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ABSTRACT

Federated Quantile Regression (FQR) has emerged as a powerful modelling
paradigm for estimating conditional quantiles, offering a more comprehensive un-
derstanding of response distributions than standard conditional mean regression.
However, achieving communication efficiency and optimal statistical guarantees
for FQR remains challenging, particularly due to the nonsmooth nature of quan-
tile loss functions and the presence of heterogeneously structured data, where each
local agent trains its conditional quantile models with distinct sets of features. In
this paper, we propose a data-driven, one-shot weighted ensemble estimator for
FQR that incorporates scalable weighting schemes to effectively leverage the par-
tially observed features at each local agent, thereby enjoying both communication
efficiency and estimation optimality. Theoretically, we present a unified analy-
sis of the proposed learning procedure, establishing that the resulting estimator
exhibits asymptotic normality and attains uniformly minimum variance. Further-
more, we investigate the estimator’s sensitivity to perturbations introduced by lo-
cal agents and derive conditions under which the estimator achieves stability and
enjoys strong out-of-sample generalization. Extensive simulations and real data
analysis under various scenarios validate the asymptotic normality of our esti-
mator and demonstrate its superior estimation accuracy and uniform convergence
compared to several baseline methods across a range of quantile levels.

1 INTRODUCTION

Federated Learning (FL) is a powerful machine learning paradigm that aims to learn a consensus
model while keeping data distributed across multiple agents. The model is trained without trans-
mitting local data over the network, thereby preserving privacy while leveraging information from
participating agents to enhance estimation accuracy (Fraboni et al.| 2023)). Classical approaches to
FL typically focus on modelling the conditional mean of the response given covariates of interest
under the assumption of homogeneous covariate effects. However, the assumption of homogeneous
covariate effects is often not applicable in settings where the relationship between the response
and covariates is inherently heterogeneous: covariate effects may vary significantly across differ-
ent quantile levels (Wang et al.,|2012; He et al.,[2023)). Moreover, in many scientific applications
(e.g., hydrological (Weerts et al.,|2011), sociological (Yang et al.,|2012), and medical (Huang et al.,
2017)), when the goal is to explain the extreme behaviour of a particular variable, the lower and up-
per quantiles of the conditional response distribution are often of greater interest than the mean, as
they yield more succinct and interpretable conclusions. To capture heterogeneous covariate effects,
Quantile Regression (QR) has been developed as a powerful alternative for estimating conditional
quantiles of the response. In addition to capturing heterogeneity, QR provides a robustness guar-
antee to outliers and remains effective under skewed or heavy-tailed response distributions without
requiring correct specification of the likelihood function (Koenker, 2005). These advantages make
QR highly compatible with FL, where data typically originates from diverse, distributed sources,
which leads to a modelling paradigm of Federated Quantile Regression (Huang et al.| |2020; [Shi
et al.l [2025; Shen et al., 2023} Tan et al., [2022).
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Despite the promising theoretical and practical performance of FQR, the existing literature for FQR
has largely focused on consistency, communication complexity, and algorithmic development (Shi
et al., 2025; Wang & Lian, 2023} [Mirzaeifard et al., 2025; Wang & Lian, [2020; [Wang et al., [2021]).
While these works provide optimal point estimators, they fall short in quantifying uncertainty or ad-
dressing the practical challenge of inference on the effects of covariates in the conditional quantile
function. We argue that a statistical guarantee is essential in FQR, particularly given that the training
samples could be collected from diverse sources in FL (Ghosh et al.} 2019} Tan et al., 2022)). This is
mainly because of its critical importance in measuring the uncertainty associated with the estimate
in applications, as opposed to relying on a single-point estimate. Insight into the asymptotic distribu-
tion of the estimates provides a foundation for making more informed decisions by quantifying the
uncertainty of the estimate. Meanwhile, implementing an estimate without verifying its sensitivity
to perturbations can be risky. In many real-world operational settings, estimates must be carefully
evaluated before deployment. Therefore, the focus is not only on obtaining optimal estimates but,
more importantly, on assessing their associated statistical stability and generalization. This moti-
vates the primary research objective of the paper to investigate the statistical guarantee of the FQR
estimates.

1.1 MAIN CONTRIBUTION

In this paper, we investigate statistical guarantees, particularly asymptotic distribution, stability and
out-of-sample performance for FQR estimates, focusing on heterogeneously structured data environ-
ments in which local agents train QR models using distinct subsets of features. Such heterogeneity
arises from both practical constraints and task-specific considerations. In the former case, agents
may perform local model selection to enhance predictive performance (Wang et al., 2024)). In the
latter, limitations related to feasibility, privacy-preserving requirements, and resource constraints
restrict the set of accessible covariates for each agent (Cheng et al.l [2023) (We refer the reader to
related work for further details.). To the best of our knowledge, this is the first work to consider FQR
in this setting. We emphasize that this heterogeneous structure poses significant challenges, repre-
senting a marked departure from the standard FL setting, where all agents operate on an identical
feature set. To address these challenges, we propose a data-driven, one-shot weighted ensemble es-
timator for FQR, which incorporates scalable weighting schemes to effectively leverage the partially
observed feature sets across agents. We establish theoretical properties where the proposed estimator
enjoys strong statistical guarantees and demonstrate its empirical effectiveness through comprehen-
sive numerical experiments across a range of settings. Our main contributions are summarized as
follows.

1. We propose a communication-efficient weighted ensemble estimator for federated QR, de-
signed for heterogeneous data environments where local agents train QR models on distinct
feature subsets.

2. Theoretically, we do a rigorous analysis of the proposed method, showing that the resulting
estimator exhibits asymptotic normality under any weighting scheme and attains uniformly
minimum variance with the proposed optimal weighting. We further develop a foundational
stability concept to assess the estimator’s sensitivity to perturbations from local agents and
establish that the proposed estimator achieves stability and enjoys strong out-of-sample
generalization.

3. Numerical experiments demonstrate that the proposed weighted ensemble estimator out-
performs several baseline methods in estimation accuracy and uniform convergence across
various quantile levels.

1.2 RELATED WORK

This paper is motivated by the significance of QR in federated learning applications and the practical
need to handle heterogeneous, structured data settings for distributed estimation and inference. In
this section, we review lines of work most closely related to this paper.

Statistical inference for FQR. Statistical inference for FQR is widely recognized as an important
yet challenging task. This challenge arises from the decentralized feature of data in FL. (McMahan
et al., 2016), rendering existing methodologies inapplicable. Some algorithms have been proposed
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to be compatible with distributed architectures (Jordan et al., |2019; [Fan et al., [2023)), but they are
not applicable to FQR due to their requirements on the loss function, typically assuming strong
convexity and twice differentiability with Lipschitz-continuous second derivatives. To address the
challenges posed by the nonsmooth loss function, one line of research focuses on a smoothing tech-
nique to make the loss function convex and differentiable. Specifically, [Tan et al. (2022) leverages
a double-smoothing approach to achieve optimal inference in distributed quantile regression. How-
ever, such a technique could cause smoothing bias, primarily affecting the estimation, especially in
the heterogeneous structured data setting (Fernandes et al., 2021; He et al.l |2023)). An alternative
approach employs meta-analysis techniques that average estimates from separate data sources to ob-
tain synthesized estimators of QR coefficients. Although it offers the advantage of communication
efficiency, it requires stringent scaling to achieve the desired theoretical guarantees. Furthermore,
Jordan et al.| (2019) highlighted that a stringent constraint on the number of sources is imposed
to ensure the optimal convergence rate: the number of agents is assumed to be far fewer than the
total sample size. This paper addresses the limitations of smoothing techniques and the stringent
constraints in the context of FQR, enabling distributed estimation with optimal statistical guaran-
tees. The core innovation of the proposed approach lies in estimating the FQR coefficients, using
a one-shot weighted ensemble method that leverages the information of observed features at each
local agent. Notably, the proposed estimator relaxes the stringent constraint on the number of agents
while preserving communication efficiency, requiring only a single round of communication.

Heterogeneous structured data. The heterogeneous structured data we investigate is motivated
by practical constraints and a series of studies addressing similar data across a broad range of ap-
plications without necessarily being referred to by this name, including decentralized clinical trials
(DCT) (De Jong et al.l [2022)), structured missing data (Cheng et al.,|2023)), model aggregation (Le
& Clarke) 2022} |Ding et al., |2022), and selective inference (Wang et al., 2024). Specifically, mo-
tivated by the need to adjust the model selection process, Wang et al.| (2024) developed a selective
inference tool to infer the effects of selected variables on conditional quantile functions, aiming to
ensure reliable inference post-selection. For model aggregation, |Ding et al.| (2022) introduced the
concept of ‘multiviews’ and proposed a new method for supervised learning with multiple sets of
features, which is particularly important in biology and medicine, where experts from different back-
grounds have their perspectives on the selection of variables. However, a major difference between
this line of work and ours is that most estimators are trained using the same set of observations,
while ours is trained on each agent’s own data, with only final outputs shared. We emphasize that
the decentralized nature of the data in this paper presents additional challenges in theoretical and
methodological development, particularly in quantifying correlations and developing a feasible es-
timator that accommodates this decentralization, such as determining and obtaining the necessary
statistics for aggregating the final output. A complementary work by (Cheng et al., 2023) proposed
a method for collaboratively learning least squares estimates for agents, where each agent observes
a different subset of features due to missingness. While similar in setting, we develop an estimator
that considers broader practical constraints and task-specific considerations, making our approach
adaptive and scalable.

2 PRELIMINARIES

In this section, we introduce the preliminaries and notation that will be used throughout the paper.

Quantile Regression. Let 2 € R? be a d-dimensional covariate vector and i € R a scalar response
variable. We aim to estimate the 7-th conditional quantile of y given x at a pre-specified quantile
level 7 € (0,1), focusing on the linear QR model of Q,(y | *) = x'3*(7), where 3*(7) =
(Br(1),...,B5(1))" € R is a vector of unknown parameters. This model can be equivalently
expressed as:

y=a'5"(r)+¢&(r), (1)
where {(7) € R is arandom error satisfying P {£(7) < 0 | 2} = 7 (Koenker,|2005)). In other words,
the conditional 7th quantile of each £(7) given x is zero. The special case 7 = 1/2 corresponds to
median regression. Let p,(u) = u{7 — I(u < 0)} denote the non-differentiable check loss function,
where I(-) denotes the usual indicator function. Given the distribution function of y, 8*(7) can be
obtained by solving

B*(r) = al;jg;liinE [pT (y — xTB(T))] .
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Suppose we consider M agents, each with an identical sample size n for simplicity. Let
{(%4,m; Yi,m) }i—, denote n independent and identically distributed (i.i.d) samples from agent m,
Vm € [1,M]. Define N = nM, Y, = (Y1.my--->Ynm) ' € R X = (T1my s Tnm) | €
RnXd.

Heterogeneous Structured Data. We consider an FL problem with heterogeneous structured
data, where each agent observes or selects only a subset of the full feature due to data collec-
tion constraints or selective biases. Each agent’s data is assumed to follow the linear QR model
equation To mathematically formalize this feature-wise data partitioning and operationalize
the ideas of [Cheng et al.| (2023), we introduce a permutation matrix II,, € R*? for each agent
m € {1,---, M}. Specifically, define

Iy, = [ I, Il ], Iy eR"> 11, e RE-dnxd

m-+ m—

where 11, extracts the observed features (covariates) and II,,,_ the unobserved ones for agent m.
Let ¥ be the covarince matrix of z; ., i.e., ]E(xzmm;rm) = Y. Given a sample (%;m,Yim) €
R? x R, the covariate vector is decomposed as

T xi,m—i—
Tim = Hm |: T :| 5
i,m—
where z; py = I 25, € R and Tim— = Hp_xim € Ré—dm represent the observed
and unobserved features, respectively, along with the associated response y; ,, and corresponding
marginal covariance

T T
Yy = E [l‘i,m—i-xi;,rH_] = Hm+EHm+a

which can be estimated from local data. We emphasize that this decomposition plays a central role
in the design of the learning algorithms proposed in later sections, which rely solely on observed
covariates while preserving the global inference objective.

For notational simplicity, for any vector v € R?, we define the projections v, := II,, ;v and
Um— = Il,,_v. These definitions extend analogously to matrix-valued notation, and we further
define that, for any matrix A € R%*<, suppose

Am+ = Hm+AH;+, Am, = Hm,AH;;‘77
At = HerAH;f, Ay = Hm,AHZLJr.

For a positive semi-definite matrix A, we define the A-norm of a vector z € R? as ||z[|4 =

\/{z, Az). In addition, for any two positive semi-definite matrices A and B, we write A = B
to denote that A — B is positive semi-definite.

3 METHODOLOGY

The key challenge in designing an estimator for our setting lies in effectively integrating partially
observed feature information to ensure statistical optimality, while maintaining high communica-
tion efficiency. On the communication side, efficiency becomes particularly critical in large-scale
networks with numerous local data-collecting entities, especially under bandwidth constraints. To
enable scalability, it is important to minimize the number of communication rounds and offload com-
putationally intensive tasks to local machines without compromising statistical accuracy. Regarding
statistical optimality, we argue that a desirable method should not only ensure asymptotic consis-
tency with respect to the ground truth, but more importantly, minimize the prediction error on any
test sample with partial features = = II,,, | x observed by agent m. To address the aforementioned
challenges, we propose a data-driven one-shot estimation procedure consisting of three steps.

Step 1: Local estimation. Each local agent learns its own estimate based on the subset of features
it observes or selects. Correspondingly, the local QR estimator at agent m is defined as

- 1 &
ﬂm(T) = ar%(n;in {n Z Pr (yzm - l'iTm-i-ﬂ(T)) } , 2
T i=1

where z; ;4 = 1 2im € R denotes the observed feature vector for the mth agent.
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Step 2: Weighted ensemble estimation. Each agent then transmits its estimate Bm (7) to a central
server. The central server aggregates the collection of local estimates {3, (7)}_, by solving a
weighted optimization problem that accounts for the heterogeneous structured data across agents
(see Section . This aggregation yields a global estimator B (1), which integrates information
from all agents while respecting their partial feature access.

Step 3: Model distribution. Finally, the central server distributes the global estimator B (1) and its

appropriately transformed versions 7, 3(7) to each agent. The specific form of the transformation
operator T, is provided in Section These agent-specific transformations enable each node to
make predictions using only its locally observed features, while still benefiting from the information
encoded in the full feature space.

Remark 3.1. We emphasize that the communication cost depends solely on the local dimension d;
and does not scale with n,d, or m, thereby ensuring efficiency. Specifically, in the first commu-
nication round, agent i transmits d7 + 2d; scalars to the central server, and in the second round,
the server returns the updated local parameter vector of size d;. Consequently, the total per-agent
communication cost is d? + 3d,.

3.1 WEIGHTED ENSEMBLE ESTIMATION

Prediction error. The primary objective is to design an estimator, 3 (1), that utilizes partially ob-
served data to minimize the full-feature prediction error on a fresh sample z; € R%:

B | (o B0 o5 (0) | = 17) = ()l

We are also interested in obtaining an estimator, (3,,,(7), which minimize the partial-feature predic-
tion error on a fresh sample x; ,,,4 = I, z; »,, for agent m:

E |t Bn7) = (i 840 | = Bt = Tas [+ 5, .

2

where the second term ||3};, _(7)||f ~ represents the irreducible error due to unobserved features.

Here,I',,,_ := X, — Zm;E;ﬁ_Emi is the Schur complement, and 75, is a linear transformation
matrix defined as

Ty, = [Idm A”B] 1I,,,
where A and B are the weighted Hessian and covariance matrix defined as follows,

A=E [ffinn (0|1:,;7m+)9:¢77,,+xzm+] , B:=E [f&,m (O\Ii,m+)xi,er+£CZm_] )

We emphasize that the operator 7T, plays a pivotal role in the estimation process. Specifically,
T,.08*(7) provides the best possible predictor for agent m compared with the naive approach of
using the subvector, I1,,,+ 8*(7), which simply selects the coefficients corresponding to the observed
features. In contrast, T,,,5*(7) accounts for the correlations among all features, thereby improving
prediction accuracy. The scalar term f¢, . (0 | 2,4 ) denotes the conditional density of the error
&;,m (7) at zero, given the observed feature vector x; ,,,, and reflects the local concentration of noise
around the 7th quantile.

Estimates aggregation. We now present a weighted empirical risk minimization problem that is
used to aggregate the local estimates to obtain a global estimator. Let W,,, € R%m*dm be a sym-
metric, positive definite weight matrix for agent m = 1, ..., M, and denote the collection of weight
matrices by Q(W) := {Wm}nj\le. The global estimator 3(7) := B(7; Q(W)) is obtained by solving
the following optimization problem:

2

/GTTL-‘,-(T) + (A_IB)ﬁ"L_(T) — B,m(T)H . (3)

B(T)  m=1 W

A local estimator for agent m is then defined as Bm(T) =T, B (m; Q(W)). Applying the first-order
optimality condition, S(7) admits the following closed-form expression:

R M -1 /M )
B(r (W) = <Z TJWme> (Z TnIWmﬁmm) : “)

m=1
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It can be shown that 3 (1;Q2(W)) is a consistent and asymptotically unbiased estimator of the true
parameter /3*(7), regardless of the specific choice of weight matrices (see Lemma |4.4). Further-
more, we will show the existence of an optimal weight matrix W* such that the corresponding es-

timator 5(7 Q(W™*)) achieves the minimum asymptotic variance among all estimators of the form
B(7; QUW)). The detailed procedure is summarized in Algorlthm

Algorithm 1 One-shot Weighted Ensemble Estimation with Uniformly Minimum Variance

1: Input: Given M agents, each possessing a local training dataset {(z; s, yi’m)}?zl
2: for min1l,---, M do

3:  Compute Bm(T) = argmin% Z?’Zl pr (ylm — a:Ier,B(T))
B(T)ER

4:  Compute V,,, = % S Timet (7’ —IYim — meJrﬁm (1) < 0])

5. Compute R, = % Dy [f&,m (O|xi7m+)xi,m+x;':m+]

6:  Transmit 3,,,(7), Vi, Ry, to coordinating server

7: end for .

8: Central server constructs W,,, = ﬁm (?mf/n: ) }A%m form=1,....M
9:

Central server obtain a global estimator EOSW (7) through formula equation 4} and each local
agent output EOSW( ) =T, 8%V (1)

4 THEORETICAL PROPERTIES

In this section, we first establish the asymptotic normality of the proposed estimator B (m; QW)
and derive the optimal weight matrix that minimizes its asymptotic variance. We then introduce a
consistent estimator for this optimal weight matrix to enable practical implementation. Finally, we
analyze the generalization performance of the proposed estimator based on the notion of stability.
Assumption 4.1 (Feature assumption). ; , ~ N (0,%), fori=1,....,n;m=1,..., M.
Assumption 4.2 (Structural coverage). The collection of all M agents jointly spans the entire fea-
ture space.

Assumption 4.3 (Well-definedness). Let f (. | i m+) be the conditional density function of the
noise &; m given x; m . Assume that this density function is continuous at 0 and fe, . (0 | T my) >
[ = 0 for some constant f.

Assumptions @.T}}4.3] are widely acknowledged as a regularity condition in the literature (Cheng
et al.,[2023; |Wu et al.| 2020; Xie et al.| 2024). In particular, Assumption which is also required
for the least square estimation in the same settings (Cheng et al.|[2023)), is mild in the federated learn-
ing literature for enabling valid statistical inference. The structural assumptlon @.2) ensures that the
full covariance matrix . can be recovered from the collection {3, }2_,. Assumptlonlmposes
the conditions that are critical for ensuring the existence of a well-defined asymptotic variance.

Lemma 4.4 (Asymptotic consistency). Suppose Assumpttons K1) @] and[d.3| hold. Then for any
collection of positive definite weighting matrices Q( = (W }M_ |, where each W,,, € Rm>dm

form = 1,..., M, the aggregated estimator ﬁ(T, Q( ), defined in Egq. (l) is asymptotically
consistent. That is, E(TQ(W)) 2y (7).
Theorem 4.5 (Asymptotic normality). Under Assumptionsd.1| 4.2 and[d.3] the aggregated estima-
tor B(T Q(W)) is asymptotically normal:

Vi (Bl (w)) = 5*(r)) % N (0.C((W)).,

where the asymptotic covariance matrix is given by

M -1 /M M -1
CQW)) = (Z T;Wme> (Z T,IWmW,:;lmem> <Z TWZWme> ,
m=1

m=1 m=1
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and
Wi =Elfe,.. (012 m+)Zim T ma]  Vin '+ Elfe,. . 012 mt ) Tiimt T ], S)
Vi = El(@imt (T = IYism = oy T B (7) < OD)(@] o (7 = I[Yism — @ oy T B () < 0)))].

(6)

Moreover, for any positive definite weight matrices (W), the asymptotic covariance satisfies
—1
C(QW)) = C(( : <Z TTW* m) . (7

We highlight that the asymptotic normality result established in Theorem[d.5]holds for any weighting
matrices (W), underscoring the scalability of the proposed estimator. Moreover, we identify a
specific optimal WW* as in equation [5] that minimizes the asymptotic covariance, thereby enhancing
the efficiency of the estimator. Notably, Theorem (.5 holds without stringent conditions typically
required in meta-analysis (Jordan et al., 2019), which often limit agent number M to be much
smaller than \/N .

Remark 4.6. We emphasize that Theorem is derived under the Gaussian assumption. While
there exists potential to extend the proposed estimator to non-Gaussian settings, the main challenge
in applying Theorem[d.3lies in constructing the optimal weights, which in their explicit form depend
on the unknown density function and parameter 3*. Our analysis currently focuses on exploiting
Gaussianity to render these weights estimable and thereby enable the construction of the estimator.
Nevertheless, as we demonstrate in the Appendix[A.3] the optimality of our approach extends beyond
the Gaussian framework, highlighting the broader applicability of the proposed methodology.

4.1 UNIFORMLY MINIMUM VARIANCE WEIGHTED ENSEMBLE ESTIMATION

In this section, we propose a consistent estimator of {W;5,}A_, for practical implementation.
Lemma 4.7 (Consistent estimator). Under the assumptions as Theorem define

- ~ 1 <
= sz m+ ( [yz m xIerﬁm(T) < OD B = n foi,'m (O‘xi,m+)xi,m+x;,rm+-
i=1

—~ -1 <
we have that Wm = Rm (VmV,I ) R, is a consistent estimator of W,

With these consistent estimators {I/Vm M, we define the one-shot weighted ensemble estimator
with minimum asymptotic variance (OSW) for the global and local estimators as

BOSW(T) =p (T'Q (W)) , BOSW(T) =T,0 (T'Q (W)) . (8)
Theorem 4.8 (Uniformly minimum variance estimator). Under Assumptions K1 4.2land@.3] the
global OSW estimator ,BOSW( ) and local OSW estimator 5OSW( ) are asymptotically normal:

Vit (BOSY () = 87(r)) 5 N (0. C(AW™))),

Vit (B (1) = T (1) 5 N (0. TuC(QUW)TY)
Corollary 4.9. Under Assumptions 41| [#.2}and[.3] the OSW estimator satisfies:

3oy - )], = 0n ().

Note that, for any mth agent, the local estimator Bm(r), defined in equation satisfies
> d _
VI (Bun(7) = TuBi (1)) 5 N (0,W,)

As Wt = T,,C(QW*))T,], the OSW local estimator has smaller asymptotic variance. Moreover,

B,O,LSW( ) leverages the heterogeneous structure of each agent, thereby improving partial-feature

prediction accuracy. This also highlights the benefit of tailoring the global estimator via the trans-
formation T}, for localized inference. The proposed OSW global estimator 3°5W (7) reduces the

overall prediction error across all features, while achieving the optimal estimation error convergence
rate (Salehkaleybar et al., 2021)).
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4.2 GENERALIZATION VIA AGENT-DEPENDENT STABILITY

In this section, we establish a generalization bound for the proposed estimator based on the notion
of algorithmic stability. Stability-based analyses are commonly used in statistical learning theory
to derive upper bounds on generalization error, thereby ensuring out-of-sample performance. In
classical settings, stability is typically defined with respect to perturbations in individual data points.
However, this notion of stability does not directly apply in the FL setting, where each model is
trained on agent-specific local data. To address this challenge, we define an agent-dependent stability
notion tailored to FL by quantifying the effect of removing an entire agent’s data. This adapts
the sample-dependent stability concept from |Bousquet & Elisseeff] (2002); Wu et al.| (2020) to our
federated framework.

Definition 4.10 (Agent-dependent stability). Let Z,, denote the dataset held by agent m, and Z :=
{Z1,...,Zn} the collection of all agent datasets. An FL algorithm A is said to be agent-dependent
u-stable with respect to a loss function £(+), if forallm = 1,..., M and any data point z,

Ez.:[l(Az,2) — Ul Apm, 2)| < p,

where Z\"™ denotes the training dataset with data from agent m removed and redistributed to the
remaining M — 1 agents with the same missing structure.

This definition captures the sensitivity of the estimator to the removal of any single agent, which
is particularly relevant to practical FL scenarios involving potential network outages, agent dropout
due to constraints such as budget limitations or expired agreements, and poor local data quality. It
also extends to settings where the learning algorithm operates under limited communication band-
width.

1

Lemma 4.11. The proposed Algorithm |l| satisfies agent-dependent stability with . = O(ﬁ)
where N = Mn is the total number of samples.

This stability result allows us to derive an out-of-sample generalization guarantee for our one-shot
weighted ensemble estimator.

Theorem 4.12 (Out-of-sample generalization bound). Under Assumptions{.1| ,H-3]and at least
m’ > 2 agents have the same features, with quantile loss function £(-) = p,(-), we have

[ (0 9) -5 2 (7 0 ) =0 ().
k=1

These bounds show that the OSW estimator generalizes well to unobserved data and achieves the
optimal estimation error convergence rate and the optimal generalization error convergence rate,
which is consistent with the results in the single joint learning literature (Salehkaleybar et al.,[2021]).

5 NUMERICAL EXPERIMENTS

In this section, we evaluate the performance of the proposed estimator through simulations un-
der various settings designed to illustrate the practical performance of our methods. We con-
sider a data-generating process of the form: Y,, = X,,0*(7) + E,,,m = 1,..., M, where
X,, € R™*? is a matrix of covariates drawn from a multivariate normal distribution N(0, %),
and Z,,, := (&1,m, -+ , &n,m ) represents the noise vector. We evaluate the performance across three
quantile levels {0.2,0.5,0.8} with 4 different settings of the noise term: & ,, is generated from
(a). standard normal N'(0, 1), (b). heteroscedastic normal N(0, (2 + 0.1X;1)?), (c). exponential
Exp(1), and (d). t-distribution #(5).

We compare the one-shot weighted ensemble estimator (OSW) with two baselines: (a). Naive-Local,
which uses local estimates independently, and (b). Naive One-shot Federated Learning (Naive-
OSFL), which averages these local estimates. The performance is evaluated in terms of estimation
error, measured using the /5 norm to quantify deviation from the ground truth, and mean squared
prediction error (MSPE) to assess out-of-sample performance. We further validate the asymptotic
normality of our estimator by examining the convergence of its empirical distribution moments.
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Figure 1: Estimation error and mean squared prediction error under exponential distribution.

The results shown in Fig. [T] empirically demonstrate superior performance of estimation accuracy
(first row in Figure [T) and prediction accuracy (second row in Figure [T)), along with the uniform
convergence compared to baselines across different quantile levels: As the sample size increases,
both approaches exhibit the expected decreases in estimation errors; however, OSW consistently
outperforms baselines by a substantial margin for all quantile level, underscoring its clear advantage.
Notably, the proposed method consistently delivers the lowest prediction error across all settings,
with accuracy steadily improving as sample size increases. In contrast, the two baseline methods
exhibit minimal performance once the sample size exceeds 1000. In addition, as shown in Fig. [2]
the empirical mean and variance of the estimates converge to their theoretical values as the sample
size increases, supporting the asymptotic normality of the estimator.

Mean Error

Variance Error

o 1000 2000 3000 4000 5000 o 1000 2000 3000 4000 5000
number of samples (n) number of samples (n)

Figure 2: Convergence of the empirical mean and variance (exponential distribution; 7 = 0.5).

Due to space limitations, we present results only for exponentially distributed noise setting. We
emphasize that consistent findings are observed for various noise settings as previously mentioned,
further demonstrating uniform performance guarantees and, particularly, the robustness against out-
liers and heavy-tailed noise. We refer readers to Appendix [A]for details on the setup and completed
results of simulation experiments (Appendix [A.T]-[A-4) and real data analysis (Appendix [A.6), par-
ticularly the sensitivity analysis under non-Gaussian settings and related discussion (Appendix[A.3).

6 CONCLUSION

This paper presents a unified framework for federated quantile regression, tackling challenges from
heterogeneous features and nonsmooth loss functions. The proposed one-shot weighted ensemble
estimator avoids iterative communication while maintaining statistical efficiency. It is asymptot-
ically normal, stable, and offers strong generalization guarantees under mild conditions. While
classical analysis assumes sub-Gaussian features, real-world data are often heavy-tailed or skewed.
QR handles such distributions well, and our method retains this robustness in federated settings.
Still, feature heterogeneity may affect aggregation efficiency. Establishing finite-sample guarantees
under heavy-tailed conditions remains an important avenue for future research.
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The Appendix is organized as follows. Section A details the experimental setup and reports the
complete results of the simulations and real data analysis. Section B contains the proofs of the main
theoretical results presented in the paper.

A FULL EXPERIMENTS

All experiments were conducted on a Windows machine equipped with an i7-12700H (2.30 GHz)
CPU, an NVIDIA 3070Ti GPU, and 32 GB of RAM. We consider a federated setting with M = 40
agents, each observing a subset of d = 40 features. Across different experiments, we set the sample
size per agent to n. = 100, 1000, 2000, 5000. The data is generated via the linear regression model
Y = X0nf*(7) + Ep, form = 1,..., M, where X,, € R"*? is generated from N (0,¥), and
Em o= Emy - ,fnym)—r. Among the 40 agents, 10 observe random subsets of 30 features, while
the remaining 30 observe random subsets of 25 features. To construct the covariance matrix ¥, we
sample d eigenvalues from the uniform distribution on [0, 1], randomly amplify three of them by
a factor of 30, and set ¥ = WAW ", where A is the diagonal matrix of eigenvalues and W is a
random orthogonal matrix. Figure3]displays the heatmap of this covariance matrix. The noise term
&:,m 1s generated under four scenarios:

(a) Homoscedastic normal: &; ,, ~ N(0,1);

(b) Heteroscedastic normal: &; ,, ~ N (0, (2 + 0.1X;1)?%);
(c) Exponential: &; ,,, ~ Exp(1);

(d) t: &m ~ t(5).

Denote 3(7) € R? be a vector generated by drawing d samples from N (0, 10). For each quantile
level 7, we shift 3(7) € R such that noise term ¢ satisfying P(&; ,,, < 0 | X;) = 7 to generate true
coefficient 5*(7). Specifically:

(a) Homoscedastic normal: 3*(7) = B(7) + ®~1(7)ey;

(b) Heteroscedastic normal: 8*(7) = B(7) + 2@~ (7)e; + 0.1®71(7)ey;
(c) Exponential: 5*(7) = B(7) + Fgyp (T)e1;

(d) t: B*(1) = B(1) + 5E (1)es,

where @ is the cumulative distribution function (CDF) of the standard normal distribution, F¢,, and
F} denote the CDFs of the exponential and ¢ distributions, respectively, and e; is the standard basis
vector in R? with the tth element being one and all the other elements being zero.

We evaluate the proposed One-shot Weighted Ensemble Estimator (OSW) against two baselines:
NaiveLocal, which uses local models independently, and Naive One-shot Federated Learning
(Naive-OSFL), which averages the local estimators directly. All methods are evaluated on a held-out
test agent with access to all 40 features. Experiments are repeated across quantile levels 7 = 0.2, 0.5,
and 0.8.

Covariance Matrix Heatmap

-16
-14
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T 1
£ 16 1.0
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L 30 0.4
0.2

ONTOXONTORONTORNT QR
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Feature Index

Figure 3: The heatmap of the covariance matrix 3.
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A.1 EXPONENTIAL DISTRIBUTION

To validate the asymptotic normality of the proposed estimator BOSW 7), we present the mean and
variance of estimation errors, defined as 3°5W (1) — B*(7), in Figure |4l The horizontal axis repre-
sents the sample size n, while the vertical axis shows the mean (top row) and variance (bottom row)
of the estimation error. As n increases, both the mean and variance decrease, empirically confirming
our theoretical results and demonstrating the effectiveness of the proposed estimator.
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Figure 4: Convergence of the empirical mean and variance under exponential distribution.
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Figure 5: Estimation error and mean squared prediction error under exponential distribution.

Figure[3]further illustrates the estimation and prediction performance across varying sample sizes. In
the top row, we compare the estimation errors of Naive-OSFL and OSW. While both methods benefit
from larger sample sizes, OSW consistently yields substantially lower errors. In the bottom row, we
present the mean squared prediction errors (MSPE) for Naive-Local, Naive-OSFL, and OSW. Again,
all methods improve with larger n, but OSW achieves the lowest prediction error across all quantile
levels. In summary, the proposed OSW estimator outperforms both baselines in terms of estimation
accuracy and predictive performance, with results strongly supporting its theoretical guarantees.

A.2 HOMOSCEDASTIC NORMAL DISTRIBUTION

In the previous experiments, we evaluated the performance of our method under an exponential
distribution, which is asymmetric and exhibits heavy tails. We now present results for the classical
symmetric case—the normal distribution, where &; ,,, ~ N (0, 1). The results are shown in Figures|§|
and These results demonstrate that the proposed estimator consistently outperforms baseline
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methods in terms of both estimation accuracy and predictive performance across different quantile
levels.
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Figure 6: Convergence of the empirical mean and variance under a homoscedastic normal distribu-
tion.
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Figure 7: Estimation error and mean squared prediction error under a homoscedastic normal distri-
bution.

A.3 HETEROSCEDASTIC NORMAL DISTRIBUTION

Figures [§] and [0 illustrate the performance of our proposed estimator under a heteroscedastic nor-
mal distribution, where &, ~ N (0, (2 + 0.1X;1)?). The results further demonstrate its superior
estimation and prediction accuracy compared to baseline methods.

A.4 STUDENT-T DISTRIBUTION

Figures [10|and [T 1| show the performance of our proposed estimator under the ¢(5) distribution. The
results consistently demonstrate improved estimation and prediction accuracy compared to baseline
methods.

To summarize, these results consistently demonstrate superior estimation and prediction perfor-
mance across various noise settings, further demonstrating uniform performance guarantees over
different quantile levels. Notably, the proposed method exhibits robustness to outliers and heavy-
tailed noise distributions.
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Figure 11: Estimation error and mean squared prediction error under ¢(5) distribution.

A.5 GENERALIZATION BEYOND GAUSSIAN ASSUMPTIONS: SENSITIVITY ANALYSIS AND
DISCUSSION

As discussed in Remark [£.6] the current theory relies on the Gaussianity assumption. Relaxing this
assumption would be both valuable and novel, but it also poses significant technical challenges,
particularly in establishing strong theoretical guarantees and deriving optimal weight estimators:
Many theoretical properties and independence structures that hold under Gaussianity may no longer
be valid in non-Gaussian settings. For instance, extending the framework to sub-Gaussian designs
introduces new technical challenges, as several simplifications enabled by Gaussianity break down.

In this section, we examine the sensitivity of our approach to this assumption by conducting experi-
ments on non-Gaussian data. In the subsequent simulation study, we assume the data are distributed
according to the ¢ and exponential distributions, and we set the quantile level at 7 = 0.5 for the
FQR model. The results are reported in Tables [T] and 2] corresponding to the ¢ and exponential

distributions, respectively.

Table 1: MSPE under different sample sizes when data is generated from the ¢ distribution.

N Naive-OSFL.  Naive-Local OSW
500 86.91 534.96 17.21
1,000 91.95 510.86 9.18
2,000 86.17 495.26 2.92
5,000 87.48 499.84 2.06

Table 2: MSPE under different sample sizes when data is generated from the exponential distribu-

tion.
N Naive-OSFL  Naive-Local OSW
500 149.05 508.40 45.89
1,000 125.39 518.92 30.19
2,000 127.73 512.78 24.03
5,000 123.99 510.27 21.40

The tables show that our proposed algorithm (OSW) consistently attains the lowest MSPE, with
performance improving as sample size increases, demonstrating both adaptability to diverse data-
generating processes and robustness in estimation.

We emphasize that these preliminary results suggest our method may generalize beyond the Gaus-
sian setting. To relax the Gaussianity assumption, a feasible direction is to leverage tools such as
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linear projection techniques, matrix concentration inequalities, and uniform laws of large numbers
to develop appropriate corrections and establish rigorous theoretical guarantees. We acknowledge
the novelty and importance of this extension and leave it for future research.

A.6 REAL DATA ANALYSIS: CALIFORNIA HOUSING PRICES

In this section, we illustrate the practical implementation of the proposed estimator using the Cali-
fornia Housing dataset (https://lib.stat.cmu.edu/), which contains 1990 U.S. Census data on housing
districts, including median income, average number of rooms, occupancy, and geographic coordi-
nates. This dataset is widely used as a benchmark in statistics and machine learning for testing new
methodologies. Our study includes 20 agents, where the first 10 lack the first dimension, and the
remaining 10 lack seven dimensions. We examine how the mean squared prediction error (MSPE)
varies with the local sample size n. For the FQR model, we set the quantile level to 7 = 0.5,
and the results are summarized below, showing that our algorithm consistently achieves the best
performance, with MSPE decreasing as n increases, providing empirical support for the theoretical
guarantees established in our work.

Table 3: MSPE under different sample sizes when data is generated from the exponential distribu-
tion.

n Naive-OSFL.  Naive-Local OSW

10 4442.90 6257.72 8.13
20 16.86 2312.25 8.10
30 432.72 5540.64 8.10
350 42.76 844.46 6.50
450 23.01 518.64 4.59
500 44.42 575.89 4.40

B THEORETICAL PROOFS

B.1 PROOFS FOR LEMMA [4.4]

Proof. Let 8*(1) = [B%(7) T, B (1) T]T € R? be the global parameter vector. The response vari-
able is generated as:

Vi = X, Bi(7) + X,),_B(7) + Enm,

)
where the error term =, satisfies the quantile condition Q. (Z,,| X+, Xm—) = 0. Recall that the
quantile loss function is given by p,(u) = u(7 — I(u < 0)), and the local QR estimator for agent
mis:

B (T) = arg min@m(ﬁ(T)), where @m(B(T)) =: %Zpr (Yi,m — (%‘,er)Tﬁ(T)) .
i=1

B(T)ER?

Note that the expected loss function has the form 8}, (1) = arg min@®,, (8(7)), where Q,,,(8(7)) =
B(T)ER?

E [pr(Yim — ] B(7))]. Substituting y; ,,, with the true model yields that
Qun(B(1)) =E [pr (24 (BL(T) = B(T)) + 2 1y BE(T) + &im) ] - 9
The first-order condition for minimization (9) requires:
0Qum(B(r)) _
9p(7)
where wT( ) = 7 — I{u < 0). Because z; are Gaussian random vectors, it follows that x; ,,,— =

»l EH Tim+ +V, v~N(OT;_),wherel;,_ =%,  — %[ 3" 121i is the Schur complement.
After Taylor expansion of the probability term and simphﬁcatlon we obtain

E [fe,. 012 m+ ) Tisms iy (B1 (1) = B(7) + 2718528 (1))] = 0. (11)

E [wT (x;,rm+(61(7—) - B(T)) + x;,rm—ﬁi (T> + giﬂn) xi7m+] = O, (10)
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The local optimal parameter is then given by

B:a(T) = ﬁi(T) + (E [f&m (O‘xi,mﬁ-)xiﬂn-i-xiT,m-&-D_ E [f&m (O‘xi,m-&-)xi,m-i-x;,m—] BE(T).

12)
Define the projection matrix:

where:

« A=E|fe,,, (012 ms)Tims+x | is the weighted Hessian matrix,

* B=E|fe,,, 0zims)Timsz],, ] is the weighted covariance matrix,

e II,, is a feature permutation matrix.

Under the Assumption [4.1] by the Glivenko-Cantelli theorem, the sample loss function converges
uniformly to the expected loss function, we have

sup Zp‘r Yi,m *Izm_‘_ﬂ(’r)) 7Qm(6<7)) 2o, (13)

As the expected loss function @Q,,, (5(7)) is strictly convex at 8%, (7) (since the Hessian matrix A >~

0), the existence of a unique minimum exists. According to the limit theorem, we have Bm(T) LN

T 5*(T).
Convergence in probability follows from the uniform law of large numbers under standard regularity

conditions. Substituting back into B (7;22(W)), we can apply the continuous mapping theorem to
derive that

R M -1 M .
B(r; QW) = <Z T,IWme> (Z T,Iwmﬁm(r)>
m=1 m=1

M
2, (Z T;Wme> <Z T W T B (7 )) = B*(7).

B.2 PROOF FOR THEOREM [£4.3]

Proof. Note that the expected loss function is given by

B (1) = arg minQ, (8(7)), where Q. (8(7)) = E [F’T (Yi,m — ‘:Cz—‘:m+5(T))] )

B(T)ER?

where the local parameter vector 3%, (7) € R%m connects to a global parameter vector 3*(7) € R¢
through a m-dependent projection matrix 7},, € R%= >4 which can be formalized as

By (1) =TB*(1), Vme{l,...,M}.

The local model’s error term, capturing the deviation between observed responses and their condi-
tional quantile predictions, is formally defined as:

gi,'rn (T) =Yim — xiT,m-ﬁ—ﬁ;L(T)?

and the local QR estimator for agent m is obtained as

BERE

Bn(r) = axgminQ (B(7),  whete Qu(B(r)) =t = > pr (v — (wime) 5(7)).
i=1

18
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For each observation m, define the weighted residual 7; ,,, (3(7)) = 7—I[yi.m—(@im+) ' B(T) < 0].
The first derivative of the loss function is:

Sn,m(ﬁm(T)) - ac?({;”ﬁ( _723% m+rzm ))

Setting the derivative equal to zero, we obtain the equation that the estimator B (7) must satisfy:
1 & -
E Z xi,erri,m(Bm (T)) =0.
i=1
Expanding the first-order derivative around the true parameter 5, (7) using a Taylor series, we get:

1 3 3 8zm :;L
B Sl ) % 13 (B ) D i ()= P

Since f3,, (1) satisfies L L Tim T, m(Bm (7)) = 0, this simplifies to

- = . Orim
> @it (Bu(7) = ﬁmm)i Z Timt Tim (B, (7))
i=1
; i m (B, (7)) _ *
We next compute the expectations of —-7775°== and Tim (B (7).

As % (7) is the true parameter for the 7-th quantile, Er; (55, (7))] = 0, %’?j")(ﬂ) =

— fei 1 (024, m4 )T mq» Where fe, . (0[2; m4 ) is the density of the error term &; ,,, at O given x; ;4 .
Under assumption 4.2| working conditional on the design Fx = o{x; m+ }i—; and using Knight’s
identity, we obtain the stochastic linearization

0= Sn,m(/BZ@(T» - Amm (Bm(T) - B;(T)) + Tn,m, (14)

where

1 & orim
Apm ;:52E&,m [b’((ﬁ‘fx} = Zf& (O] Zimt) Tigna Ty, (19)
i=1

Pam = 0p (B (7) = B (7)) +0p(n™"/%)  (given Fx).

Thus, the expectation is taken only over the label noise in the Jacobian evaluated at the fixed point
~.; we do not take an expectation of the entire first-order condition. A conditional LLN yields

An,m = Am + Op(l)a Am = E [f&m (0|$1,m+) ’ xi,’rn-‘r'rz—'ljm-i-jl : (16)
Combining equation [[4}-equation [I6] gives the Bahadur representation

A B = B3) = = 3 i (8*(7)) + 0p(n ™). an
=1

Equivalently, keeping the random Jacobian leads to
- 3 1 <
vn (ﬁm(T) — Bn(7)) = An,lm <\/ﬁ Z xi,m+ﬁ‘,m(ﬁ*(7—))> + Op(l)-
i=1

Since A, — A;.' = 0,(1), Slutsky’s theorem implies the same +/n-limit if A,, ,,, is replaced by
A,,. Hence, the randomness induced by the noise is fully preserved; the impact of &, ,,, on the
Jacobian is 0,(1) and absorbed in the remainder. This implies that

\/ﬁ(gm(T) — B(7)) = [ [f&m(mxz m+)xl m+mz m+ sz m+sz (7).

19
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By the Central Limit Theorem (CLT), as the sample size n approaches infinity, the distribution of
the sample mean converges to a normal distribution. For our case:

1 & - J
\/ﬁ (TL Z; Tim+Ti,m (ﬁm(T))) — N(O’ V)’
where V' = Var(@; 47 mB5, (7)) is the variance of ; p4+7i m (8%, (7)). Therefore,

- ) d
\/ﬁ(ﬂm(T) - ﬁm(T)) - N(Ou wm) (18)
The covariance matrix 1,,, can be calculated using the following formula:
—1 -1
Um = [Elfe,, O1im)Timi i i) -V [Elfe,,, O2im ) Timiw] my]] -
Specifically, V' = Var(z; m+7:.mB5, (7)) can be written as:
V = El(@im45,m (B (1) (@t im (B (7)) 1.

Noting that r; ,, (8%,(7)) = 7 — I[Yim — meJrﬂ;I(T) < 0], we have 7; ., (B5,(7))? = 7(1 — 7).
Finally, the covariance matrix v, is expressed as

wm = 7_(1 - T) [E[ffqm (O|Ii7m+)ximl+xz-'l,—m+u : EH— : [E[fflm (O|zi7m+)xi,m+‘rz—'l,—m+”
We proceed to show C(W7y, -+, W) = C* under general feature distribution P and W}, := 9,1

~ -1 ~
Based on the form 3(7; Q(W)) = (sz:l 77 Wme) (Zﬁf:l 77 Wmﬂm(r)), it follows that

Vi (Brs w) = 8(1) ~ N(0,C(Wr, -, War)), (19)

-1 -1

where

M -1 M M -1
C(Wh e 7WJW) = <Z Tq—,EWme> . <Z TnT],WTYLW':LleT”L> : (Z Tq;EWme) .
m=1 m=1 m=1

Under the oracle weighting configuration W,,, = W, we attain the theoretical minimum asymptotic
covariance bound. The resultant covariance structure simplifies to:

M -1
CWy,-- W) = (Z TnTlW%Tm> : (20)
m=1
establishing the pivotal semi-definite inequality requiring verification:
o -1
C(Wr,- W) = (Z TJWme> =C". 1)
m=1
To establish this ordering, we introduce the key matrix decomposition:
-
o [ TaWinTm T Wi T, [ mwe T Wi -0
m TrIWme TnT,LWmW,:L_lmem B TTWmWQ% TTmeé% -

where the outer product formulation explicitly guarantees positive semi-definiteness. Aggregating
these components yields:

M . M
Z H,, = { M e M Yt T Win T } = 0.
m=1 Zm:l Trz Wme Zm:l TTW7”(W* )_1W77LTTVL o

m m

The Schur complement analysis of this block matrix yields:

M m -1
0=<C 1 - <Z T,ZWme> (Z T;meg—lmem>
m=1

m=1

M
X (Z T;Wme> =L oWy, ,W,,) "L
m=1

20
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B.3 PROOF OF LEMMA [4.7]

Proof. Slutsky’s theorem can be applied to show Wm Rl W, where
—~ ~ ~ o~ -1 <
Wi = B (vawf ) B

Note that

n

T
S 1 Lim+Li,m+ p
Sy = = 3 STt B
n “ 1 n
1=

n

~ 1
Ry, = n Z[f{i,m (0|xi,m+)xi,m+x;,rm+] £> [E[fﬁi,m (O‘mi,m+)xi,m+x;l,—m+]] .
i=1
In addition,

~ 1 & -
Vm - g in,m+ri,m(ﬂm(7—))7
=1

implies that

~

‘7771 : ( m)T o E[(xi,m-&-ri,m(ﬁ;(T)))(xi,m+ri,rrb(ﬁ;1(7-)))T]-

B.4 PROOF OF THEOREM 4.8

Proof. We first prove asymptotic normality of \/ﬁ(B\OSW(T) —B\(T)) 4N (0,C(Q(W™))). We point
out that Theorem [4.5]is not directly applicable, as we use estimated weights that reuse the training
data. Note that the estimator can be decomposed as:

M 1M
NG (BOSW(T) - 5*(7)) = <Z TJWme> (Z T W (B (1) — Tmﬁ*(T))> L@

With the asymptotic normality established for /7(By, (1) — T}, 3*(7)) in Eq. equation [18] Slut-

sky’s theorem and continuous mapping theorem, we can conclude that \/n(B°SY (r) — 8*(r)) %
N(0, C((W™))).

Applying the delta method to the mapping B, (7) — Ty 3*(7), which maps from R? to R,

immediately yields the asymptotic normality of B\SLSW(T) based on G(7;Q(W)). It remains to
verify the inequality 7,,,C*T,! < WL,

To this end, observe that the difference W1 — T,,,C*T,! corresponds to the Schur complement of
the block matrix )
Wi~ T
i = { T c*—l} '
Hence, it suffices to show that [/ = 0. Using the identity

M —1
Cr = (Z T;Wﬂm> ,
m=1

we rewrite H as

Ww*—1 T W1 T
H = m m - m m
[ D D i) W;,ZTm] - { Tp  ToWiTw
The right-hand side is clearly positive semidefinite since it can be expressed as a Gram matrix:
*— 1 w— 4L T
2 2
W "1 W "1 -0
TIWa? | | TIWe2 |

This completes the proof.
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B.5 PROOF OF COROLLARY

Proof. According to v/n(BSY(7) — B(7)) % N(0, C(QUW™))), we can directly get

3oy -5 = 00 (5 -

B.6 PROOF OF THEOREM[4.12]

Proof. When agent m is removed from the distributed system, its n samples Z,, are uniformly
redistributed to m’ compatible agents (Assumption (4.2))). Each compatible agent j € I, receives
An = - samples, updating its local sample size to

1
nj:n-<1+m/_1).

Here, Z,,, denotes the set of data on the deleted agent and I,,, denotes the set of compatible agents.

The original local estimator on agent j, before removal, admits the Bahadur representation

1 n
Bi(r) =B (r)+ —D7 ' Y wig (m = Hyiy < (wig) B (1)) +0p(n™1/2),
i=1

where D; = E [fY\X(IZj+B;(T))Ii,j+IiTj+] = i~]E[xi,j+sz+} (Assumption ). After redis-
tributing An samples, the updated estimator becomes

B?CW(T) =87 () + %Dfl (Z zijy (1= Hyiy < (xi,jJr)Tﬁ;(T)}))
J i=1

1 nj—n
+.05 ( > wege (1= Huwg < <xk,j+>T@;<r>}>> T op(n11?).
J

k=1

The discrepancy between the original and updated estimators on compatible agents j € I, is char-
acterized by

2 anew 1 1 _ - 1 _ _
Bi(r) = (7) = (n - n) DF' Y i (= 1L = =07t 32 ange (7= 1{}) +opn™ /%),
’ =1 ! kez{™
J
A
(4) o
(23)
where Z J(k) contains An = n; —n = - independent samples.
For (A), we have
1 1 1 1 1 1 1
i B b 2T Y B 1=O< ,>. (24)
noon; n n(1+m,171) n m + nm

Here, we define
R - * * _ T n*
Za=Y wijyrij(B1(r), where 1 (B5(r)) =71 [yi; — (wi;4) B}(r) <0].
i=1

Since samples are independently and identically distributed, we know that the mean

Elrij(8;(7))] = 0 and the variance Var(Za) = n - E [x; 2], - Var(ry ;(85 (7)) | 2ij4)] =
n-7(1—7)-Efz; 4z, ] Therefore, by the Central Limit Theorem:

1 d

—nZA = N0, 7(1 —7) - E[a:j+xJ»T+]).

vn
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Therefore, the order of the original sum is:

Za = Op(vn). (25)

Bringing equations (24), (23) into (23)), we have

(4) = (1 - 1) D20 =0 () - D0, 26)

n T;
where the spectral norm of Dj_1 is bounded (i.e., ||Dj_1 llop = O(1)).

For (B), define the random variable for the new sample as
> (k
Z =Y @i (e (B(), ke ZP,

where Z ](k) contains An =n; —n = 7 independent samples.

m’

Since the samples are independently and identically distributed, we know that the mean
E[rk;(85(7))] = 0 and the variance Var(Zy) = An - E [z; 2/, - Var(r;(85(7)) | zij4)] =
An-7(1—7)-E[z; j; ;] Therefore, by the Central Limit Theorem, we have that

1 d T
Zy = N@O,7(1 = 7) - Elz; j+2; ;.]).
m k ( ( ) [ J+ ,j+])
Therefore, the order of the original sum is:
Z = Op(VAn). (27)
Bringing equation into (23), we have
1 1 1
(B) = n—ij Zy =0 (nm’> - D; - Op(y/n). (28)

Combining the orders of (A) and (B), we have

18, (1) = BI (D) < A+ 1B + 0p(n %) = Op(n™12) + Op(n™1/?) 4+ 0,(n~1/?),
then

18;(r) = B3 ()| = Op(n~172).

The global perturbation induced by removing agent m propagates through the aggregated estimator
as

Aj =B (r) — BOW(r) (Z TlWﬂ) S 1w ( ) = B (r ))
JE€EIm

Here E OSW (1)\™ denotes the aggregation parameter obtained by training with all observations after
deleting the data of the mth agent and reassigning it, as shown in Definition[4.10}] Then, combining
the spectral paradigm of the inverse of the global aggregation matrix with the summation term, we

have

M -1

1A < (Z TZWme> AN W — B3 (7))
m=1 op JEL,

have || SN T W, T llop < M Cs. Tt follows that

Under the spectral norm control ||[Wj|lep < Ch, ||Tinllop < \/1 + ||Em+2miH < (Cy, then we

Z TT BneW( )) < m/ . Cl . CQ . Op(n_l/Q) _ Op(n_l/Q).

JjEL,
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Then, we derive

1

Al < —— -
181 < 37

D NBi(r) = B (n)ll = Op(NTH2).

JE€EIm

Leveraging the Lipschitz continuity of the quantile loss p,, the stability of the global estimator
satisfies

prly — 2T BOW (1) = pr(y — 2T BOSW (1)) < Jlal| - A < Ca- O,(NV2),
yielding the stability constant bound

p(m) < Cy- Op(N7V?) = O,(N?),  p = max p(m) = Op(N~/?).

Decompose the generalization error as
R(BOSY (7)) — R(BOW (1))
= R(BO°V (7)) — Rai(B25W (1))
Stability Term
+ Rais(BO5W (1)) — E(Rais(BOSY (7)) + E(Rus (B2 (1)) — R(BOSY (7)) .

Statistical Error

For stability term, let D = R(B3°5W (1)) — Rgis(B°SW (7)). Here

E[D] = E[R(B°Y (1)) — Rais(BO5Y (7))]

= %ZE[pT(yi(x)TBOSW(T)) — ey — (m)TB\OSW(T)\m)] <

Applying a block-wise McDiarmid inequality, we obtain

2
P(D — E[D] > t) < exp <m2iu2)> .

Then

P (R(,@OSW(T)) - EdiS(BOSW(T)) >p+ t) < exp (_inﬂ)> )

Let § = exp (—#:2)), solving for ¢ yields:

_/m-p?-1In(1/6)
t = —

Substituting p = O,(N~1/2), we get:

B m-N—1-In(1/0)\ In(1/6)
o ). )

Then, with probability at least 1 — §, we have that

R(BOSW(T)) . ﬁdis(EOSW(T)) < Op(n71/2) L0 ( ln(;/(s)) ]

For the statistical error term, we define Dy = ﬁdiS(EOSW(T)) - E(ﬁdis(EOSW(T))) and Dy =
E(Rgis(B5" (7)) — R(BO°W (7).
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For D5, according to the definition of stability and the linear nature of expectation, one has

Dj = E[Ras(B%Y (r))] = R(B*SY (7) ZE[ (BOS 1)\, 2) = 4B (7), 2)]

Since the difference between 3°5W (7)\™ and B (7) is guaranteed by parameter estimation consis-

tency (||3OSW (7)\m — BOSW ()| = O,(n~'/2)), combined with the Lipschitz continuity of the
loss function:

E[(FOSY (7)™, 2) — (B (), 2)] < C - BJIFOSY (r)\™ = BOSW (1)) = O(n™112).

Therefore,

Dy = E[Rus (37 (r))] = R(377 () = O(n™ /%),
For D1, according to the central limit theorem, we have
D, = O(n_l/z).
Then

B (BOSW (1)) _ B(BOSW (+)) — 1y =172
Run (O™ (7)) - R(BOSW () op( ﬁ) 0,(n"7).

Combining both terms yields the final convergence rate:

R(BOY (7)) = R(3OS™ (7)) = Oy(n1/2) + 0y (n~1/2) = Oy (n~1/%),
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