aiming to thoroughly explore the transferability
and effectiveness of our proposed graph-based method.

Method: We implement the HVAC-GRACE approach, and
a comparison using PPO with identical hyperparameters:
64-dimensional hidden layers, PPO learning rate 3e-4, and
50K training timesteps (approximately 0.57 years). HVAC-
GRACE uses K = 2 message passing layers with GRU

Algorithm 1 HVAC-GRACE Training Algorithm
1: Input: Building epJSON file, training episodes N
2: G = (V, E)← ConstructGraph(epJSON)
3: Initialise policy πθ, critic Vϕ, Graph RNN states
{h0

v}v∈V
4: for episode = 1 to N do
5: Reset environment, initialise s0, {h0

v}v∈V
6: for timestep t = 0 to T − 1 do
7: Stage 1: Input Processing
8: parsed obs← ParseObservation(st)
9: xt ← InputMLP(parsed obs)

10: Stage 2: Graph RNN Processing
11: {ht

v}v∈V ← GraphRNNCell(xt, E , {ht−1
v }v∈V )

12: Stage 3: Action Generation
13: for each conditioned zone v ∈ Vc do
14: µv, log σv ← fpolicy(h

t
v)

15: Sample av ∼ N (µv, exp(log σv))
16: end for
17: Execute actions {av}v∈Vc , observe st+1, rt
18: end for
19: Update policy πθ and critic Vϕ using PPO
20: end for

cells for temporal encoding. Our reward balances energy
efficiency with occupant comfort:

rt = −λe · Energyt − λc ·
∑
v∈Vc

ComfortViolationtv

where the ComfortV iolation term measures quadratic
temperature deviations from the 20-24°C range. We set
λe = 1.0 and λc = 1.0 with equal weighting to balance
energy efficiency and occupant comfort.

4. Results
4.1. Feasibility of Graph-Based RL and Topology

Limitations

We first validate the feasibility of the HVAC-GRACE frame-
work, which integrates GNNs with recurrent units (GRUs)
for model-free reinforcement learning in HVAC control.
The model successfully generates control actions from struc-
tured, heterogeneous graph inputs, confirming the technical
viability of our novel spatial-temporal architecture. This re-
sult establishes the foundational capability to embed spatial
message passing within temporal memory updates.

We tested HVAC-GRACE on a DOE Small Hotel model
featuring six unconditioned zones and only one conditioned
zone—a highly imbalanced topology with just 14% of nodes
directly contributing to the policy gradient, as shown in Fig-
ure 2. This scenario revealed a fundamental limitation of
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graph-based control: with limited conditioned connectiv-
ity, the majority of the graph receives no learning signal.
This disrupts the gradient flow needed for effective message
passing, undermining the benefits of spatial reasoning.

Figure 2. Gradient propagation in HVAC-GRACE for (left) a well-
conditioned building and (right) the imbalanced Small Hotel topol-
ogy. Green nodes (conditioned zones) receive direct gradients
from policy heads; orange nodes (unconditioned zones) receive
gradients only through message passing connections. In sparse
topologies, limited conditioned connectivity disrupts gradient flow
to unconditioned zones, undermining graph-based learning.

This result illustrates that the success of our topology-
agnostic method hinges on having both sufficient condi-
tioned zones and connectivity to sustain gradient flow across
the building graph. Without it, spatial dependencies are
effectively unlearnable, and the model degrades to a single-
zone controller. See Appendix A for experimental results
on the Small Hotel topology and Appendix B for a detailed
gradient-flow analysis.

4.2. Transferability by Design

Our architecture generalises across building topologies with-
out retraining. Unlike flat policies, which are tightly coupled
to a fixed number of input zones, HVAC-GRACE learns ther-
mal interaction functions tied to node types. This enables
zero-shot transfer to new buildings by:

(1) parsing a new building’s epJSON file to extract node
and edge types, (2) loading pre-trained model weights un-
changed, and (3) performing inference directly with the
same type-specific functions.

This capability reduces deployment cost and complexity.
However, our initial experiments highlight an important
caveat: successful transfer requires sufficient connectivity
among conditioned zones. In topologies like the Small Ho-
tel, where only 14% of zones receive learning signals, the
graph-based reasoning mechanism fails to activate meaning-
fully, undermining generalisation. These findings suggest
that while HVAC-GRACE is structurally transferable, its
effectiveness depends on topological conditions that support
stable gradient propagation.

5. Discussion and Next Steps
While the current results did not yield immediate numerical
advantages, this exploration strongly emphasises the criti-
cal role of building topology in determining the utility of
structured RL representations. The demonstrated pipeline
and identification of topology-related limitations represent
essential steps toward achieving robust, scalable, and trans-
ferable RL-based HVAC control solutions in the future.

This preliminary result clearly illustrates that building topol-
ogy strongly determines the suitability and effectiveness of
graph-based reinforcement learning for HVAC control. We
hypothesise that successful graph-based learning necessi-
tates: A) Balanced Ratio of Conditioned Zones: A minimum
threshold (50–60%) of conditioned zones to ensure stable
gradient flow and meaningful message passing across the
building’s graph representation. B) Zones should exhibit
strong thermal interactions and sufficient spatial-temporal
coupling to generate rich and informative graph representa-
tions.

The Small Hotel’s 14% conditioned zone ratio is signifi-
cantly below this threshold, which explains the ineffective-
ness of the graph-based method in this initial demonstration.
Recognising these findings, our immediate ongoing research
includes:

Evaluating Alternative Topologies: We have already begun
testing the approach on other building configurations, no-
tably the DOE SmallOffice building, which exhibits a more
balanced ratio of conditioned zones and diverse thermal
interactions.

Defining the Applicability Threshold: Systematically identi-
fying which buildings and topologies benefit most from
graph-based RL, establishing clear guidelines on when
graph-based models provide substantial advantages over
simpler, non-structured RL approaches.

Exploring Offline Training and Transferability: Leverag-
ing the topology-agnostic nature of our method, we plan
extensive experiments training offline across diverse build-
ing topologies, which could substantially improve policy
robustness and transferability in practical, real-world de-
ployments.

Impact Statement
Graph-based policy architectures could enable the rapid,
cost-effective deployment of intelligent HVAC systems at
scale— providing a critical pathway toward the 50% reduc-
tion in building energy consumption needed to meet global
climate targets.
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K., Kim, D., Ollé, E. P., Oravec, J., Wetter, M., Vrabie,
D. L., et al. All you need to know about model predictive
control for buildings. Annual Reviews in Control, 50:
190–232, 2020.

Gupta, A., Fan, L., Ganguli, S., and Fei-Fei, L. Metamorph:
Learning universal controllers with transformers. arXiv
preprint arXiv:2203.11931, 2022.

Huang, W., Mordatch, I., and Pathak, D. One policy to con-
trol them all: Shared modular policies for agent-agnostic
control. In International Conference on Machine Learn-
ing, pp. 4455–4464. PMLR, 2020.

IEA. Energy efficiency 2024, 2024. URL
https://www.iea.org/reports/
energy-efficiency-2024. Licence: CC
BY 4.0.

Krishna, G. S. A., Zhang, T., Ardakanian, O., and Taylor,
M. E. Mitigating an adoption barrier of reinforcement
learning-based control strategies in buildings. Energy and
Buildings, 285:112878, 2023.

Lipton, Z. C., Berkowitz, J., and Elkan, C. A critical review
of recurrent neural networks for sequence learning. arXiv
preprint arXiv:1506.00019, 2015.

Nagy, Z., Henze, G., Dey, S., Arroyo, J., Helsen, L., Zhang,
X., Chen, B., Amasyali, K., Kurte, K., Zamzam, A.,
Zandi, H., Drgoňa, J., Quintana, M., McCullogh, S., Park,
J. Y., Li, H., Hong, T., Brandi, S., Pinto, G., Capozzoli,
A., Vrabie, D., Bergés, M., Nweye, K., Marzullo, T., and
Bernstein, A. Ten questions concerning reinforcement
learning for building energy management. Building and
Environment, 241:110435, 2023. ISSN 0360-1323.

Santamouris, M. Cooling the buildings–past, present and
future. Energy and Buildings, 128:617–638, 2016.

Scarselli, F., Gori, M., Tsoi, A. C., Hagenbuchner, M., and
Monfardini, G. The graph neural network model. IEEE
Transactions on Neural Networks, 20(1):61–80, 2009.
doi: 10.1109/TNN.2008.2005605.

Wang, T., Liao, R., Ba, J., and Fidler, S. Nervenet: Learning
structured policy with graph neural networks. In Interna-
tional conference on learning representations, 2018.

Wang, Z. and Hong, T. Reinforcement learning for build-
ing controls: The opportunities and challenges. Applied
Energy, 269:115036, 2020.

Xu, S., Wang, Y., Wang, Y., O’Neill, Z., and Zhu, Q. One
for many: Transfer learning for building hvac control. In
Proceedings of the 7th ACM international conference on
systems for energy-efficient buildings, cities, and trans-
portation, pp. 230–239, 2020.

Zhang, T., Baasch, G., Ardakanian, O., and Evins, R. On
the joint control of multiple building systems with rein-
forcement learning. In Proceedings of the Twelfth ACM
International Conference on Future Energy Systems, pp.
60–72, 2021.

Zhang, T., Afshari, M., Musilek, P., Taylor, M. E., and
Ardakanian, O. Diversity for transfer in learning-based
control of buildings. In Proceedings of the Thirteenth
ACM International Conference on Future Energy Systems,
pp. 556–564, 2022.

Zhou, X., Xue, S., Du, H., and Ma, Z. Optimization of
building demand flexibility using reinforcement learning
and rule-based expert systems. Applied Energy, 350:
121792, 2023. ISSN 0306-2619. doi: https://doi.org/10.
1016/j.apenergy.2023.121792.

Zisman, I., Kurenkov, V., Nikulin, A., Sinii, V., and
Kolesnikov, S. Emergence of in-context reinforce-
ment learning from noise distillation. arXiv preprint
arXiv:2312.12275, 2023.

5

https://energyplus.net/
https://energyplus.net/
https://www.iea.org/reports/energy-efficiency-2024
https://www.iea.org/reports/energy-efficiency-2024


275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329

HVAC-GRACE: Transferable Building Control via Heterogeneous Graph Neural Network Policies

A. HVAC-GRACE Performance Analysis
Table 1 compares PPO and HVAC-GRACE performance on our generalisation test (Alabama training → Montreal evaluation).
HVAC-GRACE’s substantially worse performance stems from the building topology creating sparse graph connectivity
that leads to zero gradient flows during training, preventing effective policy optimisation. We find that using a flat MLP
value function does not improve the performance of HVAC-GRACE either, suggesting that the graph-structured policy
is fundamentally ill-suited for this building topology with predominantly unconditioned zones and sparse inter-zone
connectivity.

Table 1. Performance Comparison: Alabama Training → Montreal Generalisation

Method Alabama Montreal Gap

PPO (MLP Policy + MLP Value) -118.89 -158.46 39.57
HVAC-GRACE (Graph Policy + Graph Value) -353.30 -368.27 14.97

B. Gradient-Flow Pathology in Sparse Topologies
Why insufficient conditioned connectivity breaks graph learning.

Gradient Flow Mechanics: Policy gradients originate exclusively from conditioned zones that generate actions through
policy heads. For graph-based learning to succeed, these gradients must propagate through message passing connections to
create meaningful representations across the entire building graph.

• Normal case (balanced topology). Gradients originate at multiple conditioned zones and propagate to neighbors
via bidirectional message passing. This creates rich learning signals across the graph: conditioned zones receive
direct policy gradients, while unconditioned zones receive gradients through bidirectional Conditioned-Unconditioned
message functions during backpropagation.

• Sparse case (low conditioned connectivity). When buildings have few conditioned zones relative to total nodes, the
majority of the graph receives severely limited gradient signals. This leads to weak learning in unconditioned zones
that depend entirely on sparse policy gradient sources, where message functions may not develop strong computational
dependencies, and where unconditioned zones’ influence on policy decisions may be minimal in the reward structure.
In extreme cases like the Small Hotel topology mentioned in prior work (14% conditioned connectivity), unconditioned
zones may lack direct connections to conditioned zones entirely, resulting in complete gradient isolation and rendering
graph-based learning ineffective for these nodes.

• Outdoor node gradient isolation. Outdoor nodes receive zero gradients because edges are unidirectional (Out-
door→Conditioned/Unconditioned only) by physical design, as buildings do not influence outdoor weather conditions.
While the Outdoor→Conditioned message functions still receive gradients and can learn optimal weather processing,
the outdoor node representations themselves cannot adapt. This represents a fundamental architectural choice where
physical realism constrains gradient flow.

• Empirical symptoms. High return variance (unstable learning), low explained variance in the graph-based value
network (indicating poor state representation), negligible attention weights on message passing edges, and worse
performance than a flat MLP baseline despite the sophisticated graph architecture.

Critical threshold hypothesis: Based on these findings, we hypothesise that effective graph-based HVAC control
requires approximately 50-60% conditioned zone connectivity to maintain sufficient gradient density for stable learning
across the building graph.

Building topology recommendations: Our method is best suited for buildings with dense thermal coupling between
conditioned zones, such as open-plan offices, educational facilities, and residential buildings where zones share
significant thermal boundaries. Buildings with isolated conditioned zones (e.g., hotel rooms with individual HVAC
units, data centers with isolated server zones) may not benefit from graph-based approaches due to limited inter-zone
message passing opportunities. The ideal topology features bidirectional thermal connections between most conditioned
zones and meaningful thermal influence from unconditioned spaces like atriums or shared mechanical areas.
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Future research directions: The current architecture processes outdoor conditions through dedicated outdoor nodes
that cannot receive gradients due to physical constraints on edge directionality. Future research will investigate whether
removing outdoor nodes and directly incorporating weather features into each zone’s representation improves learning
efficiency by providing gradient-accessible weather processing while maintaining physical interpretability of the
building graph structure. Additionally, we will conduct systematic investigations of graph topology effects on learning
performance, including quantitative analysis of the relationship between conditioned zone connectivity ratios and
training stability, comparative studies across diverse building archetypes with varying thermal coupling patterns, and
development of graph topology metrics that can predict the suitability of buildings for graph-based HVAC control
methods.
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