

000 001 002 003 004 005 006 007 008 ONE-SHOT WEIGHTED ENSEMBLE ESTIMATION FOR 009 FEDERATED QUANTILE REGRESSION: OPTIMAL STA- 010 TISTICAL GUARANTEES UNDER HETEROGENEOUS 011 STRUCTURED DATA 012 013

014 **Anonymous authors**
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Paper under double-blind review

ABSTRACT

Federated Quantile Regression (FQR) has emerged as a powerful modelling paradigm for estimating conditional quantiles, offering a more comprehensive understanding of response distributions than standard conditional mean regression. However, achieving communication efficiency and optimal statistical guarantees for FQR remains challenging, particularly due to the nonsmooth nature of quantile loss functions and the presence of heterogeneously structured data, where each local agent trains its conditional quantile models with distinct sets of features. In this paper, we propose a data-driven, one-shot weighted ensemble estimator for FQR that incorporates scalable weighting schemes to effectively leverage the partially observed features at each local agent, thereby enjoying both communication efficiency and estimation optimality. Theoretically, we present a unified analysis of the proposed learning procedure, establishing that the resulting estimator exhibits asymptotic normality and attains uniformly minimum variance. Furthermore, we investigate the estimator's sensitivity to perturbations introduced by local agents and derive conditions under which the estimator achieves stability and enjoys strong out-of-sample generalization. Extensive simulations and real data analysis under various scenarios validate the asymptotic normality of our estimator and demonstrate its superior estimation accuracy and uniform convergence compared to several baseline methods across a range of quantile levels.

1 INTRODUCTION

Federated Learning (FL) is a powerful machine learning paradigm that aims to learn a consensus model while keeping data distributed across multiple agents. The model is trained without transmitting local data over the network, thereby preserving privacy while leveraging information from participating agents to enhance estimation accuracy (Fraboni et al., 2023). Classical approaches to FL typically focus on modelling the conditional mean of the response given covariates of interest under the assumption of homogeneous covariate effects. However, the assumption of homogeneous covariate effects is often not applicable in settings where the relationship between the response and covariates is inherently heterogeneous: covariate effects may vary significantly across different quantile levels (Wang et al., 2012; He et al., 2023). Moreover, in many scientific applications (e.g., hydrological (Weerts et al., 2011), sociological (Yang et al., 2012), and medical (Huang et al., 2017)), when the goal is to explain the extreme behaviour of a particular variable, the lower and upper quantiles of the conditional response distribution are often of greater interest than the mean, as they yield more succinct and interpretable conclusions. To capture heterogeneous covariate effects, Quantile Regression (QR) has been developed as a powerful alternative for estimating conditional quantiles of the response. In addition to capturing heterogeneity, QR provides a robustness guarantee to outliers and remains effective under skewed or heavy-tailed response distributions without requiring correct specification of the likelihood function (Koenker, 2005). These advantages make QR highly compatible with FL, where data typically originates from diverse, distributed sources, which leads to a modelling paradigm of Federated Quantile Regression (Huang et al., 2020; Shi et al., 2025; Shen et al., 2023; Tan et al., 2022).

054 Despite the promising theoretical and practical performance of FQR, the existing literature for FQR
 055 has largely focused on consistency, communication complexity, and algorithmic development (Shi
 056 et al., 2025; Wang & Lian, 2023; Mirzaiefard et al., 2025; Wang & Lian, 2020; Wang et al., 2021).
 057 While these works provide optimal point estimators, they fall short in quantifying uncertainty or ad-
 058 dressing the practical challenge of inference on the effects of covariates in the conditional quantile
 059 function. We argue that a statistical guarantee is essential in FQR, particularly given that the training
 060 samples could be collected from diverse sources in FL (Ghosh et al., 2019; Tan et al., 2022). This is
 061 mainly because of its critical importance in measuring the uncertainty associated with the estimate
 062 in applications, as opposed to relying on a single-point estimate. Insight into the asymptotic distribu-
 063 tion of the estimates provides a foundation for making more informed decisions by quantifying the
 064 uncertainty of the estimate. Meanwhile, implementing an estimate without verifying its sensitivity
 065 to perturbations can be risky. In many real-world operational settings, estimates must be carefully
 066 evaluated before deployment. Therefore, the focus is not only on obtaining optimal estimates but,
 067 more importantly, on assessing their associated statistical stability and generalization. This moti-
 068 vates the primary research objective of the paper to investigate the statistical guarantee of the FQR
 069 estimates.

070 1.1 MAIN CONTRIBUTION

071 In this paper, we investigate statistical guarantees, particularly asymptotic distribution, stability and
 072 out-of-sample performance for FQR estimates, focusing on heterogeneously structured data environ-
 073 ments in which local agents train QR models using distinct subsets of features. Such heterogeneity
 074 arises from both practical constraints and task-specific considerations. In the former case, agents
 075 may perform local model selection to enhance predictive performance (Wang et al., 2024). In the
 076 latter, limitations related to feasibility, privacy-preserving requirements, and resource constraints
 077 restrict the set of accessible covariates for each agent (Cheng et al., 2023) (We refer the reader to
 078 related work for further details.). To the best of our knowledge, this is the first work to consider FQR
 079 in this setting. We emphasize that this heterogeneous structure poses significant challenges, repre-
 080 senting a marked departure from the standard FL setting, where all agents operate on an identical
 081 feature set. To address these challenges, we propose a data-driven, one-shot weighted ensemble es-
 082 timator for FQR, which incorporates scalable weighting schemes to effectively leverage the partially
 083 observed feature sets across agents. We establish theoretical properties where the proposed estimator
 084 enjoys strong statistical guarantees and demonstrate its empirical effectiveness through compre-
 085 hensive numerical experiments across a range of settings. Our main contributions are summarized as
 086 follows.

- 087 1. We propose a communication-efficient weighted ensemble estimator for federated QR, de-
 088 signed for heterogeneous data environments where local agents train QR models on distinct
 089 feature subsets.
- 090 2. Theoretically, we do a rigorous analysis of the proposed method, showing that the resulting
 091 estimator exhibits asymptotic normality under any weighting scheme and attains uniformly
 092 minimum variance with the proposed optimal weighting. We further develop a foundational
 093 stability concept to assess the estimator’s sensitivity to perturbations from local agents and
 094 establish that the proposed estimator achieves stability and enjoys strong out-of-sample
 095 generalization.
- 096 3. Numerical experiments demonstrate that the proposed weighted ensemble estimator out-
 097 performs several baseline methods in estimation accuracy and uniform convergence across
 098 various quantile levels.

100 1.2 RELATED WORK

101 This paper is motivated by the significance of QR in federated learning applications and the practical
 102 need to handle heterogeneous, structured data settings for distributed estimation and inference. In
 103 this section, we review lines of work most closely related to this paper.

104 **Statistical inference for FQR.** Statistical inference for FQR is widely recognized as an important
 105 yet challenging task. This challenge arises from the decentralized feature of data in FL (McMahan
 106 et al., 2016), rendering existing methodologies inapplicable. Some algorithms have been proposed

108 to be compatible with distributed architectures (Jordan et al., 2019; Fan et al., 2023), but they are
 109 not applicable to FQR due to their requirements on the loss function, typically assuming strong
 110 convexity and twice differentiability with Lipschitz-continuous second derivatives. To address the
 111 challenges posed by the nonsmooth loss function, one line of research focuses on a smoothing tech-
 112 nique to make the loss function convex and differentiable. Specifically, Tan et al. (2022) leverages
 113 a double-smoothing approach to achieve optimal inference in distributed quantile regression. How-
 114 ever, such a technique could cause smoothing bias, primarily affecting the estimation, especially in
 115 the heterogeneous structured data setting (Fernandes et al., 2021; He et al., 2023). An alternative
 116 approach employs meta-analysis techniques that average estimates from separate data sources to ob-
 117 tain synthesized estimators of QR coefficients. Although it offers the advantage of communication
 118 efficiency, it requires stringent scaling to achieve the desired theoretical guarantees. Furthermore,
 119 Jordan et al. (2019) highlighted that a stringent constraint on the number of sources is imposed
 120 to ensure the optimal convergence rate: the number of agents is assumed to be far fewer than the
 121 total sample size. This paper addresses the limitations of smoothing techniques and the stringent
 122 constraints in the context of FQR, enabling distributed estimation with optimal statistical guar-
 123antees. The core innovation of the proposed approach lies in estimating the FQR coefficients, using
 124 a one-shot weighted ensemble method that leverages the information of observed features at each
 125 local agent. Notably, the proposed estimator relaxes the stringent constraint on the number of agents
 126 while preserving communication efficiency, requiring only a single round of communication.

127 **Heterogeneous structured data.** The heterogeneous structured data we investigate is motivated
 128 by practical constraints and a series of studies addressing similar data across a broad range of ap-
 129 plications without necessarily being referred to by this name, including decentralized clinical trials
 130 (DCT) (De Jong et al., 2022), structured missing data (Cheng et al., 2023), model aggregation (Le
 131 & Clarke, 2022; Ding et al., 2022), and selective inference (Wang et al., 2024). Specifically, moti-
 132 vated by the need to adjust the model selection process, Wang et al. (2024) developed a selective
 133 inference tool to infer the effects of selected variables on conditional quantile functions, aiming to
 134 ensure reliable inference post-selection. For model aggregation, Ding et al. (2022) introduced the
 135 concept of ‘multiviews’ and proposed a new method for supervised learning with multiple sets of
 136 features, which is particularly important in biology and medicine, where experts from different back-
 137 grounds have their perspectives on the selection of variables. However, a major difference between
 138 this line of work and ours is that most estimators are trained using the same set of observations,
 139 while ours is trained on each agent’s own data, with only final outputs shared. We emphasize that
 140 the decentralized nature of the data in this paper presents additional challenges in theoretical and
 141 methodological development, particularly in quantifying correlations and developing a feasible es-
 142 timator that accommodates this decentralization, such as determining and obtaining the necessary
 143 statistics for aggregating the final output. A complementary work by (Cheng et al., 2023) proposed
 144 a method for collaboratively learning least squares estimates for agents, where each agent observes
 145 a different subset of features due to missingness. While similar in setting, we develop an estimator
 146 that considers broader practical constraints and task-specific considerations, making our approach
 147 adaptive and scalable.

2 PRELIMINARIES

148 In this section, we introduce the preliminaries and notation that will be used throughout the paper.

149 **Quantile Regression.** Let $x \in \mathbb{R}^d$ be a d -dimensional covariate vector and $y \in \mathbb{R}$ a scalar response
 150 variable. We aim to estimate the τ -th conditional quantile of y given x at a pre-specified quantile
 151 level $\tau \in (0, 1)$, focusing on the linear QR model of $Q_\tau(y \mid x) = x^\top \beta^*(\tau)$, where $\beta^*(\tau) =$
 152 $(\beta_1^*(\tau), \dots, \beta_d^*(\tau))^\top \in \mathbb{R}^d$ is a vector of unknown parameters. This model can be equivalently
 153 expressed as:

$$154 y = x^\top \beta^*(\tau) + \xi(\tau), \quad (1)$$

155 where $\xi(\tau) \in \mathbb{R}$ is a random error satisfying $\mathbb{P}\{\xi(\tau) \leq 0 \mid x\} = \tau$ (Koenker, 2005). In other words,
 156 the conditional τ th quantile of each $\xi(\tau)$ given x is zero. The special case $\tau = 1/2$ corresponds to
 157 median regression. Let $\rho_\tau(u) = u\{\tau - I(u < 0)\}$ denote the non-differentiable check loss function,
 158 where $I(\cdot)$ denotes the usual indicator function. Given the distribution function of y , $\beta^*(\tau)$ can be
 159 obtained by solving
 160

$$\beta^*(\tau) = \arg \min_{\beta \in \mathbb{R}^d} \mathbb{E} [\rho_\tau(y - x^\top \beta(\tau))].$$

162 Suppose we consider M agents, each with an identical sample size n for simplicity. Let
 163 $\{(x_{i,m}, y_{i,m})\}_{i=1}^n$ denote n independent and identically distributed (i.i.d) samples from agent m ,
 164 $\forall m \in [1, M]$. Define $N = nM$, $Y_m = (y_{1,m}, \dots, y_{n,m})^\top \in \mathbb{R}^n$, $X_m = (x_{1,m}, \dots, x_{n,m})^\top \in$
 165 $\mathbb{R}^{n \times d}$.

166 **Heterogeneous Structured Data.** We consider an FL problem with heterogeneous structured
 167 data, where each agent observes or selects only a subset of the full feature due to data collec-
 168 tion constraints or selective biases. Each agent's data is assumed to follow the linear QR model
 169 equation 1. To mathematically formalize this feature-wise data partitioning and operationalize
 170 the ideas of Cheng et al. (2023), we introduce a permutation matrix $\Pi_m \in \mathbb{R}^{d \times d}$ for each agent
 171 $m \in \{1, \dots, M\}$. Specifically, define

$$173 \quad \Pi_m^\top := \begin{bmatrix} \Pi_{m+}^\top & \Pi_{m-}^\top \end{bmatrix}, \quad \Pi_{m+} \in \mathbb{R}^{d_m \times d}, \quad \Pi_{m-} \in \mathbb{R}^{(d-d_m) \times d},$$

175 where Π_{m+} extracts the observed features (covariates) and Π_{m-} the unobserved ones for agent m .
 176 Let Σ be the covariance matrix of $x_{i,m}$, i.e., $\mathbb{E}(x_{i,m} x_{i,m}^\top) = \Sigma$. Given a sample $(x_{i,m}, y_{i,m}) \in$
 177 $\mathbb{R}^d \times \mathbb{R}$, the covariate vector is decomposed as

$$179 \quad x_{i,m} = \Pi_m^\top \begin{bmatrix} x_{i,m+} \\ x_{i,m-} \end{bmatrix},$$

181 where $x_{i,m+} = \Pi_{m+} x_{i,m} \in \mathbb{R}^{d_m}$ and $x_{i,m-} = \Pi_{m-} x_{i,m} \in \mathbb{R}^{d-d_m}$ represent the observed
 182 and unobserved features, respectively, along with the associated response $y_{i,m}$ and corresponding
 183 marginal covariance

$$185 \quad \Sigma_{m+} := \mathbb{E}[x_{i,m+} x_{i,m+}^\top] = \Pi_{m+} \Sigma \Pi_{m+}^\top,$$

187 which can be estimated from local data. We emphasize that this decomposition plays a central role
 188 in the design of the learning algorithms proposed in later sections, which rely solely on observed
 189 covariates while preserving the global inference objective.

190 For notational simplicity, for any vector $v \in \mathbb{R}^d$, we define the projections $v_{m+} := \Pi_{m+} v$ and
 191 $v_{m-} := \Pi_{m-} v$. These definitions extend analogously to matrix-valued notation, and we further
 192 define that, for any matrix $A \in \mathbb{R}^{d \times d}$, suppose

$$194 \quad A_{m+} := \Pi_{m+} A \Pi_{m+}^\top, \quad A_{m-} := \Pi_{m-} A \Pi_{m-}^\top,$$

$$195 \quad A_{m\pm} := \Pi_{m+} A \Pi_{m-}^\top, \quad A_{m\mp} := \Pi_{m-} A \Pi_{m+}^\top.$$

197 For a positive semi-definite matrix A , we define the A -norm of a vector $z \in \mathbb{R}^d$ as $\|z\|_A :=$
 198 $\sqrt{\langle z, Az \rangle}$. In addition, for any two positive semi-definite matrices A and B , we write $A \succeq B$
 199 to denote that $A - B$ is positive semi-definite. [Table 1](#) summarizes the notations adopted throughout
 200 the paper.

201
202 [Table 1](#): Notations and their meaning

204 Notations	205 Meaning
τ	quantile level
$y_{i,m}$	i -th observed response for agent m
$x_{i,m+}, x_{i,m-}$	local observed and unobserved features for agent m
$\beta^*(\tau)$	true parameters
$\tilde{\beta}_m(\tau)$	local QR estimator for agent m
$\hat{\beta}(\tau; \Omega(W))$	global estimator
N, n	total and local sample size
M	number of agents
Σ_{m+}, Σ_{m-}	observed and unobserved covariance for agent m
Π_m	permutation matrix for agent m
Π_{m+}, Π_{m-}	extract observed and unobserved features (covariates) for agent m

216 **3 METHODOLOGY**

218 The key challenge in designing an estimator for our setting lies in effectively integrating partially
 219 observed feature information to ensure statistical optimality, while maintaining high communica-
 220 tion efficiency. On the communication side, efficiency becomes particularly critical in large-scale
 221 networks with numerous local data-collecting entities, especially under bandwidth constraints. To
 222 enable scalability, it is important to minimize the number of communication rounds and offload com-
 223 putationally intensive tasks to local machines without compromising statistical accuracy. Regarding
 224 statistical optimality, we argue that a desirable method should not only ensure asymptotic consis-
 225 tency with respect to the ground truth, but more importantly, minimize the prediction error on any
 226 test sample with partial features $x_+ = \Pi_{m+}x$ observed by agent m . To address the aforementioned
 227 challenges, we propose a data-driven one-shot estimation procedure consisting of three steps.

228 **Step 1: Local estimation.** Each local agent learns its own estimate based on the subset of features
 229 it observes or selects. Correspondingly, the local QR estimator at agent m is defined as

$$230 \quad 231 \quad 232 \quad \tilde{\beta}_m(\tau) = \arg \min_{\beta(\tau)} \left\{ \frac{1}{n} \sum_{i=1}^n \rho_\tau(y_{i,m} - x_{i,m+}^\top \beta(\tau)) \right\}, \quad (2)$$

233 where $x_{i,m+} = \Pi_{m+}x_{i,m} \in \mathbb{R}^{d_m}$ denotes the observed feature vector for the m th agent.

235 **Step 2: Weighted ensemble estimation.** Each agent then transmits its estimate $\tilde{\beta}_m(\tau)$ to a central
 236 server. The central server aggregates the collection of local estimates $\{\tilde{\beta}_m(\tau)\}_{m=1}^M$ by solving a
 237 weighted optimization problem that accounts for the heterogeneous structured data across agents
 238 (see Section 3.1). This aggregation yields a global estimator $\hat{\beta}(\tau)$, which integrates information
 239 from all agents while respecting their partial feature access.

240 **Step 3: Model distribution.** Finally, the central server distributes the global estimator $\hat{\beta}(\tau)$ and its
 241 appropriately transformed versions $T_m\hat{\beta}(\tau)$ to each agent. The specific form of the transformation
 242 operator T_m is provided in Section 3.1. These agent-specific transformations enable each node to
 243 make predictions using only its locally observed features, while still benefiting from the information
 244 encoded in the full feature space.

245 **Remark 3.1.** We emphasize that the communication cost depends solely on the local dimension d_i
 246 and does not scale with n, d , or m , thereby ensuring efficiency. Specifically, in the first commu-
 247 nication round, agent i transmits $d_i^2 + 2d_i$ scalars to the central server, and in the second round,
 248 the server returns the updated local parameter vector of size d_i . Consequently, the total per-agent
 249 communication cost is $d_i^2 + 3d_i$.

251 **3.1 WEIGHTED ENSEMBLE ESTIMATION**

253 **Prediction error.** The primary objective is to design an estimator, $\hat{\beta}(\tau)$, that utilizes partially ob-
 254 served data to minimize the full-feature prediction error on a fresh sample $x_i \in \mathbb{R}^d$:

$$255 \quad 256 \quad \mathbb{E} \left[\left(\langle x_i, \hat{\beta}(\tau) \rangle - \langle x_i, \beta^*(\tau) \rangle \right)^2 \right] = \|\hat{\beta}(\tau) - \beta^*(\tau)\|_\Sigma^2.$$

258 We are also interested in obtaining an estimator, $\hat{\beta}_m(\tau)$, which minimize the partial-feature predic-
 259 tion error on a fresh sample $x_{i,m+} = \Pi_{m+}x_{i,m}$ for agent m :

$$260 \quad 261 \quad \mathbb{E} \left[\left(\langle x_{i,m+}, \hat{\beta}_m(\tau) \rangle - \langle x_{i,m+}, \beta^*(\tau) \rangle \right)^2 \right] = \left\| \hat{\beta}_m(\tau) - T_m \beta^*(\tau) \right\|_{\Sigma_{m+}}^2 + \|\beta^*_{m-}(\tau)\|_{\Gamma_{m-}}^2,$$

264 where the second term $\|\beta^*_{m-}(\tau)\|_{\Gamma_{m-}}^2$ represents the irreducible error due to unobserved features.
 265 Here, $\Gamma_{m-} := \Sigma_{m-} - \Sigma_{m+} \Sigma_{m+}^{-1} \Sigma_{m-}$ is the Schur complement, and T_m is a linear transformation
 266 matrix defined as

$$267 \quad T_m := [I_{d_m} \quad A^{-1}B] \Pi_m,$$

268 where A and B are the weighted Hessian and covariance matrix defined as follows,

$$269 \quad A := \mathbb{E} [f_{\xi_{i,m}}(0|x_{i,m+})x_{i,m+}x_{i,m+}^\top], \quad B := \mathbb{E} [f_{\xi_{i,m}}(0|x_{i,m+})x_{i,m+}x_{i,m-}^\top].$$

We emphasize that the operator T_m plays a pivotal role in the estimation process. Specifically, $T_m\beta^*(\tau)$ provides the best possible predictor for agent m compared with the naive approach of using the subvector, $\Pi_{m+}\beta^*(\tau)$, which simply selects the coefficients corresponding to the observed features. In contrast, $T_m\beta^*(\tau)$ accounts for the correlations among all features, thereby improving prediction accuracy. The scalar term $f_{\xi_{i,m}}(0 | x_{i,m+})$ denotes the conditional density of the error $\xi_{i,m}(\tau)$ at zero, given the observed feature vector $x_{i,m+}$, and reflects the local concentration of noise around the τ th quantile.

Estimates aggregation. We now present a weighted empirical risk minimization problem that is used to aggregate the local estimates to obtain a global estimator. Let $W_m \in \mathbb{R}^{d_m \times d_m}$ be a symmetric, positive definite weight matrix for agent $m = 1, \dots, M$, and denote the collection of weight matrices by $\Omega(W) := \{W_m\}_{m=1}^M$. The global estimator $\hat{\beta}(\tau) := \hat{\beta}(\tau; \Omega(W))$ is obtained by solving the following optimization problem:

$$\hat{\beta}(\tau; \Omega(W)) =: \arg \min_{\beta(\tau)} \sum_{m=1}^M \left\| \beta_{m+}(\tau) + (A^{-1}B)\beta_{m-}(\tau) - \tilde{\beta}_m(\tau) \right\|_{W_m}^2. \quad (3)$$

A local estimator for agent m is then defined as $\hat{\beta}_m(\tau) := T_m \hat{\beta}(\tau; \Omega(W))$. Applying the first-order optimality condition, $\hat{\beta}(\tau)$ admits the following closed-form expression:

$$\hat{\beta}(\tau; \Omega(W)) = \left(\sum_{m=1}^M T_m^\top W_m T_m \right)^{-1} \left(\sum_{m=1}^M T_m^\top W_m \tilde{\beta}_m(\tau) \right). \quad (4)$$

It can be shown that $\hat{\beta}(\tau; \Omega(W))$ is a consistent and asymptotically unbiased estimator of the true parameter $\beta^*(\tau)$, regardless of the specific choice of weight matrices (see Lemma 4.4). Furthermore, we will show the existence of an optimal weight matrix W^* such that the corresponding estimator $\hat{\beta}(\tau; \Omega(W^*))$ achieves the minimum asymptotic variance among all estimators of the form $\hat{\beta}(\tau; \Omega(W))$. The detailed procedure is summarized in Algorithm 1.

Algorithm 1 One-shot Weighted Ensemble Estimation with Uniformly Minimum Variance

```

1: Input: Given  $M$  agents, each possessing a local training dataset  $\{(x_{i,m+}, y_{i,m})\}_{i=1}^n$ 
2: for  $m$  in  $1, \dots, M$  do
3:   Compute  $\tilde{\beta}_m(\tau) = \operatorname{argmin}_{\beta(\tau) \in \mathbb{R}^d} \frac{1}{n} \sum_{i=1}^n \rho_\tau(y_{i,m} - x_{i,m+}^\top \beta(\tau))$ 
4:   Compute  $\hat{V}_m = \frac{1}{n} \sum_{i=1}^n x_{i,m+} \left( \tau - I[y_{i,m} - x_{i,m+}^\top \tilde{\beta}_m(\tau) < 0] \right)$ 
5:   Compute  $\hat{R}_m = \frac{1}{n} \sum_{i=1}^n [f_{\xi_{i,m}}(0 | x_{i,m+}) x_{i,m+} x_{i,m+}^\top]$ 
6:   Transmit  $\tilde{\beta}_m(\tau), \hat{V}_m, \hat{R}_m$  to coordinating server
7: end for
8: Central server constructs  $\hat{W}_m = \hat{R}_m \left( \hat{V}_m \hat{V}_m^\top \right)^{-1} \hat{R}_m$  for  $m = 1, \dots, M$ 
9: Central server obtain a global estimator  $\hat{\beta}^{\text{OSW}}(\tau)$  through formula equation 4, and each local
   agent output  $\hat{\beta}_m^{\text{OSW}}(\tau) = T_m \hat{\beta}^{\text{OSW}}(\tau)$ 

```

Compared with Cheng et al. (2023)’s work, which considers a quadratic loss for each local agent, the quantile loss used in our framework introduces substantial computational challenges in Algorithm 1. Because no closed-form expression exists for the local quantile estimator, Step 3 requires solving a linear programming problem, whereas Cheng’s estimator can be computed directly via a closed-form solution. Furthermore, obtaining an estimate of the optimal weight matrix W_m^* in Step 8 requires estimating the conditional density $f_{\xi_{i,m}}(0 | x_{i,m+})$, a step unnecessary in Cheng’s framework.

4 THEORETICAL PROPERTIES

In this section, we first establish the asymptotic normality of the proposed estimator $\hat{\beta}(\tau; \Omega(W))$ and derive the optimal weight matrix that minimizes its asymptotic variance. We then introduce a consistent estimator for this optimal weight matrix to enable practical implementation. Finally, we analyze the generalization performance of the proposed estimator based on the notion of stability.

324 **Assumption 4.1** (Feature assumption). $x_{i,m} \sim \mathcal{N}(0, \Sigma)$, for $i = 1, \dots, n$; $m = 1, \dots, M$.

325 **Assumption 4.2** (Structural coverage). *The collection of all M agents jointly spans the entire feature space.*

328 **Assumption 4.3** (Well-definedness). *Let $f(\cdot | x_{i,m+})$ be the conditional density function of the noise $\xi_{i,m}$ given $x_{i,m+}$. Assume that this density function is continuous at 0 and $f_{\xi_{i,m}}(0 | x_{i,m+}) \geq f \geq 0$ for some constant f .*

331 Assumptions 4.1-4.3 are widely acknowledged as a regularity condition in the literature (Cheng
332 et al., 2023; Wu et al., 2020; Xie et al., 2024). In particular, Assumption 4.1, which is also required
333 for the least square estimation in the same settings (Cheng et al., 2023), is mild in the federated learning
334 literature for enabling valid statistical inference. The structural assumption 4.2 ensures that the
335 full covariance matrix Σ can be recovered from the collection $\{\Sigma_m\}_{m=1}^M$. Assumption 4.3 imposes
336 the conditions that are critical for ensuring the existence of a well-defined asymptotic variance.

337 **Lemma 4.4** (Asymptotic consistency). *Suppose Assumptions 4.1, 4.2, and 4.3 hold. Then for any
338 collection of positive definite weighting matrices $\Omega(W) := \{W_m\}_{m=1}^M$, where each $W_m \in \mathbb{R}^{d_m \times d_m}$
339 for $m = 1, \dots, M$, the aggregated estimator $\widehat{\beta}(\tau; \Omega(W))$, defined in Eq. (3), is asymptotically
340 consistent. That is, $\widehat{\beta}(\tau; \Omega(W)) \xrightarrow{p} \beta^*(\tau)$.*

342 **Theorem 4.5** (Asymptotic normality). *Under Assumptions 4.1, 4.2, and 4.3, the aggregated estimator
343 $\widehat{\beta}(\tau; \Omega(W))$ is asymptotically normal:*

$$344 \sqrt{n} \left(\widehat{\beta}(\tau; \Omega(W)) - \beta^*(\tau) \right) \xrightarrow{d} N(0, C(\Omega(W))),$$

346 where the asymptotic covariance matrix is given by

$$348 C(\Omega(W)) = \left(\sum_{m=1}^M T_m^\top W_m T_m \right)^{-1} \left(\sum_{m=1}^M T_m^\top W_m W_m^{*-1} W_m T_m \right) \left(\sum_{m=1}^M T_m^\top W_m T_m \right)^{-1},$$

351 and

$$353 W_m^* = \mathbb{E}[f_{\xi_{i,m}}(0 | x_{i,m+}) x_{i,m+} x_{i,m+}^\top] \cdot V_m^{-1} \cdot \mathbb{E}[f_{\xi_{i,m}}(0 | x_{i,m+}) x_{i,m+} x_{i,m+}^\top], \quad (5)$$

$$354 V_m = \mathbb{E}[(x_{i,m+}(\tau - I[y_{i,m} - x_{i,m+}^\top T_m \beta^*(\tau) < 0]))(x_{i,m+}^\top (\tau - I[y_{i,m} - x_{i,m+}^\top T_m \beta^*(\tau) < 0]))]. \quad (6)$$

357 Moreover, for any positive definite weight matrices $\Omega(W)$, the asymptotic covariance satisfies

$$359 C(\Omega(W)) \succeq C(\Omega(W^*)) := \left(\sum_{m=1}^M T_m^\top W_m^* T_m \right)^{-1}. \quad (7)$$

362 We highlight that the asymptotic normality result established in Theorem 4.5 holds for *any weighting*
363 *matrices* $\Omega(W)$, underscoring the scalability of the proposed estimator. Moreover, we identify a
364 specific optimal W^* as in equation 5 that minimizes the asymptotic covariance, thereby enhancing
365 the efficiency of the estimator. Notably, Theorem 4.5 holds without stringent conditions typically
366 required in meta-analysis (Jordan et al., 2019), which often limit agent number M to be much
367 smaller than \sqrt{N} .

368 **Remark 4.6.** *We emphasize that Theorem 4.5 is derived under the Gaussian assumption. While
369 there exists potential to extend the proposed estimator to non-Gaussian settings, the main challenge
370 in applying Theorem 4.5 lies in constructing the optimal weights, which in their explicit form depend
371 on the unknown density function and parameter β^* . Our analysis currently focuses on exploiting
372 Gaussianity to render these weights estimable and thereby enable the construction of the estimator.
373 Nevertheless, as we demonstrate in the Appendix A.5, the optimality of our approach extends beyond
374 the Gaussian framework, highlighting the broader applicability of the proposed methodology.*

376 4.1 UNIFORMLY MINIMUM VARIANCE WEIGHTED ENSEMBLE ESTIMATION

377 In this section, we propose a consistent estimator of $\{W_m^*\}_{m=1}^M$ for practical implementation.

378 **Lemma 4.7** (Consistent estimator). *Under the assumptions as Theorem 4.5, define*

$$380 \quad \hat{V}_m = \frac{1}{n} \sum_{i=1}^n x_{i,m+} \left(\tau - I \left[y_{i,m} - x_{i,m+}^\top \tilde{\beta}_m(\tau) < 0 \right] \right), \quad \hat{R}_m = \frac{1}{n} \sum_{i=1}^n f_{\xi_{i,m}}(0|x_{i,m+}) x_{i,m+} x_{i,m+}^\top.$$

383 we have that $\hat{W}_m := \hat{R}_m \left(\hat{V}_m \hat{V}_m^\top \right)^{-1} \hat{R}_m$ is a consistent estimator of W_m^* .

385 With these consistent estimators $\{\hat{W}_m\}_{m=1}^M$, we define the one-shot weighted ensemble estimator
386 with minimum asymptotic variance (OSW) for the global and local estimators as

$$388 \quad \hat{\beta}^{\text{OSW}}(\tau) := \hat{\beta} \left(\tau; \Omega \left(\hat{W} \right) \right), \quad \hat{\beta}_m^{\text{OSW}}(\tau) := T_m \hat{\beta} \left(\tau; \Omega \left(\hat{W} \right) \right). \quad (8)$$

389 **Theorem 4.8** (Uniformly minimum variance estimator). *Under Assumptions 4.1, 4.2, and 4.3, the
390 global OSW estimator $\hat{\beta}^{\text{OSW}}(\tau)$ and local OSW estimator $\hat{\beta}_m^{\text{OSW}}(\tau)$ are asymptotically normal:*

$$392 \quad \sqrt{n} \left(\hat{\beta}^{\text{OSW}}(\tau) - \beta^*(\tau) \right) \xrightarrow{d} \mathcal{N}(0, C(\Omega(W^*))),$$

$$394 \quad \sqrt{n} \left(\hat{\beta}_m^{\text{OSW}}(\tau) - T_m \beta^*(\tau) \right) \xrightarrow{d} \mathcal{N}(0, T_m C(\Omega(W^*)) T_m^\top).$$

395 **Corollary 4.9.** *Under Assumptions 4.1, 4.2, and 4.3, the OSW estimator satisfies:*

$$397 \quad \left\| \hat{\beta}^{\text{OSW}}(\tau) - \beta^*(\tau) \right\|_2 = O_p \left(\frac{1}{\sqrt{n}} \right).$$

400 Note that, for any m th agent, the local estimator $\tilde{\beta}_m(\tau)$, defined in equation 2, satisfies

$$402 \quad \sqrt{n} \left(\tilde{\beta}_m(\tau) - T_m \beta_m^*(\tau) \right) \xrightarrow{d} \mathcal{N}(0, W_m^{-1}).$$

403 As $W_m^{-1} \succeq T_m C(\Omega(W^*)) T_m^\top$, the OSW local estimator has smaller asymptotic variance. Moreover,
404 $\hat{\beta}_m^{\text{OSW}}(\tau)$ leverages the heterogeneous structure of each agent, thereby improving partial-feature
405 prediction accuracy. This also highlights the benefit of tailoring the global estimator via the trans-
406 formation T_m for localized inference. The proposed OSW global estimator $\hat{\beta}^{\text{OSW}}(\tau)$ reduces the
407 overall prediction error across all features, while achieving the optimal estimation error convergence
408 rate (Salehkaleybar et al., 2021).

4.2 GENERALIZATION VIA AGENT-DEPENDENT STABILITY

412 In this section, we establish a generalization bound for the proposed estimator based on the notion
413 of algorithmic stability. Stability-based analyses are commonly used in statistical learning theory
414 to derive upper bounds on generalization error, thereby ensuring out-of-sample performance. In
415 classical settings, stability is typically defined with respect to perturbations in individual data points.
416 However, this notion of stability does not directly apply in the FL setting, where each model is
417 trained on agent-specific local data. To address this challenge, we define an agent-dependent stability
418 notion tailored to FL by quantifying the effect of removing an entire agent's data. This adapts
419 the sample-dependent stability concept from Bousquet & Elisseeff (2002); Wu et al. (2020) to our
420 federated framework.

421 **Definition 4.10** (Agent-dependent stability). *Let Z_m denote the dataset held by agent m , and $Z :=$
422 $\{Z_1, \dots, Z_M\}$ the collection of all agent datasets. An FL algorithm \mathcal{A} is said to be agent-dependent
423 μ -stable with respect to a loss function $\ell(\cdot)$, if for all $m = 1, \dots, M$ and any data point z ,*

$$424 \quad \mathbb{E}_{Z,z} |\ell(\mathcal{A}_Z, z) - \ell(\mathcal{A}_{Z \setminus m}, z)| \leq \mu,$$

425 where $Z \setminus m$ denotes the training dataset with data from agent m removed and redistributed to the
426 remaining $M - 1$ agents with the same missing structure.

428 This definition captures the sensitivity of the estimator to the removal of any single agent, which
429 is particularly relevant to practical FL scenarios involving potential network outages, agent dropout
430 due to constraints such as budget limitations or expired agreements, and poor local data quality. It
431 also extends to settings where the learning algorithm operates under limited communication band-
width.

432 **Lemma 4.11.** *The proposed Algorithm 1 satisfies agent-dependent stability with $\mu = O(\frac{1}{\sqrt{N}})$,
433 where $N = Mn$ is the total number of samples.*

435 This stability result allows us to derive an out-of-sample generalization guarantee for our one-shot
436 weighted ensemble estimator.

437 **Theorem 4.12** (Out-of-sample generalization bound). *Under Assumptions 4.1, 4.2, , 4.3 and at least
438 $m' \geq 2$ agents have the same features, with quantile loss function $\ell(\cdot) = \rho_\tau(\cdot)$, we have*

$$440 \mathbb{E} \left[\ell \left(\hat{\beta}^{OSW}(\tau), z \right) \right] - \frac{1}{N} \sum_{k=1}^N \ell \left(\hat{\beta}^{OSW}(\tau), z_k \right) = O_p \left(\frac{1}{\sqrt{n}} \right).$$

443 These bounds show that the OSW estimator generalizes well to unobserved data and achieves the
444 optimal estimation error convergence rate and the optimal generalization error convergence rate,
445 which is consistent with the results in the single joint learning literature (Salehkaleybar et al., 2021).

447 5 NUMERICAL EXPERIMENTS

449 In this section, we evaluate the performance of the proposed estimator through simulations under
450 various settings designed to illustrate the practical performance of our methods. We consider a data-generating process of the form: $Y_m = X_m \beta^*(\tau) + \Xi_m, m = 1, \dots, M$, where
451 $X_m \in \mathbb{R}^{n \times d}$ is a matrix of covariates drawn from a multivariate normal distribution $\mathcal{N}(0, \Sigma)$,
452 and $\Xi_m := (\xi_{1,m}, \dots, \xi_{n,m})$ represents the noise vector. We evaluate the performance across three
453 quantile levels $\{0.2, 0.5, 0.8\}$ with 4 different settings of the noise term: $\xi_{i,m}$ is generated from (a)
454 standard normal $\mathcal{N}(0, 1)$, (b) heteroscedastic normal $\mathcal{N}(0, (2 + 0.1X_{i1})^2)$, (c) exponential $Exp(1)$,
455 (d) t -distribution $t(5)$, and (e) **Cauchy distribution**.

457 We compare the one-shot weighted ensemble estimator (OSW) with the following baselines: (a)
458 Naive-Local, which uses local estimates independently, (b) Naive One-shot Federated Learning
459 (Naive-OSFL), which averages these local estimates, (c) Centralized, which uses a single machine
460 to concentrate all data without missing features, providing an optimal baseline across algorithms,
461 (d) UW-OSW, which replaces each W_m with diagonal elements that are 1 and the remaining elements
462 that follow a standard normal distribution to verify the optimality of W_m within the algorithm
463 framework, (f) DA-OSW, which examines the role of T_m by substituting it with I_d . Table 2 summarizes
464 the computation cost under these different methods. The performance is evaluated in terms
465 of mean squared prediction error (MSPE) to assess out-of-sample performance. We further validate
466 the asymptotic normality of our estimator by examining the convergence of its empirical distribution
467 moments.

468 Table 2: Computation cost for agent m under different methods

Methods	Communication cost	Methods	Communication cost
Naive-Local	—	Centralized	—
Naive-OSFL	$O(d_i)$	DA-OSW	$O(d_i^2)$
UW-OSW	$O(d_i^2)$	OSW	$O(d_i^2)$

483 Figure 1: Mean squared prediction error under Cauchy distribution.

485 Due to space limitations, we present results only for Cauchy distributed noise setting. The results are
486 shown in Figure 1, which empirically demonstrate superior performance of the proposed method,

486 along with the uniform convergence compared to baselines across different quantile levels. As the
 487 sample size increases, all approaches show the expected reduction in prediction error; however, the
 488 OSW method remains competitive with the centralized method and consistently achieves the lowest
 489 prediction error in all settings. In contrast, the other baseline methods exhibit limited improvement
 490 once the sample size exceeds 1000. In addition, as shown in Figure 2, the empirical mean and
 491 variance of the estimates converge to their theoretical values as the sample size increases, supporting
 492 the asymptotic normality of the estimator.

503 Figure 2: Convergence of the empirical mean and variance under the Cauchy distribution.

504
 505 We emphasize that *consistent* findings are observed for various noise settings as previously
 506 mentioned, further demonstrating uniform performance guarantees and, particularly, the *robustness*
 507 *against* outliers and heavy-tailed noise. We refer readers to Appendix A for details on the setup
 508 and completed results of simulation experiments (Appendix A.1 - A.4) and real data analysis (Ap-
 509 pendix A.6), particularly the sensitivity analysis under non-Gaussian settings and related discussion
 510 (Appendix A.5).

511 6 CONCLUSION

512 This paper presents a unified framework for federated quantile regression, tackling challenges from
 513 heterogeneous features and nonsmooth loss functions. The proposed one-shot weighted ensemble
 514 estimator avoids iterative communication while maintaining statistical efficiency. It is asymptoti-
 515 cally normal, stable, and offers strong generalization guarantees under mild conditions. QR han-
 516 dles heavy-tailed or skewed distributions well, and our method retains this robustness in federated
 517 settings. Still, feature heterogeneity may affect aggregation efficiency. Establishing finite-sample
 518 guarantees under heavy-tailed conditions remains an important avenue for future research. **Addi-**
 519 **tionally, the current theory is limited by the Gaussian assumption.** We emphasize, however, that
 520 establishing the theoretical guarantee, e.g., asymptotic normality of the learned parameters, and the
 521 determination of optimal weight matrix W^* , remains technically challenging even under Gaussian
 522 features: unlike least squares, the local quantile regression estimator does not admit a closed-form
 523 expression, and the nonsmoothness of the quantile loss further complicates the analysis. Our results,
 524 therefore, require new techniques, such as Bahadur linear representation, beyond those used for fed-
 525 erated mean regression. To the best of our knowledge, our work is the first to investigate federated
 526 quantile regression with such heterogeneous structured features. Therefore, as a starting point, we
 527 impose Gaussian design assumptions to keep the setting analytically tractable. We leave the work
 528 with more relaxed assumptions on features for future work.

530 REFERENCES

531
 532 Olivier Bousquet and André Elisseeff. Stability and generalization. *Journal of Machine Learning*
 533 *Research*, 2:499–526, 2002.

534
 535 Chen Cheng, Gary Cheng, and John C Duchi. Collaboratively learning linear models with structured
 536 missing data. *Advances in Neural Information Processing Systems*, 36:7529–7540, 2023.

537
 538 Amos J De Jong, Tessa I Van Rijssel, Mira GP Zuideest, Ghislaine JMW Van Thiel, Scott Askin,
 539 Jaime Fons-Martínez, Tim De Smedt, Anthonius de Boer, Yared Santa-Ana-Tellez, Helga Gar-
 darsdottir, et al. Opportunities and challenges for decentralized clinical trials: European regula-
 tors’ perspective. *Clinical Pharmacology & Therapeutics*, 112(2):344–352, 2022.

540 Daisy Yi Ding, Shuangning Li, Balasubramanian Narasimhan, and Robert Tibshirani. Cooperative
 541 learning for multiview analysis. *Proceedings of the National Academy of Sciences*, 119(38):
 542 e2202113119, 2022.

543 Jianqing Fan, Yongyi Guo, and Kaizheng Wang. Communication-efficient accurate statistical esti-
 544 mation. *Journal of the American Statistical Association*, 118(542):1000–1010, 2023.

545 Marcelo Fernandes, Emmanuel Guerre, and Eduardo Horta. Smoothing quantile regressions. *Jour-
 546 nal of Business & Economic Statistics*, 39(1):338–357, 2021.

547 Yann Fraboni, Richard Vidal, Laetitia Kameni, and Marco Lorenzi. A general theory for federated
 548 optimization with asynchronous and heterogeneous clients updates. *Journal of Machine Learning
 549 Research*, 24(110):1–43, 2023.

550 Avishek Ghosh, Justin Hong, Dong Yin, and Kannan Ramchandran. Robust federated learning in a
 551 heterogeneous environment. *arXiv preprint arXiv:1906.06629*, 2019.

552 Xuming He, Xiaou Pan, Kean Ming Tan, and Wen-Xin Zhou. Smoothed quantile regression with
 553 large-scale inference. *Journal of Econometrics*, 232(2):367–388, 2023.

554 Liqi Huang, Xin Wei, Peikang Zhu, Yun Gao, Mingkai Chen, and Bin Kang. Federated quantile
 555 regression over networks. In *2020 International Wireless Communications and Mobile Computing
 556 (IWCMC)*, pp. 57–62. IEEE, 2020.

557 Qi Huang, Hanze Zhang, Jiaqing Chen, and MJBB He. Quantile regression models and their
 558 applications: A review. *Journal of Biometrics & Biostatistics*, 8(3):1–6, 2017.

559 Michael I Jordan, Jason D Lee, and Yun Yang. Communication-efficient distributed statistical infer-
 560 ence. *Journal of the American Statistical Association*, 2019.

561 Roger Koenker. *Quantile regression*, volume 38. Cambridge University Press, 2005.

562 Tri M Le and Bertrand S Clarke. Model averaging is asymptotically better than model selection for
 563 prediction. *Journal of Machine Learning Research*, 23(33):1–53, 2022.

564 H. B. McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Agüera y Arcas.
 565 Communication-efficient learning of deep networks from decentralized data. In *International
 566 Conference on Artificial Intelligence and Statistics*, 2016.

567 Reza Mirzaeifard, Diyako Ghaderyan, and Stefan Werner. Decentralized smoothing admm for quan-
 568 tile regression with non-convex sparse penalties. *IEEE Signal Processing Letters*, 2025.

569 Saber Salehkaleybar, Arsalan Sharifnassab, and S. Jamaloddin Golestani. One-shot federated learn-
 570 ing: Theoretical limits and algorithms to achieve them. *Journal of Machine Learning Research*,
 571 22:1–47, 2021.

572 Lin Shen, Yue Chao, and Xuejun Ma. Distributed quantile regression in decentralized optimization.
 573 *Information Sciences*, 643:119259, 2023.

574 Jianwei Shi, Yue Wang, Zhongyi Zhu, and Heng Lian. Decentralized learning of quantile regression:
 575 A smoothing approach. *Journal of Computational and Graphical Statistics*, pp. 1–11, 2025.

576 Kean Ming Tan, Heather Battey, and Wen-Xin Zhou. Communication-constrained distributed quan-
 577 tile regression with optimal statistical guarantees. *Journal of Machine Learning Research*, 23
 578 (272):1–61, 2022.

579 Kangning Wang, Shaomin Li, and Benle Zhang. Robust communication-efficient distributed com-
 580 posite quantile regression and variable selection for massive data. *Computational Statistics &
 581 Data Analysis*, 161:107262, 2021.

582 Lan Wang, Yichao Wu, and Runze Li. Quantile regression for analyzing heterogeneity in ultra-high
 583 dimension. *Journal of the American Statistical Association*, 107(497):214–222, 2012.

584 Lei Wang and Heng Lian. Communication-efficient estimation of high-dimensional quantile regres-
 585 sion. *Analysis and Applications*, 18(06):1057–1075, 2020.

594 Yue Wang and Heng Lian. On linear convergence of admm for decentralized quantile regression.
595 *IEEE Transactions on Signal Processing*, 71:3945–3955, 2023.
596

597 Yumeng Wang, Snigdha Panigrahi, and Xuming He. Asymptotically-exact selective inference for
598 quantile regression. *arXiv preprint arXiv:2404.03059*, 2024.

599 AH Weerts, HC Winsemius, and JS Verkade. Estimation of predictive hydrological uncertainty using
600 quantile regression: examples from the national flood forecasting system (england and wales).
601 *Hydrology and Earth System Sciences*, 15(1):255–265, 2011.

602

603 Xinxing Wu, Junping Zhang, and Fei yue Wang. Stability-based generalization analysis of dis-
604 tributed learning algorithms for big data. *IEEE Transactions on Neural Networks and Learning*
605 *Systems*, 31:801–812, 2020.

606 Jinhan Xie, Xianwen Ding, Bei Jiang, Xiaodong Yan, and Linglong Kong. High-dimensional model
607 averaging for quantile regression. *Canadian Journal of Statistics*, 52(2):618–635, 2024.

608

609 Tse-Chuan Yang, Vivian Yi-Ju Chen, Carla Shoff, and Stephen A Matthews. Using quantile regres-
610 sion to examine the effects of inequality across the mortality distribution in the us counties. *Social*
611 *Science & Medicine*, 74(12):1900–1910, 2012.

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648 The Appendix is organized as follows. Section A details the experimental setup and reports the
 649 complete results of the simulations and real data analysis. Section B contains the proofs of the main
 650 theoretical results presented in the paper.
 651
 652

653 A FULL EXPERIMENTS

654 All experiments were conducted on a Windows machine equipped with an i7-12700H (2.30 GHz)
 655 CPU, an NVIDIA 3070Ti GPU, and 32 GB of RAM. We consider a federated setting with $M = 40$
 656 agents, each observing a subset of $d = 40$ features. Across different experiments, we set the sample
 657 size per agent to $n = 100, 1000, 2000, 5000$. The data is generated via the linear regression model
 658 $Y_m = X_m\beta^*(\tau) + \Xi_m$, for $m = 1, \dots, M$, where $X_m \in \mathbb{R}^{n \times d}$ is generated from $N(0, \Sigma)$, and
 659 $\Xi_m := (\xi_{1,m}, \dots, \xi_{n,m})^\top$. Among the 40 agents, 10 observe random subsets of 30 features, while
 660 the remaining 30 observe random subsets of 25 features. To construct the covariance matrix Σ , we
 661 sample d eigenvalues from the uniform distribution on $[0, 1]$, randomly amplify three of them by
 662 a factor of 30, and set $\Sigma = W\Lambda W^\top$, where Λ is the diagonal matrix of eigenvalues and W is a
 663 random orthogonal matrix. Figure 3 displays the heatmap of this covariance matrix. The noise term
 664 $\xi_{i,m}$ is generated under four scenarios: $\xi_{i,m}$ is generated from (a) homoscedastic normal $\mathcal{N}(0, 1)$,
 665 (b) heteroscedastic normal $\mathcal{N}(0, (2 + 0.1X_{i1})^2)$, (c) exponential $Exp(1)$, and (d) t -distribution $t(5)$.
 666

667 Denote $\beta(\tau) \in \mathbb{R}^d$ be a vector generated by drawing d samples from $N(0, 10)$. For each quantile
 668 level τ , we shift $\beta(\tau) \in \mathbb{R}^d$ such that noise term ξ satisfying $\mathbb{P}(\xi_{i,m} \leq 0 \mid X_i) = \tau$ to generate
 669 true coefficient $\beta^*(\tau)$. Specifically, we consider the following scenarios, (a) Homoscedastic normal:
 670 $\beta^*(\tau) = \beta(\tau) + \Phi^{-1}(\tau)e_1$, (b) Heteroscedastic normal: $\beta^*(\tau) = \beta(\tau) + 2\Phi^{-1}(\tau)e_1 + 0.1\Phi^{-1}(\tau)e_2$,
 671 (c) Exponential: $\beta^*(\tau) = \beta(\tau) + F_{\text{exp}}^{-1}(\tau)e_1$, and (d) t : $\beta^*(\tau) = \beta(\tau) + 5F_t^{-1}(\tau)e_1$, where Φ is the
 672 cumulative distribution function (CDF) of the standard normal distribution, F_{exp} and F_t denote the
 673 CDFs of the exponential and t distributions, respectively, and e_t is the standard basis vector in \mathbb{R}^d
 674 with the t th element being one and all the other elements being zero.
 675

676 Throughout the numerical experiments, the key quantities T_m and W^* are estimated by aggregating
 677 information from all agents. The density $f_{\xi_{i,m}}(0 \mid x_{i,m+})$ is estimated using a one-dimensional
 678 kernel density estimator based on the residuals $r_{i,m} = y_{i,m} - x_{i,m+}^\top \tilde{\beta}_m(\tau)$. Specifically,

$$679 \hat{f}_{\xi_{i,m}}(0 \mid x_{i,m+}) = \frac{1}{nh_m} \sum_{i=1}^n K(r_{i,m}/h_m),$$

680 where $K(\cdot)$ is the Gaussian kernel, $K(u) = (2\pi)^{-1/2} \exp(-u^2/2)$. For the bandwidth h_m , we
 681 adopt Silverman's rule of thumb $h_m = 1.06\hat{\sigma}_{r,m}n_m^{-1/5}$, where $\hat{\sigma}_{r,m}$ is the sample standard deviation
 682 of $\{r_{i,m}\}_{i=1}^n$, and n is the sample size for agent m .
 683

684 All methods are evaluated on a held-out test agent with access to all 40 features. Experiments are
 685 repeated across quantile levels $\tau = 0.2, 0.5$, and 0.8 .
 686

700 Figure 3: The heatmap of the covariance matrix Σ .
 701

702 A.1 HOMOSCEDASTIC NORMAL DISTRIBUTION
703

704 In this section, we present results for the classical symmetric case—the normal distribution, where
705 $\xi_{i,m} \sim N(0, 1)$. The results are shown in Figure 4 and Figures A.1. Figure 4 demonstrate superior
706 performance of the proposed method under this setting, along with the uniform convergence com-
707 pared to baselines across different quantile levels. As the sample size increases, all approaches show
708 the expected reduction in prediction error; however, the OSW method remains competitive with the
709 centralized method and consistently achieves the lowest prediction error across different quantile
710 levels. In contrast, the other baseline methods exhibit limited improvement once the sample size
711 exceeds 1000.

712 To validate the asymptotic normality of the proposed estimator $\widehat{\beta}^{\text{OSW}}(\tau)$, we present the mean and
713 variance of estimation errors, defined as $\widehat{\beta}^{\text{OSW}}(\tau) - \beta^*(\tau)$, in Figure A.1. The horizontal axis
714 represents the sample size n , while the vertical axis shows the mean (left) and variance (right) of the
715 estimation error. As n increases, both the mean and variance decrease, empirically confirming our
716 asymptotic normality results.

717
718 Figure 4: Mean squared prediction error under a homoscedastic normal distribution.
719
720
721
722
723
724

725

726

727

728
729 Figure 5: Convergence of the empirical mean and variance under a homoscedastic normal distri-
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

A.2 HETEROSCEDASTIC NORMAL DISTRIBUTION

743 Figures 6 and 7 illustrate the performance of our proposed estimator under a heteroscedastic nor-
744 mal distribution, where $\xi_{i,m} \sim N(0, (2 + 0.1X_{i1})^2)$. The results further demonstrate the superior
745 performance of the proposed method in terms of prediction accuracy compared to other baseline
746 methods.

Figure 6: Mean squared prediction error under heteroscedastic normal distribution.

Figure 7: **Convergence of the empirical mean and variance under heteroscedastic normal distribution.**

A.3 EXPONENTIAL DISTRIBUTION

Figure 8 and Figure 9 present the results under exponential distribution across different quantile levels.

Figure 8: **Mean squared prediction error under exponential distribution $\exp(1)$.**

Figure 9: **Convergence of the empirical mean and variance under exponential distribution.**

A.4 STUDENT-T DISTRIBUTION

Figure 10 and Figure 11 present the results under the $t(5)$ distribution across different quantile levels.

Figure 10: **Mean squared prediction error under $t(5)$ distribution.**

To summarize, all of these results consistently demonstrate superior prediction performance of our proposed method across various noise settings and quantile levels. The proposed method exhibits

Figure 11: Convergence of the empirical mean and variance under $t(5)$ distribution.

robustness to outliers and heavy-tailed noise distributions. Notably, our proposed method remains competitive with the centralized method.

A.5 GENERALIZATION BEYOND GAUSSIAN ASSUMPTIONS: SENSITIVITY ANALYSIS AND DISCUSSION

As discussed in Remark 4.6, the current theory relies on the Gaussianity assumption. Relaxing this assumption would be both valuable and novel, but it also poses significant technical challenges, particularly in establishing strong theoretical guarantees and deriving optimal weight estimators: Many theoretical properties and independence structures that hold under Gaussianity may no longer be valid in non-Gaussian settings. For instance, extending the framework to sub-Gaussian designs introduces new technical challenges, as several simplifications enabled by Gaussianity break down.

In this section, we examine the sensitivity of our approach to this assumption by conducting experiments on non-Gaussian data. In the subsequent simulation study, we assume the data are distributed according to the t and exponential distributions, and we set the quantile level at $\tau = 0.5$ for the FQR model. The results are reported in Tables 3 and 4, corresponding to the t and exponential distributions, respectively.

Table 3: MSPE under different sample sizes when data is generated from the t distribution.

N	Naive-OSFL	Naive-Local	OSW
500	86.91	534.96	17.21
1,000	91.95	510.86	9.18
2,000	86.17	495.26	2.92
5,000	87.48	499.84	2.06

Table 4: MSPE under different sample sizes when data is generated from the exponential distribution.

N	Naive-OSFL	Naive-Local	OSW
500	149.05	508.40	45.89
1,000	125.39	518.92	30.19
2,000	127.73	512.78	24.03
5,000	123.99	510.27	21.40

The tables show that our proposed algorithm (OSW) consistently attains the lowest MSPE, with performance improving as sample size increases, demonstrating both adaptability to diverse data-generating processes and robustness in estimation.

We emphasize that these preliminary results suggest our method may generalize beyond the Gaussian setting. To relax the Gaussianity assumption, a feasible direction is to leverage tools such as linear projection techniques, matrix concentration inequalities, and uniform laws of large numbers to develop appropriate corrections and establish rigorous theoretical guarantees. We acknowledge the novelty and importance of this extension and leave it for future research.

864 A.6 REAL DATA ANALYSIS: CALIFORNIA HOUSING PRICES
865

866 In this section, we illustrate the practical implementation of the proposed estimator using the California Housing dataset (<https://lib.stat.cmu.edu/>), which contains 1990 U.S. Census data on housing
867 districts, including median income, average number of rooms, occupancy, and geographic coordinates. This dataset is widely used as a benchmark in statistics and machine learning for testing new
868 methodologies. Our study includes 20 agents, where the first 10 lack the first dimension, and the
869 remaining 10 lack seven dimensions. We examine how the mean squared prediction error (MSPE)
870 varies with the local sample size n . For the FQR model, we set the quantile level to $\tau = 0.2, 0.5, 0.8$,
871 and the results are summarized below, showing that our algorithm consistently achieves the best per-
872 formance than other methods and remains competitive with the centralized method. MSPE decreases
873 as n increases, providing empirical support for the theoretical guarantees established in our work.
874

875
876 Table 5: Mean Squared Prediction Error (MSPE) for different sample sizes in real data($\tau = 0.2$)

n	Naive-OSFL	Naive-Local	OSW	DA-OSW	UW-OSW	Centralized
10	1891.69	6257.71	8.10	4346.21	368.42	5.41
20	12.51	3750.04	8.10	1560.21	3210.45	5.20
30	432.72	5540.64	8.10	3218.72	1239.43	4.61
350	439.30	1687.57	8.10	573.21	84.26	3.30
450	21.05	487.95	4.49	287.62	66.45	2.18
500	21.06	557.38	3.89	163.43	50.67	2.08

877 Table 6: Mean Squared Prediction Error (MSPE) for different sample sizes in real data($\tau = 0.5$)

n	Naive-OSFL	Naive-Local	OSW	DA-OSW	UW-OSW	Centralized
10	4442.90	6257.72	8.13	7321.50	5324.31	5.46
20	16.86	2312.25	8.10	5321.89	3210.45	5.20
30	432.72	5540.64	8.10	3291.26	1565.36	4.68
350	42.76	844.46	6.50	623.45	98.72	3.28
450	23.01	518.64	4.59	320.08	69.17	2.14
500	44.42	575.89	4.40	198.76	54.69	2.03

898 Table 7: Mean Squared Prediction Error (MSPE) for different sample sizes in real data($\tau = 0.8$)

n	Naive-OSFL	Naive-Local	OSW	DA-OSW	UW-OSW	Centralized
10	4106.56	2243.31	8.06	3278.56	4326.78	5.34
20	54.72	13260.42	8.05	2654.21	3769.08	5.06
30	234.03	7299.73	8.05	1856.23	827.36	4.51
350	80.73	1076.19	6.68	467.24	56.45	3.45
450	67.86	912.26	6.17	187.48	31.85	2.11
500	44.85	579.21	5.29	164.36	23.19	1.99

918 **B THEORETICAL PROOFS**
 919

920 **B.1 PROOFS FOR LEMMA 4.4**
 921

922 *Proof.* Let $\beta^*(\tau) = [\beta_+^*(\tau)^\top, \beta_-^*(\tau)^\top]^\top \in \mathbb{R}^d$ be the global parameter vector. The response vari-
 923 able is generated as:

924
$$Y_m = X_{m+}^\top \beta_+^*(\tau) + X_{m-}^\top \beta_-^*(\tau) + \Xi_m,$$

 925

926 where the error term Ξ_m satisfies the quantile condition $Q_\tau(\Xi_m | X_{m+}, X_{m-}) = 0$. Recall that the
 927 quantile loss function is given by $\rho_\tau(u) = u(\tau - I(u < 0))$, and the local QR estimator for agent
 928 m is:

929
$$\tilde{\beta}_m(\tau) = \arg \min_{\beta(\tau) \in \mathbb{R}^d} \hat{Q}_m(\beta(\tau)), \quad \text{where } \hat{Q}_m(\beta(\tau)) =: \frac{1}{n} \sum_{i=1}^n \rho_\tau(y_{i,m} - (x_{i,m+})^\top \beta(\tau)).$$

 930

931 Note that the expected loss function has the form $\beta_m^*(\tau) = \arg \min_{\beta(\tau) \in \mathbb{R}^d} Q_m(\beta(\tau))$, where $Q_m(\beta(\tau)) =$
 932
$$\mathbb{E} [\rho_\tau(y_{i,m} - x_{i,m+}^\top \beta(\tau))].$$
 Substituting $y_{i,m}$ with the true model yields that
 933

934
$$Q_m(\beta(\tau)) = \mathbb{E} [\rho_\tau(x_{i,m+}^\top (\beta_+^*(\tau) - \beta(\tau)) + x_{i,m-}^\top \beta_-^*(\tau) + \xi_{i,m})]. \quad (9)$$

 935

936 The first-order condition for minimization (9) requires:

937
$$\frac{\partial Q_m(\beta(\tau))}{\partial \beta(\tau)} = \mathbb{E} [\psi_\tau(x_{i,m+}^\top (\beta_+^*(\tau) - \beta(\tau)) + x_{i,m-}^\top \beta_-^*(\tau) + \xi_{i,m}) x_{i,m+}] = 0, \quad (10)$$

 938

939 where $\psi_\tau(u) = \tau - \mathbb{I}(u < 0)$. Because x_i are Gaussian random vectors, it follows that $x_{i,m-} =$
 940 $\Sigma_{i\pm}^\top \Sigma_{i+}^{-1} x_{i,m+} + \mathbf{v}$, $\mathbf{v} \sim N(0, \Gamma_{i-})$, where $\Gamma_{i-} = \Sigma_{i-} - \Sigma_{i\pm}^\top \Sigma_{i+}^{-1} \Sigma_{i\pm}$ is the Schur complement.
 941 After Taylor expansion of the probability term and simplification, we obtain

942
$$\mathbb{E} [f_{\xi_m}(0 | x_{i,m+}) x_{i,m+} x_{i,m+}^\top (\beta_+^*(\tau) - \beta(\tau) + \Sigma_{i+}^{-1} \Sigma_{i\pm} \beta_-^*(\tau))] = 0. \quad (11)$$

 943

944 The local optimal parameter is then given by

945
$$\beta_m^*(\tau) = \beta_+^*(\tau) + \underbrace{(\mathbb{E} [f_{\xi_{i,m}}(0 | x_{i,m+}) x_{i,m+} x_{i,m+}^\top])^{-1} \mathbb{E} [f_{\xi_{i,m}}(0 | x_{i,m+}) x_{i,m+} x_{i,m-}^\top]}_{A^{-1}B} \beta_-^*(\tau). \quad (12)$$

 946

947 Define the projection matrix:

948
$$T_m := [I_{d_m} \quad A^{-1}B] \Pi_m,$$

 949

950 where:

951

- $A = \mathbb{E} [f_{\xi_{i,m}}(0 | x_{i,m+}) x_{i,m+} x_{i,m+}^\top]$ is the weighted Hessian matrix,
- $B = \mathbb{E} [f_{\xi_{i,m}}(0 | x_{i,m+}) x_{i,m+} x_{i,m-}^\top]$ is the weighted covariance matrix,
- Π_m is a feature permutation matrix.

952 Under the Assumption 4.1, by the Glivenko-Cantelli theorem, the sample loss function converges
 953 uniformly to the expected loss function, we have

954
$$\sup_{\beta(\tau)} \left| \frac{1}{n} \sum_{i=1}^n \rho_\tau(y_{i,m} - x_{i,m+}^\top \beta(\tau)) - Q_m(\beta(\tau)) \right| \xrightarrow{p} 0. \quad (13)$$

 955

956 As the expected loss function $Q_m(\beta(\tau))$ is strictly convex at $\beta_m^*(\tau)$ (since the Hessian matrix $A \succ$
 957 0), the existence of a unique minimum exists. According to the limit theorem, we have $\tilde{\beta}_m(\tau) \xrightarrow{p} T_m \beta^*(\tau)$.
 958

959 Convergence in probability follows from the uniform law of large numbers under standard regularity
 960 conditions. Substituting back into $\hat{\beta}(\tau; \Omega(W))$, we can apply the continuous mapping theorem to
 961

972 derive that

$$\begin{aligned} 974 \quad \widehat{\beta}(\tau; \Omega(W)) &= \left(\sum_{m=1}^M T_m^\top W_m T_m \right)^{-1} \left(\sum_{m=1}^M T_m^\top W_m \tilde{\beta}_m(\tau) \right) \\ 975 \\ 976 \\ 977 \quad &\xrightarrow{p} \left(\sum_{m=1}^M T_m^\top W_m T_m \right)^{-1} \left(\sum_{m=1}^M T_m^\top W_m T_m \beta^*(\tau) \right) = \beta^*(\tau). \\ 978 \\ 979 \end{aligned}$$

□

982 B.2 PROOF FOR THEOREM 4.5

984 *Proof.* Note that the expected loss function is given by

$$985 \quad \beta_m^*(\tau) = \arg \min_{\beta \in \mathbb{R}^d} Q_m(\beta(\tau)), \quad \text{where } Q_m(\beta(\tau)) =: \mathbb{E} [\rho_\tau(y_{i,m} - x_{i,m+}^\top \beta(\tau))], \\ 986 \\ 987$$

988 where the local parameter vector $\beta_m^*(\tau) \in \mathbb{R}^{d_m}$ connects to a global parameter vector $\beta^*(\tau) \in \mathbb{R}^d$ through a m -dependent projection matrix $T_m \in \mathbb{R}^{d_m \times d}$, which can be formalized as

$$990 \quad \beta_m^*(\tau) = T_m \beta^*(\tau), \quad \forall m \in \{1, \dots, M\}.$$

991 The local model's error term, capturing the deviation between observed responses and their conditional quantile predictions, is formally defined as:

$$994 \quad \xi_{i,m}(\tau) := y_{i,m} - x_{i,m+}^\top \beta_m^*(\tau),$$

995 and the local QR estimator for agent m is obtained as

$$997 \quad \tilde{\beta}_m(\tau) = \arg \min_{\beta \in \mathbb{R}^d} \widehat{Q}_m(\beta(\tau)), \quad \text{where } \widehat{Q}_m(\beta(\tau)) =: \frac{1}{n} \sum_{i=1}^n \rho_\tau(y_{i,m} - (x_{i,m+})^\top \beta(\tau)). \\ 998 \\ 999$$

1000 For each observation m , define the weighted residual $r_{i,m}(\beta(\tau)) = \tau - I[y_{i,m} - (x_{i,m+})^\top \beta(\tau) < 0]$.
1001 The first derivative of the loss function is:

$$1002 \quad S_{n,m}(\beta_m(\tau)) = \frac{\partial \widehat{Q}_m(\beta(\tau))}{\partial \beta(\tau)} = -\frac{1}{n} \sum_{i=1}^n x_{i,m+} r_{i,m}(\beta(\tau)). \\ 1003 \\ 1004$$

1005 Setting the derivative equal to zero, we obtain the equation that the estimator $\tilde{\beta}_m(\tau)$ must satisfy:

$$1007 \quad \frac{1}{n} \sum_{i=1}^n x_{i,m+} r_{i,m}(\tilde{\beta}_m(\tau)) = 0.$$

1009 Expanding the first-order derivative around the true parameter $\beta_m^*(\tau)$ using a Taylor series, we get:

$$1011 \quad \frac{1}{n} \sum_{i=1}^n x_{i,m+} r_{i,m}(\tilde{\beta}_m(\tau)) \approx \frac{1}{n} \sum_{i=1}^n x_{i,m+} r_{i,m}(\beta_m^*(\tau)) + \frac{1}{n} \sum_{i=1}^n x_{i,m+} (\tilde{\beta}_m(\tau) - \beta_m^*(\tau)) \frac{\partial r_{i,m}(\beta_m^*(\tau))}{\partial \beta(\tau)}. \\ 1012 \\ 1013$$

1014 Since $\tilde{\beta}_m(\tau)$ satisfies $\frac{1}{n} \sum_{i=1}^n x_{i,m+} r_{i,m}(\tilde{\beta}_m(\tau)) = 0$, this simplifies to

$$1016 \quad \sum_{i=1}^n x_{i,m+} (\tilde{\beta}_m(\tau) - \beta_m^*(\tau)) \frac{\partial r_{i,m}(\beta_m^*(\tau))}{\partial \beta} \approx - \sum_{i=1}^n x_{i,m+} r_{i,m}(\beta_m^*(\tau)). \\ 1017 \\ 1018$$

1019 We next compute the expectations of $\frac{\partial r_{i,m}(\beta_m^*(\tau))}{\partial \beta(\tau)}$ and $r_{i,m}(\beta_m^*(\tau))$.

1020 As $\beta_m^*(\tau)$ is the true parameter for the τ -th quantile, $E[r_{i,m}(\beta_m^*(\tau))] = 0$, $\frac{\partial r_{i,m}(\beta_m^*(\tau))}{\partial \beta(\tau)} = -f_{\xi_{i,m}}(0|x_{i,m+})x_{i,m+}$, where $f_{\xi_{i,m}}(0|x_{i,m+})$ is the density of the error term $\xi_{i,m}$ at 0 given $x_{i,m+}$.
1021 Under assumption 4.2, working conditional on the design $\mathcal{F}_X = \sigma\{x_{i,m+}\}_{i=1}^n$ and using Knight's
1022 identity, we obtain the stochastic linearization

$$1023 \quad 0 = S_{n,m}(\beta_m^*(\tau)) - A_{n,m}(\tilde{\beta}_m(\tau) - \beta_m^*(\tau)) + r_{n,m}, \quad (14)$$

1026 where

$$1028 \quad A_{n,m} := \frac{1}{n} \sum_{i=1}^n E_{\xi_{i,m}} \left[\frac{\partial r_{i,m}(\beta_m^*(\tau))}{\beta(\tau)} \middle| \mathcal{F}_X \right] = \frac{1}{n} \sum_{i=1}^n f_{\xi_{i,m}}(0 \mid x_{i,m+}) x_{i,m+} x_{i,m+}^\top, \quad (15)$$

$$1031 \quad r_{n,m} = o_p(\|\tilde{\beta}_m(\tau) - \beta_m^*(\tau)\|) + o_p(n^{-1/2}) \quad (\text{given } \mathcal{F}_X).$$

1033 Thus, the expectation is taken only over the label noise in the Jacobian evaluated at the *fixed* point
 1034 β_m^* ; we *do not* take an expectation of the entire first-order condition. A conditional LLN yields

$$1035 \quad A_{n,m} = A_m + o_p(1), \quad A_m = \mathbb{E} [f_{\xi_{i,m}}(0 \mid x_{i,m+}), x_{i,m+} x_{i,m+}^\top]. \quad (16)$$

1037 Combining equation 14–equation 16 gives the Bahadur representation

$$1039 \quad A_m (\tilde{\beta}_m - \beta_m^*) = \frac{1}{n} \sum_{i=1}^n x_{i,m+} r_{i,m}(\beta^*(\tau)) + o_p(n^{-1/2}). \quad (17)$$

1041 Equivalently, keeping the *random* Jacobian leads to

$$1043 \quad \sqrt{n} (\tilde{\beta}_m(\tau) - \beta_m^*(\tau)) = A_{n,m}^{-1} \left(\frac{1}{\sqrt{n}} \sum_{i=1}^n x_{i,m+} r_{i,m}(\beta^*(\tau)) \right) + o_p(1).$$

1046 Since $A_{n,m}^{-1} - A_m^{-1} = o_p(1)$, Slutsky's theorem implies the same \sqrt{n} -limit if $A_{n,m}$ is replaced by
 1047 A_m . Hence, the randomness induced by the noise is fully preserved; the impact of $\xi_{i,m}$ on the
 1048 Jacobian is $o_p(1)$ and absorbed in the remainder. This implies that

$$1049 \quad \sqrt{n} (\tilde{\beta}_m(\tau) - \beta_m^*(\tau)) \approx [E[f_{\xi_{i,m}}(0 \mid x_{i,m+}) x_{i,m+} x_{i,m+}^\top]]^{-1} \cdot \frac{1}{\sqrt{n}} \sum_{i=1}^n x_{i,m+} r_{i,m}(\beta_m^*(\tau)).$$

1052 By the Central Limit Theorem (CLT), as the sample size n approaches infinity, the distribution of
 1053 the sample mean converges to a normal distribution. For our case:

$$1055 \quad \sqrt{n} \left(\frac{1}{n} \sum_{i=1}^n x_{i,m+} r_{i,m}(\tilde{\beta}_m(\tau)) \right) \xrightarrow{d} N(0, V),$$

1057 where $V = \text{Var}(x_{i,m+} r_{i,m} \beta_m^*(\tau))$ is the variance of $x_{i,m+} r_{i,m} \beta_m^*(\tau)$. Therefore,

$$1059 \quad \sqrt{n} (\tilde{\beta}_m(\tau) - \beta_m^*(\tau)) \xrightarrow{d} N(0, \psi_m). \quad (18)$$

1061 The covariance matrix ψ_m can be calculated using the following formula:

$$1062 \quad \psi_m = [E[f_{\xi_{i,m}}(0 \mid x_{i,m+}) x_{i,m+} x_{i,m+}^\top]]^{-1} \cdot V \cdot [E[f_{\xi_{i,m}}(0 \mid x_{i,m+}) x_{i,m+} x_{i,m+}^\top]]^{-1}.$$

1064 Specifically, $V = \text{Var}(x_{i,m+} r_{i,m} \beta_m^*(\tau))$ can be written as:

$$1065 \quad V = E[(x_{i,m+} r_{i,m} \beta_m^*(\tau))(x_{i,m+} r_{i,m} \beta_m^*(\tau))^\top].$$

1067 Noting that $r_{i,m}(\beta_m^*(\tau)) = \tau - I[y_{i,m} - x_{i,m+}^\top \beta_m^*(\tau) < 0]$, we have $r_{i,m}(\beta_m^*(\tau))^2 = \tau(1 - \tau)$.
 1068 Finally, the covariance matrix ψ_m is expressed as

$$1069 \quad \psi_m = \tau(1 - \tau) [E[f_{\xi_{i,m}}(0 \mid x_{i,m+}) x_{i,m+} x_{i,m+}^\top]]^{-1} \cdot \Sigma_{i+} \cdot [E[f_{\xi_{i,m}}(0 \mid x_{i,m+}) x_{i,m+} x_{i,m+}^\top]]^{-1}.$$

1071 We proceed to show $C(W_1, \dots, W_M) \succeq C^*$ under general feature distribution P and $W_m^* := \psi_m^{-1}$.

1073 Based on the form $\tilde{\beta}(\tau; \Omega(W)) = \left(\sum_{m=1}^M T_m^\top W_m T_m \right)^{-1} \left(\sum_{m=1}^M T_m^\top W_m \tilde{\beta}_m(\tau) \right)$, it follows that

$$1075 \quad \sqrt{n} (\tilde{\beta}(\tau; \Omega(W)) - \beta^*(\tau)) \sim N(0, C(W_1, \dots, W_M)), \quad (19)$$

1077 where

$$1079 \quad C(W_1, \dots, W_M) = \left(\sum_{m=1}^M T_m^\top W_m T_m \right)^{-1} \cdot \left(\sum_{m=1}^M T_m^\top W_m W_m^{*-1} W_m T_m \right) \cdot \left(\sum_{m=1}^M T_m^\top W_m T_m \right)^{-1}.$$

1080 Under the oracle weighting configuration $W_m = W_m^*$, we attain the theoretical minimum asymptotic
 1081 covariance bound. The resultant covariance structure simplifies to:
 1082

$$1083 \quad 1084 \quad 1085 \quad C(W_1, \dots, W_M) = \left(\sum_{m=1}^M T_m^\top W_m^* T_m \right)^{-1}, \quad (20)$$

1086 establishing the pivotal semi-definite inequality requiring verification:
 1087

$$1088 \quad 1089 \quad 1090 \quad C(W_1, \dots, W_M) \succeq \left(\sum_{m=1}^M T_m^\top W_m T_m \right)^{-1} = C^*. \quad (21)$$

1091 To establish this ordering, we introduce the key matrix decomposition:
 1092

$$1093 \quad 1094 \quad 1095 \quad 1096 \quad H_m = \begin{bmatrix} T_m^\top W_m^* T_m & T_m^\top W_m T_m \\ T_m^\top W_m T_m & T_m^\top W_m W_m^{*-1} W_m T_m \end{bmatrix} = \begin{bmatrix} T_m^\top W_m^{-\frac{1}{2}} \\ T_m^\top W_m W_m^{-\frac{1}{2}} \end{bmatrix} \begin{bmatrix} T_m^\top W_m^{-\frac{1}{2}} \\ T_m^\top W_m W_m^{-\frac{1}{2}} \end{bmatrix}^\top \succeq 0.$$

1097 where the outer product formulation explicitly guarantees positive semi-definiteness. Aggregating
 1098 these components yields:
 1099

$$1100 \quad 1101 \quad 1102 \quad \sum_{m=1}^M H_m = \begin{bmatrix} C^{*-1} & \sum_{m=1}^M T_m^\top W_m T_m \\ \sum_{m=1}^M T_m^\top W_m T_m & \sum_{m=1}^M T_m^\top W_m (W_m^*)^{-1} W_m T_m \end{bmatrix} \succeq 0.$$

1103 The Schur complement analysis of this block matrix yields:
 1104

$$1105 \quad 1106 \quad 1107 \quad 1108 \quad 1109 \quad 1110 \quad 0 \preceq C^{*-1} - \left(\sum_{m=1}^M T_m^\top W_m T_m \right) \left(\sum_{m=1}^M T_m^\top W_m W_m^{*-1} W_m T_m \right)^{-1} \\ \times \left(\sum_{m=1}^M T_m^\top W_m T_m \right) = C^{*-1} - C(W_1, \dots, W_M)^{-1}.$$

□

1113 B.3 PROOF OF LEMMA 4.7

1114 *Proof.* Slutsky's theorem can be applied to show $\widehat{W}_m \xrightarrow{P} W_m^*$, where

$$1115 \quad 1116 \quad \widehat{W}_m = \widehat{R}_m \left(\widehat{V}_m \widehat{V}_m^\top \right)^{-1} \widehat{R}_m.$$

1117 Note that

$$1118 \quad 1119 \quad \widehat{\Sigma}_{m+} = \frac{1}{n} \sum_{i=1}^n \frac{x_{i,m+}^\top x_{i,m+}}{n} \xrightarrow{p} \Sigma_{i+},$$

$$1120 \quad 1121 \quad 1122 \quad \widehat{R}_m = \frac{1}{n} \sum_{i=1}^n [f_{\xi_{i,m}}(0|x_{i,m+}) x_{i,m+} x_{i,m+}^\top] \xrightarrow{p} [E[f_{\xi_{i,m}}(0|x_{i,m+}) x_{i,m+} x_{i,m+}^\top]].$$

1123 In addition,

$$1124 \quad 1125 \quad \widehat{V}_m = \frac{1}{n} \sum_{i=1}^n x_{i,m+} r_{i,m}(\tilde{\beta}_m(\tau)),$$

1126 implies that

$$1127 \quad 1128 \quad 1129 \quad \widehat{V}_m \cdot (\widehat{V}_m)^\top \xrightarrow{p} E[(x_{i,m+} r_{i,m}(\beta_m^*(\tau))) (x_{i,m+} r_{i,m}(\beta_m^*(\tau)))^\top].$$

□

1134 B.4 PROOF OF THEOREM 4.8
1135

1136 *Proof.* We first prove asymptotic normality of $\sqrt{n}(\widehat{\beta}^{\text{OSW}}(\tau) - \widehat{\beta}(\tau)) \xrightarrow{d} \mathcal{N}(0, C(\Omega(W^*)))$. We point
1137 out that Theorem 4.5 is not directly applicable, as we use estimated weights that reuse the training
1138 data. Note that the estimator can be decomposed as:

$$1139 \sqrt{n} \left(\widehat{\beta}^{\text{OSW}}(\tau) - \beta^*(\tau) \right) = \left(\sum_{m=1}^M T_m^\top \widehat{W}_m T_m \right)^{-1} \left(\sum_{m=1}^M T_m^\top \widehat{W}_m (\tilde{\beta}_m(\tau) - T_m \beta^*(\tau)) \right). \quad (22)$$

1143 With the asymptotic normality established for $\sqrt{n}(\tilde{\beta}_m(\tau) - T_m \beta^*(\tau))$ in Eq. equation 18, Slut-
1144 sky's theorem and continuous mapping theorem, we can conclude that $\sqrt{n}(\widehat{\beta}^{\text{OSW}}(\tau) - \beta^*(\tau)) \xrightarrow{d} \mathcal{N}(0, C(\Omega(W^*)))$.
1145

1146 Applying the delta method to the mapping $\tilde{\beta}_m(\tau) \mapsto T_m \beta^*(\tau)$, which maps from \mathbb{R}^d to \mathbb{R}^{d_m} ,
1147 immediately yields the asymptotic normality of $\widehat{\beta}_m^{\text{OSW}}(\tau)$ based on $\widehat{\beta}(\tau; \Omega(W))$. It remains to
1148 verify the inequality $T_m C^* T_m^\top \preceq W_m^{*-1}$.

1149 To this end, observe that the difference $W_m^{*-1} - T_m C^* T_m^\top$ corresponds to the Schur complement of
1150 the block matrix

$$1152 \quad H = \begin{bmatrix} W_m^{*-1} & T_m \\ T_m^\top & C^{*-1} \end{bmatrix}.$$

1153 Hence, it suffices to show that $H \succeq 0$. Using the identity

$$1156 \quad C^* = \left(\sum_{m=1}^M T_m^\top W_m^* T_m \right)^{-1},$$

1157 we rewrite H as

$$1161 \quad H = \begin{bmatrix} W_m^{*-1} & T_m \\ T_m^\top & \sum_{m=1}^M T_m^\top W_m^* T_m \end{bmatrix} \succeq \begin{bmatrix} W_m^{*-1} & T_m \\ T_m^\top & T_m^\top W_m^* T_m \end{bmatrix}.$$

1163 The right-hand side is clearly positive semidefinite since it can be expressed as a Gram matrix:

$$1165 \quad \begin{bmatrix} W_m^{*-1/2} \\ T_m^\top W_m^{*1/2} \end{bmatrix} \begin{bmatrix} W_m^{*-1/2} \\ T_m^\top W_m^{*1/2} \end{bmatrix}^\top \succeq 0.$$

1168 This completes the proof. □

1169

1170

1171 B.5 PROOF OF COROLLARY 4.9
1172

1173 *Proof.* According to $\sqrt{n}(\widehat{\beta}^{\text{OSW}}(\tau) - \widehat{\beta}(\tau)) \xrightarrow{d} \mathcal{N}(0, C(\Omega(W^*)))$, we can directly get

$$1175 \quad \left\| \widehat{\beta}^{\text{OSW}}(\tau) - \beta^*(\tau) \right\| = O_p \left(\frac{1}{\sqrt{n}} \right).$$

1177

1178

1179

1180 B.6 PROOF OF THEOREM 4.12
1181

1182 *Proof.* When agent m is removed from the distributed system, its n samples Z_m are uniformly
1183 redistributed to m' compatible agents (Assumption (4.2)). Each compatible agent $j \in I_m$ receives
1184 $\Delta n = \frac{n}{m'}$ samples, updating its local sample size to

$$1185 \quad n_j = n \cdot \left(1 + \frac{1}{m' - 1} \right).$$

1186

1187

1188 Here, Z_m denotes the set of data on the deleted agent and I_m denotes the set of compatible agents.

1188 The original local estimator on agent j , before removal, admits the Bahadur representation
 1189

$$1190 \tilde{\beta}_j(\tau) = \beta_j^*(\tau) + \frac{1}{n} D_j^{-1} \sum_{i=1}^n x_{i,j+} (\tau - I\{y_{i,j} < (x_{i,j+})^\top \beta_j^*(\tau)\}) + o_p(n^{-1/2}),$$

1193 where $D_j = \mathbb{E}[f_{Y|X}(x_{i,j+}^\top \beta_j^*(\tau)) x_{i,j+} x_{i,j+}^\top] \succeq f \cdot \mathbb{E}[x_{i,j+} x_{i,j+}^\top]$ (Assumption (4.3)). After redis-
 1194 tributing Δn samples, the updated estimator becomes

$$1195 \tilde{\beta}_j^{\text{new}}(\tau) = \beta_j^*(\tau) + \frac{1}{n_j} D_j^{-1} \left(\sum_{i=1}^n x_{i,j+} (\tau - I\{y_{i,j} < (x_{i,j+})^\top \beta_j^*(\tau)\}) \right) \\ 1196 + \frac{1}{n_j} D_j^{-1} \left(\sum_{k=1}^{n_j-n} x_{k,j+} (\tau - I\{y_{k,j} < (x_{k,j+})^\top \beta_j^*(\tau)\}) \right) + o_p(n^{-1/2}).$$

1201 The discrepancy between the original and updated estimators on compatible agents $j \in I_m$ is char-
 1202 acterized by
 1203

$$1204 \tilde{\beta}_j(\tau) - \tilde{\beta}_j^{\text{new}}(\tau) = \underbrace{\left(\frac{1}{n} - \frac{1}{n_j} \right) D_j^{-1} \sum_{i=1}^n x_{i,j+} (\tau - I\{\cdot\})}_{(A)} - \underbrace{\frac{1}{n_j} D_j^{-1} \sum_{k \in \tilde{Z}_j^{(k)}} x_{k,j+} (\tau - I\{\cdot\})}_{(B)} + o_p(n^{-1/2}),$$

1209 where $\tilde{Z}_j^{(k)}$ contains $\Delta n = n_j - n = \frac{n}{m'}$ independent samples.

1211 For (A), we have

$$1213 \left| \frac{1}{n} - \frac{1}{n_j} \right| = \left| \frac{1}{n} - \frac{1}{n \left(1 + \frac{1}{m'-1} \right)} \right| = \frac{1}{n} \cdot \frac{1}{m' + 1} = O\left(\frac{1}{nm'}\right). \quad (24)$$

1216 Here, we define

$$1218 Z_A := \sum_{i=1}^n x_{i,j+} \cdot r_{i,j}(\beta_j^*(\tau)), \quad \text{where } r_{i,j}(\beta_j^*(\tau)) = \tau - I[y_{i,j} - (x_{i,j+})^\top \beta_j^*(\tau) < 0].$$

1221 Since samples are independently and identically distributed, we know that the mean
 1222 $E[r_{i,j}(\beta_j^*(\tau))] = 0$ and the variance $\text{Var}(Z_A) = n \cdot \mathbb{E}[x_{i,j+} x_{i,j+}^\top \cdot \text{Var}(r_{i,j}(\beta_j^*(\tau)) | x_{i,j+})] =$
 1223 $n \cdot \tau(1 - \tau) \cdot \mathbb{E}[x_{i,j+} x_{i,j+}^\top]$. Therefore, by the Central Limit Theorem:

$$1224 \frac{1}{\sqrt{n}} Z_A \xrightarrow{d} N(0, \tau(1 - \tau) \cdot \mathbb{E}[x_{i,j+} x_{i,j+}^\top]).$$

1227 Therefore, the order of the original sum is:

$$1228 Z_A = O_p(\sqrt{n}). \quad (25)$$

1231 Bringing equations (24), (25) into (23), we have

$$1233 (A) = \left(\frac{1}{n} - \frac{1}{n_j} \right) D_j^{-1} Z_A = O\left(\frac{1}{nm'}\right) \cdot D_j^{-1} \cdot O_p(\sqrt{n}), \quad (26)$$

1235 where the spectral norm of D_j^{-1} is bounded (i.e., $\|D_j^{-1}\|_{op} = O(1)$).

1237 For (B), define the random variable for the new sample as

$$1239 Z_k = \sum_{k=1}^{\Delta n} x_{i,j+} (r_{k,j}(\beta_j^*(\tau))), \quad k \in \tilde{Z}_j^{(k)},$$

1241 where $\tilde{Z}_j^{(k)}$ contains $\Delta n = n_j - n = \frac{n}{m'-1}$ independent samples.

1242 Since the samples are independently and identically distributed, we know that the mean
 1243 $\mathbb{E}[r_{k,j}(\beta_j^*(\tau))] = 0$ and the variance $\text{Var}(Z_k) = \Delta n \cdot \mathbb{E}[x_{i,j+}x_{i,j+}^\top \cdot \text{Var}(r_j(\beta_j^*(\tau)) | x_{i,j+})] =$
 1244 $\Delta n \cdot \tau(1 - \tau) \cdot \mathbb{E}[x_{i,j+}x_{i,j+}^\top]$. Therefore, by the Central Limit Theorem, we have that
 1245

$$1246 \frac{1}{\sqrt{\Delta n}} Z_k \xrightarrow{d} N(0, \tau(1 - \tau) \cdot \mathbb{E}[x_{i,j+}x_{i,j+}^\top]).$$

1249 Therefore, the order of the original sum is:
 1250

$$1251 Z_k = O_p(\sqrt{\Delta n}). \quad (27)$$

1253 Bringing equation (27) into (23), we have
 1254

$$1255 (B) = \frac{1}{n_j} D_j^{-1} Z_k = O\left(\frac{1}{nm'}\right) \cdot D_j^{-1} \cdot O_p(\sqrt{n}). \quad (28)$$

1257 Combining the orders of (A) and (B), we have
 1258

$$1259 \|\tilde{\beta}_j(\tau) - \tilde{\beta}_j^{\text{new}}(\tau)\| \leq \|(A)\| + \|(B)\| + o_p(n^{-1/2}) = O_p(n^{-1/2}) + O_p(n^{-1/2}) + o_p(n^{-1/2}),$$

1260 then
 1261

$$1262 \|\tilde{\beta}_j(\tau) - \tilde{\beta}_j^{\text{new}}(\tau)\| = O_p(n^{-1/2}).$$

1263 The global perturbation induced by removing agent m propagates through the aggregated estimator
 1264 as
 1265

$$1266 \Delta_j = \hat{\beta}^{OSW}(\tau) - \hat{\beta}^{OSW}(\tau)^{\setminus m} = \left(\sum_{m=1}^M T_m^\top W_m T_m \right)^{-1} \sum_{j \in I_m} T_j^\top W_j (\tilde{\beta}_j(\tau) - \tilde{\beta}_j^{\text{new}}(\tau)).$$

1269 Here $\hat{\beta}^{OSW}(\tau)^{\setminus m}$ denotes the aggregation parameter obtained by training with all observations after
 1270 deleting the data of the m th agent and reassigning it, as shown in Definition 4.10. Then, combining
 1271 the spectral paradigm of the inverse of the global aggregation matrix with the summation term, we
 1272 have
 1273

$$1274 \|\Delta_j\| \leq \left\| \left(\sum_{m=1}^M T_m^\top W_m T_m \right)^{-1} \right\|_{\text{op}} \cdot \left\| \sum_{j \in I_m} T_j^\top W_j (\tilde{\beta}_j(\tau) - \tilde{\beta}_j^{\text{new}}(\tau)) \right\|.$$

1277 Under the spectral norm control $\|W_j\|_{\text{op}} \leq C_1$, $\|T_m\|_{\text{op}} \leq \sqrt{1 + \|\Sigma_{m+}^{-1} \Sigma_{m\pm}\|_{\text{op}}^2} \leq C_2$, then we
 1278 have $\|\sum_{m=1}^M T_m^\top W_m T_m\|_{\text{op}} \leq MC_3$. It follows that
 1279

$$1281 \left\| \sum_{j \in I_m} T_j^\top W_j (\tilde{\beta}_j(\tau) - \tilde{\beta}_j^{\text{new}}(\tau)) \right\| \leq m' \cdot C_1 \cdot C_2 \cdot O_p(n^{-1/2}) = O_p(n^{-1/2}).$$

1284 Then, we derive
 1285

$$1286 \|\Delta_m\| \leq \frac{1}{MC_3} \cdot \sum_{j \in I_m} \|\tilde{\beta}_j(\tau) - \tilde{\beta}_j^{\text{new}}(\tau)\| = O_p(N^{-1/2}).$$

1289 Leveraging the Lipschitz continuity of the quantile loss ρ_τ , the stability of the global estimator
 1290 satisfies
 1291

$$1292 \left| \rho_\tau(y - x^\top \hat{\beta}^{OSW}(\tau)) - \rho_\tau(y - x^\top \hat{\beta}^{OSW}(\tau)^{\setminus m}) \right| \leq \|x\| \cdot \|\Delta_m\| \leq C_4 \cdot O_p(N^{-1/2}),$$

1293 yielding the stability constant bound
 1294

$$1295 \mu(m) \leq C_4 \cdot O_p(N^{-1/2}) = O_p(N^{-1/2}), \quad \mu = \max_m \mu(m) = O_p(N^{-1/2}).$$

1296 Decompose the generalization error as
 1297

$$\begin{aligned}
 & R(\hat{\beta}^{OSW}(\tau)) - \hat{R}(\hat{\beta}^{OSW}(\tau)) \\
 &= \underbrace{R(\hat{\beta}^{OSW}(\tau)) - \hat{R}_{\text{dis}}(\hat{\beta}^{OSW}(\tau))}_{\text{Stability Term}} \\
 &+ \underbrace{\hat{R}_{\text{dis}}(\hat{\beta}^{OSW}(\tau)) - E(\hat{R}_{\text{dis}}(\hat{\beta}^{OSW}(\tau))) + E(\hat{R}_{\text{dis}}(\hat{\beta}^{OSW}(\tau))) - \hat{R}(\hat{\beta}^{OSW}(\tau))}_{\text{Statistical Error}}.
 \end{aligned}$$

1305 For stability term, let $D = R(\hat{\beta}^{OSW}(\tau)) - \hat{R}_{\text{dis}}(\hat{\beta}^{OSW}(\tau))$. Here
 1306

$$\begin{aligned}
 E[D] &= E[R(\hat{\beta}^{OSW}(\tau)) - \hat{R}_{\text{dis}}(\hat{\beta}^{OSW}(\tau))] \\
 &= \frac{1}{n} \sum_{i=1}^n E[\rho_\tau(y_i - (x_i^\top \hat{\beta}^{OSW}(\tau))^\top \hat{\beta}^{OSW}(\tau))^\top \hat{\beta}^{OSW}(\tau)] \leq \mu.
 \end{aligned}$$

1312 Applying a block-wise McDiarmid inequality, we obtain
 1313

$$\mathbb{P}(D - E[D] \geq t) \leq \exp\left(-\frac{2t^2}{m \cdot (\mu^2)}\right).$$

1316 Then

$$\mathbb{P}\left(R(\hat{\beta}^{OSW}(\tau)) - \hat{R}_{\text{dis}}(\hat{\beta}^{OSW}(\tau)) \geq \mu + t\right) \leq \exp\left(-\frac{2t^2}{m \cdot (\mu^2)}\right).$$

1320 Let $\delta = \exp\left(-\frac{2t^2}{m \cdot (\mu^2)}\right)$, solving for t yields:
 1321

$$t = \sqrt{\frac{m \cdot \mu^2 \cdot \ln(1/\delta)}{2}}.$$

1325 Substituting $\mu = O_p(N^{-1/2})$, we get:
 1326

$$t = O\left(\sqrt{\frac{m \cdot N^{-1} \cdot \ln(1/\delta)}{2}}\right) = O\left(\sqrt{\frac{\ln(1/\delta)}{n}}\right).$$

1330 Then, with probability at least $1 - \delta$, we have that
 1331

$$R(\hat{\beta}^{OSW}(\tau)) - \hat{R}_{\text{dis}}(\hat{\beta}^{OSW}(\tau)) \leq O_p(n^{-1/2}) + O\left(\sqrt{\frac{\ln(1/\delta)}{n}}\right).$$

1334 For the statistical error term, we define $D_1 = \hat{R}_{\text{dis}}(\hat{\beta}^{OSW}(\tau)) - E(\hat{R}_{\text{dis}}(\hat{\beta}^{OSW}(\tau)))$ and $D_2 = E(\hat{R}_{\text{dis}}(\hat{\beta}^{OSW}(\tau))) - \hat{R}(\hat{\beta}^{OSW}(\tau))$.
 1335

1337 For D_2 , according to the definition of stability and the linear nature of expectation, one has
 1338

$$D_2 = \mathbb{E}[\hat{R}_{\text{dis}}(\hat{\beta}^{OSW}(\tau))] - \hat{R}(\hat{\beta}^{OSW}(\tau)) = \frac{1}{N} \sum_{i=1}^N \mathbb{E}[\ell(\hat{\beta}^{OSW}(\tau)^\top z, z) - \ell(\hat{\beta}^{OSW}(\tau), z)].$$

1342 Since the difference between $\hat{\beta}^{OSW}(\tau)^\top z$ and $\hat{\beta}(\tau)^\top z$ is guaranteed by parameter estimation consistency ($\|\hat{\beta}^{OSW}(\tau)^\top z - \hat{\beta}(\tau)^\top z\| = O_p(n^{-1/2})$), combined with the Lipschitz continuity of the loss function:
 1343

$$\mathbb{E}[\ell(\hat{\beta}^{OSW}(\tau)^\top z, z) - \ell(\hat{\beta}^{OSW}(\tau), z)] \leq C_4 \cdot \mathbb{E}[\|\hat{\beta}^{OSW}(\tau)^\top z - \hat{\beta}^{OSW}(\tau)\|] = O(n^{-1/2}).$$

1346 Therefore,
 1347

1350

1351
$$D_2 = \mathbb{E}[\widehat{R}_{\text{dis}}(\widehat{\beta}^{\text{OSW}}(\tau))] - \widehat{R}(\widehat{\beta}^{\text{OSW}}(\tau)) = O(n^{-1/2}).$$
 1352

1353 For D_1 , according to the central limit theorem, we have

1354
$$D_1 = O(n^{-1/2}).$$
 1355

1356 Then

1357
$$\widehat{R}_{\text{dis}}(\widehat{\beta}^{\text{OSW}}(\tau)) - \widehat{R}(\widehat{\beta}^{\text{OSW}}(\tau)) = O_p\left(\frac{1}{\sqrt{n}}\right) = O_p(n^{-1/2}).$$
 1358

1359 Combining both terms yields the final convergence rate:

1360
$$R(\widehat{\beta}^{\text{OSW}}(\tau)) - \widehat{R}(\widehat{\beta}^{\text{OSW}}(\tau)) = O_p(n^{-1/2}) + O_p(n^{-1/2}) = O_p(n^{-1/2}).$$
 1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

□