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ABSTRACT

Federated Quantile Regression (FQR) has emerged as a powerful modelling
paradigm for estimating conditional quantiles, offering a more comprehensive un-
derstanding of response distributions than standard conditional mean regression.
However, achieving communication efficiency and optimal statistical guarantees
for FQR remains challenging, particularly due to the nonsmooth nature of quan-
tile loss functions and the presence of heterogeneously structured data, where each
local agent trains its conditional quantile models with distinct sets of features. In
this paper, we propose a data-driven, one-shot weighted ensemble estimator for
FQR that incorporates scalable weighting schemes to effectively leverage the par-
tially observed features at each local agent, thereby enjoying both communication
efficiency and estimation optimality. Theoretically, we present a unified analy-
sis of the proposed learning procedure, establishing that the resulting estimator
exhibits asymptotic normality and attains uniformly minimum variance. Further-
more, we investigate the estimator’s sensitivity to perturbations introduced by lo-
cal agents and derive conditions under which the estimator achieves stability and
enjoys strong out-of-sample generalization. Extensive simulations and real data
analysis under various scenarios validate the asymptotic normality of our esti-
mator and demonstrate its superior estimation accuracy and uniform convergence
compared to several baseline methods across a range of quantile levels.

1 INTRODUCTION

Federated Learning (FL) is a powerful machine learning paradigm that aims to learn a consensus
model while keeping data distributed across multiple agents. The model is trained without trans-
mitting local data over the network, thereby preserving privacy while leveraging information from
participating agents to enhance estimation accuracy (Fraboni et al., 2023). Classical approaches to
FL typically focus on modelling the conditional mean of the response given covariates of interest
under the assumption of homogeneous covariate effects. However, the assumption of homogeneous
covariate effects is often not applicable in settings where the relationship between the response
and covariates is inherently heterogeneous: covariate effects may vary significantly across differ-
ent quantile levels (Wang et al., 2012; He et al., 2023). Moreover, in many scientific applications
(e.g., hydrological (Weerts et al., 2011), sociological (Yang et al., 2012), and medical (Huang et al.,
2017)), when the goal is to explain the extreme behaviour of a particular variable, the lower and up-
per quantiles of the conditional response distribution are often of greater interest than the mean, as
they yield more succinct and interpretable conclusions. To capture heterogeneous covariate effects,
Quantile Regression (QR) has been developed as a powerful alternative for estimating conditional
quantiles of the response. In addition to capturing heterogeneity, QR provides a robustness guar-
antee to outliers and remains effective under skewed or heavy-tailed response distributions without
requiring correct specification of the likelihood function (Koenker, 2005). These advantages make
QR highly compatible with FL, where data typically originates from diverse, distributed sources,
which leads to a modelling paradigm of Federated Quantile Regression (Huang et al., 2020; Shi
et al., 2025; Shen et al., 2023; Tan et al., 2022).
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Despite the promising theoretical and practical performance of FQR, the existing literature for FQR
has largely focused on consistency, communication complexity, and algorithmic development (Shi
et al., 2025; Wang & Lian, 2023; Mirzaeifard et al., 2025; Wang & Lian, 2020; Wang et al., 2021).
While these works provide optimal point estimators, they fall short in quantifying uncertainty or ad-
dressing the practical challenge of inference on the effects of covariates in the conditional quantile
function. We argue that a statistical guarantee is essential in FQR, particularly given that the training
samples could be collected from diverse sources in FL (Ghosh et al., 2019; Tan et al., 2022). This is
mainly because of its critical importance in measuring the uncertainty associated with the estimate
in applications, as opposed to relying on a single-point estimate. Insight into the asymptotic distribu-
tion of the estimates provides a foundation for making more informed decisions by quantifying the
uncertainty of the estimate. Meanwhile, implementing an estimate without verifying its sensitivity
to perturbations can be risky. In many real-world operational settings, estimates must be carefully
evaluated before deployment. Therefore, the focus is not only on obtaining optimal estimates but,
more importantly, on assessing their associated statistical stability and generalization. This moti-
vates the primary research objective of the paper to investigate the statistical guarantee of the FQR
estimates.

1.1 MAIN CONTRIBUTION

In this paper, we investigate statistical guarantees, particularly asymptotic distribution, stability and
out-of-sample performance for FQR estimates, focusing on heterogeneously structured data environ-
ments in which local agents train QR models using distinct subsets of features. Such heterogeneity
arises from both practical constraints and task-specific considerations. In the former case, agents
may perform local model selection to enhance predictive performance (Wang et al., 2024). In the
latter, limitations related to feasibility, privacy-preserving requirements, and resource constraints
restrict the set of accessible covariates for each agent (Cheng et al., 2023) (We refer the reader to
related work for further details.). To the best of our knowledge, this is the first work to consider FQR
in this setting. We emphasize that this heterogeneous structure poses significant challenges, repre-
senting a marked departure from the standard FL setting, where all agents operate on an identical
feature set. To address these challenges, we propose a data-driven, one-shot weighted ensemble es-
timator for FQR, which incorporates scalable weighting schemes to effectively leverage the partially
observed feature sets across agents. We establish theoretical properties where the proposed estimator
enjoys strong statistical guarantees and demonstrate its empirical effectiveness through comprehen-
sive numerical experiments across a range of settings. Our main contributions are summarized as
follows.

1. We propose a communication-efficient weighted ensemble estimator for federated QR, de-
signed for heterogeneous data environments where local agents train QR models on distinct
feature subsets.

2. Theoretically, we do a rigorous analysis of the proposed method, showing that the resulting
estimator exhibits asymptotic normality under any weighting scheme and attains uniformly
minimum variance with the proposed optimal weighting. We further develop a foundational
stability concept to assess the estimator’s sensitivity to perturbations from local agents and
establish that the proposed estimator achieves stability and enjoys strong out-of-sample
generalization.

3. Numerical experiments demonstrate that the proposed weighted ensemble estimator out-
performs several baseline methods in estimation accuracy and uniform convergence across
various quantile levels.

1.2 RELATED WORK

This paper is motivated by the significance of QR in federated learning applications and the practical
need to handle heterogeneous, structured data settings for distributed estimation and inference. In
this section, we review lines of work most closely related to this paper.

Statistical inference for FQR. Statistical inference for FQR is widely recognized as an important
yet challenging task. This challenge arises from the decentralized feature of data in FL (McMahan
et al., 2016), rendering existing methodologies inapplicable. Some algorithms have been proposed
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to be compatible with distributed architectures (Jordan et al., 2019; Fan et al., 2023), but they are
not applicable to FQR due to their requirements on the loss function, typically assuming strong
convexity and twice differentiability with Lipschitz-continuous second derivatives. To address the
challenges posed by the nonsmooth loss function, one line of research focuses on a smoothing tech-
nique to make the loss function convex and differentiable. Specifically, Tan et al. (2022) leverages
a double-smoothing approach to achieve optimal inference in distributed quantile regression. How-
ever, such a technique could cause smoothing bias, primarily affecting the estimation, especially in
the heterogeneous structured data setting (Fernandes et al., 2021; He et al., 2023). An alternative
approach employs meta-analysis techniques that average estimates from separate data sources to ob-
tain synthesized estimators of QR coefficients. Although it offers the advantage of communication
efficiency, it requires stringent scaling to achieve the desired theoretical guarantees. Furthermore,
Jordan et al. (2019) highlighted that a stringent constraint on the number of sources is imposed
to ensure the optimal convergence rate: the number of agents is assumed to be far fewer than the
total sample size. This paper addresses the limitations of smoothing techniques and the stringent
constraints in the context of FQR, enabling distributed estimation with optimal statistical guaran-
tees. The core innovation of the proposed approach lies in estimating the FQR coefficients, using
a one-shot weighted ensemble method that leverages the information of observed features at each
local agent. Notably, the proposed estimator relaxes the stringent constraint on the number of agents
while preserving communication efficiency, requiring only a single round of communication.

Heterogeneous structured data. The heterogeneous structured data we investigate is motivated
by practical constraints and a series of studies addressing similar data across a broad range of ap-
plications without necessarily being referred to by this name, including decentralized clinical trials
(DCT) (De Jong et al., 2022), structured missing data (Cheng et al., 2023), model aggregation (Le
& Clarke, 2022; Ding et al., 2022), and selective inference (Wang et al., 2024). Specifically, mo-
tivated by the need to adjust the model selection process, Wang et al. (2024) developed a selective
inference tool to infer the effects of selected variables on conditional quantile functions, aiming to
ensure reliable inference post-selection. For model aggregation, Ding et al. (2022) introduced the
concept of ‘multiviews’ and proposed a new method for supervised learning with multiple sets of
features, which is particularly important in biology and medicine, where experts from different back-
grounds have their perspectives on the selection of variables. However, a major difference between
this line of work and ours is that most estimators are trained using the same set of observations,
while ours is trained on each agent’s own data, with only final outputs shared. We emphasize that
the decentralized nature of the data in this paper presents additional challenges in theoretical and
methodological development, particularly in quantifying correlations and developing a feasible es-
timator that accommodates this decentralization, such as determining and obtaining the necessary
statistics for aggregating the final output. A complementary work by (Cheng et al., 2023) proposed
a method for collaboratively learning least squares estimates for agents, where each agent observes
a different subset of features due to missingness. While similar in setting, we develop an estimator
that considers broader practical constraints and task-specific considerations, making our approach
adaptive and scalable.

2 PRELIMINARIES

In this section, we introduce the preliminaries and notation that will be used throughout the paper.

Quantile Regression. Let x ∈ Rd be a d-dimensional covariate vector and y ∈ R a scalar response
variable. We aim to estimate the τ -th conditional quantile of y given x at a pre-specified quantile
level τ ∈ (0, 1), focusing on the linear QR model of Qτ (y | x) = x⊤β⋆(τ), where β⋆(τ) =
(β⋆

1(τ), . . . , β
⋆
d(τ))

⊤ ∈ Rd is a vector of unknown parameters. This model can be equivalently
expressed as:

y = x⊤β⋆(τ) + ξ(τ), (1)

where ξ(τ) ∈ R is a random error satisfying P {ξ(τ) ≤ 0 | x} = τ (Koenker, 2005). In other words,
the conditional τ th quantile of each ξ(τ) given x is zero. The special case τ = 1/2 corresponds to
median regression. Let ρτ (u) = u{τ−I(u < 0)} denote the non-differentiable check loss function,
where I(·) denotes the usual indicator function. Given the distribution function of y, β⋆(τ) can be
obtained by solving

β⋆(τ) = argmin
β∈Rd

E
[
ρτ (y − x⊤β(τ))

]
.
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Suppose we consider M agents, each with an identical sample size n for simplicity. Let
{(xi,m, yi,m)}ni=1 denote n independent and identically distributed (i.i.d) samples from agent m,
∀m ∈ [1,M ]. Define N = nM , Ym = (y1,m, . . . , yn,m)⊤ ∈ Rn, Xm = (x1,m, . . . , xn,m)⊤ ∈
Rn×d.

Heterogeneous Structured Data. We consider an FL problem with heterogeneous structured
data, where each agent observes or selects only a subset of the full feature due to data collec-
tion constraints or selective biases. Each agent’s data is assumed to follow the linear QR model
equation 1. To mathematically formalize this feature-wise data partitioning and operationalize
the ideas of Cheng et al. (2023), we introduce a permutation matrix Πm ∈ Rd×d for each agent
m ∈ {1, · · · ,M}. Specifically, define

Π⊤
m :=

[
Π⊤

m+ Π⊤
m−

]
, Πm+ ∈ Rdm×d, Πm− ∈ R(d−dm)×d,

where Πm+ extracts the observed features (covariates) and Πm− the unobserved ones for agent m.
Let Σ be the covarince matrix of xi,m, i.e., E(xi,mx⊤i,m) = Σ. Given a sample (xi,m, yi,m) ∈
Rd × R, the covariate vector is decomposed as

xi,m = Π⊤
m

[
xi,m+

xi,m−

]
,

where xi,m+ = Πm+xi,m ∈ Rdm and xi,m− = Πm−xi,m ∈ Rd−dm represent the observed
and unobserved features, respectively, along with the associated response yi,m and corresponding
marginal covariance

Σm+ := E
[
xi,m+x

⊤
i,m+

]
= Πm+ΣΠ

⊤
m+,

which can be estimated from local data. We emphasize that this decomposition plays a central role
in the design of the learning algorithms proposed in later sections, which rely solely on observed
covariates while preserving the global inference objective.

For notational simplicity, for any vector v ∈ Rd, we define the projections vm+ := Πm+v and
vm− := Πm−v. These definitions extend analogously to matrix-valued notation, and we further
define that, for any matrix A ∈ Rd×d, suppose

Am+ := Πm+AΠ
⊤
m+, Am− := Πm−AΠ

⊤
m−,

Am± := Πm+AΠ
⊤
m−, Am∓ := Πm−AΠ

⊤
m+.

For a positive semi-definite matrix A, we define the A-norm of a vector z ∈ Rd as ∥z∥A :=√
⟨z,Az⟩. In addition, for any two positive semi-definite matrices A and B, we write A ⪰ B

to denote that A−B is positive semi-definite. Table 1 summarizes the notations adopted throughout
the paper.

Table 1: Notations and their meaning
Notations Meaning

τ quantile level
yi,m i-th observed response for agent m
xi,m+, xi,m− local observed and unobserved features for agent m
β⋆(τ) true parameters
β̃m(τ) local QR estimator for agent m
β̂(τ ; Ω(W )) global estimator
N , n total and local sample size
M number of agents
Σm+, Σm− observed and unobserved covariance for agent m
Πm permutation matrix for agent m
Πm+, Πm− extract observed and unobserved features (covariates) for agent m

4
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3 METHODOLOGY

The key challenge in designing an estimator for our setting lies in effectively integrating partially
observed feature information to ensure statistical optimality, while maintaining high communica-
tion efficiency. On the communication side, efficiency becomes particularly critical in large-scale
networks with numerous local data-collecting entities, especially under bandwidth constraints. To
enable scalability, it is important to minimize the number of communication rounds and offload com-
putationally intensive tasks to local machines without compromising statistical accuracy. Regarding
statistical optimality, we argue that a desirable method should not only ensure asymptotic consis-
tency with respect to the ground truth, but more importantly, minimize the prediction error on any
test sample with partial features x+ = Πm+x observed by agent m. To address the aforementioned
challenges, we propose a data-driven one-shot estimation procedure consisting of three steps.

Step 1: Local estimation. Each local agent learns its own estimate based on the subset of features
it observes or selects. Correspondingly, the local QR estimator at agent m is defined as

β̃m(τ) = argmin
β(τ)

{
1

n

n∑
i=1

ρτ
(
yi,m − x⊤i,m+β(τ)

)}
, (2)

where xi,m+ = Πm+xi,m ∈ Rdm denotes the observed feature vector for the mth agent.

Step 2: Weighted ensemble estimation. Each agent then transmits its estimate β̃m(τ) to a central
server. The central server aggregates the collection of local estimates {β̃m(τ)}Mm=1 by solving a
weighted optimization problem that accounts for the heterogeneous structured data across agents
(see Section 3.1). This aggregation yields a global estimator β̂(τ), which integrates information
from all agents while respecting their partial feature access.

Step 3: Model distribution. Finally, the central server distributes the global estimator β̂(τ) and its
appropriately transformed versions Tmβ̂(τ) to each agent. The specific form of the transformation
operator Tm is provided in Section 3.1. These agent-specific transformations enable each node to
make predictions using only its locally observed features, while still benefiting from the information
encoded in the full feature space.
Remark 3.1. We emphasize that the communication cost depends solely on the local dimension di
and does not scale with n, d, or m, thereby ensuring efficiency. Specifically, in the first commu-
nication round, agent i transmits d2i + 2di scalars to the central server, and in the second round,
the server returns the updated local parameter vector of size di. Consequently, the total per-agent
communication cost is d2i + 3di.

3.1 WEIGHTED ENSEMBLE ESTIMATION

Prediction error. The primary objective is to design an estimator, β̂(τ), that utilizes partially ob-
served data to minimize the full-feature prediction error on a fresh sample xi ∈ Rd:

E
[(

⟨xi, β̂(τ)⟩ − ⟨xi, β⋆(τ)⟩
)2]

= ∥β̂(τ)− β⋆(τ)∥Σ.

We are also interested in obtaining an estimator, β̂m(τ), which minimize the partial-feature predic-
tion error on a fresh sample xi,m+ = Πm+xi,m for agent m:

E
[(

⟨xi,m+, β̂m(τ)⟩ − ⟨xi,m, β⋆(τ)⟩
)2]

=
∥∥∥β̂m(τ)− Tmβ

⋆(τ)
∥∥∥2
Σm+

+
∥∥β⋆

m−(τ)
∥∥2
Γm−

,

where the second term ∥β⋆
m−(τ)∥2Γm−

represents the irreducible error due to unobserved features.
Here, Γm− := Σm− − Σm∓Σ

−1
m+Σm± is the Schur complement, and Tm is a linear transformation

matrix defined as
Tm :=

[
Idm A−1B

]
Πm,

where A and B are the weighted Hessian and covariance matrix defined as follows,

A := E
[
fξi,m(0|xi,m+)xi,m+x

⊤
i,m+

]
, B := E

[
fξi,m(0|xi,m+)xi,m+x

⊤
i,m−

]
.
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We emphasize that the operator Tm plays a pivotal role in the estimation process. Specifically,
Tmβ

⋆(τ) provides the best possible predictor for agent m compared with the naive approach of
using the subvector, Πm+β

⋆(τ), which simply selects the coefficients corresponding to the observed
features. In contrast, Tmβ⋆(τ) accounts for the correlations among all features, thereby improving
prediction accuracy. The scalar term fξi,m (0 | xi,m+) denotes the conditional density of the error
ξi,m(τ) at zero, given the observed feature vector xi,m+, and reflects the local concentration of noise
around the τ th quantile.

Estimates aggregation. We now present a weighted empirical risk minimization problem that is
used to aggregate the local estimates to obtain a global estimator. Let Wm ∈ Rdm×dm be a sym-
metric, positive definite weight matrix for agent m = 1, . . . ,M , and denote the collection of weight
matrices by Ω(W ) := {Wm}Mm=1. The global estimator β̂(τ) := β̂(τ ; Ω(W )) is obtained by solving
the following optimization problem:

β̂(τ ; Ω(W )) =: argmin
β(τ)

M∑
m=1

∥∥∥βm+(τ) + (A−1B)βm−(τ)− β̃m(τ)
∥∥∥2
Wm

. (3)

A local estimator for agent m is then defined as β̂m(τ) := Tmβ̂(τ ; Ω(W )). Applying the first-order
optimality condition, β̂(τ) admits the following closed-form expression:

β̂(τ ; Ω(W )) =

(
M∑

m=1

T⊤
mWmTm

)−1( M∑
m=1

T⊤
mWmβ̃m(τ)

)
. (4)

It can be shown that β̂(τ ; Ω(W )) is a consistent and asymptotically unbiased estimator of the true
parameter β⋆(τ), regardless of the specific choice of weight matrices (see Lemma 4.4). Further-
more, we will show the existence of an optimal weight matrix W ⋆ such that the corresponding es-
timator β̂(τ ; Ω(W ⋆)) achieves the minimum asymptotic variance among all estimators of the form
β̂(τ ; Ω(W )). The detailed procedure is summarized in Algorithm 1.

Algorithm 1 One-shot Weighted Ensemble Estimation with Uniformly Minimum Variance
1: Input: Given M agents, each possessing a local training dataset {(xi,m+, yi,m)}ni=1
2: for m in 1, · · · ,M do
3: Compute β̃m(τ) = argmin

β(τ)∈Rd

1
n

∑n
i=1 ρτ

(
yi,m − x⊤i,m+β(τ)

)
4: Compute V̂m = 1

n

∑n
i=1 xi,m+

(
τ − I[yi,m − x⊤i,m+β̃m(τ) < 0]

)
5: Compute R̂m = 1

n

∑n
i=1

[
fξi,m(0|xi,m+)xi,m+x

⊤
i,m+

]
6: Transmit β̃m(τ), V̂m, R̂m to coordinating server
7: end for
8: Central server constructs Ŵm = R̂m

(
V̂mV̂

⊤
m

)−1

R̂m for m = 1, . . . ,M

9: Central server obtain a global estimator β̂OSW(τ) through formula equation 4, and each local
agent output β̂OSW

m (τ) = Tmβ̂
OSW(τ)

Compared with Cheng et al. (2023)’s work, which considers a quadratic loss for each local agent, the
quantile loss used in our framework introduces substantial computational challenges in Algorithm 1.
Because no closed-form expression exists for the local quantile estimator, Step 3 requires solving a
linear programming problem, whereas Cheng’s estimator can be computed directly via a closed-form
solution. Furthermore, obtaining an estimate of the optimal weight matrix W ⋆

m in Step 8 requires
estimating the conditional density fξi,m (0 | xi,m+), a step unnecessary in Cheng’s framework.

4 THEORETICAL PROPERTIES

In this section, we first establish the asymptotic normality of the proposed estimator β̂(τ ; Ω(W ))
and derive the optimal weight matrix that minimizes its asymptotic variance. We then introduce a
consistent estimator for this optimal weight matrix to enable practical implementation. Finally, we
analyze the generalization performance of the proposed estimator based on the notion of stability.

6
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Assumption 4.1 (Feature assumption). xi,m ∼ N (0,Σ), for i = 1, . . . , n;m = 1, . . . ,M .

Assumption 4.2 (Structural coverage). The collection of all M agents jointly spans the entire fea-
ture space.

Assumption 4.3 (Well-definedness). Let f (. | xi,m+) be the conditional density function of the
noise ξi,m given xi,m+. Assume that this density function is continuous at 0 and fξi,m (0 | xi,m+) ≥
f ≥ 0 for some constant f .

Assumptions 4.1-4.3 are widely acknowledged as a regularity condition in the literature (Cheng
et al., 2023; Wu et al., 2020; Xie et al., 2024). In particular, Assumption 4.1, which is also required
for the least square estimation in the same settings (Cheng et al., 2023), is mild in the federated learn-
ing literature for enabling valid statistical inference. The structural assumption 4.2 ensures that the
full covariance matrix Σ can be recovered from the collection {Σm+}Mm=1. Assumption 4.3 imposes
the conditions that are critical for ensuring the existence of a well-defined asymptotic variance.

Lemma 4.4 (Asymptotic consistency). Suppose Assumptions 4.1, 4.2, and 4.3 hold. Then for any
collection of positive definite weighting matrices Ω(W ) := {Wm}Mm=1, where eachWm ∈ Rdm×dm

for m = 1, . . . ,M , the aggregated estimator β̂(τ ; Ω(W )), defined in Eq. (3), is asymptotically
consistent. That is, β̂(τ ; Ω(W ))

p−→ β⋆(τ).

Theorem 4.5 (Asymptotic normality). Under Assumptions 4.1, 4.2,and 4.3, the aggregated estima-
tor β̂(τ ; Ω(W )) is asymptotically normal:

√
n
(
β̂(τ ; Ω(W ))− β⋆(τ)

)
d−→ N (0, C(Ω(W ))) ,

where the asymptotic covariance matrix is given by

C(Ω(W )) =

(
M∑

m=1

T⊤
mWmTm

)−1( M∑
m=1

T⊤
mWmW

⋆−1
m WmTm

)(
M∑

m=1

T⊤
mWmTm

)−1

,

and

W ⋆
m = E[fξi,m(0|xi,m+)xi,m+x

⊤
i,m+] · V −1

m · E[fξi,m(0|xi,m+)xi,m+x
⊤
i,m+], (5)

Vm = E[(xi,m+(τ − I[yi,m − x⊤i,m+Tmβ
⋆(τ) < 0]))(x⊤i,m+(τ − I[yi,m − x⊤i,m+Tmβ

⋆(τ) < 0]))].

(6)

Moreover, for any positive definite weight matrices Ω(W ), the asymptotic covariance satisfies

C(Ω(W )) ⪰ C(Ω(W ⋆)) :=

(
M∑

m=1

T⊤
mW

⋆
mTm

)−1

. (7)

We highlight that the asymptotic normality result established in Theorem 4.5 holds for any weighting
matrices Ω(W ), underscoring the scalability of the proposed estimator. Moreover, we identify a
specific optimal W ⋆ as in equation 5 that minimizes the asymptotic covariance, thereby enhancing
the efficiency of the estimator. Notably, Theorem 4.5 holds without stringent conditions typically
required in meta-analysis (Jordan et al., 2019), which often limit agent number M to be much
smaller than

√
N .

Remark 4.6. We emphasize that Theorem 4.5 is derived under the Gaussian assumption. While
there exists potential to extend the proposed estimator to non-Gaussian settings, the main challenge
in applying Theorem 4.5 lies in constructing the optimal weights, which in their explicit form depend
on the unknown density function and parameter β⋆. Our analysis currently focuses on exploiting
Gaussianity to render these weights estimable and thereby enable the construction of the estimator.
Nevertheless, as we demonstrate in the Appendix A.5, the optimality of our approach extends beyond
the Gaussian framework, highlighting the broader applicability of the proposed methodology.

4.1 UNIFORMLY MINIMUM VARIANCE WEIGHTED ENSEMBLE ESTIMATION

In this section, we propose a consistent estimator of {W ⋆
m}Mm=1 for practical implementation.
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Lemma 4.7 (Consistent estimator). Under the assumptions as Theorem 4.5, define

V̂m =
1

n

n∑
i=1

xi,m+

(
τ − I

[
yi,m − x⊤i,m+β̃m(τ) < 0

])
, R̂m =

1

n

n∑
i=1

fξi,m(0|xi,m+)xi,m+x
⊤
i,m+.

we have that Ŵm := R̂m

(
V̂mV̂

⊤
m

)−1

R̂m is a consistent estimator of W ⋆
m.

With these consistent estimators {Ŵm}Mm=1, we define the one-shot weighted ensemble estimator
with minimum asymptotic variance (OSW) for the global and local estimators as

β̂OSW(τ) := β̂
(
τ ; Ω

(
Ŵ
))

, β̂OSW
m (τ) := Tmβ̂

(
τ ; Ω

(
Ŵ
))

. (8)

Theorem 4.8 (Uniformly minimum variance estimator). Under Assumptions 4.1, 4.2,and 4.3, the
global OSW estimator β̂OSW(τ) and local OSW estimator β̂OSW

m (τ) are asymptotically normal:
√
n
(
β̂OSW(τ)− β⋆(τ)

)
d−→ N (0, C(Ω(W ⋆))),

√
n
(
β̂OSW
m (τ)− Tmβ

⋆(τ)
)

d−→ N
(
0, TmC(Ω(W

⋆))T⊤
m

)
.

Corollary 4.9. Under Assumptions 4.1, 4.2,and 4.3, the OSW estimator satisfies:∥∥∥β̂OSW(τ)− β⋆(τ)
∥∥∥
2
= Op

(
1√
n

)
.

Note that, for any mth agent, the local estimator β̃m(τ), defined in equation 2, satisfies
√
n
(
β̃m(τ)− Tmβ

⋆
m(τ)

)
d→ N

(
0,W−1

m

)
.

AsW−1
m ⪰ TmC(Ω(W

⋆))T⊤
m , the OSW local estimator has smaller asymptotic variance. Moreover,

β̂OSW
m (τ) leverages the heterogeneous structure of each agent, thereby improving partial-feature

prediction accuracy. This also highlights the benefit of tailoring the global estimator via the trans-
formation Tm for localized inference. The proposed OSW global estimator β̂OSW(τ) reduces the
overall prediction error across all features, while achieving the optimal estimation error convergence
rate (Salehkaleybar et al., 2021).

4.2 GENERALIZATION VIA AGENT-DEPENDENT STABILITY

In this section, we establish a generalization bound for the proposed estimator based on the notion
of algorithmic stability. Stability-based analyses are commonly used in statistical learning theory
to derive upper bounds on generalization error, thereby ensuring out-of-sample performance. In
classical settings, stability is typically defined with respect to perturbations in individual data points.
However, this notion of stability does not directly apply in the FL setting, where each model is
trained on agent-specific local data. To address this challenge, we define an agent-dependent stability
notion tailored to FL by quantifying the effect of removing an entire agent’s data. This adapts
the sample-dependent stability concept from Bousquet & Elisseeff (2002); Wu et al. (2020) to our
federated framework.
Definition 4.10 (Agent-dependent stability). Let Zm denote the dataset held by agent m, and Z :=
{Z1, . . . , ZM} the collection of all agent datasets. An FL algorithm A is said to be agent-dependent
µ-stable with respect to a loss function ℓ(·), if for all m = 1, . . . ,M and any data point z,

EZ,z |ℓ(AZ , z)− ℓ(AZ\m , z)| ≤ µ,

where Z\m denotes the training dataset with data from agent m removed and redistributed to the
remaining M − 1 agents with the same missing structure.

This definition captures the sensitivity of the estimator to the removal of any single agent, which
is particularly relevant to practical FL scenarios involving potential network outages, agent dropout
due to constraints such as budget limitations or expired agreements, and poor local data quality. It
also extends to settings where the learning algorithm operates under limited communication band-
width.
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Lemma 4.11. The proposed Algorithm 1 satisfies agent-dependent stability with µ = O( 1√
N
),

where N =Mn is the total number of samples.

This stability result allows us to derive an out-of-sample generalization guarantee for our one-shot
weighted ensemble estimator.
Theorem 4.12 (Out-of-sample generalization bound). Under Assumptions 4.1, 4.2, , 4.3 and at least
m′ ≥ 2 agents have the same features, with quantile loss function ℓ(·) = ρτ (·), we have

E
[
ℓ
(
β̂OSW (τ), z

)]
− 1

N

N∑
k=1

ℓ
(
β̂OSW (τ), zk

)
= Op

(
1√
n

)
.

These bounds show that the OSW estimator generalizes well to unobserved data and achieves the
optimal estimation error convergence rate and the optimal generalization error convergence rate,
which is consistent with the results in the single joint learning literature (Salehkaleybar et al., 2021).

5 NUMERICAL EXPERIMENTS

In this section, we evaluate the performance of the proposed estimator through simulations un-
der various settings designed to illustrate the practical performance of our methods. We con-
sider a data-generating process of the form: Ym = Xmβ

⋆(τ) + Ξm,m = 1, . . . ,M , where
Xm ∈ Rn×d is a matrix of covariates drawn from a multivariate normal distribution N (0,Σ),
and Ξm := (ξ1,m, · · · , ξn,m) represents the noise vector. We evaluate the performance across three
quantile levels {0.2, 0.5, 0.8} with 4 different settings of the noise term: ξi,m is generated from (a)
standard normal N (0, 1), (b) heteroscedastic normal N (0, (2 + 0.1Xi1)

2), (c) exponential Exp(1),
(d) t-distribution t(5), and (e) Cauchy distribution.

We compare the one-shot weighted ensemble estimator (OSW) with the following baselines: (a)
Naive-Local, which uses local estimates independently, (b) Naive One-shot Federated Learning
(Naive-OSFL), which averages these local estimates, (c) Centralized, which uses a single machine
to concentrate all data without missing features, providing an optimal baseline across algorithms,
(d) UW-OSW, which replaces each Wm with diagonal elements that are 1 and the remaining ele-
ments that follow a standard normal distribution to verify the optimality ofWm within the algorithm
framework, (f) DA-OSW, which examines the role of Tm by substituting it with Id. Table 2 sum-
marizes the computation cost under these different methods. The performance is evaluated in terms
of mean squared prediction error (MSPE) to assess out-of-sample performance. We further validate
the asymptotic normality of our estimator by examining the convergence of its empirical distribution
moments.

Table 2: Computation cost for agent m under different methods
Methods Communication cost Methods Communication cost

Naive-Local −− Centralized −−
Naive-OSFL O(di) DA-OSW O(d2i )
UW-OSW O(d2i ) OSW O(d2i )

Figure 1: Mean squared prediction error under Cauchy distribution.

Due to space limitations, we present results only for Cauchy distributed noise setting. The results are
shown in Figure 1, which empirically demonstrate superior performance of the proposed method,

9
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along with the uniform convergence compared to baselines across different quantile levels. As the
sample size increases, all approaches show the expected reduction in prediction error; however, the
OSW method remains competitive with the centralized method and consistently achieves the lowest
prediction error in all settings. In contrast, the other baseline methods exhibit limited improvement
once the sample size exceeds 1000. In addition, as shown in Figure 2, the empirical mean and
variance of the estimates converge to their theoretical values as the sample size increases, supporting
the asymptotic normality of the estimator.

Figure 2: Convergence of the empirical mean and variance under the Cauchy distribution.

We emphasize that consistent findings are observed for various noise settings as previously men-
tioned, further demonstrating uniform performance guarantees and, particularly, the robustness
against outliers and heavy-tailed noise. We refer readers to Appendix A for details on the setup
and completed results of simulation experiments (Appendix A.1 - A.4) and real data analysis (Ap-
pendix A.6), particularly the sensitivity analysis under non-Gaussian settings and related discussion
(Appendix A.5).

6 CONCLUSION

This paper presents a unified framework for federated quantile regression, tackling challenges from
heterogeneous features and nonsmooth loss functions. The proposed one-shot weighted ensemble
estimator avoids iterative communication while maintaining statistical efficiency. It is asymptoti-
cally normal, stable, and offers strong generalization guarantees under mild conditions. QR han-
dles heavy-tailed or skewed distributions well, and our method retains this robustness in federated
settings. Still, feature heterogeneity may affect aggregation efficiency. Establishing finite-sample
guarantees under heavy-tailed conditions remains an important avenue for future research. Addi-
tionally, the current theory is limited by the Gaussian assumption. We emphasize, however, that
establishing the theoretical guarantee, e.g., asymptotic normality of the learned parameters, and the
determination of optimal weight matrix W ⋆, remains technically challenging even under Gaussian
features: unlike least squares, the local quantile regression estimator does not admit a closed-form
expression, and the nonsmoothness of the quantile loss further complicates the analysis. Our results,
therefore, require new techniques, such as Bahadur linear representation, beyond those used for fed-
erated mean regression. To the best of our knowledge, our work is the first to investigate federated
quantile regression with such heterogeneous structured features. Therefore, as a starting point, we
impose Gaussian design assumptions to keep the setting analytically tractable. We leave the work
with more relaxed assumptions on features for future work.
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The Appendix is organized as follows. Section A details the experimental setup and reports the
complete results of the simulations and real data analysis. Section B contains the proofs of the main
theoretical results presented in the paper.

A FULL EXPERIMENTS

All experiments were conducted on a Windows machine equipped with an i7-12700H (2.30 GHz)
CPU, an NVIDIA 3070Ti GPU, and 32 GB of RAM. We consider a federated setting with M = 40
agents, each observing a subset of d = 40 features. Across different experiments, we set the sample
size per agent to n = 100, 1000, 2000, 5000. The data is generated via the linear regression model
Ym = Xmβ

⋆(τ) + Ξm, for m = 1, . . . ,M , where Xm ∈ Rn×d is generated from N(0,Σ), and
Ξm := (ξ1,m, . . . , ξn,m)⊤. Among the 40 agents, 10 observe random subsets of 30 features, while
the remaining 30 observe random subsets of 25 features. To construct the covariance matrix Σ, we
sample d eigenvalues from the uniform distribution on [0, 1], randomly amplify three of them by
a factor of 30, and set Σ = WΛW⊤, where Λ is the diagonal matrix of eigenvalues and W is a
random orthogonal matrix. Figure 3 displays the heatmap of this covariance matrix. The noise term
ξi,m is generated under four scenarios: ξi,m is generated from (a) homoscedastic normal N (0, 1),
(b) heteroscedastic normal N (0, (2+0.1Xi1)

2), (c) exponentialExp(1), and (d) t-distribution t(5).

Denote β(τ) ∈ Rd be a vector generated by drawing d samples from N(0, 10). For each quantile
level τ , we shift β(τ) ∈ Rd such that noise term ξ satisfying P(ξi,m ≤ 0 | Xi) = τ to generate
true coefficient β⋆(τ). Specifically, we consider the following scenarios, (a) Homoscedastic normal:
β⋆(τ) = β(τ)+Φ−1(τ)e1, (b) Heteroscedastic normal: β⋆(τ) = β(τ)+2Φ−1(τ)e1+0.1Φ−1(τ)e2,
(c) Exponential: β⋆(τ) = β(τ)+F−1

exp (τ)e1, and (d) t: β⋆(τ) = β(τ)+5F−1
t (τ)e1, where Φ is the

cumulative distribution function (CDF) of the standard normal distribution, Fexp and Ft denote the
CDFs of the exponential and t distributions, respectively, and et is the standard basis vector in Rd

with the tth element being one and all the other elements being zero.

Throughout the numerical experiments, the key quantities Tm and W ⋆ are estimated by aggregating
information from all agents. The density fξi,m (0 | xi,m+) is estimated using a one-dimensional
kernel density estimator based on the residuals ri,m = yi,m − x⊤i,m+β̃m(τ). Specifically,

f̂ξi,m (0 | xi,m+) =
1

nhm

n∑
i=1

K (ri,m/hm) ,

where K(·) is the Gaussian kernel, K(u) = (2π)−1/2 exp
(
−u2/2

)
. For the bandwidth hm, we

adopt Silverman’s rule of thumb hm = 1.06σ̂r,mn
−1/5
m , where σ̂r,m is the sample standard deviation

of {ri.m}ni=1, and n is the sample size for agent m.

All methods are evaluated on a held-out test agent with access to all 40 features. Experiments are
repeated across quantile levels τ = 0.2, 0.5, and 0.8.

Figure 3: The heatmap of the covariance matrix Σ.
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A.1 HOMOSCEDASTIC NORMAL DISTRIBUTION

In this section, we present results for the classical symmetric case—the normal distribution, where
ξi,m ∼ N(0, 1). The results are shown in Figure 4 and Figures A.1. Figure 4 demonstrate superior
performance of the proposed method under this setting, along with the uniform convergence com-
pared to baselines across different quantile levels. As the sample size increases, all approaches show
the expected reduction in prediction error; however, the OSW method remains competitive with the
centralized method and consistently achieves the lowest prediction error across different quantile
levels. In contrast, the other baseline methods exhibit limited improvement once the sample size
exceeds 1000.

To validate the asymptotic normality of the proposed estimator β̂OSW(τ), we present the mean and
variance of estimation errors, defined as β̂OSW(τ) − β⋆(τ), in Figure A.1. The horizontal axis
represents the sample size n, while the vertical axis shows the mean (left) and variance (right) of the
estimation error. As n increases, both the mean and variance decrease, empirically confirming our
asymptotic normality results.

Figure 4: Mean squared prediction error under a homoscedastic normal distribution.

Figure 5: Convergence of the empirical mean and variance under a homoscedastic normal distribu-
tion.

A.2 HETEROSCEDASTIC NORMAL DISTRIBUTION

Figures 6 and 7 illustrate the performance of our proposed estimator under a heteroscedastic nor-
mal distribution, where ξi,m ∼ N(0, (2 + 0.1Xi1)

2). The results further demonstrate the superior
performance of the proposed method in terms of prediction accuracy compared to other baseline
methods.

Figure 6: Mean squared prediction error under heteroscedastic normal distribution.
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Figure 7: Convergence of the empirical mean and variance under heteroscedastic normal distribu-
tion.

A.3 EXPONENTIAL DISTRIBUTION

Figure 8 and Figure 9 present the results under exponential distribution across different quantile
levels.

Figure 8: Mean squared prediction error under exponential distribution exp(1).

Figure 9: Convergence of the empirical mean and variance under exponential distribution.

A.4 STUDENT-T DISTRIBUTION

Figure 10 and Figure 11 present the results under the t(5) distribution across different quantile levels.

Figure 10: Mean squared prediction error under t(5) distribution.

To summarize, all of these results consistently demonstrate superior prediction performance of our
proposed method across various noise settings and quantile levels. The proposed method exhibits
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Figure 11: Convergence of the empirical mean and variance under t(5) distribution.

robustness to outliers and heavy-tailed noise distributions. Notably, our proposed method remains
competitive with the centralized method.

A.5 GENERALIZATION BEYOND GAUSSIAN ASSUMPTIONS: SENSITIVITY ANALYSIS AND
DISCUSSION

As discussed in Remark 4.6, the current theory relies on the Gaussianity assumption. Relaxing this
assumption would be both valuable and novel, but it also poses significant technical challenges,
particularly in establishing strong theoretical guarantees and deriving optimal weight estimators:
Many theoretical properties and independence structures that hold under Gaussianity may no longer
be valid in non-Gaussian settings. For instance, extending the framework to sub-Gaussian designs
introduces new technical challenges, as several simplifications enabled by Gaussianity break down.

In this section, we examine the sensitivity of our approach to this assumption by conducting experi-
ments on non-Gaussian data. In the subsequent simulation study, we assume the data are distributed
according to the t and exponential distributions, and we set the quantile level at τ = 0.5 for the
FQR model. The results are reported in Tables 3 and 4, corresponding to the t and exponential
distributions, respectively.

Table 3: MSPE under different sample sizes when data is generated from the t distribution.
N Naive-OSFL Naive-Local OSW

500 86.91 534.96 17.21
1,000 91.95 510.86 9.18
2,000 86.17 495.26 2.92
5,000 87.48 499.84 2.06

Table 4: MSPE under different sample sizes when data is generated from the exponential distribu-
tion.

N Naive-OSFL Naive-Local OSW

500 149.05 508.40 45.89
1,000 125.39 518.92 30.19
2,000 127.73 512.78 24.03
5,000 123.99 510.27 21.40

The tables show that our proposed algorithm (OSW) consistently attains the lowest MSPE, with
performance improving as sample size increases, demonstrating both adaptability to diverse data-
generating processes and robustness in estimation.

We emphasize that these preliminary results suggest our method may generalize beyond the Gaus-
sian setting. To relax the Gaussianity assumption, a feasible direction is to leverage tools such as
linear projection techniques, matrix concentration inequalities, and uniform laws of large numbers
to develop appropriate corrections and establish rigorous theoretical guarantees. We acknowledge
the novelty and importance of this extension and leave it for future research.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

A.6 REAL DATA ANALYSIS: CALIFORNIA HOUSING PRICES

In this section, we illustrate the practical implementation of the proposed estimator using the Cali-
fornia Housing dataset (https://lib.stat.cmu.edu/), which contains 1990 U.S. Census data on housing
districts, including median income, average number of rooms, occupancy, and geographic coordi-
nates. This dataset is widely used as a benchmark in statistics and machine learning for testing new
methodologies. Our study includes 20 agents, where the first 10 lack the first dimension, and the
remaining 10 lack seven dimensions. We examine how the mean squared prediction error (MSPE)
varies with the local sample size n. For the FQR model, we set the quantile level to τ = 0.2, 0.5, 0.8,
and the results are summarized below, showing that our algorithm consistently achieves the best per-
formance than other methods and remains competitive with the centralized method. MSPE decreases
as n increases, providing empirical support for the theoretical guarantees established in our work.

Table 5: Mean Squared Prediction Error (MSPE) for different sample sizes in real data(τ = 0.2)
n Naive-OSFL Naive-Local OSW DA-OSW UW-OSW Centralized

10 1891.69 6257.71 8.10 4346.21 368.42 5.41
20 12.51 3750.04 8.10 1560.21 3210.45 5.20
30 432.72 5540.64 8.10 3218.72 1239.43 4.61
350 439.30 1687.57 8.10 573.21 84.26 3.30
450 21.05 487.95 4.49 287.62 66.45 2.18
500 21.06 557.38 3.89 163.43 50.67 2.08

Table 6: Mean Squared Prediction Error (MSPE) for different sample sizes in real data(τ = 0.5)
n Naive-OSFL Naive-Local OSW DA-OSW UW-OSW Centralized

10 4442.90 6257.72 8.13 7321.50 5324.31 5.46
20 16.86 2312.25 8.10 5321.89 3210.45 5.20
30 432.72 5540.64 8.10 3291.26 1565.36 4.68
350 42.76 844.46 6.50 623.45 98.72 3.28
450 23.01 518.64 4.59 320.08 69.17 2.14
500 44.42 575.89 4.40 198.76 54.69 2.03

Table 7: Mean Squared Prediction Error (MSPE) for different sample sizes in real data(τ = 0.8)
n Naive-OSFL Naive-Local OSW DA-OSW UW-OSW Centralized

10 4106.56 2243.31 8.06 3278.56 4326.78 5.34
20 54.72 13260.42 8.05 2654.21 3769.08 5.06
30 234.03 7299.73 8.05 1856.23 827.36 4.51
350 80.73 1076.19 6.68 467.24 56.45 3.45
450 67.86 912.26 6.17 187.48 31.85 2.11
500 44.85 579.21 5.29 164.36 23.19 1.99

17
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B THEORETICAL PROOFS

B.1 PROOFS FOR LEMMA 4.4

Proof. Let β⋆(τ) = [β⋆
+(τ)

⊤, β⋆
−(τ)

⊤]⊤ ∈ Rd be the global parameter vector. The response vari-
able is generated as:

Ym = X⊤
m+β

⋆
+(τ) +X⊤

m−β
⋆
−(τ) + Ξm,

where the error term Ξm satisfies the quantile condition Qτ (Ξm|Xm+, Xm−) = 0. Recall that the
quantile loss function is given by ρτ (u) = u(τ − I(u < 0)), and the local QR estimator for agent
m is:

β̃m(τ) = argmin
β(τ)∈Rd

Q̂m(β(τ)), where Q̂m(β(τ)) =:
1

n

n∑
i=1

ρτ
(
yi,m − (xi,m+)

⊤β(τ)
)
.

Note that the expected loss function has the form β⋆
m(τ) = argmin

β(τ)∈Rd

Qm(β(τ)), where Qm(β(τ)) =

E
[
ρτ (yi,m − x⊤i,m+β(τ))

]
. Substituting yi,m with the true model yields that

Qm(β(τ)) = E
[
ρτ
(
x⊤i,m+(β

⋆
+(τ)− β(τ)) + x⊤i,m−β

⋆
−(τ) + ξi,m

)]
. (9)

The first-order condition for minimization (9) requires:

∂Qm(β(τ))

∂β(τ)
= E

[
ψτ

(
x⊤i,m+(β

⋆
+(τ)− β(τ)) + x⊤i,m−β

⋆
−(τ) + ξi,m

)
xi,m+

]
= 0, (10)

where ψτ (u) = τ − I(u < 0). Because xi are Gaussian random vectors, it follows that xi,m− =

Σ⊤
i±Σ

−1
i+ xi,m+ +v, v ∼ N(0,Γi−), where Γi− = Σi− −Σ⊤

i±Σ
−1
i+Σi± is the Schur complement.

After Taylor expansion of the probability term and simplification, we obtain

E
[
fξm(0|xi,m+)xi,m+x

⊤
i,m+

(
β⋆
+(τ)− β(τ) + Σ−1

i+Σi±β
⋆
−(τ)

)]
= 0. (11)

The local optimal parameter is then given by

β⋆
m(τ) = β⋆

+(τ) +
(
E
[
fξi,m(0|xi,m+)xi,m+x

⊤
i,m+

])−1 E
[
fξi,m(0|xi,m+)xi,m+x

⊤
i,m−

]︸ ︷︷ ︸
A−1B

β⋆
−(τ).

(12)
Define the projection matrix:

Tm :=
[
Idm A−1B

]
Πm,

where:

• A = E
[
fξi,m(0|xi,m+)xi,m+x

⊤
i,m+

]
is the weighted Hessian matrix,

• B = E
[
fξi,m(0|xi,m+)xi,m+x

⊤
i,m−

]
is the weighted covariance matrix,

• Πm is a feature permutation matrix.

Under the Assumption 4.1, by the Glivenko-Cantelli theorem, the sample loss function converges
uniformly to the expected loss function, we have

sup
β(τ)

∣∣∣∣∣ 1n
n∑

i=1

ρτ
(
yi,m − x⊤i,m+β(τ)

)
−Qm(β(τ))

∣∣∣∣∣ p−→ 0. (13)

As the expected loss function Qm(β(τ)) is strictly convex at β⋆
m(τ) (since the Hessian matrix A ≻

0), the existence of a unique minimum exists. According to the limit theorem, we have β̃m(τ)
p−→

Tmβ
⋆(τ).

Convergence in probability follows from the uniform law of large numbers under standard regularity
conditions. Substituting back into β̂(τ ; Ω(W )), we can apply the continuous mapping theorem to
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derive that

β̂(τ ; Ω(W )) =

(
M∑

m=1

T⊤
mWmTm

)−1( M∑
m=1

T⊤
mWmβ̃m(τ)

)

p−→

(
M∑

m=1

T⊤
mWmTm

)−1( M∑
m=1

T⊤
mWmTmβ

⋆(τ)

)
= β⋆(τ).

B.2 PROOF FOR THEOREM 4.5

Proof. Note that the expected loss function is given by

β⋆
m(τ) = argmin

β(τ)∈Rd

Qm(β(τ)), where Qm(β(τ)) =: E
[
ρτ (yi,m − x⊤i,m+β(τ))

]
,

where the local parameter vector β⋆
m(τ) ∈ Rdm connects to a global parameter vector β⋆(τ) ∈ Rd

through a m-dependent projection matrix Tm ∈ Rdm×d, which can be formalized as

β⋆
m(τ) = Tmβ

⋆(τ), ∀m ∈ {1, . . . ,M}.
The local model’s error term, capturing the deviation between observed responses and their condi-
tional quantile predictions, is formally defined as:

ξi,m(τ) := yi,m − x⊤i,m+β
⋆
m(τ),

and the local QR estimator for agent m is obtained as

β̃m(τ) = argmin
β∈Rd

Q̂m(β(τ)), where Q̂m(β(τ)) =:
1

n

n∑
i=1

ρτ
(
yi,m − (xi,m+)

⊤β(τ)
)
.

For each observationm, define the weighted residual ri,m(β(τ)) = τ−I[yi,m−(xi,m+)
⊤β(τ) < 0].

The first derivative of the loss function is:

Sn,m(βm(τ)) =
∂Q̂m(β(τ))

∂β(τ)
= − 1

n

n∑
i=1

xi,m+ri,m(β(τ)).

Setting the derivative equal to zero, we obtain the equation that the estimator β̃m(τ) must satisfy:

1

n

n∑
i=1

xi,m+ri,m(β̃m(τ)) = 0.

Expanding the first-order derivative around the true parameter β⋆
m(τ) using a Taylor series, we get:

1

n

n∑
i=1

xi,m+ri,m(β̃m(τ)) ≈ 1

n

n∑
i=1

xi,m+ri,m(β⋆
m(τ))+

1

n

n∑
i=1

xi,m+(β̃m(τ)−β⋆
m(τ))

∂ri,m(β⋆
m(τ))

∂β(τ)
.

Since β̃m(τ) satisfies 1
n

∑n
i=1 xi,m+ri,m(β̃m(τ)) = 0, this simplifies to

n∑
i=1

xi,m+(β̃m(τ)− β⋆
m(τ))

∂ri,m(β⋆
m(τ))

∂β
≈ −

n∑
i=1

xi,m+ri,m(β⋆
m(τ)).

We next compute the expectations of ∂ri,m(β⋆
m(τ))

∂β(τ) and ri,m(β⋆
m(τ)).

As β⋆
m(τ) is the true parameter for the τ -th quantile, E[ri,m(β⋆

m(τ))] = 0, ∂ri,m(β⋆
m(τ))

∂β(τ) =

−fξi,m(0|xi,m+)xi,m+, where fξi,m(0|xi,m+) is the density of the error term ξi,m at 0 given xi,m+.
Under assumption 4.2, working conditional on the design FX = σ{xi,m+}ni=1 and using Knight’s
identity, we obtain the stochastic linearization

0 = Sn,m(β⋆
m(τ))−An,m (β̃m(τ)− β⋆

m(τ)) + rn,m, (14)
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where

An,m :=
1

n

n∑
i=1

Eξi,m

[
∂ri,m(β⋆

m(τ))

β(τ)

∣∣∣FX

]
=

1

n

n∑
i=1

fξi,m(0 | xi,m+)xi,m+x
⊤
i,m+, (15)

rn,m = op
(
∥β̃m(τ)− β⋆

m(τ)∥
)
+ op(n

−1/2) (given FX).

Thus, the expectation is taken only over the label noise in the Jacobian evaluated at the fixed point
β⋆
m; we do not take an expectation of the entire first-order condition. A conditional LLN yields

An,m = Am + op(1), Am = E
[
fξi,m

(
0|xi,m+

)
, xi,m+x

⊤
i,m+

]
. (16)

Combining equation 14–equation 16 gives the Bahadur representation

Am (β̃m − β⋆
m) =

1

n

n∑
i=1

xi,m+ri,m(β⋆(τ)) + op(n
−1/2). (17)

Equivalently, keeping the random Jacobian leads to

√
n (β̃m(τ)− β⋆

m(τ)) = A−1
n,m

(
1√
n

n∑
i=1

xi,m+ri,m(β⋆(τ))

)
+ op(1).

Since A−1
n,m − A−1

m = op(1), Slutsky’s theorem implies the same
√
n-limit if An,m is replaced by

Am. Hence, the randomness induced by the noise is fully preserved; the impact of ξi,m on the
Jacobian is op(1) and absorbed in the remainder. This implies that

√
n(β̃m(τ)− β⋆

m(τ)) ≈
[
E[fξi,m(0|xi,m+)xi,m+x

⊤
i,m+]

]−1 · 1√
n

n∑
i=1

xi,m+ri,m(β⋆
m(τ)).

By the Central Limit Theorem (CLT), as the sample size n approaches infinity, the distribution of
the sample mean converges to a normal distribution. For our case:

√
n

(
1

n

n∑
i=1

xi,m+ri,m(β̃m(τ))

)
d−→ N(0, V ),

where V = Var(xi,m+ri,mβ
⋆
m(τ)) is the variance of xi,m+ri,m(β⋆

m(τ)). Therefore,
√
n(β̃m(τ)− β⋆

m(τ))
d−→ N(0, ψm). (18)

The covariance matrix ψm can be calculated using the following formula:

ψm =
[
E[fξi,m(0|xi,m+)xi,m+x

⊤
i,m+]

]−1 · V ·
[
E[fξi,m(0|xi,m+)xi,m+x

⊤
i,m+]

]−1
.

Specifically, V = Var(xi,m+ri,mβ
⋆
m(τ)) can be written as:

V = E[(xi,m+ri,m(β⋆
m(τ)))(xi,m+ri,m(β⋆

m(τ)))⊤].

Noting that ri,m(β⋆
m(τ)) = τ − I[yi,m − x⊤i,m+β

⋆
m(τ) < 0], we have ri,m(β⋆

m(τ))2 = τ(1 − τ).
Finally, the covariance matrix ψm is expressed as

ψm = τ(1− τ)
[
E[fξi,m(0|xi,m+)xi,m+x

⊤
i,m+]

]−1 · Σi+ ·
[
E[fξi,m(0|xi,m+)xi,m+x

⊤
i,m+]

]−1
.

We proceed to show C(W1, · · · ,WM ) ⪰ C∗ under general feature distribution P and W ⋆
m := ψ−1

m .

Based on the form β̂(τ ; Ω(W )) =
(∑M

m=1 T
⊤
mWmTm

)−1 (∑M
m=1 T

⊤
mWmβ̃m(τ)

)
, it follows that

√
n
(
β̂(τ ; Ω(W ))− β⋆(τ)

)
∼ N(0, C(W1, · · · ,WM )), (19)

where

C(W1, · · · ,WM ) =

(
M∑

m=1

T⊤
mWmTm

)−1

·

(
M∑

m=1

T⊤
mWmW

∗−1
m WmTm

)
·

(
M∑

m=1

T⊤
mWmTm

)−1

.
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Under the oracle weighting configurationWm =W ⋆
m, we attain the theoretical minimum asymptotic

covariance bound. The resultant covariance structure simplifies to:

C(W1, · · · ,WM ) =

(
M∑

m=1

T⊤
mW

⋆
mTm

)−1

, (20)

establishing the pivotal semi-definite inequality requiring verification:

C(W1, · · · ,WM ) ⪰

(
M∑

m=1

T⊤
mWmTm

)−1

= C∗. (21)

To establish this ordering, we introduce the key matrix decomposition:

Hm =

[
T⊤
mW

⋆
mTm T⊤

mWmTm
T⊤
mWmTm T⊤

mWmW
∗−1
m WmTm

]
=

[
T⊤
mW

− 1
2

m

T⊤
mWmW

− 1
2

m

][
T⊤
mW

− 1
2

m

T⊤
mWmW

− 1
2

m

]⊤
⪰ 0.

where the outer product formulation explicitly guarantees positive semi-definiteness. Aggregating
these components yields:

M∑
m=1

Hm =

[
C∗−1

∑M
m=1 T

⊤
mWmTm∑M

m=1 T
⊤
mWmTm

∑M
m=1 T

⊤
mWm(W ⋆

m)−1WmTm

]
⪰ 0.

The Schur complement analysis of this block matrix yields:

0 ⪯ C∗−1 −

(
M∑

m=1

T⊤
mWmTm

)(
m∑

m=1

T⊤
mWmW

∗−1
m WmTm

)−1

×

(
M∑

m=1

T⊤
mWmTm

)
= C∗−1 − C(W1, . . . ,Wm)−1.

B.3 PROOF OF LEMMA 4.7

Proof. Slutsky’s theorem can be applied to show Ŵm
P−→W ⋆

m, where

Ŵm = R̂m

(
V̂mV̂

⊤
m

)−1

R̂m.

Note that

Σ̂m+ =
1

n

n∑
i=1

x⊤i,m+xi,m+

n

p→ Σi+,

R̂m =
1

n

n∑
i=1

[fξi,m(0|xi,m+)xi,m+x
⊤
i,m+]

p→
[
E[fξi,m(0|xi,m+)xi,m+x

⊤
i,m+]

]
.

In addition,

V̂m =
1

n

n∑
i=1

xi,m+ri,m(β̃m(τ)),

implies that

V̂m · (V̂m)⊤
p→ E[(xi,m+ri,m(β⋆

m(τ)))(xi,m+ri,m(β⋆
m(τ)))⊤].
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B.4 PROOF OF THEOREM 4.8

Proof. We first prove asymptotic normality of
√
n(β̂OSW(τ)−β̂(τ)) d−→ N(0, C(Ω(W ⋆))). We point

out that Theorem 4.5 is not directly applicable, as we use estimated weights that reuse the training
data. Note that the estimator can be decomposed as:

√
n
(
β̂OSW(τ)− β⋆(τ)

)
=

(
M∑

m=1

T⊤
mŴmTm

)−1( M∑
m=1

T⊤
mŴm(β̃m(τ)− Tmβ

⋆(τ))

)
. (22)

With the asymptotic normality established for
√
n(β̃m(τ) − Tmβ

⋆(τ)) in Eq. equation 18, Slut-
sky’s theorem and continuous mapping theorem, we can conclude that

√
n(β̂OSW(τ) − β⋆(τ))

d−→
N(0, C(Ω(W ⋆))).

Applying the delta method to the mapping β̃m(τ) 7→ Tmβ
⋆(τ), which maps from Rd to Rdm ,

immediately yields the asymptotic normality of β̂OSW
m (τ) based on β̂(τ ; Ω(W )). It remains to

verify the inequality TmC∗T⊤
m ⪯W ∗−1

m .

To this end, observe that the difference W ∗−1
m − TmC

∗T⊤
m corresponds to the Schur complement of

the block matrix

H =

[
W ∗−1

m Tm
T⊤
m C∗−1

]
.

Hence, it suffices to show that H ⪰ 0. Using the identity

C∗ =

(
M∑

m=1

T⊤
mW

∗
mTm

)−1

,

we rewrite H as

H =

[
W ∗−1

m Tm
T⊤
m

∑M
m=1 T

⊤
mW

∗
mTm

]
⪰
[
W ∗−1

m Tm
T⊤
m T⊤

mW
∗
mTm

]
.

The right-hand side is clearly positive semidefinite since it can be expressed as a Gram matrix:[
W

∗− 1
2

m

T⊤
mW

∗ 1
2

m

][
W

∗− 1
2

m

T⊤
mW

∗ 1
2

m

]⊤
⪰ 0.

This completes the proof.

B.5 PROOF OF COROLLARY 4.9

Proof. According to
√
n(β̂OSW(τ)− β̂(τ))

d−→ N(0, C(Ω(W ⋆))), we can directly get∥∥∥β̂OSW(τ)− β⋆(τ)
∥∥∥ = Op

(
1√
n

)
.

B.6 PROOF OF THEOREM 4.12

Proof. When agent m is removed from the distributed system, its n samples Zm are uniformly
redistributed to m′ compatible agents (Assumption (4.2)). Each compatible agent j ∈ Im receives
∆n = n

m′ samples, updating its local sample size to

nj = n ·
(
1 +

1

m′ − 1

)
.

Here, Zm denotes the set of data on the deleted agent and Im denotes the set of compatible agents.
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The original local estimator on agent j, before removal, admits the Bahadur representation

β̃j(τ) = β⋆
j (τ) +

1

n
D−1

j

n∑
i=1

xi,j+
(
τ − I{yi,j < (xi,j+)

⊤β⋆
j (τ)}

)
+ op(n

−1/2),

where Dj = E
[
fY |X(x⊤i,j+β

⋆
j (τ))xi,j+x

⊤
i,j+

]
⪰ f ·E[xi,j+x⊤i,j+] (Assumption (4.3)). After redis-

tributing ∆n samples, the updated estimator becomes

β̃new
j (τ) =β⋆

j (τ) +
1

nj
D−1

j

(
n∑

i=1

xi,j+
(
τ − I{yi,j < (xi,j+)

⊤β⋆
j (τ)}

))

+
1

nj
D−1

j

(
nj−n∑
k=1

xk,j+
(
τ − I{yk,j < (xk,j+)

⊤β⋆
j (τ)}

))
+ op(n

−1/2).

The discrepancy between the original and updated estimators on compatible agents j ∈ Im is char-
acterized by

β̃j(τ)−β̃new
j (τ) =

(
1

n
− 1

nj

)
D−1

j

n∑
i=1

xi,j+ (τ − I{·})︸ ︷︷ ︸
(A)

− 1

nj
D−1

j

∑
k∈Z̃

(k)
j

xk,j+ (τ − I{·})

︸ ︷︷ ︸
(B)

+op(n
−1/2),

(23)
where Z̃(k)

j contains ∆n = nj − n = n
m′ independent samples.

For (A), we have∣∣∣∣ 1n − 1

nj

∣∣∣∣ =
∣∣∣∣∣∣ 1n − 1

n
(
1 + 1

m′−1

)
∣∣∣∣∣∣ = 1

n
· 1

m′ + 1
= O

(
1

nm′

)
. (24)

Here, we define

ZA :=

n∑
i=1

xi,j+ · ri,j(β⋆
j (τ)), where ri,j(β

⋆
j (τ)) = τ − I

[
yi,j − (xi,j+)

⊤β⋆
j (τ) < 0

]
.

Since samples are independently and identically distributed, we know that the mean
E[ri,j(β

⋆
j (τ))] = 0 and the variance Var(ZA) = n · E

[
xi,j+x

⊤
i,j+ · Var(ri,j(β⋆

j (τ)) | xi,j+)
]
=

n · τ(1− τ) · E[xi,j+x⊤i,j+]. Therefore, by the Central Limit Theorem:

1√
n
ZA

d−→ N(0, τ(1− τ) · E[xj+x⊤j+]).

Therefore, the order of the original sum is:

ZA = Op(
√
n). (25)

Bringing equations (24), (25) into (23), we have

(A) =

(
1

n
− 1

nj

)
D−1

j ZA = O

(
1

nm′

)
·D−1

j ·Op(
√
n), (26)

where the spectral norm of D−1
j is bounded (i.e., ∥D−1

j ∥op = O(1)).

For (B), define the random variable for the new sample as

Zk =

∆n∑
k=1

xi,j+(rk,j(β(τ))), k ∈ Z̃
(k)
j ,

where Z̃(k)
j contains ∆n = nj − n = n

m′−1 independent samples.

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Since the samples are independently and identically distributed, we know that the mean
E[rk,j(β⋆

j (τ))] = 0 and the variance Var(Zk) = ∆n · E
[
xi,j+x

⊤
i,j+ · Var(rj(β⋆

j (τ)) | xi,j+)
]
=

∆n · τ(1− τ) · E[xi,j+x⊤i,j+]. Therefore, by the Central Limit Theorem, we have that

1√
∆n

Zk
d−→ N(0, τ(1− τ) · E[xi,j+x⊤i,j+]).

Therefore, the order of the original sum is:

Zk = Op(
√
∆n). (27)

Bringing equation (27) into (23), we have

(B) =
1

nj
D−1

j Zk = O

(
1

nm′

)
·D−1

j ·Op(
√
n). (28)

Combining the orders of (A) and (B), we have

∥β̃j(τ)− β̃new
j (τ)∥ ≤ ∥(A)∥+ ∥(B)∥+ op(n

−1/2) = Op(n
−1/2) +Op(n

−1/2) + op(n
−1/2),

then
∥β̃j(τ)− β̃new

j (τ)∥ = Op(n
−1/2).

The global perturbation induced by removing agent m propagates through the aggregated estimator
as

∆j = β̂OSW (τ)− β̂OSW (τ)\m =

(
M∑

m=1

T⊤
mWmTm

)−1 ∑
j∈Im

T⊤
j Wj

(
β̃j(τ)− β̃new

j (τ)
)
.

Here β̂OSW (τ)\m denotes the aggregation parameter obtained by training with all observations after
deleting the data of the mth agent and reassigning it, as shown in Definition 4.10. Then, combining
the spectral paradigm of the inverse of the global aggregation matrix with the summation term, we
have

∥∆j∥ ≤

∥∥∥∥∥∥
(

M∑
m=1

T⊤
mWmTm

)−1
∥∥∥∥∥∥

op

·

∥∥∥∥∥∥
∑
j∈Im

T⊤
j Wj(β̃j(τ)− β̃new

j (τ))

∥∥∥∥∥∥ .
Under the spectral norm control ∥Wj∥op ≤ C1, ∥Tm∥op ≤

√
1 + ∥Σ−1

m+Σm±∥2op ≤ C2, then we

have ∥
∑M

m=1 T
⊤
mWmTm∥op ≤MC3. It follows that∥∥∥∥∥∥

∑
j∈Im

T⊤
j Wj(β̃j(τ)− β̃new

j (τ))

∥∥∥∥∥∥ ≤ m′ · C1 · C2 ·Op(n
−1/2) = Op(n

−1/2).

Then, we derive

∥∆m∥ ≤ 1

MC3
·
∑
j∈Im

∥β̃j(τ)− β̃new
j (τ)∥ = Op(N

−1/2).

Leveraging the Lipschitz continuity of the quantile loss ρτ , the stability of the global estimator
satisfies∣∣∣ρτ (y − x⊤β̂OSW (τ))− ρτ (y − x⊤β̂OSW (τ)\m)

∣∣∣ ≤ ∥x∥ · ∥∆m∥ ≤ C4 ·Op(N
−1/2),

yielding the stability constant bound

µ(m) ≤ C4 ·Op(N
−1/2) = Op(N

−1/2), µ = max
m

µ(m) = Op(N
−1/2).
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Decompose the generalization error as

R(β̂OSW (τ))− R̂(β̂OSW (τ))

= R(β̂OSW (τ))− R̂dis(β̂
OSW (τ))︸ ︷︷ ︸

Stability Term

+ R̂dis(β̂
OSW (τ))− E(R̂dis(β̂

OSW (τ))) + E(R̂dis(β̂
OSW (τ)))− R̂(β̂OSW (τ))︸ ︷︷ ︸

Statistical Error

.

For stability term, let D = R(β̂OSW (τ))− R̂dis(β̂
OSW (τ)). Here

E[D] = E[R(β̂OSW (τ))− R̂dis(β̂
OSW (τ))]

=
1

n

n∑
i=1

E[ρτ (y−(x)
⊤β̂OSW (τ))− ρτ (y − (x)⊤β̂OSW (τ)\m)] ≤ µ.

Applying a block-wise McDiarmid inequality, we obtain

P (D − E[D] ≥ t) ≤ exp

(
− 2t2

m · (µ2)

)
.

Then

P
(
R(β̂OSW (τ))− R̂dis(β̂

OSW (τ)) ≥ µ+ t
)
≤ exp

(
− 2t2

m · (µ2)

)
.

Let δ = exp
(
− 2t2

m·(µ2)

)
, solving for t yields:

t =

√
m · µ2 · ln(1/δ)

2
.

Substituting µ = Op(N
−1/2), we get:

t = O

(√
m ·N−1 · ln(1/δ)

2

)
= O

(√
ln(1/δ)

n

)
.

Then, with probability at least 1− δ, we have that

R(β̂OSW (τ))− R̂dis(β̂
OSW (τ)) ≤ Op(n

−1/2) +O

(√
ln(1/δ)

n

)
.

For the statistical error term, we define D1 = R̂dis(β̂
OSW (τ)) − E(R̂dis(β̂

OSW (τ))) and D2 =

E(R̂dis(β̂
OSW (τ)))− R̂(β̂OSW (τ)).

For D2, according to the definition of stability and the linear nature of expectation, one has

D2 = E[R̂dis(β̂
OSW (τ))]− R̂(β̂OSW (τ)) =

1

N

N∑
i=1

E
[
ℓ(β̂OSW (τ)\m, z)− ℓ(β̂OSW (τ), z)

]
.

Since the difference between β̂OSW (τ)\m and β̂(τ) is guaranteed by parameter estimation consis-
tency (∥β̂OSW (τ)\m − β̂OSW (τ)∥ = Op(n

−1/2)), combined with the Lipschitz continuity of the
loss function:

E[ℓ(β̂OSW (τ)\m, z)− ℓ(β̂OSW (τ), z)] ≤ C4 · E[∥β̂OSW (τ)\m − β̂OSW (τ)∥] = O(n−1/2).

Therefore,
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D2 = E[R̂dis(β̂
OSW (τ))]− R̂(β̂OSW (τ)) = O(n−1/2).

For D1, according to the central limit theorem, we have

D1 = O(n−1/2).

Then

R̂dis(β̂
OSW (τ))− R̂(β̂OSW (τ)) = Op

(
1√
n

)
= Op(n

−1/2).

Combining both terms yields the final convergence rate:

R(β̂OSW (τ))− R̂(β̂OSW (τ)) = Op(n
−1/2) +Op(n

−1/2) = Op(n
−1/2).
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