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Abstract

Interpreting computations in the visual cortex as learning and inference in a gen-
erative model of the environment has received wide support both in neuroscience
and cognitive science. However, hierarchical computations, a hallmark of visual
cortical processing, have remained impervious for generative models because of the
lack of adequate tools to address it. Here, we capitalize on advances in Variational
Autoencoders (VAEs) to investigate the early visual cortex with sparse-coding
two-layer hierarchical VAEs trained on natural images. We show that representa-
tions similar to those found in the primary and secondary visual cortices naturally
emerge under mild inductive biases. That is, the high-level latent space represents
texture-like patterns reminiscent of the secondary visual cortex. We show that a
neuroscience-inspired choice of the recognition model is important for learning
noise correlations, performing image inpainting, and detecting illusory edges. We
argue that top-down interactions, a key feature of biological vision, born out natu-
rally from hierarchical inference. We also demonstrate that model predictions are in
line with existing V1 measurements in macaques with regard to noise correlations
and illusory contour stimuli.

1 Introduction

Interpreting visual perception as inference in an unsupervised generative model is a key concept in
neuroscience [45, 14] and is currently an active research area [11]. Specifically, using generative
models of natural images to understand the response statistics of neurons in the visual cortex of
mammals has proven to be a lucrative approach. Linear (or close to linear) models have been
instructive in accounting for a wide spectrum of properties in the response characteristics of neurons
found in the primary visual cortex (V1). This includes the structure of receptive fields [32, 4, 24, 23],
the properties of extra-classical receptive fields [38], or response variability [22, 33, 12, 13]. However,
going beyond linear models (and V1) has been largely hampered by limits on the capabilities of
machine learning tools to perform learning and inference in nonlinear generative models. Unlike

∗equal contributions

4th Workshop on Shared Visual Representations in Human and Machine Visual Intelligence (SVRHM) at the
Neural Information Processing Systems (NeurIPS) conference 2022. New Orleans.



discriminative models, where detailed mapping exists between multiple cortical areas and latent
layers [44], generative models rarely describe different hierarchical regions [21].

Recently, nonlinear generative models have attracted considerable attention [26, 37, 17, 27]. Vari-
ational Autoencoders (VAEs) are a flexible class of deep generative models that use deep neural
networks to parameterize highly nonlinear computations necessary to discover nonlinear and poten-
tially disentangled latent features, as well as delicate invariances characteristic of higher-level visual
areas [10, 48, 7, 20, 47]. Identifying higher-level cortical representations with VAE representations
in higher area is especially appealing, since inference in (β-)VAEs is known to correspond to com-
pression [1, 20]. Surprisingly, the application of VAEs to neural computations has been limited to a
single layer [20, 3].

The visual cortex of primates and other mammals is characterized by a hierarchy of processing stages.
Consequently, establishing links between deep generative models and visual cortical computations
requires hierarchical versions of VAEs (hVAEs). Recently, considerable advances have been made in
the construction of effective hVAE architectures [30, 41, 46, 9, 39, 19]. Despite recent successes in
generating high-quality images with hVAEs, their learned representations are less studied [8].

We investigate the properties of representations and inference in an hVAEs. We are especially
interested in these probabilistic generative models because neuronal correlations and top-down
phenomena (such as illusory contour detection) can be addressed with them. We use a VAE with
two latent layers that can be related to the primary and secondary visual cortices (V1 and V2). In an
hVAE, architectural choices concern both the generative and the recognition components. One of
such choices is relying on skip connections in the generative model, which link higher layers of latent
variables to observed variables to stabilize learning [9]. However, it is less well motivated from an
interpretable representation learning and neuroscience perspective than a Markovian generative model
where there is a clear hierarchy between latent layers. In contrast, a recognition model that features
skip connection also contains a top-down component, which is well motivated by neuroscience.

In this paper, we first develop a biologically inspired form of hVAE, which we call TDVAE (Top-
down VAE) together with some alternative architectures (SkipVAE, ChainVAE and a single layer
LinearVAE). We find that hVAE architectures are capable of reproducing some key properties of
representations emerging in V1 and V2 of the visual cortex. Further, we find that architectures that
feature top-down influences in their recognition model give rise to a richer representation, such
that specific information that is not present in mean activations becomes linearly decodable from
posterior correlations. In the literature, posterior correlations have been shown to be related to
neuronal noise correlation (NC) [22, 33, 12]. We link this result with earlier findings in monkey
electrophysiology, where the stimulus specificity of NC was shown to change when stimulus statistics
were manipulated [2]. Finally, we investigate top-down contributions to contextual effects: inpainting
of image pixels and illusory percepts in the latent space. Similarly to activity in V1 neurons [28], we
find that illusory edges can appear in latent responses, and this is enhanced by top-down connection.
A similar contribution is identified in image inpainting where masked images are ’corrected’, relying
on information delivered by top-down connections.

2 Methods

We study two-layer hierarchical latent variable generative models that learn the joint distribution of
observations and latent variables in the form pθ(x, z1, z2) = pθ(x | z1, z2) · pθ(z1 | z2) · pθ(z2). To
make inference tractable, we train VAEs [26, 27], where the generative model is supplemented by a
recognition model. This establishes a variational approximation (qΦ(z1, z2 |x)) of the true posterior
distribution (pθ(z1, z2 |x)). In general, the ELBO for a two-layer VAE can be written as

ELBO(x, θ,Φ) = EqΦ(z1,z2 |x)[log pθ(x | z1, z2)]−KL[qΦ(z1, z2 |x) || pθ(z1, z2)]. (1)

In our main model (TDVAE) we use a Markovian structure where pθ(x | z1, z2) = pθ(x | z1) ·
pθ(z1 | z2). We will see that the representation learned by such a Markovian generative model
is more interpretable as the low-level and higher-level (more semantic) latent variables decouple.
When dealing with a variational approximation of a hierarchical generative model, there are also
multiple choices to consider on how to factorize the recognition model in terms of z1 and z2. In
the top-down case, we have qΦ(z1, z2 |x)TD = qΦ(z2 |x, z1) · qΦ(z1 |x) (as in TDVAE). In the
bottom-up version, we have qΦ(z1, z2 |x)BU = qΦ(z2 | z1) · qΦ(z1 |x) (assuming a Markovian
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generative model). The mathematical motivation for these form of factorizations is that they mimic
the statistical properties of the true posterior (see A.1.1).

The components of the generative and recognition models are parameterised through neural networks
with softplus activation function. We use fully connected networks instead of CNNs to avoid the
indirect effects of CNNs on emerging representations. We implemented standard neuroscience-
inspired biases at the level of z1 inspired by models of V1 activity[32]. Consequently, we choose to
implement the lower layer as an overcomplete (dim(z1) > dim(x)) layer with a sparse (Laplace)
prior, having a linear generative relationship to observations pθ(x | z1) = N (x;Az1, I).
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Figure 1: (a)-(d) The generative models used in
the paper and schematic representations of the
recognition models. LinearVAE is a single-layer
model, while the rest have two layers.

In Fig. 1(a)-(d) we summarize the high-level ar-
chitectures that appear in this paper. For eas-
ier reference, we use the following terminology
throughout the paper: a) LinearVAE is a single-
layer VAE with linear generative (and nonlinear
recognition) model (this setup is identical to the
one in [3]); b) TDVAE is a two-layer VAE with
Markovian generative model and top-down fac-
torization of the variational posterior; c) Chain-
VAE is a two-layer VAE with Markovian gener-
ative model and bottom-up factorization of the
posterior; and d) SkipVAE is a two-layer VAE
with non-Markovian generative model and top-
down factorization of the posterior. For more
details on the derivation of the explicit objective
functions and model architectures, see A.1.

Importantly, to match the conditions to which
a biological system is adapted, we use natural
images for training. Inspired by the sensitivities
of neurons in V2 [16, 47, 15] (a cortical area
beyond V1 in the processing hierarchy) to explore emerging representations, we also use synthetic
texture images for testing. Training was performed on 40× 40 pixel whitened natural image patches.
For testing purposes we also used synthetic texture images which can be categorized into five distinct
families. Textures have a particular appeal, since they are characterized by nonlinear sufficient
statistics [35, 40] for which biological systems show high sensitivity to. More details about the
preprocessing of natural images and texture generation can be found in A.2.

3 Experiments

Low-, and high-level representation As the lower layer in all our generative models was linear
(cf. Fig. 1), we could effectively study what each z1 dimension represents through their projective
fields computed with a standard latent traversal procedure. In all of our Markovian generative models
we have found a complete basis of localized oriented filters in z1. However, in SkipVAE, there is only
an undercomplete basis present. For more details on the role of the sparse prior and on the analysis of
the SkipVAE representation, see A.3.1 and A.3.2.

We studied the non-linear z2 representation in our models with the help of the texture dataset
discussed in A.2.2. These texture images were constructed in such a way that the texture family
cannot be linearly decoded from the pixels (see Fig. 2a, gray bar). However, it is a robust feature of
all inspected hierarchical models that some z2 dimensions linearly encode high-level texture family
information (see Fig. 2a). The texture-selective dimensions in z2 are actually special in the sense that
by mildly compressing the representation with β2 = 1.25 (as described in A.1.2) all other dimensions
collapse (see Fig. 2b), indicating that these are dominant features of natural statistics.
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Discussion
We recorded population responses from area V1 of awake, task-
engaged monkeys, and investigated how the correlation structure
of V1 activity depends on stimulus content. Our analysis estab-
lished that, upon presentation of natural scenes, the fine struc-
ture of correlations was stimulus specific. Crucially, by designing
synthetic images with controlled statistical structure, we dem-
onstrated that the stimulus specificity of SCCs was dependent on
stimulus complexity: stimuli characterized by low-level structure
elicited reduced stimulus specificity in SCCs, while images
characterized by both low- and high-level structure elicited in-
creased stimulus specificity. We developed a CRM technique
and proved that the fine structure of SCCs could not be trivially
explained by fluctuations in firing rates. Moreover, a decoding
analysis confirmed that knowledge of the correlation structure
was beneficial for decoding information on stimulus identity. We
argued that the stimulus dependence of SCCs is a natural con-
sequence of top-down modulations in the ventral stream: infer-
ences about high-level structure of images provide context for
the interpretation of low-level structure through the internal
dynamics of the cortex. Finally, we showed that, while the
qualitative changes in stimulus specificity of SCCs could be
explained by a probabilistic hierarchical model of perceptual
inference, they could not be accounted for by a range of other
phenomenological models, based on either finite data effects or
simple collective modulations of responses.
Parallel recordings from multiple neurons permit the investigation

of higher-order statistics of neuronal responses. Hence, the assess-
ment of SCCs, commonly addressed as “noise correlations,” has be-
come a central topic in neuroscience (11, 13, 14, 52). Although
measurement of SCCs only concern second-order statistics, accurate
measurement (9, 13) and interpretation of variations in SCCs (53)
proved to be challenging. Factors that affect SCC estimation include
task design, wakefulness, eye movements, firing rate, cortical distance,
tuning similarity, spike isolation, and spike width (13, 47, 48). We
used a paradigm that permits a large number of repetitions, which
limits sample variance in SCC measurements. Although anesthesia
can permit a larger number of repetitions and/or a larger stimulus set,
network-wide changes in the internal dynamics can introduce artificial
correlation structures (19, 54). Using awake and task-engaged mon-
keys eliminates this confound (35). Eye movements have been shown
to contribute to correlations in the visual cortex (55). We introduced
an analysis that sought to reproduce our results under conditions in

which saccades and microsaccades are minimized. This analysis
confirmed a higher SCC specificity for stimuli with high-level struc-
ture immediately after the onset of the attentional cue when the
occurrence of eye movements dwindles. We developed the CRM to
control for firing rate changes across conditions and demonstrated its
power on synthetic data before applying it to physiological data. This
analysis confirmed that our conclusions on stimulus dependence of
correlations were not a consequence of changing firing rates.
Earlier studies in mice used two-photon calcium imaging to

characterize the changes in correlation structure that arise as a re-
sult of changes in stimulus statistics (14, 16), which extended earlier
observations on the effects of stimulus statistics on higher-order
single-cell statistics (52, 56). However, in these studies, pairwise
correlations were assessed in response to movies and sequences of
moving and static gratings, making it impossible to test the pre-
dictions of hierarchical inference on responses to individual stimuli.
Our approach can be regarded as an extension of earlier work

investigating the patterns of mean responses in the hierarchy of
the visual cortex (40). It has been shown that variance in mean
responses in V2 can be well predicted by variations in factors that
determine the statistics necessary for the generation of natural
textures, while variations in mean responses in V1 can be
predicted by variations in statistics at the level of indepen-
dent Gabor-like edge filters. Similarly, contextual modulation of
V1 activity by top-down influences from V2 neurons was dem-
onstrated when high-level inferences were made in artificial
images (24, 25). Furthermore, V1 was shown to receive delayed
top-down influence relative to V2 (24). The long time window we
used in our analysis to limit measurement noise was not effective
to investigate such temporal dynamics in the interactions. Nev-
ertheless, these observations complement our results and are
fully compatible with probabilistic inference in a hierarchical
internal model of natural images, in which mean responses
correspond to the most probable interpretation of the stimulus.
Probabilistic computations require the representation of

probability distributions. Representation of probability distributions
was proposed to be achieved by stochastic sampling (32, 44), which
interprets response variability as a direct consequence of perceptual
uncertainty. The stochastic sampling framework generalizes natu-
rally to hierarchical computations (32). Recently, it was shown that
stimulus dependence of both membrane potential and spike count
variability in V1 can be predicted by a model of natural images (30).
This model, however, lacked the hierarchical structure presented
here and was therefore unable to account for stimulus-dependent
changes in correlation patterns. However, it provided a simple but
important demonstration of contextual modulation of V1 responses:
the assessment of stimulus contrast for a complete image patch af-
fected the interpretation of local image elements (57). Such con-
textual modulation was shown to result in divisive normalization
(39). Divisive normalization and more specifically surround sup-
pression (58) are algorithmic motifs that can realize the computa-
tional principles put forward in our study. Such algorithmic motifs
provide the nervous system with tools to calculate the quantities
required by the functional model proposed here, and thus can
highlight how processes within V1 can contribute to hierarchical
inference. Our results fit naturally in the sampling framework by
assuming that neural activity patterns represent multivariate samples
from the probability distributions both at the level of V1 and higher-
level areas, for example, V2 (Fig. 1).

Alternative Interpretations. Patterns in higher-order statistics of
neuronal responses beyond the mean activity, namely single-cell
variability and SCCs, have been observed in association with task-
related modulatory effects, such as those driven by attention (18,
19, 59) and in association with stimulus-related modulatory effects,
such as those occurring during the perception of natural scenes (14,
52, 56). Computations underlying both of these processes invoke
high-level inferences: inference of task variables in the case of at-
tention and inference of high-level stimulus features, for example,
object identity, in the case of perception. In both cases, inference of
high-level variables breaks the feedforward processing hierarchy in
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Fig. 7. Comparison of stimulus specificity of correlation patterns evoked by
stimuli with different levels of statistical structure. (A) Condition A, a set of
synthetic image patches in which filter co-occurrences define a texture
structure (HL-synthetic stimuli); condition B, a set of synthetic image patches
generated from a V1 model of images (LL-synthetic stimuli). (B) Stimulus
specificity of firing rate responses (Top) and SCC patterns (Bottom) in the
original (unmatched) data. While correlations show higher specificity for HL-
synthetic images, specificity of firing rate responses is also higher in the first
condition. The baseline for correlation dissimilarity is set to the baseline used
in Fig. 5. (C) Firing and correlation dissimilarities after applying the CRM
procedure. CRM eliminates stimulus specificity of firing rate responses, but
the residual dissimilarity of SCCs is still significantly higher for HL-synthetic
stimuli than that for LL-synthetic stimuli.
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(c)(b) (d) (e)(a)

Figure 2: (a) Linear decodability of texture families from raw pixels, mean z1 and z2 activations, z1
noise correlations. (b) Collapse of texture non-selective dimension in a compressed z2 representation
(TDVAE125). (c)-(e) Stimulus-statistics dependent noise correlations in TDVAE125 (d) and in
macaques (e). (c) Top row: example of texture images. Bottom row: example of scrambled texture
images (d) Noise correlation dissimilarities calculated between z1 units in TDVAE125. Noise
correlation dissimilarities are calculated across five image pairs. See text for details. (e) Dissimilarity
of pairwise noise correlations between responses for different stimuli within a particular condition
(colors). Noise correlations are calculated from 80–120 trials using the same stimulus. Dissimilarities
are averaged across image pairs. Reproduced with permission from [2], PNAS.

Noise correlations Identifying the features represented in z2 provides an opportunity to investigate
the contributions of top-down connections to z1 activations. Since z1 is in a linear generative rela-
tionship with images x, it is not surprising that texture families are not decodable from E[qΦ(z1 |x)]
(see Fig. 2a)). Since z2 is assumed to contribute to shaping the posterior of z1, it is tempting to
investigate if higher moments of qΦ(z1 |x) carry information about high-level features. By the
construction of hVAEs, only those with top-down inference paths (TDVAE, SkipVAE) can represent
such higher-order moments, while ChainVAE (featuring bottom-up inference) cannot. Indeed, the
texture family can be linearly decoded from the posterior correlations of z1 in the TDVAE model
(Fig. 2a):

corrnoise(x) = corr[qΦ(z1 |x)] = corr

[∫
dz2qΦ(z1 |x, z2) · qΦ(z2 |x)

]
, (2)

which we call noise correlations (NC), following the neuroscience literature terminology.

NC can be measured in population recordings of neuronal activity. As opposed to the traditional
accounts that consider NC in the context of information theoretical arguments, we argue that these
can be signatures of probabilistic computations: if neuronal population activity represents a posterior
over the values of inferred features, then NC between pairs of neurons should display patterns similar
to the patterns of correlations measured among the variables of the generative model. Therefore, we
seek to identify NC in z1 and relate them to noise correlations in V1 population recordings.

Texture family decodability from NC suggests that image sets carrying high-level statistical infor-
mation display stimulus-specific NCs. In contrast, an image set devoid of high-level information is
expected to display less specificity in NCs. Assuming that hierarchical inference shapes the response
distribution in the visual cortex, this prediction implies modulations in the stimulus specificity of NCs
in neuronal recordings. To do this, we created stimuli from texture images such that the high-level
structure was removed by permuting the mean activations of the z1 variational posterior (filter scram-
bling). NC specificity was characterized by the dissimilarity of NC matrices (L1 norm of NC matrix
differences) for pairs of images drawn from texture images (top panel in Fig. 2c) and also from filter
scrambled images (bottom panel in Fig. 2c). As predicted, NC dissimilarity was reduced with filter
scrambling (Fig. 2d). This prediction is consistent with NC measurements [2] in a population of V1
neurons when macaques attended texture and filter scrambled images (Fig. 2e).

Image inpainting and illusory contours We demonstrate here that top-down effects enhance the
robustness of the low-level representation z1 to out-of-distribution stimuli. First, we attempted image
inpainting of masked texture images with TDVAE, and also with ChainVAE and LinearVAE to see the
relevance of top-down architecture and multiple layers. However, note that image inpainting is just
a downstream task for our models, unlike for state-of-the-art supervised image completion models
(such as [18]). We inferred z1 from the masked textures and generated inpainted reconstructions.
To test how much contextual information is present in the pixels inside the mask of the inpainted
image, we tested how well the texture family can be decoded from them (see Fig. 3 for the result with
various mask radii). We can see that the decoding accuracy is well above chance (0.2) for all models
but is higher for TDVAE than for models without top-down connection or with a single layer. We
observed the same for natural images where an alternative evaluation metric was used (see in A.4).
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Figure 3: (a) Setup of masking experi-
ment. (b) Linear decodability of texture
families from inpainted reconstructions.

Instead of seeking neurophysiological experiments using
masked natural image stimuli, we studied our models’ re-
sponses to illusory contour stimuli inspired by [28]. In that
work, Kanizsa square images (second row in the left panel
of Fig. 4a) were shown to macaques and the V1 activity of
the primates was measured. It was shown that particular
V1 cells that are responsive to real edges were also firing
to the illusory edge. We demonstrate here the relevance
of top-down effects in this phenomenon by comparing the
mean responses of TDVAE and ChainVAE/LinearVAE
(models without top-down connection or with a single
layer only) to an illusory edge.

We designed cropped Kanizsa square stimuli by aligning
the illusory contour to z1 filters, as well as “rotated corners”
stimuli as control stimuli (Fig. 4(b), see A.5 for details of filter selection). Note that, in contrast to the
measurements in [28], we used only the lower half of the Kanizsa square stimuli. The fitted stimuli
were then moved perpendicular to the filter orientation and the per-filter posterior mean z1 responses
were recorded as a function of the stimulus position (Fig. 4b). The response curves were averaged
for the selected filters and were plotted for different models and stimuli (Figs. 4c–e) (the analogous
figure is reproduced with permission from [28](PNAS) in Fig. 4a).

We found that 1) the mean responses to the illusory contour stimuli were substantially larger than those
to the “rotated corners” stimuli (as in [28]), and 2) the mean responses to the illusory contour stimuli
relative to that to the line stimuli was substantially larger in TDVAE than in ChainVAE/LinearVAE
(Figs. 4c–e). Thus, the response of ChainVAE does not exceed the intensity of linear responses, but
the presence of top-down inference significantly enhances the responses to the illusory contour.
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experiment

vertical shift

re
sp

on
se

 in
te

ns
ity

(e)

fil
te

r
Li

ne
Ill

us
or

y 
Co

nt
ou

r
Ro

ta
te

d 
Co

rn
er

s

Figure 4: (a) Intensity of V1 cells in macaques as a response of real and illusory contour stimuli as a
function of vertical position of the edge (reproduced with permission from [28], PNAS, Copyright
(2001) National Academy of Sciences, U.S.A.). (b) Illusory contour, line and rotated corners stimuli
fitted automatically to a selected filter. The arrows denote the direction of gradual displacement of
the stimuli during the experiment. (c–e) Mean activations of z1 in response to line, illusory contour
and rotated corners stimuli stimuli in TDVAE, ChainVAE, and LinearVAE.

4 Conclusions

We modeled the probabilistic representation of the early visual system V1/V2 by learning a hierar-
chical VAE on natural images. We saw that apart from choosing a sparse prior for the lower layer,
we had to choose a VAE with a purely Markovian generative model (unlike the state-of-the-art deep
VAE architectures) to get a complete basis of Gabor filters. In addition, we showed that texture-like
features emerge that are robust against compression or architectural change. We studied the stimulus
sensitive noise correlations of the lower layer. We showed that in models featuring a top-down
recognition model, unlike the mean of the posterior, NC contains high-level information: texture
family information was linearly decodable from them. We also demonstrated that, in line with V1
measurements in macaques [2], stimulus specificity of NC decreases once high-level information
is removed from the images. We demonstrated the role of top-down inference in robustness of the
representation against distortions. In both the texture inpainting and the illusory contour detection
experiment, TDVAE performed the best. The latter experiment had findings similar to measurements
using Kanizsa stimuli in macaques [28].
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Predictive coding (PC) has been proposed as an alternative form of generative model for the visual
cortical hierarchy that features top-down connections [31, 5, 29]. Similarly to our case, these models
have also been proposed to account for illusory contours [29, 34]. Our model differs from PC in two
fundamental points: 1) Top-down contributions have a purely computational-level motivation, without
specific algorithmic-level assumptions; 2) Our framework extends the scope of PC to probabilistic
computations, and thus can account for patterns in noise correlations.

We believe that some of our findings (inspired by neuroscience domain knowledge) can also be
valuable to the machine learning community. Representation of (almost exclusively single-layer)
VAEs is an area actively studied. However, the higher moments of the posterior are ignored. We
demonstrated that correlation between latents can contain interesting information. We also showed
that an hVAE with a Markovian generative model learns a more interpretable representation compared
to non-Markovian hVAEs (which achieve state-of-the-art image generation quality), where feature
hierarchy is less pronounced. Finally, we highlighted the relevance of the top-down recognition
model in image inpainting. In future work, we seek to explore the response properties of higher visual
areas using larger image patches and deeper Markovian generative models.
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A Appendix

A.1 Model details

A.1.1 Factorization of the variational posterior

For a hierarchical generative model with two layers, one can factorize the true posterior in two ways.
In the bottom-up fashion this reads:

p(z1, z2 |x) = p(z2 |x, z1) · p(z1 |x). (3)

For the Markovian case, this simplifies to a chain, as p(z2 |x, z1) is independent of x. For both the
Markovian and non-Markovian cases, the posterior can be factorized in a top-down manner as well:

p(z1, z2 |x) = p(z1 |x, z2) · p(z2 |x). (4)
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We choose to have a factorization of the variational posterior which mimic one of the above forms of
factorization of the true posterior.

Note that it is not compulsory to choose a factorization of the variational posterior which preserves
Eq. (3) or (4). It would mean though that we cannot saturate the ELBO even if we have a very
expressive distribution for the single-layer variational posteriors. For example, in [39] the authors
choose to work with qΦ(z1, z2 |x) = qΦ(z1 |x) · qΦ(z2 |x). For them, the hierarchical nature of
the representation comes from choosing a more compressing network for qΦ(z2 |x) compared to
qΦ(z1 |x).
In the top-down case, we will have a simple functional form (for example, diagonal normal or Laplace
distribution) for qΦ(z2 |x) and qΦ(z1 |x, z2) and optimize for the TD objective function (for the
Markovian generative model):

FTD(x, θ,Φ) = EqΦ(z2 |x)qΦ(z1 |x,z2)[log pθ(x | z1)]−
− β1 · EqΦ(z2 |x)[KL[qΦ(z1 |x, z2) || pθ(z1 | z2)]]−
− β2 ·KL[qΦ(z2 |x) || pθ(z2)]. (5)

For the non-Markovian case, the only difference is that in the reconstruction term pθ(x | z1) needs to
be replaced by pθ(x | z1, z2). Note that the KL term is a sum of layer-wise KL terms. Recent deep
hVAEs use this latent posterior structure (with a non-Markovian generative model) [41, 9].

We introduced the parameters β1 and β2. When β1 = β2 = 1, the objective function is identical to
the ELBO. See the role for β-s different from 1 in the next subsection.

If we choose bottom-up factorization we constrain qΦ(z1 |x) to be of a simple form and the ELBO
becomes for the Markovian case (since we only consider this type of generative model with the
bottom-up recognition model):

FBU(x, θ,Φ) = EqΦ(z1 |x)[pθ(x | z1) + β1 · pθ(z1 | z2)]− β1 ·H[qΦ(z1 |x)]
− β2 · EqΦ(z1 |x)KL[qΦ(z2 | z1) || pθ(z2)], (6)

where H denotes the entropy of the distribution.

A.1.2 The role of β-s

We allowed the KL-type terms to be scaled in Eq. (5) and (6) with parameters β1 and β2. When
β1 = β2 = 1 the objective function is identical to the ELBO. One reason for doing this is practical.
It can help the training process by allowing these parameters to slowly increase from a small value to
1 (β annealing). Furthermore, from a representation learning point of view, β-s can shape the latent
representation by manipulating the mutual information between the observed and the latent variables
[7, 1].

Single-layer β-VAEs [7] (where β is different from 1) has been extensively explored to see how it
can contribute to the emergence of a more disentangled representation. This manipulation was shown
to correspond to altering the capacity of the latent representation when interpreting the inference as
lossy compression [1]. Our investigations concern the β2 > 1 case, since it establishes an inductive
bias to learn a compressed representation at the higher latent layer.

A.1.3 Architectural details

The computational graph of the recognition model for the TDVAE and SkipVAE are non-trivial and
contains further inductive biases (Fig. 5). We can see that there is a direct connection from x to the
stochastic variable z2 in the sense that the latter does not depend on z1. We emphasize that this
property of the recognition model is compatible with both Markovian and non-Markovian generative
models.

First, we discuss the details of the architectural choices for the top-down recognition model present
in TDVAE and SkipVAE. There are four MLPs defined for the recognition models as depicted in Fig.
5. The first neural network (MLP.a) maps the pixel space to a layer Lx that is shared between the
computations of qΦ(z2 |x) and qΦ(z1 |x, z2). From Lx MLP.b computes the mean and variances
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Table 1: Models presented in this paper.

Name Architecture Patch size z1 distr.’s dim(z1) dim(z2) β1 β2

LinearVAE LinearVAE 40× 40 Laplace 1800 N/A 1.00 N/A
TDVAE TDVAE 40× 40 Laplace 1800 250 1.00 1.00
TDVAEn TDVAE 40× 40 normal 1800 250 1.00 1.00
TDVAE125 TDVAE 40× 40 Laplace 1800 250 1.00 1.25
SkipVAE SkipVAE 40× 40 Laplace 1800 250 1.00 1.00
ChainVAE ChainVAE 40× 40 Laplace 1800 250 1.00 1.00

Table 2: Number of hidden units in each MLP layer computing the mean and the standard deviation
of each conditional distribution in the bottom-up recognition models.

Name Architecture pθ(z1 | z2) qΦ(z1 |x) qΦ(z2 | z1)
LinearVAE LinearVAE N/A (2000, 2000) N/A
ChainVAE ChainVAE (2000) (2000, 2000) (1000, 500, 250)

of the qΦ(z2 |x) distribution. The third MLP (MLP.c) transforms z2 to layer Lz . We fuse the
information from x and z2 by concatenating Lx and Lz and apply an MLP on the combined layer to
obtain the mean and variances of qΦ(z1 |x, z2) (MLP.d). The number of hidden layers and hidden
units used in each MLP to calculate the means and standard deviations of the conditional generative
and variational posterior distributions is shown in Table 2 for models with bottom-up recognition
models and in Table 3 for models with top-down recognition models.

x

z1

z2

Lx

MLP.b

MLP.a

Lz

MLP.c

MLP.d

Figure 5: Detailed illustration of the recog-
nition model for TDVAE and SkipVAE. The
green/red arrows highlight the computational flow
for calculating the parameters of the distributions
qΦ(z2 |x) / qΦ(z1 |x, z2). The weights of MLP.a
that produce the intermediate layer Lx are shared
between the two computations. The intermediate
layers Lx and Lz are concatenated to form the
input to MLP.d

We also tested the significance of parameter
sharing in the encoder MLP.a. In a control ex-
periment, we turned off parameter sharing in
qΦ(z2 |x) and qΦ(z1 |x, z2) and found that the
ELBO, the dimensions of the learned represen-
tation, and the decoding accuracies changed by
less than 2%. This means that parameter shar-
ing through the shared encoder MLP.a has only
a marginal effect on the learned model.

A.1.4 Model training details

We trained several model instances representing
the model architectures in Section 2 on whitened
natural image patches. The main hyperparame-
ters of a selected subset of experiments is shown
in Table 1. We trained our models with the Adam
optimizer [25]. We found that while the learned
z1 representation was robust against regulariza-
tion techniques (we tested weight decay, gradient
clipping and gradient skipping), the learned z2
representation was sensitive to these. To elimi-
nate such regularization artifacts, we turned off

Table 3: Number of hidden units in each MLP layer computing the mean and the standard deviation
of each conditional distribution in the top-down recognition models.

Name pθ(z1 | z2) MLP.a MLP.b MLP.c MLP.d skip

TDVAE (2000) (2000) (1000, 500, 250) (250, 500, 1000, 2000) (2000) N/A
TDVAEn (2000) (2000) (1000, 500, 250) (250, 500, 1000, 2000) (2000) N/A
TDVAE125 (2000) (2000) (1000, 500, 250) (250, 500, 1000, 2000) (2000) N/A
SkipVAE (2000) (2000) (1000, 500, 250) (250, 500, 1000, 2000) (2000) (2000, 1800)
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Table 4: Model optimization parameters.

Name Architecture Learning rate(s)

LinearVAE LinearVAE 3× 10−5

TDVAE TDVAE 5× 10−5 → 2.5× 10−5

TDVAEn TDVAE 5× 10−5

TDVAE125 TDVAE 5× 10−5

SkipVAE SkipVAE 2× 10−5

ChainVAE ChainVAE 1× 10−5

Table 5: Source for the texture family seed images and preprocessing parameters. For details, see
text.

Texture family Origin Filename Channel Subsampling

0 textures.com FoodGrains0001_1_seamless_S green 4× 4
1 textures.com Leather0028_1_M green 2× 2
2 textures.com SoilCracked0079_1_seamless_S red 2× 2
3 textures.com Carpet0025_1_seamless_S blue 2× 2
4 [6] D111 N/A N/A

weight decay and increased gradient clipping
and skipping thresholds to have an activation fre-
quency below 10−6. As a final step, we continued
to decrease the learning rate (constant in each ex-
periment) until the learned representation in z2
converged. The test ELBOs were at most 20%
higher than the training ELBOs, demonstrating that the number of training examples (3.2× 105) was
enough to avoid overfitting. Training the set of models in Table 1 took 322 hours altogether on a
computer equipped with one Nvidia GeForce RTX 3080 Ti GPU. The source code of our models
contains code from [36] which uses the Apache-2.0 license.

A.2 Datasets

A.2.1 Natural image data

We sampled 3.2 × 105 training and 6.4 × 104 test images from the van Hateren database [42],
matched their grand total intensity histograms to the unit normal distribution, and applied the
whitening procedure described in [3]. This whitening procedure discards 100(1 − π/4)% of the
high-frequency PCA components, keeping 1256 data dimensions in 40 × 40 image patches (see
Fig. 6a for examples).

A.2.2 Texture data

Natural images are known to feature a characteristic linear structure [32, 38]. Higher-order de-
pendencies that cannot be captured by the linear model [43, 35] and nonlinear features have also
been identified in natural images [38, 24]. This ensures that these provide an exquisite test bed for
investigating emerging representations in hierarchical generative models.

Synthetic data sets were generated by an optimization algorithm developed by Portilla and
Simoncelli[35] and whitened with the same procedure as the natural data sets (see Fig. 6b
for examples). The seed images of the five texture families were downloaded from https:
//www.textures.com/ under a license that granted free usage for noncommercial purposes, as well
as from [6].

Table 5 shows the source and preprocessing parameters for the seed images used to synthesize the
texture families. Colored seed images (0) — (3) were turned into grayscale by selecting one of
their color channels, then cubic subsampling was applied with a window size that ensured that the
dominant Fourier component fits into a 40× 40 cropped image patch. The grayscale seed image (4)
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(a) (b)

Figure 6: (a) Example 40 × 40 whitened natural image patches, with matching grey scale. (b)
First row: 256 × 256 crops from the five texture family seed images after preprocessing with the
parameters in Table 5. Second row: 256× 256 crops from textures synthesized with [35]. Bottom
rows: Examples of 40× 40 whitened texture patches cropped from synthesized texture images.

Table 6: Parameters and download URLs for the training and test datasets used in the paper. See text
for details.

Image type Patch size Link

natural 20× 20 download
natural 40× 40 download
textures 20× 20 download
textures 40× 40 download

has no characteristic Fourier component (it has a scale-free autocorrelation function); therefore, no
subsampling was applied. The seed images preprocessed in this way are shown in the top row of
Fig. 6(b).

The preprocessed texture seed images were then fed into the texture synthesis method [35] one by
one to generate a large number of texture images for each texture family (for samples, see the second
row of Fig. 6(b)). These synthesized texture images were then used to generate a large number of
40× 40 pixel whitened texture patches (similarly to the natural image data set). To promote statistical
correspondence to our natural training images, we only used texture families on which a sparse
LinearVAE model (see Tab. 1) learned a complete basis of localized, oriented, bandpass filters.

The resulting datasets were placed into a public repository that ensures long-term preservation of
the data, provides a Digital Object Identifier, and publishes metadata in several metadata standards,
including Schema.org and DCAT. In the interest of anonymity, we provide only anonymized links
in Table 6. Each file is in pickle format and was generated with Python 3.8.5. Each file contains a
Python dictionary with the following fields:

‘train_images’ 640,000 float32 images used for model training. 20× 20 pixel images contain 400
pixel intensities, and 40× 40 pixel images contain 1600 pixel intensities each.

‘train_labels’ float32 labels for each image in ‘train_images’. All natural images are labeled with
0.0. Texture images are labeled with 0.0, 1,0, 2.0, 3.0, or 4.0, according to their texture
family.

‘test_images’ 64,000 float32 images used for model testing. 20× 20 pixel images contain 400 pixel
intensities, 40× 40 pixel images contain 1600 pixel intensities each.

‘test_labels’ float32 labels for each image in ‘test_images’. All natural images are labeled with 0.0.
Texture images are labeled with 0.0, 1,0, 2.0, 3.0, or 4.0, according to their texture family.

These data are published under the terms of the Creative Commons Attribution 4.0 International
license.
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(a) (b) (c) (d) (e)

Figure 7: (a) z1 projective fields using sparse (Laplace) priors in latent model layer z1. (b) Same with
normal prior. A sparse z1 prior leads to more localized z1 projective fields than a normal z1 prior,
while the sparsity of the z2 prior does not have a noticeable effect. (c) A subset of dimensions of
E[qΦ(z2 |x)] are texture family selective in all studied two-layer models. Different colors represent
responses to images from different texture families (d) Active z2 dimensions increase with increasing
dim(z2) in SkipVAE but not in TDVAE. (e) TDVAE learns complete linear bases in z1, irrespective
of dim(z2). SkipVAE moves as many of these to z2 as possible.

A.3 Details on the hierarchical representation

A.3.1 Low-level layer

In each model we found that the z1 dimensions were clearly clustered into two groups (active and
collapsed) based on the mean squared intensity of their projective fields. In image reconstruction
experiments, collapsed z1 dimensions were responsible for less than 10−6 of the pixel variances
generated, that is, their contribution was negligible. The number of active z1 dimensions in all
Markovian models (LinearVAE, TDVAE, and ChainVAE) was equal to the data dimensions (1256).
Therefore, the active z1 components form a complete linear basis in the space of the training images.
In contrast, the active z1 dimensions in the non-Markovian SkipVAE models always formed an
undercomplete basis only.

Training SkipVAE models with different numbers of z2 dimensions, we found that the sum of active
latent dimensions is constant (see Fig. 7(d)-(e)). This reveals a fundamental difference between the
representations learned by models with Markovian and non-Markovian generative models. In the
Makovian case, the generative models force all low-level linear features into z1, cleanly separating
them from nonlinear, possibly higher-level features in z2. However, in the non-Markovian model,
the complete low-level representation is distributed between z1 and z2 due to the generative skip
connection. This reduces both the interpretability of the non-Markovian model compared to the
Markovian ones and the efficiency of inductive biases in shaping the representations.

We found that the qualitative character of the projective fields of active z1 dimensions depends
on the probability distributions chosen for the z1 generative and recognition models. The sparse
Laplace distribution leads to localized, oriented, bandpass, Gabor-like filters with low uncertainties
(Gabor wavelets are commonly defined by having the lowest possible uncertainty value). They are
reminiscent of the Gabor-like filters found in single-layer sparse linear models of natural images
[32, 3] (see Fig. 7(a)). Using normal distribution results in more extended oriented filters, akin to the
Fourier PCA components of natural images (see Fig. 7(b)). However, we found that the representation
of z1 was not affected by the choice of z2 prior (Laplace or Normal). We found one exception
to this rule: a minority of z1 dimensions in TDVAE display nonlocal projective fields with high
uncertainties, which are accompanied by a large number of texture-non-selective active dimensions
in z2. With a slight increase of β2, all z1 filters become Gabor-like and all active z2 dimensions
become texture-selective (see Fig. 2(b)).

A.3.2 High-level layer

The z2 dimensions clustered into an active and a collapsed group, the latter characterized by small
variances of the posterior z2 means and close to unit means of the posterior z2 variances within
each texture family. Training models with different numbers of z2 dimensions revealed that there is
a limit to the number of active z2 dimensions in TDVAE models. SkipVAE models, however, use
all available z2 dimensions (Fig. 7d). This is because low-level filters appear in z2, as discussed in
the previous subsection. We have seen that there are texture-sensitive z2 dimensions. See (Fig. 7c),
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(b) (c) (d)(a)

Figure 8: (a) Correlations between z1 signal and noise correlation coefficients are significantly
stronger within than across texture families. (b) Linear decodability of texture families from inpainted
reconstructions without cropping the 40px image to 20px. (c) Top-down inference substantially
enhances in-mask image completion. (d) Top-down inference somewhat degrades out-of-mask
reconstruction.

where the clustering of texture families is shown in two dimensions. The texture sensitivity at the
level of z2 was persistent in the two choices of the z2 prior. The number of texture-sensitive units
was slightly lower for a sparse prior. These units tended to rotate toward the z2 axes, resulting in a
more sparse and disentangled representation.

A.3.3 Signal vs. noise correlations

Since the model parameters were learned from training data, it is plausible that the uncertainties
expressed in the posteriors of z1 should reflect the properties of the stimulus. [24] highlighted that
texture families possess characteristic correlations in the means of linear filter activations

corrsignal(tf) = corrptf (x)[E[qΦ(z1 |x)]], (7)

termed signal correlations (tf denotes texture family). This is also characteristic of all of our models.
We found that within each texture family, the elements of the signal correlation and the texture-
averaged noise correlation matrices (corresponding to filter pairs) are positively correlated. This
correlation is significantly stronger within than across texture families (Fig. 8a).

A.4 Metrics for image inpainting performance

Texture family decodability In Section 3 and Fig.3 we characterized the image inpainting perfor-
mance on textures with texture family decodability. Here, we describe in detail how this accuracy
was obtained. To focus on the region inside the mask, we took the inpainted image and zeroed the
pixel values outside of the central disk used for masking. We then cropped the central 20× 20 pixel
part of the image. This cropped image was fed to a TDVAE20 model, which was previously trained
on 20px natural images. The posterior mean values of z2 were calculated and a logistic regression
model was trained on them to decode texture family information.

For a larger mask radius, image inpainting is harder. However, more pixels are available for the
decoder to decode the texture family. This is why there is no obvious trend in the accuracy values as
a function of the mask radius in Fig.3.

We also checked the above metric without cropping a 20px piece from the 40px inpainted image and
using a 40px TDVAE for calculating z2 posteriors. Fig. 8b shows that TDVAE performs better in
inpainting compared to models without top-down connections. Without cropping, this effect becomes
noticable when the mask radius is large enough since the masked area is larger and the inpainting
task is harder.

Regression based metric We also performed the image inpainting experiment on natural images. In
that case, we cannot use a classification-based performance metric. Therefore, we took the function
of the pixel values of the inpainted image against the pixel values of the original unmasked image.
Then, two separate lines were fitted to this function restricted to either inside or outside the mask area.
The slope of the inside-mask line is an indication of inpainting quality, and we can see in Fig. 8c
that two-layer top-down hVAEs perform better compared to a single-layer LinearVAE and two-layer
hVAE with bottom-up recognition model. However, it could be that this is not purely due to the
top-down effect, but these models are simply better at reconstructing any images. To control for that,
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we also checked the slopes of the outside-mask line. We can see in Fig. 8d that outside the mask the
LinearVAE reconstruction is better compared to TDVAE. This means that the top-down models rely
more on higher-level features when filling in the mask.

A.5 Filter selection for illusory contour experiment

For each model studied, we performed the following steps. 1) We automatically selected all z1 filters
fit for measuring their response to illusory contour, line and “rotated corners” stimuli. We used the
following filter selection criteria: central position, small or medium size, and medium wavelength.
Central position, small or medium size, and not too large wavelength were needed so that the stimuli
fit into the area of the image patch. Small (just a few pixel) wavelengths were excluded to avoid pixel
aliasing effects. The illusory contour stimuli were constructed to have their potential illusory contours
in the exact positions of the real contours of the corresponding line stimuli. 2) The orientation, initial
position, and size of each illusory contour, line and “rotated-corners” stimulus was fitted individually
to the orientation, center, and size of each selected filter, respectively (see an example in Fig. 4b).
3) The fitted stimuli were moved perpendicular to the filter orientation, and the posterior mean z1
responses per filter were recorded as a function of the stimulus position. 4) Response curves were
averaged for the selected filters and plotted for different models and stimuli (Figs. 4c–e).
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