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Abstract

Nonlinear activation functions are widely recognized for enhancing the expressivity
of neural networks, which is the primary reason for their widespread implementa-
tion. In this work, we focus on ReLU activation and reveal a novel and intriguing
property of nonlinear activations. By comparing enabling and disabling the nonlin-
ear activations in the neural network, we demonstrate their specific effects on wide
neural networks: (a) better feature separation, i.e., a larger angle separation for
similar data in the feature space of model gradient, and (b) better NTK condition-
ing, i.e., a smaller condition number of neural tangent kernel (NTK). Furthermore,
we show that the network depth (i.e., with more nonlinear activation operations)
further amplifies these effects; in addition, in the infinite-width-then-depth limit,
all data are equally separated with a fixed angle in the model gradient feature space,
regardless of how similar they are originally in the input space. Note that, without
the nonlinear activation, i.e., in a linear neural network, the data separation remains
the same as for the original inputs and NTK condition number is equivalent to
the Gram matrix, regardless of the network depth. Due to the close connection
between NTK condition number and convergence theories, our results imply that
nonlinear activation helps to improve the worst-case convergence rates of gradient
based methods.

1 Introduction

It is well known that nonlinear activation functions increase the expressivity of neural networks, which
is the primary reason of their widespread implementation. A nonlinearly activated neural network
can approximate any continuous function to arbitrary precision, as long as there are enough neurons
in the hidden layers [[13}|7,/12], while without it — as in a linear neural network, the network reduces
to linear models of the input. In addition, deeper neural networks, which have more nonlinearly
activated layers, have exponentially greater expressivity than shallower ones [32] 28, 29| 22| 34],
indicating that the network depth promotes the power of nonlinear activation functions.
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In this paper, we reveal a novel and interesting effect of nonlinear activations that has not been previ-
ously noticed, despite their widespread application: the nonlinearity leads to larger data separation in
the feature space of model gradient, and helps to decrease the condition number of neural tangent
kernel (NTK). We also show that the depth of the network further amplifies these effects, namely,
a deeper neural network has a better feature separation and a smaller NTK condition number, than
a shallower one. While distinct and independent from the property of increasing expressivity, this
property of nonlinear activations resembles the former in the manner that the effects vanish in the
absence of nonlinear activations: removing the nonlinear activations in a neural network, the data
separation and NTK condition number reduce to values observed in a linear model. Hence, the effect
purely attributes to the presence of nonlinear activations.

Specifically, we first show the better separation phenomenon, i.e., improved separation for similar
data in the model gradient feature space. We prove that, for a wide ReLU network f, any pair of
data input vectors x and z that have similar directions (i.e., small but non-zero angle 6,,, between x
and z) become more directionally separated in the model gradient space (i.e., model gradient angle
¢ between V f(x) and V f(z) is larger than 6;,,,) with high probability of random initialization. We
also find that deeper ReLU networks result in even better feature separation, i.e., larger ¢. Ultimately,
in the infinite-width-then-depth limit, all data are equally separated with an angle ~ 75.5° in the
model gradient feature space, regardless of the input angle 6;,,, as long as 6;,, is non-zero. Numerical
simulation also show that the better separation phenomenon generalizes to other commonly used
nonlinear activation functions, including GeL.U, tanh, etc.

We further show the better NTK conditioning property of nonlinear activation, i.e., smaller NTK
condition number. We prove that, as a consequence of the better feature separation, the NTK condition
number of a wide ReLU network is strictly smaller than that without the nonlinearity, when the
training dataset is not degenerate (i.e., no pair of training inputs are parallel). Moreover, with a larger
depth, the NTK condition number becomes smaller. The intuition is that, if there exists a pair of
similar inputs x and z in the training set (i.e., the angle between x and z is small), which is usually
the case for large datasets, then NTK of linear neural networks must have close-to-zero smallest
eigenvalues, resulting in extremely large NTK condition numbers. The activation makes these similar
data more separated, hence it helps to increase the smallest eigenvalues of NTK, which in turn leads
to a smaller NTK condition number. We further show that, in the inﬁnite;\zfidth—then—depth limit, the
n

NTK condition number of ReLU network converges to a fixed number “<=, which is independent of

the data distribution and much smaller than typical NTK condition numbers.

Connection with optimization theory. While there could be multiple implications of the above
property in various aspects, here we present its connection with existing optimization theories. Recent
optimization theories showed that the NTK condition number «, or the smallest eigenvalue of NTK,
controls the theoretical convergence rate of gradient descent algorithms on wide neural networks
[9, 8 |20]. Combined with these theories, our findings imply that: (a), the activation function has
the effect of improving the worst-case convergence rate of gradient descent, and (b), deeper wide
ReLU networks have faster convergence rate than shallower ones. Previous works often focus on
accelerating convergence via a better function of x while assuming « is given and fixed. Our findings
provide a different perspective of achieving acceleration by tuning « itself. Experimentally, we indeed
find that deeper networks converge faster than shallower ones.

Contributions. We summarize our contributions below. We find that:

* Nonlinear activation functions induce better separation between similar data in the feature space of
model gradient. A larger network depth amplifies this better separation phenomenon.

* Nonlinear activations have the effect of decreasing the NTK condition number. A larger depth of
the network further enhances this better NTK conditioning property.

* This better NTK conditioning property leads to faster convergence rate of gradient descent. We
empirically verify this on various real world datasets.

The paper is organized as follow: Section [2|describes the setting and defines the key quantities and
concepts, and analyzes linear neural networks as the baseline for comparison; Section [3]and [ discuss
our main results on the better separation and better conditioning of nonlinear activation, respectively;
Section [5]discusses the implication on theoretical convergence rates; Section [6] concludes the paper.
Proofs of theorems and main corollaries can be found in the appendix.



1.1 Related work

NTK and its spectrum have been extensively studied [19, |S, 21} [10L 11} 36l 25} |4} 6], since the
discovery of constant NTK for infinitely wide neural networks [17]]. [33] shows that the NTK
spectrum of an infinitely wide ReLLU network asymptotically exhibits a power law. Its distribution
is further shown to be similar to that of Laplace kernel [11}|6], and can be computed [[10]. Nguyen,
Mondelli, and Montufar [25]] analyzed the upper and lower bounds for the smallest NTK eigenvalue
in O() and (), respectively. With the assumption of spherically uniformly distributed data where the
spectrum of (elementary-wise) power of the Gram matrix becomes simplified, [23|], utilizing Hermite
polynomials and power series expansion of NTK, provides the order of the smallest eigenvalue
of the NTK of two-layer ReLLU network in the infinite width limit. Under the same data setting,
[3] computed the NTK eigenvalues for the two-layer ReLU network. Relying on the values of
off-diagonal entries of the NTK matrix in the infinite depth limit, another work [36] analyzed the
asymptotic dependence of the NTK condition number on the network depth L for ReLU networks,
which shows a decreasing trend as L increases, consistent with our result.

In contrast to prior works, we are able to distill the effect of ReLU activation function via a sharp
comparison between scenarios with and without ReLLU, at any finite depth without data distribution
assumption. Note that, without an assumption on data distribution, NTK spectral analysis becomes
much harder and many data-distribution-dependent results may not hold any more. Moreover, at finite
depth, off-diagonal entries of the NTK matrix has not converged and are typically quite different
from its infinite depth limit, which makes analysis even harder.

We are aware of a prior work [2] which has results of similar flavor. It shows that the depth of a
linear neural network may help to accelerate optimization via an implicit pre-conditioning of gradient
descent. We note that this prior work is in an orthogonal direction, as its analysis is based on the
linear neural network, which is activation-free, while our work focus on the better-conditioning effect
of activation functions.

2 Setup and Preliminaries

Notations for general purpose. We denote the set {1,2,--- ,n} by [n]. We use bold lowercase
letters, e.g., v, to denote vectors, and capital letters, e.g., A, to denote matrices. Given a vector, || - ||
denotes its Euclidean norm. Inner product between two vectors is denoted by (-, -). Given a matrix A,
we denote its i-th row by A;., its j-th column by A.;, and its entry at i-th row and j-th column by
A, ;. We also denote the expectation (over a distribution) of a variable by E[-], and the probability of
an event by P[-]. For a model f(w;x) which has parameters w and takes x as input, we use V f to
denote its first derivative w.r.t. the parameters w, i.e., Vf := df/0w.

(Fully-connected) neural network. Letx € R? be the input, m; be the width (i.e., number of
neurons) of the [-th layer, WO e Rmuxmi-1 | ¢ [L + 1], be the matrix of the parameters at layer
[, and o(z) be the activation function, which is applied element-wise. A (fully-connected) neural
network f, with L hidden layers, is defined as:

a9 (x) =x
oz(l)(x) = \/\/%U (W(l)a(lfl)(x)> , Vie{1,2,---,L}, (D
fx) = WP (x),

1

where ¢, = (E.n0,1)[0(2)?]) . For the special case of ReLU activation function: o(z) =

max{0, z}, ¢, = 2. We also denote &(") (x) £ \/%W(l)a(l’l)(x). Following the NTK initialization
scheme [17]], these parameters are randomly initialized i.i.d. according to the normal distribution

N (0, 1). The scaling factor /¢, /+/my is introduced to normalize the hidden neurons [§]]. We denote
the collection of all parameters by w.

Remark 2.1. In this paper, we consider the bias-free setting where no bias term is included when
computing the hidden neurons in Eq.(I). In fact, the bias term can potentially lead to different results,
as have been noticed in [|16)].



Without loss of generality, we set the layer widths as
mo=d, mpy1 =1, andm; =m, V1€ [L]. 2)

and call m as the network width. In the rest of the paper, we typically consider wide neural networks,
i.e., networks with large widths m and fixed depths L.

Linear neural network. For a comparison purpose, we also consider a linear neural network f,
which is the same as the neural network f defined above, except that the activation function is the
identity function o'(z) = = and that the scaling factor of Eq.(1) is 1//m.

Model gradient feature and neural tangent kernel (NTK). Given a model f (e.g., a neural
network) with parameters w, we call the the derivative of model f with respect to all its parameters
as the model gradient feature vector V f (w; x) for the input x. The NTK K is defined as

K(w;x1,%2) = (Vf(w;x1), Vf(W;x2)), ©)

where x; and xo are two arbitrary network inputs. For a given dataset D = {(x;, y;)},, there is a
gradient feature matrix F such that each row F;.(w) = V f(w;x;) for all ¢ € [n]. The n x n NTK
matrix K (w) is defined such that its entry K;;(w), 4, € [n], is K(w; x;,X;). It is easy to see that
the NTK matrix

K(w) = F(w)F(w)". @)
Note that the NTK for a linear model reduces to the Gram matrix G € R*? where each row of the
matrix X is an input feature x;, i.e., X;. = X;T.
As pointed out by [21, |19, [17]], a neural network with large width m is approximately a linear model
on the model gradient features V f(wo; x):

F(wix) = f(wo;x) + V f(wo; )" (W — wo) + O(1/v/m). ®)

Hence, the training dynamics of a wide neural network is largely controlled by the model gradient
features of the training samples. We will see that the model gradient angle, i.e., the angle between
the model gradient features of an arbitrary pair of inputs, is a key quantity that measures the
mutual relations between training samples and is closely related to the NTK condition number and
convergence rate.

Definition 2.2 (Model gradient angle). Given two arbitrary inputs X,z € R?, define the model
gradient angle as the angle between the model gradient vectors V f(x) and V f(z):

(Vi(x),V(2)) )
VIV

#(x,z) = arccos (

Condition number. The condition number k of a positive definite matrix A is defined as the ratio
between its maximum eigenvalue and minimum eigenvalue:

K = Amaz (A)/)\mzn (A) (6)

In the rest of the paper, we specifically denote the NTK matrix, NTK condition number and model
gradient angle for the neural network as K, k and ¢, respectively, and denote their linear neural
network counterparts as K, k and ¢, respectively. We also denote the condition number of Gram
matrix G by kq.

2.1 Without nonlinear activation: the baseline for comparison
To distill the effect of the nonlinear activation function, we need a activation-free case as the baseline
for comparison. This baseline is the linear neural network f, with the same width and depth as f.

Theorem 2.3. Consider a linear neural network f. In the limit of infinite network width m — oo
and at network initialization wy, the following relations hold:

s for any input x € R%, ||V f(wo; x)|| = (L + 1)|]x]|.

s for any inputs X,z € R%, ¢(x,2) = 0;,,(x,2).



This theorem states that, without a nonlinear activation function, the model gradient map V f : x —
V f(x) does not change the geometrical relationship between any data samples. For any input pairs,
the model gradient angle ¢ remains the same as the input angle 6;,,. Therefore, it is not surprising
that the NTK of a linear network is the same as the Gram matrix (up to a constant factor), as formally
stated in the following corollary (which can also be consistently obtained using Theorem 1 of [17]).

Corollary 2.4 (NTK condition number without activation). Consider a linear neural network f. Inthe
limit of infinite network width m — oo and at network initialization, the NTK matrix K = (L+1)2G.
Moreover, k = Ky.

This corollary tells that, for a linear neural network, regardless of its depth L, the NTK condition
number & is always equal to the condition number x( of the Gram matrix G. Therefore, any non-zero
deviations, d¢ £ ¢ — 0y, from the input angle 6;,,, and 0k £ K — Ko from the Gram condition
number £, observed for a nonlinearly activated network f, should be attributed to the corresponding
nonlinear activation.

3 Better separation in model gradient space

In this section, we show that the nonlinear activation function helps data separation in the model
gradient space. Our theoretical analysis will focus on the special case of ReLLU, and the results will be
numerically verified on other nonlinear activations as well. Specifically, for two arbitrary inputs x and
z with small 6;,,(x, z), we show that the model gradient angle ¢(x, z) is strictly larger than 6;,,(x, z),
implying a better angle separation of the two data points in the model gradient space. Moreover, we
show that the model gradient angle ¢(x,z) monotonically increases with the number of layers L,
indicating that deeper network (more ReLU nonlinearity) has better angle separation.

First, we introduce an auxiliary quantity, [-embedding angle 6 (x, z), which measures the angle
between two hidden vectors o) (x) and a(*)(z) at infinite width, and an auxiliary function g :
[0,7) — [0,7) with g(z) = arccos (== cos z + 1 sin z). We also denote the [-fold composition
of g(-) as g°'. Please see Appendixfor the plot of the function and detailed discussion about its
properties. As a highlight, g has the following property: g is approximately (but less than) the identity
function g(z) = z for small z, i.e., 2 < 1.

The following lemma gives the relation between the model gradient angle ¢ of any two inputs and
their original input angle 6;,,, via the embedding angles ") and the function g.

Lemma 3.1. Consider the ReLU network defined in Eq.(I) with L hidden layers and infinite network
width. Given two arbitrary inputs x and z, the angle ¢(x,z) between the model gradients V f (x)
and V f(z) satisfies

L L-1

cos 0 (x, z) (1—0(1/)(X,Z)/7T) +0 L , @)
I ()

VI = VIF x|+ 0 (). for any x.

1

cos P(x,z) = I+
1=0

with 00 (x,z) = ¢°!(0;n(x, 2)). Moreover,

Better feature separation. Comparing with Theorem [2.3|for linear neural networks, we see that
the nonlinear ReLU activation only affects the relative direction, but not the the magnitude, of the
model gradient. Lemma 3.1] gives the relation between ¢ and the input angle 6;,,. Figure[I|plots ¢ as
a function of 6;,, for different network depth L.

The key observation is that: for relatively small input angles (say 6;, < 30°, which is actually not
quite small), the model gradient angle ¢ is always greater than the input angle 6;,,. This suggests
that, after the mapping V f : x — V f(x) from the input space to model gradient space, data inputs
becomes more (directionally) separated, if they are similar in the input space (i.e., with small 6;,).
Comparing to the linear neural network case, where ¢(x, z) = 0;,(x, z) as in Theorem|2.3] we see
that the ReLU nonlinearity results in a better angle separation ¢(x,z) > ¢(x, z) for similar data.

Another observation is that: deeper ReLU networks lead to larger model gradient angles, when
0;n, < 30°. This indicates that deeper ReLLU networks, which has more layers of ReLU nonlinear
activation, makes the model gradient more separated between inputs. Note that, in the linear network
case, the depth does not affect the gradient angle ¢.



120 ,
Y
100 4
7
7
°
- $=6i
—— RelU network, L=1
— =+ RelU network, L=3
— = RelU network, L=10
—— RelLU network, L=100
9% 120 150 180

Oin

Figure 1: Model gradient angles ¢ vs. input angle 0;,, (according to Lemma . Linear neural
networks (black dash line), of any depth L, always have ¢ = 6,,,. ReLU neural networks with various
depths have better separation ¢ > 6, for similar data (i.e., small 6;,). Deeper ReLU networks have
better separation than shallow ones for similar data. All neural networks are infinitely wide.

Very similar inputs (i.e., when 6;,,(x,z) < 1), especially those with different labels, are often hard to
distinguish and is one of the key factors that makes training difficult, because the decision boundary
has to be fine-tuned to separate these very closely located inputs in order to make correct prediction.
Hence, the regime of very small input angle (6;,, < 1) is of particular interest for model training.
The following theorem confirms the better separation in this regime.

Theorem 3.2 (Better separation for similar data). Consider two arbitrary inputs x,z € RY, with

small input angle 0 < 6,,,(x,z) < 1, and the ReLU network defined in Eq.. The model angle
@(x,z) is strictly greater than the input angle 0;,,(x,z):

d(x,2) > 0;n(X,2). (8)
with high probability of the random network initialization, if the network width m = Q(1/62,).

The following corollary quantifies the better separation in this regime.

Corollary 3.3. With the same setting as in Theorem 3.2] and with infinite width m — oo but finite
depth L= Q(I/Gin)’ COS ¢(X7 Z) = (1 - %ein + 0(0in)) Cos oi'rv

Remark 3.4 (Separation in distance). Indeed, the better angle separation discussed above implies a
better separation in Euclidean distance as well. This can be easily seen by recalling from Lemma
that the model gradient mapping V f preserves the norm (up to a universal factor L + 1).

We also point out that, Figure [I] indicates that for large input angles (say 6;, > 30°) the model
gradient angle ¢ is always large (greater than 30°). Hence, non-similar data never become similar in
the model gradient feature space.

Better separation in infinite width and depth limit. Now, we consider the infinite width and depth
case. We took the infinite width limit a prior, this technically leads to the infinite-width-then-depth
limit. The following theorem shows that, no matter how similar two inputs originally are, as long as
they are not parallel, their model gradient features eventually get wide separated in large depth.

Theorem 3.5. Consider the ReLU neural network defined in Eq.(I)) and two non-parallel inputs x
and z, x }f z. In the infinite-width-then-depth limit, the model gradient angle ¢(x,z) converges to a
fix value arccos i, regardless the input angle 0, (x, z).

Remark 3.6. The limit point value arccos i is about 75.5°, which means the inputs are quite well-
separated in the model gradient feature space, as network depth increase to infinity. Recall that,
without the nonlinear activation, ¢(x,z) = 0;,,, which can be arbitrarily small.
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Figure 2: Better separation for non-ReLLU activation functions. Left: ReLU?, Middle: GeLU, Right:
tanh. All plots are model gradient angle ¢ vs. input 6;,,.

It is interesting to observe that this limit point value is independent of the input angle, which means
that the data points are mutually equally-separated in the limit. We will discuss its implications on
NTK in the following sections.

Beyond ReLLU activation. Here, we numerically verify that the better separation phenomenon
obtained for ReLU above also holds for other nonlinear activation functions. Figure 2] shows the
relations between the model gradient angle ¢ and the input angle 6;,, for the following nonlinear
activations: ReLU? (i.e., o(z) = max{0, 22}), GeLU and tanh. One can easily see that the better
separation holds: for relatively small input angles 6;,, (e.g., 8;, < 30°), ¢ is always greater than
0:n; and for deeper networks, ¢ is even greater. Interestingly, we observe that the gradient angle ¢
converges to 90° for these activation functions indicating gradient features become orthogonal in the
limit of L. — oo, different from the 75.5° that we obtain for ReLU networks.

We also show that the better separation generalizes beyond the NTK setting/regime. Please see
Appendix [B] for more discussion.

4 Better NTK conditioning

In this section, we show both theoretically and experimentally that, the nonlinear activation induces a
decrease in the NTK condition number «. Moreover, a neural network with larger depth L, which
means more nonlinear activations in operation, the NTK condition number « is generically smaller.

Connection between condition number and model gradient angle. The smallest eigen-
value and condition number of NTK are closely related to the smallest model gradient angle
min; jepn) ¢(Xs,X;), through the gradient feature matrix F'. Think about the case if ¢(x;,x;) = 0
(i.e., Vf(x;) is parallel to V f(x;)) for some 4, j € [n], then F', hence NTK K, is not full rank and
the smallest eigenvalue A,,;,, (K) is zero, leading to an infinite condition number x. Similarly, if
min; jepn) ¢(Xs,x;) is small, the smallest eigenvalue A,;,i,, (K) is also small, and condition number
K is large, as stated in the following proposition (see proof in Appendix [C).

Proposition 4.1. Consider a n x n positive definite matrix A = BB”, where matrix B € R"*%,
with d > n, is of full row rank. Suppose that there exist i,j € [n] such that the angle ¢ between
vectors B;. and Bj. is small, i.e., ¢ < 1, and that there exist constant C > ¢ > 0 such that
¢ < ||By.|| < C forall k € [n]. Then, the smallest eigenvalue Ay i (A) = O(¢?), and the condition
number k = Q(1/¢?).

Therefore, a good data angle separation in the model gradient features, i.e., min; ;e[ ¢(x;,X;) not
too small, is a necessary condition such that the condition number « is not too large. As is shown in
the last section, the ReL.U nonlinearity makes the samples more separated when mapped from the
input data space to the model gradient feature space. Hence, it is expected that the NTK condition
number will decrease in the presence of the ReLU nonlinearity.

Smaller NTK condition number. Theoretically, we consider the infinite width limit. We require
that the dataset is not degenerated, i.e., x; }f x; for all 7, j. This is a mild and commonly used setting

in the literature, see for example [9]. We require that the weights of the first layer W (1) be trainable
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Figure 3: Better separation (left) and Better NTK conditioning (right) of ReL U network on
various datasets. Solid lines are of ReLLU networks, dashed lines are of linear neural networks for
comparison. Left: Minimum ¢ (in degrees °) vs. depth. ReLU network has better separation of
model gradient feature as depth increases. Right: NTK condition number vs. depth. ReLU network
has better conditioning of NTK as depth increases. Note that L = 0 corresponds to the case of a
linear model and a linear neural network, and the NTK 1in this case is the Gram matrix.

and fix the other layers in the following theorem. This is also a common setting in literature to
simplify the analysis [9].

Theorem 4.2. Consider the ReLU network in Eq.(#I)) in the limit m — oo and at initialization.
Let the weights of the first layer WO be trainable and fix the other layers. We compare the two
scenarios: (a) the network with ReLU activation and (b) the network with all the ReLU activation
removed. The smallest eigenvalue A (K) of its NTK in scenario (a) is larger than that of scenario
(b): Amin(Ka) > Amin(Kp), and the NTK condition number k in scenario (a) is less than that in
scenario (b): kg < Kp. Moreover, for two ReLU neural networks f1 of depth Ly and fo of depth Lo
with Ly > Lo, we have Ky, < Ky,.

This theorem confirms the expectation that the NTK condition number « should be decreased, as a
consequence of the existence of the ReLU nonlinearity. This theorem also shows that the depth of the
ReLU network enhances this better NTK conditioning.

The high-level intuition behind the proof of this theorem is that: the derivative of the ReLU function,
0'(2) = I{.>0y, resembles a binary gate which has open and close states. When ReLLU are imple-
mented, the model gradient map V f : x — V f(z) increases the directional diversity of the vectors
V f(z), due to the high dimension of the model gradient space and the different activation patterns of
the hidden layer for different samples x. Hence, it is expected that the feature matrix F', as well as
the NTK matrix K, is better conditioned.

In fact, fixing the weights of the top layer is not necessary and can be removed. We relax this
requirement in Appendix [F] In our experiments in Section .1 where all layers are trainable, we
observe the phenomena of better separation and better NTK conditioning.

NTK condition number in infinite depth. As a consequence of the pairwise equal-separation
result (Theorem [3.3)), the NTK matrix got simplified in the infinite depth limit. The following theorem
shows that the NTK condition number converges to a fixed value 22, which is independent of the

3
data distribution.

Theorem 4.3. Consider the ReLU neural network defined in Eq.(I) and a dataset D = {(x;, y;) }1_;.

Suppose that all data inputs are normalized ||x;|| = 1 for all v, and x; }f x; for all i # j. In the

infinite-width-then-depth limit, the NTK condition number k converges to ”TH.

4.1 Experimental evidence

Here, we experimentally show that better separation and better conditioning happen in practice.
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Figure 4: Training curve of ReLU networks with different depths. On each of these datasets, we
see that deeper ReLU network always converges faster than shallower ones.

Dataset. We use the following datasets: synthetic dataset, MNIST [18]], FashionMNIST (f-MNIST)
[35], SVHN [24] and Librispeech [27]]. The synthetic data consists of 2000 samples which are
randomly drawn from a 5-dimensional Gaussian distribution with zero-mean and unit variance.
The MNIST, f-MNIST and SVHN datasets are image datasets where each input is an image. The
Librispeech is a speech dataset including 100 hours of clean speeches. In the experiments, we use a
subset of Librispeech with 50, 000 samples, and each input is a 768-dimensional vector representing
a frame of speech audio and we follow [15] for the feature extraction.

Models. For each of the datasets, we use a ReLU activated fully-connected neural network ar-
chitecture to process. The ReLU network has L hidden layers, and has 512 neurons in each of its
hidden layers. The ReLU network uses the NTK parameterization and initialization strategy (see
[17]). For each dataset, we vary the network depth L from 0 to 10. Note that L = 0 corresponding to
the linear model case. In addition, for comparison, we use a linear neural network, which has the
same architecture with the ReLU network except the absence of activation function.

Results. For each dataset and given network depth L, we evaluate both the smallest pairwise model
gradient angle min; ;e[ ¢(X;,X;) and the NTK condition number &, at the network initialization.
We take 5 independent runs over 5 random initialization seeds, and report the average. In each run, we
used a A-100 GPU to compute the NTK, which took 4 ~ 10 hours. The results are shown in Figure [3]
We compare the two scenarios of with and without the ReLLU activation function. As one can easily
see from the plots, a ReLU network (depth L = 1,2, --- , 10) always have a better separation of data
features (i.e., larger smallest pairwise model gradient angle), and a better NTK conditioning (i.e.,
smaller NTK condition number), than its corresponding linear network (compare the solid line and
dash line of the same color). Furthermore, the monotonically decreasing NTK condition number
shows that a deeper ReLU network have a better conditioning of NTK.

5 Optimization acceleration

Recently studies have shown strong connections between the NTK condition number and the theoreti-
cal convergence rate of gradient descent algorithms on wide neural networks [9} |8, [31}|1}[37, |26} 20].
In [9} 8} 120], the worst-case convergence rate has been shown to be

L(we) < (1— k=Yt L(wo). )

Although « is evaluated on the entire optimization path, all these theories used the fact that NTK is
almost constant for wide neural networks and an evaluation at initialization wyq is enough.

As a smaller NTK condition number (or larger smallest eigenvalue of NTK) implies a faster worst-
case convergence rate, our findings suggest that: (a), the ReLU activation function helps improve the
worst-case convergence rate of gradient descent, and (b), deeper wide ReLLU networks have faster
convergence rate than shallower ones.

We experimentally verify this implication. Specifically, we train the ReLU networks, with depth L
ranging from 1 to 10, for the datasets MNIST, f-MNIST, and Librispeech. For all training tasks, we
use cross-entropy loss as the objective function and use mini-batch stochastic gradient descent (SGD)



of batch size 500 to optimize. For each task, we find its optimal learning rate by grid search. On
MNIST and f-MNIST, we train 500 epochs, and on Librispeech, we training 2000 epochs.

The curves of training loss against epochs are shown in Figure @ We observe that, for all these
datasets, a deeper ReLLU network always converges faster than a shallower one. This is consistent
with the theoretical prediction that the deeper ReLU network, which has a smaller NTK condition
number, has a faster theoretical convergence rate.

Trade-off between optimization and generalization. Although a faster convergence in terms of
number of iterations for deep networks, as Theorem @] suggests, in the extreme case of infinite
depth L — oo, any non-parallel input pairs become equally separated in gradient features regardless
of their original similarity. Even though not mutually orthogonal, this could also result in a trivial
generalization: close to random guess for unseen data. The same consequence can also be obtained
from [14], where they dropped the initial random guess value and obtained a zero prediction for
unseen data.

As for finite depth, it is theoretically hard to predict at what depth this trade-off starts to happen.
Under the same experimental setting as in Figure[d] Table[T]shows that the generalization performance
starts to decrease at depth L = 8, suggesting a optimization-generalization trade-off for large depth.

Table 1: Generalization dependence on ReLLU network depth L. Test accuracies are reported after
training convergence on MNIST.

Depth L 1 3 6 8 10 12
test accuracy (%) || 95.98 9743 97.57 9752 97.39 97.19

6 Conclusion and discussions

In this work, we showed the effects of nonlinear activation on better separation of similar data
in feature space and on the NTK conditioning. We also showed that more sequential activation
operations, i.e., larger network depth, amplifies these effects. As the NTK conditioning is closely
related to theoretical convergence rate of gradient descent, our findings also suggest a positive role
of activation functions in optimization theories. A limitation of the paper is that the theoretical
analysis is only conducted on ReLU activation, although results have been empirically verified for
other nonlinear activations. For other activations, the analysis requires analytical expressions for
integrations involved, which requires a distinct type of analysis and we consider it as a future work.

References

[1] Zeyuan Allen-Zhu, Yuanzhi Li, and Zhao Song. “A convergence theory for deep learning via
over-parameterization”. In: International Conference on Machine Learning. PMLR. 2019,
pp. 242-252.

[2] Sanjeev Arora, Nadav Cohen, and Elad Hazan. “On the optimization of deep networks: Implicit
acceleration by overparameterization”. In: International Conference on Machine Learning.
PMLR. 2018, pp. 244-253.

[3] Ronen Basri, David Jacobs, Yoni Kasten, and Shira Kritchman. “The convergence rate of neural
networks for learned functions of different frequencies”. In: Advances in Neural Information
Processing Systems 32 (2019).

[4] Yuval Belfer, Amnon Geifman, Meirav Galun, and Ronen Basri. “Spectral analysis of the
neural tangent kernel for deep residual networks”. In: arXiv preprint arXiv:2104.03093 (2021).

[5] Alberto Bietti and Julien Mairal. “On the inductive bias of neural tangent kernels”. In: Advances
in Neural Information Processing Systems 32 (2019).

[6] Lin Chen and Sheng Xu. “Deep Neural Tangent Kernel and Laplace Kernel Have the Same
RKHS”. In: International Conference on Learning Representations. 2021.

[7] George Cybenko. “Approximation by superpositions of a sigmoidal function”. In: Mathematics
of control, signals and systems 2.4 (1989), pp. 303-314.

10



(8]

(9]

[10]

[11]

[12]
[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

Simon Du, Jason Lee, Haochuan Li, Liwei Wang, and Xiyu Zhai. “Gradient Descent Finds
Global Minima of Deep Neural Networks”. In: International Conference on Machine Learning.
2019, pp. 1675-1685.

Simon S Du, Xiyu Zhai, Barnabas Poczos, and Aarti Singh. “Gradient Descent Provably
Optimizes Over-parameterized Neural Networks”. In: International Conference on Learning
Representations. 2018.

Zhou Fan and Zhichao Wang. “Spectra of the Conjugate Kernel and Neural Tangent Kernel
for linear-width neural networks”. In: Advances in Neural Information Processing Systems 33
(2020).

Amnon Geifman, Abhay Yadav, Yoni Kasten, Meirav Galun, David Jacobs, and Basri Ronen.
“On the similarity between the laplace and neural tangent kernels”. In: Advances in Neural
Information Processing Systems 33 (2020), pp. 1451-1461.

Boris Hanin and Mark Sellke. “Approximating continuous functions by relu nets of minimal
width”. In: arXiv preprint arXiv:1710.11278 (2017).

Kurt Hornik, Maxwell Stinchcombe, and Halbert White. “Multilayer feedforward networks
are universal approximators”. In: Neural networks 2.5 (1989), pp. 359-366.

Kaixuan Huang, Yuqing Wang, Molei Tao, and Tuo Zhao. “Why Do Deep Residual Networks
Generalize Better than Deep Feedforward Networks?—A Neural Tangent Kernel Perspective”.
In: Advances in neural information processing systems 33 (2020), pp. 2698-2709.

Like Hui and Mikhail Belkin. “Evaluation of neural architectures trained with square loss vs
cross-entropy in classification tasks”. In: arXiv preprint arXiv:2006.07322 (2020).

Arthur Jacot, Franck Gabriel, Francois Ged, and Clement Hongler. “Freeze and chaos: Ntk

views on dnn normalization, checkerboard and boundary artifacts”. In: Mathematical and
Scientific Machine Learning. PMLR. 2022, pp. 257-270.

Arthur Jacot, Franck Gabriel, and Clément Hongler. “Neural tangent kernel: Convergence and
generalization in neural networks”. In: Advances in neural information processing systems 31
(2018).

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. “Gradient-based learning
applied to document recognition”. In: Proceedings of the IEEE 86.11 (1998), pp. 2278-2324.
Jaehoon Lee, Lechao Xiao, Samuel Schoenholz, Yasaman Bahri, Roman Novak, Jascha Sohl-
Dickstein, and Jeffrey Pennington. “Wide neural networks of any depth evolve as linear models
under gradient descent”. In: Advances in neural information processing systems 32 (2019).
Chaoyue Liu, Libin Zhu, and Mikhail Belkin. “Loss landscapes and optimization in over-
parameterized non-linear systems and neural networks”. In: Applied and Computational
Harmonic Analysis 59 (2022), pp. 85-116.

Chaoyue Liu, Libin Zhu, and Misha Belkin. “On the linearity of large non-linear models:
when and why the tangent kernel is constant”. In: Advances in Neural Information Processing
Systems 33 (2020), pp. 15954-15964.

Guido F Montufar, Razvan Pascanu, Kyunghyun Cho, and Yoshua Bengio. “On the number
of linear regions of deep neural networks”. In: Advances in neural information processing
systems 27 (2014).

Michael Murray, Hui Jin, Benjamin Bowman, and Guido Montufar. “Characterizing the
Spectrum of the NTK via a Power Series Expansion”. In: International Conference on Learning
Representations. 2023.

Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu, and Andrew Y Ng.
“Reading digits in natural images with unsupervised feature learning”. In: Proc. Int. Conf.
Neural Inf. Process. Syst. Workshops (2011).

Quynh Nguyen, Marco Mondelli, and Guido F Montufar. “Tight bounds on the smallest
eigenvalue of the neural tangent kernel for deep relu networks”. In: International Conference
on Machine Learning. PMLR. 2021, pp. 8119-8129.

Samet Oymak and Mahdi Soltanolkotabi. “Toward moderate overparameterization: Global
convergence guarantees for training shallow neural networks”. In: IEEE Journal on Selected
Areas in Information Theory 1.1 (2020), pp. 84-105.

Vassil Panayotov, Guoguo Chen, Daniel Povey, and Sanjeev Khudanpur. “Librispeech: an
asr corpus based on public domain audio books”. In: 2015 IEEE international conference on
acoustics, speech and signal processing (ICASSP). IEEE. 2015, pp. 5206-5210.

11



(28]

[29]

[30]

[31]

(32]

[33]

[34]
[35]

[36]

[37]

Ben Poole, Subhaneil Lahiri, Maithra Raghu, Jascha Sohl-Dickstein, and Surya Ganguli.
“Exponential expressivity in deep neural networks through transient chaos”. In: Advances in
neural information processing systems 29 (2016).

Maithra Raghu, Ben Poole, Jon Kleinberg, Surya Ganguli, and Jascha Sohl-Dickstein. “On the
expressive power of deep neural networks”. In: international conference on machine learning.
PMLR. 2017, pp. 2847-2854.

Samuel S Schoenholz, Justin Gilmer, Surya Ganguli, and Jascha Sohl-Dickstein. “Deep
information propagation”. In: arXiv preprint arXiv:1611.01232 (2016).

Mahdi Soltanolkotabi, Adel Javanmard, and Jason D Lee. “Theoretical insights into the
optimization landscape of over-parameterized shallow neural networks”. In: IEEE Transactions
on Information Theory 65.2 (2018), pp. 742-769.

Matus Telgarsky. “Representation benefits of deep feedforward networks”. In: arXiv preprint
arXiv:1509.08101 (2015).

Maksim Velikanov and Dmitry Yarotsky. “Explicit loss asymptotics in the gradient descent

training of neural networks”. In: Advances in Neural Information Processing Systems 34
(2021), pp. 2570-2582.

Qingcan Wang et al. “Exponential convergence of the deep neural network approximation for
analytic functions”. In: arXiv preprint arXiv:1807.00297 (2018).

Han Xiao, Kashif Rasul, and Roland Vollgraf. “Fashion-mnist: a novel image dataset for
benchmarking machine learning algorithms”. In: arXiv preprint arXiv:1708.07747 (2017).
Lechao Xiao, Jeffrey Pennington, and Samuel Schoenholz. “Disentangling trainability and
generalization in deep neural networks”. In: International Conference on Machine Learning.
PMLR. 2020, pp. 10462-10472.

Difan Zou, Yuan Cao, Dongruo Zhou, and Quanquan Gu. “Gradient descent optimizes over-
parameterized deep ReLLU networks”. In: Machine Learning 109.3 (2020), pp. 467—492.

12



A Properties of function ¢

Recall that the function g : [0, 7) — [0, 7) is defined as (see LemmalE.5)

1
g(z) = arccos <7T % cosz+ — sinz) , (10)
™

Figure [5]shows the plot of this function. From the plot, we can easily find the following properties.

120 rd
4
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7,
40 Y
20 —  line:y=z
—— g function
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Figure 5: Curve of the function g(). As can be seen, g(6) is monotonic, and is approximately the
identity function y = 6 in the small angle region (§ < 90°).

Proposition A.1 (Properties of g). The function g defined in Eq.(I0) has the following properties:
1. g is a monotonically increasing function;

2. g(z) <z forall z € [0,7); and g(z) = z if and only if z = 0;

3. forany z € [0, ), the sequence {g'(2)}5, is monotonically decreasing, and has the limit
limy o0 gl(z) =0.

s

Proof. Part 1. First, we consider the auxiliary function §(z) =

dg(z)
dz

;z cosz + % sin z. We see that

=— (1 - i) sinz <0, Vze[0,).
™

Hence, §(z) is monotonically decreasing on [0, 7). Combining with the monotonically decreasing
nature of the arccos function, we get that g is monotonically increasing.

Part 2. It suffices to prove that cos z < §(z) and that the equality holds only at z = 0. For z = 0,
it is easy to check that cos z = §(z), as both z and sin z are zero. For z € (0,7/2), noting that
tan z — z > 0, we have

m™—2z 1 . 1
cosz+ —sinz = cosz + — (—z + tan z) cos z > cos z. (11)
™ ™

9(2) =

For z = /2, we have cos /2 =0 < 1/m = §(w/2). For z € (7/2, 7), we have the same relation
as in Eq.. The only differences are that, in this case, cos z < 0 and tan z — z < 0. Therefore, we
still get §(z) > cos z for z € (7/2, 7).

Part 3. From part 2, we see that g(z) < z for all z € (0, 7). Hence, for any [, g't1(2) < g¢'(2).
Moreover, since z = 0 is the only fixed point such that g(z) = z, in the limit | — oo, g'(z) — 0. O

It is worth to note that the last property of g function immediately implies the collapse of embedding
vectors from different inputs in the infinite depth limit L — oo. This embedding collapse has
been observed in prior works [28} 30] (although by different type of analysis) and has been widely
discussed in the literature of Edge of Chaos.
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Figure 6: Model gradient angle ¢ vs. input 6;,, in different scaling regimes o2, = 0.01, 0.1, 1 and
10. The better feature separation always holds for similar data (when 6;,, is small, left end of each

plot).

Theorem A.2. Consider a ReLU neural network. Given any two inputs X,z € R?, the sequence
of angles {0V (x,2)}_| between their l-embedding vectors o) (x) and oV (z), is monotonically
decreasing. Moreover, in the limit of infinite depth,

lim 0% (x,z) =0, (12)
L—oo
and there exists a vector o such that, for any input x, the last layer L-embedding

o) (x) = ||x]|ev. (13)

B Beyond the NTK regime

Here, we show that the better separation phenomenon still holds outside of the NTK regime. We
consider different initialization scales w ~ N(0,02). Note that 02, < 1 corresponds to small
initialization. Figure[6]plots the model gradient angle ¢ as a function of the input 6;,,, for different
scaling regimes: o2 = 0.01, 0.1, 1 and 10. It shows that the better separation phenomenon still

holds for similar inputs at various network depths.

C Proof of Proposition 4.1

Proof. Consider the matrix B and the n vectors by, = By., k € [n]. The smallest singular value
square of matrix B is defined as
vIBBTv - [ >, vebkl?

2 .
(B) = e
Omin(B) = it —270— = min ==, O
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Since the angle ¢ between b; = B;. and b; = B;. is small, let v’ be the vector such that v} = ||b;||,
v; = —||b;|| and v}, = 0 for all k # i, j. Then

AP ) R N R Y I
min = - (2 J
Tk VLo~ Vo + by
2l b
= — 1 —_ S
Todl + by B -~ 9
b2
=1 7 J7 @) .
Toul? & o, ¢ O

Since A = BBT, the smallest eigenvalue A, (A) of A is the same as 02,;,,

(B).

On the other hand, the largest eigenvalue A4, (A) of matrix A is lower bounded by tr(A)/n. Note
that the diagonal entries Ay, = ||bx||. Hence, ¢ < Ajpaz(A) < C. Therefore, the condition number
KR = )\max(A)/)\mzn(A) = Q(l/¢2) H

D Proofs of Theorems without (ReLU) activation

D.1 Proof of Theorem 2.3

Proof. First of all, we provide a useful lemma.

Lemma D.1. Consider a matrix A € R™*%, with each entry of A is i.i.d. drawn from N'(0,1). In
the limit of m — o0,

1
— AT A — I;.4, inprobability. (14)
m

We first consider the embedding vectors a&") and the embedding angles ("), By definition of linear
neural network, we have, for all | € [L] and input x € R,
a0 (x) = — WOWED iy, (15)
mt/2
Note that at the network initialization entries of W () are i.i.d. and follows A/(0, 1). Hence, the inner
product

(a9 (x), 6" (2)) = LZXTW(UT W DT OT O =1 ), @ 7,
m
where in step (a) we recursively applied Lemmal times. Putting z = x, we get la®(x)|| = ||x],
for all [ € [L]. By the definition of embedding angles, it is easy to check that 1) (x, z) = 6;,(x, z),
forall [ € [L].

Now, we consider the model gradient V f and the model gradient angle ¢. As we consider the model
gradient only at network initialization, we don’t explicitly write out the dependence on wy, and we
write V f(wq, x) simply as V f(x). The model gradient V f can be decomposed as

_ _ _ - _ of(x
V() = (V400 Vaf (), Vi (), with Vif) = 00,
Hence, the inner product

Vie[L+1]. (16)

and forall [ € [ + 1],

L+1 L+1

= = (- (- 1 / 1 Ny (D)
_ /=(1-1) (1-1) ) Lo L oy ® 1
(Vif(x), Vif(2)) = (@7 (x),a""(z)) <l,1_[l+1 vk 7ll£[+1 VA ) =Xz
Here in step (b), we again applied Lemma|[D.I] Therefore,
(VI(x),V[(z)) = (L+1)x"z. (17)
Putting z = x, we get |V f(x)|| = (L + 1)||x]|. By the definition of model gradient angle, it is easy
to check that ¢(x,2z) = 0;,(x, z). O
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E Proofs of Theorems for ReLU network

E.1 Preliminary results

Before the proofs, we introduce some useful notations and lemmas. The proofs of these lemmas are
deferred to Appendix

Given a vector v € RP, we define the following diagonal indicator matrix:

Livsoy = diag (Ifp, 501, Livs>0}, -+ » Lu, >01) » (18)
with

1 _ 1 ;i Z 07
{viz0} =1 0 v <.

Lemma E.1. Consider two vectors vi,vy € RP and a p-dimensional random vector w ~
N(0, Ipxp). Denote 0 as the angle between v and vo, i.e., cost) = Avive) Then, the prob-

valllvall”
ability

Pl(wTv1 > 0) A (wlvs > 0)] = % - % (19)

Lemma E.2. Consider two arbitrary vectors vi,vs € RP and a random matrix W € RI*P with
entries W;; i.i.d. drawn from N(0,1). Denote 0 as the angle between v and Vo, and define

u = %G(Wvl) and us = %U(WVQ). Then, in the limit of ¢ — o,
1 .
(ur,ug) = - ((mr —0) cos O + sin0) || vy]|]|va]l. (20)

Lemma E.3. Consider two arbitrary vectors vi,ve € RP and two random matrices U € R**9 and
W € RY*P, where all entries U;;, i € [s] and j € [q), and Wy, k € [q] and | € [p], are i.i.d. drawn

from N'(0,1). Denote 6 as the angle between vy and vs, and define matrices Ay = %Uﬂ{wwzo}

and As = %U]I{WVQZO}. Then, in the limit of ¢ — oo, the matrix

-y
A, AT = ”TISXS. @21

Lemma E.4. Consider matrix B = AAT with A € R™*P and a random matrix W € RI*P where
all entries of W are i.i.d. drawn from N (0, 1). Define the tensor A’ € R"*P*4, such that A, =

V2AiLiw,. A, >0y. Let B' € R™*™ be the matrix such that each entry Bi; =30 Al Al Then,

in the limit of ¢ — oo, the smallest and largest eigenvalues satisfy: \pin(B') > Amin(B), and
)\mam(B/) < Arnaac(-B)

E.2 Proof of Lemma[3.1]

Proof. The model gradient V f(x) is composed of the components V; f(x) £ %, forl € [L+1].
Each such component has the following expression: for [ € [L + 1]

Vif(x) = a7V (x)0" (x), (22)

where
L—1+4+1

2 2
506) = <m> WEDL w0950 W P liac-n0oz0r - W o 50y 23)

Note that in Eq., V, f(x) is an outer product of a column vector o/ 1) (x) € R™-1%1 (m;_; = d
if { = 1, and m;_; = m otherwise) and a row vector (5(”(x) e RY>™™ (m; =1ifl =L +1, and
m; = m otherwise).

First, we consider an infinitely wide neural network f°° of depth L. We have the following lemma.

Lemma E.5. Consider a ReLU network > defined in Eq.(I)) with infinite width. For all | € [L), the
following relations hold:
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oD ()| = |l

s for any input x € R,

s for any two inputs x,z € R%, 00 (x,z) = g (9(1_1)(X, z)) . Let g'(-) be the l-fold composi-
tion of g(+), then

00 (x,2) = g° (0in(x,2)) . (24)
We consider the inner product (V; f*°(z), V; f*°(x)), for | € [L + 1] By Eq., we have
(Vif*(2), Vif*(x)) = (60 (2),6" (x)) - ("D (2), a7V (x)). (25)
For (o'~ (z), o'~V (x)), applying Lemma we have
(@7 (2),a"" (x)) = ||x]|]1z]| cos 8~V (x, 2). (26)

For (6()(z), 51 (x)), by definition Eq.(23), we have
: 9\ Lt
@ ( S
62).00 ) = (2)

x WEDL G0 6050y - W G0 02060 20 W DT - Lgw @zgWHEDT

A
Recalling that &) = W a1 and applying Lemmaon the the term A above, we obtain

m— 001 (x,2)
m

(60 (z),60 (x)) = (60 (z), 60 (x)).

Recursively applying the above formula for I’ = 1,1+ 1,--- , L, and noticing that §(“+1) = 1, we
have .
—1 ’
01 (x,z)
5W(z). s® = 1——2") 27
(00(2), 00 (x)) l/g[ﬁ1 - @7

Combining Eq.(25), (26) and 27), we have
(1) I8 6" (x, 2)
(Vif>*(2), Vif*(x) = x|l cos 0"V (x,2) [[ (1~ — | (28)

r=1-1
For the inner product between the full model gradients, we have

L+1 L l L—1 9(1/)()( Z)
(V1(2), VIZ () = Y (Vif*(2), Vif*(x)) = [x]||lz] Y _ [cos6V(x.2) [T {1~ —
=1 1=0 U=l
(29)
Putting x = z in the above equation, we have () (x,z) = 0 for all € [L], and obtain
V£GP = lIx]* - (L + 1) (30)
Hence, we have, for an infinitely wide neural network,
L L-1
(Vf>(z), VI~ (x)) 1 0] v
cos p™(x,z) = = cos 0 (x,z) [T (1 -6V (x,2)/n)
IVFE)IV (=) L+1l§ ll_:[l
€1y
Now, we consider the finitely wide neural network f. As have been shown by [17} 9, 21]],
1
(102, V1)~ (V%@ 960} =0 (=) 62)
with high probability of random initialization of the network f. Letting z = x above, we also have
1
956 = 1960l + 0 (=) 63
Using the above two equations, we have
(V/(2),Vf(x)) 1
cos P(x,z) = =cos9p™(x,2)+ 0 | — |, 34)
VIV (=)l vm
with high probability of random initialization of the network f. O

'With a bit of abuse of notation, we refer to the flattened vectors of V, f in the inner product.
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E.3 Proof of Theorem3.2]

Proof. For simplicity of notation, we don’t explicitly write out the dependent on the inputs x, z, and
write §1) £ 9()(x, z), and ¢ 2 ¢(x, z). We start the proof with the summation term on the R.H.S.
of Eq. [7]in Lemma[3.1]

i [COS o0 H 1—o% )/71')1

l=0 I'=l

L -1 _
W g [0089(0) | I <1 + ftanO(l) 9“”) | I (1—0") /x) 1
™
U= =1

L +1 =
o 1 & -1 1 L-1
1=0 I'=0 =1
L [i-1
() cos ) Z [H ( L 503 0))3
< 1+ —(0©)3 4 0(0)
L+1 el e 3m

L-1 ,
< I (1 - %e(‘” + 31?(9@)2 - 0((0(0))2)>]

=l

L
| (RE= CRSCEL L )

= cos (1 — =09 4 (9<0>)>
2w

In step (a) above, we use the relation §() = g(0¢—1),ie., cos V) = 1—cos ¢~V /7 4sin 6~ /7
in step (b), we used the fact that () < 6;,, (Theorem|A.2)) which stays small and used the Taylor
expansion of tan. In step (c), we used the following lemma (proof is in Appendix [G.7):

Lemma E.6. Given any inputs x, z such that 0;,(x,z) < 1, for each | € [L], the l-embedding angle
6" (x,z) can be expressed as

0 (x,2) = 0;(x,2) — 3%(91»”()(, z))* + o ((0in(x,2))?) .

By Lemma [3.1] there exists a constant ¢ such that

L
cos p(x,z) < (1 — %Hm + 0(9m)) cos 0;,, + ﬁ (35)
When m > —167°C__ \e have cos ¢(x,z) < cos 0y, (x, z), namely, ¢(x,z) > Ojn(x,2). O

p) X
L2067 cos? 0ir°

E.4 Proof of Theorem 3.3

Proof. We start the proof with an analysis of the embedding angles #() in the infinite depth limit.

First, by Lemma and Proposition - we easily find that, for all input angle 6;,, = () #£ 0, §()
is monotonically decreasing and converges to zero: lim;_,., #) — 0. As the following analysis is
independent of #(?), we will not explicitly write out the arguments x and z.

Now, we analyze its convergence rate, utilizing Eq.(57). As we are con31der1ng the infinite depth
limit and ) converges to zero, we can drop its o(-) term and rewrite Eq as:

de)
= (p)2, 36
¥ 37T( ) (36)
Solving this differential equation, we get 80 = (9 /(1 4 (37)~19()}), and
lim Y .1 = 3x. (37)
l—o0
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By Eq.(7), we get the following relation between ¢, and ¢r,41:
(L+2)cospryr = (1 — 0L /m) - (L +1)cosér, + cos Lt (38)

Rearranging terms, we get

cos O+, (39)

(L+1)0F) ) cos ¢y,

(COS¢L+1—COS¢L):—(1+ I+2 " Lio

The right side of Eq. converges to zero as L — oo. Using Eq. and limy_, o cos 0+ =1,
we have

i 1
Lh_r}réo cos ¢, = T (40)

Hence, ¢, converges to arccos % ~ 75.5°, in the limit L — oo.

E.5 Proof of Theorem4.2]

Proof. First of all, we note that in scenario (b), i.e., the network with all ReLLU activation removed,
the network simply becomes a linear neural network (while with the same trainable parameters W ()
as the ReLU network in scenario (a)). By the analysis in Section we can easily see that the NTK
matrix in scenario (b) is equivalent to the Gram matrix G, and k;, = ko. Hence, whenever comparing
the two scenarios, it suffices to compare the NTK K (and its condition number ) of ReL.U network
with the Gram matrix G (and its condition number xg).

We prove the theorem by induction.

Base case: ReLLU neural network of depth . = 1. First, consider the shallow ReLU neural

network
FOW;x) = \/\/%VTU(WX), (41)

where W are the trainable parameters.

The model gradient, for an arbitrary input x, can be written as
Vf(x) = xd(x) € R&>™, (42)

where §(x) € R*™ has the following expression

/2
5(X) = EVT]I{WXEO}-

At initialization, W is a random matrix. Recall that the NTK K = FFT, where the gradient feature
matrix F’ consist of the gradient feature vectors V f(x) for all x for the dataset. Applying Lemma
in the limit of m — oo, we have that each entry K;; is equivalent to ), , A;klA;. w1» With

Al = \@XikH{WZ;tho}’ where X € R™*? is the matrix of input data. Then apply Lemma
we immediately have that

)\min (K) > Amin(G)a >\maac (K) < )\maT(G)

Hence, we have that k, < ky.

In addition, note that this network has one hidden layer, and that the “zero-hidden layer” network is
just simply the linear model. For linear model, the NTK is simply the Gram matrix. Hence, for the
base case, we have ky, < Ky, = Ko, with network f; of depth 1 and network f5 of depth 0.

Induction hypothesis. Suppose that, for a ReLU network f7_; of depth L — 1, its NTK condition
number k1 is strictly smaller than k.
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Induction step. Now, let’s consider the two ReLU networks fr, of depth L and f7,_;. It is suffices
to prove that k7, < kr_;. The model gradients, for any given input x, can be written as:

Vip(x) =x0r(x) € R™*™ Vfr_1(x) =x6p_1(x) € RX™,

where

[ 2 /2 /2
(SL(X) == EW(L+1)H{W(L)Q(L—1)20} EW(L)H{W(L*UQ(L*Q)ZO} e EW(Q)H{W(I)OL(D)ZO}
2 @ 2 @
5L_1(X) = EW H{W(L—I)Q(L—Z’)ZO} cee EW H{W(Ua(o)zo}

Note that the matrix W (X) has different dimensions for frand fr_4.

Using the same argument as in the base case, as well as applying Lemma [D.I| when contracting the
d(x)’s, we directly obtain Ky, < Kr,—1.

E.6 Proof of Theorem 43|

Proof. First, consider the normalized NTK matrix L%_lK . By Lemma we have for it diagonal
elements: ) )

. ) — 2: . 2:
K xixi) = T IVIGOI = il = 1. “3)

By Theorem [3.5] we have that, in the infinite depth limit, each of off-diagonal elements of the
normalized NTK matrix converges to %. Namely,

111 1
1] 1 1
BRI N R [T (44)
L+1 S AT g
101 1 S
11 1 1

where matrix J,, has its all elements being ones. Therefore, limy,_, o %HK has one eigenvalue

AM =1+ %, and all remaining eigenvalues Ao = A3 = --- = \,, = % Then its condition number is
_ A 44n
k=5t =5" L]

F Relaxing the constraint on top layers

Theorem F.1. Consider a L-layer ReLU neural network f as defined in Eq.(I) in the infinite width
limit m — oo and at initialization. We compare the NTK condition numbers k. and kyp of the two
scenarios: (a) the network with the ReLU activation, and (b) the network with all the ReLU activation
removed. Consider the dataset D = {(X1, y1), (X2, y2) } with the input angle 0,,, between x1 and X2
small, 0;, < 1. Then, the NTK condition number k., < ky. Moreover, for two ReLU neural networks
f1 of depth Ly and f of depth Lo with Ly > Lo, we have Ky, < Kj,.

Proof. First, let’s consider the scenario (a), i.e. the ReLU network. According to the definition
of NTK and Lemma3.1] the NTK matrix K for this dataset D = {(x1,¥1), (x2,2)} is (NTK is
normalized by the factor 1/(L + 1)?):

_ IV f ()] (VI(x1),VF(x2)) | _ [ |2 [[%1]l[[x2]| cos ¢
h= < (Vf(x2), V(x1)) IVf(x2)[? > a < 11 [[[[x2 [ cos & <2 >

The eigenvalues of the NTK matrix K are given by

A (K) <||X1||2 + 2| + V/lxa[[* + [lcall* + [l ][22 cos 2¢) ) (452)

_1
)
1
>\2(K)=§

(sl + el = /T el i PP os26) . (4sb)
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In the scenario (b), the ReLU activation is removed in the network, resulting in a linear neural network.
In this case, the NTK is equivalent to the Gram matrix G, as given by Corollary 2.4, We have

G < %1 [I* x{xo ) _ ( x| [[%1 [ [|x2]| cos Oir, )
T )

xixy 2l %1 [l[x2]| cos Oin 2|12

and its eigenvalues as

1
M(G) =5 (Hxlll2 + 21+ v/l [ + Iz [ + [l |22 ]2 cos 29m) :

1
€a(G) = 5 (Ial? + a2 = /Toer [+ ol + [oca Pl cos 265,

By Theorem[3.2] we have cos ¢ < cos 6;,,, when 6;,, < 1 and 6;,, # 0. Hence, we have the following
relations
)\1(G) > )\1(K) > )\Q(K) > /\Q(G)7

which immediately implies k, < Kp.

When comparing ReL.U networks with different depths, i.e., network f; with depth L, and network
f2 with depth Ly with Ly > Lo, notice that in Eq.@3) the top eigenvalue A\; monotonically decreases
in ¢, and the bottom (smaller) eigenvalue A, monotonically increases in ¢. By the proof of Theorem
we know that the deeper ReLU network f; has a better separation than the shallower one f5, i.e.,
@ > ¢y, Hence, we get

)‘1(Kf2) >>‘1(Kf1) >)‘2(Kf1) >)‘2(Kf2)' (46)
Therefore, we obtain k¢, < Ky,. Namely the deeper ReLU network has a smaller NTK condition
number. O

G Technical proofs

G.1 Proof of Lemma[D.1]

Proof. We denote A;; as the (i, j)-th entry of the matrix A. Therefore, (AT A);; = >0, ApiAy;.
First we find the mean of each (AT A);;. Since A;; are i.i.d. and has zero mean, we can easily see
that for any index k,
1, ifi=3j
ElAriAr] = {O, otherwise ’
Consequently,
1 1, ifi=3j
E[(—ATA);] =4 :
[(m Jis {O, otherwise
That is E[-- AT A] = I,.

Now we consider the variance of each (AT A);;. If i # j we can explicitly write,

1 1 m m
Var |:(ATA>U:| = - -E Z Z AkliAklekziAkgj
m m k1=1ko=1
1 m m
=— > > ElAnid AkiAr]
m k1=1ko=1
1 m
=3 ZE [A7:A%;] + Z E[Ag,i Ak, j AkyiAr,j)
k=1 .
1 m
2 Y E[AL]E[AL] + D ElA]ElAw ][4k ElAr;]
k=1 .
1 1
= mrO =2
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In the case of ¢ = 7, then,

1 & a) 1 2
= > var[A2] Y —me2) = 2 @)
k=1

1
m

1
Var { (ATA)“} =3 Var

m

2
D A
k=1

In the equality (a) above, we used the fact that A7, ~ x?(1). Therefore, lim,, .o Var(L(ATA)) =
0.

Now applying Chebyshev’s inequality we get,

Vv LAT A
Pr-ATA -1, > 0 < L@ ATA) .

€
Obviously for any € > 0 as m — oo, the R.H.S. goes to zero. Thus, %ATA — I4xq, in probability.
O

G.2 Proof of LemmalE.1l

Proof. Note that the random vector w is isotropically distributed and that only inner products w” v,
and w’'v, appear, hence we can assume without loss of generality that (if not, one can rotate the
coordinate system to make it true):

vi = ||v1]](1,0,0,---,0),
vy = ||va|(cosf,sin 6,0, - ,0).

In this setting, the only relevant parts of w are its first two scalar components w; and ws. Define w

as
w = (wi,ws,0,--+,0) = /w} + w3(cosw,sinw, 0, ,0). (49)
Then,
T T - T T 1 (2 1 0
P(w'vi>0)A(W va>0)]=P[(W' vi >0)A (W' va >0)] = — dw = - — —.
2 E 2 27
O
G.3 Proof of Lemmal[E.2]
Proof. Note that the ReLU activation function o(z) can be written as zI,>. We have,
2
(up,up) = 5V1TWTH{WV120,WV220}WV2
9 1
= . Z V1T(Wi~)TH{Wi.v1zowi.szo}Wwvz
i=1
== 2Eww\/(o,[p”,)["'1TWH{wTvlZo,wTv?zo}WTVQ]
Note that the random vector w is isotropically distributed and that only inner products w’v; and

w’'vy appear, hence we can assume without loss of generality that (if not, one can rotate the

coordinate system to make it true):

vy = ||v1]|(1,0,0,---,0),
va = ||va]|(cosf,sin 6,0, - ,0).

In this setting, the only relevant parts of w are its first two scalar components w; and ws. Define w

as
w = (w1, ws,0,--,0) = y/w? + w3(cosw, sinw, 0, - - ,0). (50)

22



Then, in the limit of ¢ — oo,

T
(ug,ug) = 2Ew~/\/(0,lpxp)["1 WiwTv,>0,wTv,>01 W Vo]

NN

T ~ ~
= 2B A (0,10 x2) [V1 W@ Tv, >0, wTv, >0} W Va

B 1 [z
=2[|vi|[[vall - Eqmn(0,72) [IIW]1%] - ﬂ/e i cosw cos(f) — w)dw
-2

1
=2[|vy|||ve] - 2- y ((m — 0) cos 6 + sin )

1 .
= HV1||||V2H; ((m — 0) cosf + sinb).

G.4 Proof of Lemmal[E.J

Proof.

2 q
A AT = 7 Z Ul vi>0,wp vaz03 (Uk)”
=1

(]—>OO
2- ]EUNN(O Isxs),w~N(0,1pxp) [uu ]I{wTvl >0, wTv2>O}]

(a)
=2 EuNN(O IsXa)[uuT] EWNN(O,IPXP)[H{wTvlzo,wTsz()}]

=2 EUNN(O’IS“)[uuT] Pl(wTvy > 0) A (whvy > 0)]

©T=0; .
i

In the step (a) above, we used the fact that U is independent of W, vy and v». In the step (b) above,
we applied Lemma and used the fact that Ey (0,7, ) [uu”] = Ioxs. O

G.5 Proof of Lemma[E4

Proof. Starting from the definition of the smallest eigenvalue, we have that \,;, (B’) satisfies

u? B'u
Amin(B') = min ———
(B) = 208 TP
iy =1 2 (T V2uiAi w4, 20)”
u70 Doy Uy
:mmz Yoo 20w 20)* iy Oy V2uiAud w4, 20))°
u#0 Do U D i 2(u Lw,. A,>03)?
> UZH{WLA >o})
. (B). 1
T T A oY

In the inequality (a) above, we made the following treatment: for each fixed I, we consider
uill{w, 4, >0} as the i-th component of a vector uj; by definition, the minimum eigenvalue of

matrix B = AAT
Amin(B) = min (w')" Bu' /|[u’[|* < (u})" Buj/|[wj||*, ¥j; (52)
u/¢0 P .
moreover, this < inequality becomes equality, if and only if all u;- are the same and equal to

arg min, o (u')? Gu’/||u’[|. Tt is easy to see, when the dataset is not degenerate, for different j,

u; are different, hence only the strict inequality < holds in step (a).
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Continuing from Eq.(51), we have

(u;I
Amzn > min E ZZ 1 u {{Wl A >0}) >\m1n(B)
u760 Zl 1 'LL

L 2us I )
— min E’L:l ul Zln:1 {Q{WIAzZO})AmZn(B)

u0 Die1 U
n 2
— min L%Amln(B) = Apin(B).
ut0 350 uf

Therefore, we have that A5, (B’) > Apin(B).

As for the largest eigenvalue A4, (B’), we can apply the same logic above for A, (K) (except
replacing the min operator by max and have < in step (a)) to get Aoz (B') < Amaz (B). O

G.6 Proof of LemmalE.5

Proof. Consider an arbitrary layer [ € [L] of the ReLU neural network f at initialization. Given

two arbitrary network inputs x,z € R?, the inputs to the I-th layer are o/~ (x)) and o'~V (z)),
respectively.

By definition, we have

2 2
aW(x) = \/;0 (W(l)a(l_l)(x)) , aD(z) = \/;0 (W(l)a(l_l)(z)) ) (53)

with entries of W) being i.i.d. drawn from A/(0, 1). Recall that, by definition, the angle between
a1 (x)) and a1 (z)) is 6¢~1(x,2). Applying Lemma[E.2] we immediately have the inner
product

(W (z), oV (x)) :% ((7r — 0" Y(x,2)) cos 0"V (x,z) 4+ sin !~V (x, z))
* [lal'=D (@) [[[lal'~ ()] (54)
In the special case of x = z, we have gU=1) (x,z) = 0, and obtain from the above equation that
I ()1 = (ol =V ()12, (55)
Apply Eq.(55) back to Eq.(54), we also get

@ @
) _ {aY(z),aV(x)) 1 _ pl=1) (1-1) in pU—1)
cos 0\ (x,2z) = O aD @] ~ = ((7r 0=V (x,2)) cos 8V (x,z) + sin g1 (x,z))
(56)

That is 0 (x,z) = g(8%~1)(x, z)). Recursively apply this relation, we obtain the desired result. [

G.7 Proof of LemmalE.6

Proof. By LemmalE.5| we have that

601 (x, z)

/10) (1=
cos 0\ (x,2) ( -

1
> cos 0V (x,2) + = sin 0V (x, z)
7T

= cos 0V (x, 2) (1 + 1 (tan 00V (x,2) — 0V (x, z)))

= cos 'V (x, 2) (1 + o 3 — (0" V(x,2))* + 0 ((9(1_1)(x,z))3)> .

Noting that the Taylor expansion of the cos function at zero is cosz = 1 — %zz + o(z%), one can
easily check that, for all [ € [L],

600 (x, z) = 601 (x, 2) — 3i(9<l—1>(x,z))2 o (0 (x.2))?). 57)

™
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Note that §1)(x,z) < 0~V (x,2z) = o(1/L). Iteratively apply the above equation, one gets, for all
1€ [L],if 00 (x,2) = o(1/L),
l
00 (x,2) = 00 (x,2) = = (0 (x.2))* + 0 ((9<0>(x,z))2) . (58)
7T

O
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paper’s contributions and scope?

Answer: [Yes]

Justification: The main claims made in the abstract and introduction are accurate summary
and high-level descriptions of the scope and the paper’s contributions.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The limitations are discussed in the last section of the main text.
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* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.
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whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
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instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
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the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
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reproduced following our description of experimental settings in Section[4.1] Moreover, the
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* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).
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parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
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that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [NA]

Justification: This is a theoretical paper. The experiments are used for verification of the
theoretical claims. Average of multiple runs are reported.

Guidelines:
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* The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]
Justification: The authors have read and complied the NeurIPS Code of Ethics.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA] .

Justification: This is a theoretical work, and there is no societal impact of the work per-
formed.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.
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* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

 The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: the paper poses no such risks, as it is a theoretical work.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The paper cited the datasets used in the experiments. The paper does not use
other existing assets.

Guidelines:
» The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.
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* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA] .
Justification: The paper is not using LLMs for any purpose.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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