
GENFLOWRL: Generative Object-Centric Flow Matching for Reward
Shaping in Visual Reinforcement Learning

Kelin Yu1, Sheng Zhang1, Harshit Soora1, Furong Huang1, Heng Huang1, Pratap Tokekar1, Ruohan Gao1
1University of Maryland, College Park

Fig. 1: Illustration of our GENFLOWRL framework, which guides visuomotor policy by leveraging generative object-
centric flow as task motion prior (Right). In our proposed reward model, dense flow matching between online trajectories
and flow prior, synergizing with sparse state-aware reward, facilitates efficient, robust, and generalizable policy learning.
Our extensive evaluation includes 10 challenging simulation manipulation tasks (Fig. A) and real-world cross-embodiment
reward matchness probing experiments (Fig. B).

Abstract— Recent advances have demonstrated the potential
of video generation models to guide robot learning by deriving
effective robot actions through inverse dynamics. However,
these methods heavily depend on the quality of generated
data and struggle with fine-grained manipulation due to the
lack of environment feedback. While video-based reinforcement
learning improves policy robustness, it remains constrained
by the artifacts of generated video and the challenges of
collecting large-scale in-domain robot datasets for training
diffusion models. Motivated by the above, we propose GEN-
FLOWRL, which derives shaped rewards from generated flow
trained from cross-embodiment datasets. This enables learning
generalizable and robust policies from expert demostrations
using low-dimensional, object-centric features. Experiments on
10 manipulation tasks, both in simulation and real-world cross-
embodiment evaluations, demonstrate that GENFLOWRL effec-
tively leverages manipulation features extracted from generated
object-centric flow, consistently achieving superior performance
across diverse and challenging scenarios.

I. INTRODUCTION
Recent advances in video generation models have demon-

strated the potential of enhancing robot learning by de-

riving effective actions from generated robot videos using
inverse dynamics [1–4]. This approach enables learning
policies across diverse scenarios with strong generalizability.
However, most existing methods rely on open-loop policies
that operate solely on the generated data, without actively
interacting with the environment. As a result, they are highly
dependent on the quality of the generated videos, limiting
their robustness. This limitation becomes particularly critical
in tasks that handles contact-rich scenarios, where environ-
mental feedback is essential.

Reinforcement Learning (RL), on the other hand, offers
a complementary approach by allowing policies to interact
with the environment and iteratively improve their robust-
ness [5–7]. Therefore, combining video generation models
with RL presents a promising direction [8–11], as pre-trained
video generation models can serve as rewards for RL train-
ing across diverse settings, thus enhancing generalizability.
However, training such models usually require collecting
large-scale robotic data, which remains a significant chal-

lenge. Additionally, video generation models often introduce
substantial uncertainty, which makes it difficult to produce
high-quality videos for shaping rewards in RL training.

To address the aforementioned limitations and to better
leverage the strength of both video generation models and
RL, we propose to use generated object-centric flow [12–
15]—the 2D keypoints trajectory of objects—for reward
shaping. Object-centric flow has been utilized in robot learn-
ing to bridge the embodiment gap between robots and easy-
to-collect human hand demonstrations [12, 15]. Compared
with robotic videos, it is a much lower-dimensional rep-
resentation that is easier to generate while retaining more
manipulation-related features. Additionally, expert object-
centric flow can be directly used for reward shaping without
requiring specific representation learning [15]. As shown
in Table II, object-centric flow offers a fine-grained repre-
sentation that can also be used for learning deformable or
articulated objects manipulations. These unique properties
make it well-suited for both generation and reward shaping.

Towards this end, we propose GENFLOWRL, a novel
framework that integrates object-centric flow generation
with reinforcement learning. Our approach harnesses the
generalization capability of flow generation models while
incorporating environment interactions to overcome the
limitations of open-loop policies. By leveraging object-
centric flows, GENFLOWRL utilizes easy-to-collect cross-
embodiment datasets for training stable generative model,
and uses the generated object-centric flows for dense re-
ward shaping. These flow-derived rewards are combined
with sparse state-based rewards, providing richer task and
environment priors. Finally, the generated flow can be used
as a motion prior to improve policy robustness.

Our extensive evaluations on 10 manipulation tasks
demonstrate the effectiveness of our flow-derived reward
for incentivizing the exploration of expert-like behaviors,
outperforming both imitation learning and video-guided RL.
Comparisons with other object-centric representations further
highlights its unique advantages for fine-grained manipula-
tion tasks. Additionally, our case study using a real robot
arm confirms the effectiveness of our flow-derived reward
model through human-to-robot transfer.

Our key contributions are three-fold: (1) We propose
GENFLOWRL, a novel framework that generates object-
centric flows from cross-embodiment videos to guide RL
policy learning, overcoming the limitations of conventional
video-based RL approaches. (2) We comprehensively eval-
uate various object-centric representations for manipulation
policy learning, analyzing their effectiveness and efficiency
while uncovering practical insights. (3) Extensive evalua-
tion on 10 challenging fine-grained manipulation tasks, both
simulation and real-world cross-embodiment experiments,
demonstrate the effectiveness of our method.

II. METHODOLOGY

To enable RL to learn from expert motion priors with more
robustness and generalizability, we present GENFLOWRL, a
framework that bridges the gap between generative founda-
tion models and RL to tackle diverse manipulation tasks that

involve fine-grained and contact-rich interactions. The key
innovation of GENFLOWRL is our proposed object-centric
flow-derived reward model for policy learning. This reward
model uses generated δ-flow representations to mimic expert
motion priors from large-scale, cross-embodiment datasets
while incentivizing exploration. Additionally, it incorporates
real-time feedback to enhance robustness against noise and
potential inaccuracies in these priors.

The overall architecture of our method is illustrated in
Fig. 2. Our framework is composed of three main com-
ponents: (1) Task-conditioned object-centric flow gener-
ation, which produces object-centric flows conditioned on
task descriptions (Sec. II-A). (2) A hybrid reward model
guides policy learning through continuous feedback from
dense matching with our δ-flow, constructed from the object-
centric task flow, while also comprising sparse rewards based
on environment and object states (Sec. II-B). (3) Flow-
conditioned policy learning, where we use the hybrid reward
model to train a generalizable policy that is conditioned on
the generated flow (Sec. II-C).
A. Object-Centric Flow Generation

Adapting pre-trained video generative models to predict
scene dynamics in the image space often leads to artifacts,
physical distortions, and factual inaccuracies that mislead
reinforcement learning for robotics tasks [2, 3]. In contrast,
object-centric representation avoids these pitfalls thanks to its
RL compatibility (see Tab. II). Object-centric flow represents
the temporal motion of keypoints on a target object relative
to the initial frame, abstracting away visual appearances [12].
Motivated to overcome the suboptimality in RL of existing
object-centric flow evidenced by our investigation results
(Sec. II-B), we propose our object-centric δ-flow representa-
tion leveraging video generation priors [12–14], which cap-
tures object-centric relative translation and rotation. Method
details are in Supp. IV-A.

B. Flow-Derived Reward Model
The keypoints of the generated flow in the previous step

offer dense temporal guidance with object-centric spatial
features but sometimes contain noisy and misleading cues.
Motivated by the above, we first design a more robust flow
representation similar to HuDor [15], namely δ-flow, which
proves to be efficient and tailored to RL training. Secondly,
we develop a hybrid reward model derived from flow, which
combines a flow-matching reward—aligning current flow
with the generated flow—with a sparse task-based reward.
This reward model actively balances exploration and task
completion by leveraging expert motion priors from gener-
ated flow while following the guidance from sparse reward.
As a result, our adaptive reward model enables the robot to
generalize to diverse manipulation settings and objects. More
details of this system are shown in the Supp. IV-B
C. Policy Design

This section details our robust policy design, which is
grounded in our flow-derived reward model. In contrast to ex-
isting RL-based methods [10, 15, 16], our policy begins with
a low-dimensional generated δ-flow that encodes planned

Fig. 2: Architectural overview of our proposed GENFLOWRL framework, which encompasses our flow generation
process (left), flow-derived policy learning (middle), and inference stage (right). In the object-centric flow generation
process (Sec. II-A), we: (a) Adapt a pre-trained generative model decoder via flow-to-flow reconstruction; (b) Fine-
tune the latent motion module on flow generation conditioned on task descriptions and the initial keypoints; (c) Apply
motion/semantic filters to refine the generated flow and then convert it into our effective δ-flow (Sec.II-B) representation. In
our flow-derived policy learning stage, our hybrid reward model (Sec. II-B) guides policy learning through a dense δ-flow
matching reward derived from generated flows and a sparse state-aware reward derived from environmental interactions.
During inference, the policy executes 6D robot actions with conditions: robot state, initial 3D keypoint centroid, future steps
of the generated δ-flow, and current observation feedback.

future keypoints complemented with the 3D prior from the
initial frame, which helps the policy better comprehend
the 3D spatial transformation of objects from the 2D flow
transformation. More details are shown in Supp. IV-C

III. EXPERIMENTS

We evaluate our proposed method on 10 challenging
robotic manipulation tasks from two benchmarks. Our exper-
iments are designed to answer the following key questions:
(1) Compared to flow-based imitation learning, how robust
is RL when using our flow-derived reward model? (Sec. III-
A) (2) Compared to video-based reward shaping, how
effective is reward shaping with an object-centric representa-
tion? (Sec. III-B) (3) How does the choice of object-centric
representation impact performance? (Supp. IV-I) In addition
to these questions, we also conduct ablation studies on differ-
ent input variations (Supp. IV-J) and present a case study on
reward matching between human hand demonstrations and
robot execution in the real world (Sec. III-C). More details
about experimental settings are shown in the Supp. IV-E

A. How Robust is RL with Flow-Derived Reward Model?
To answer this question, we evaluate our proposed frame-

work with three baselines on five established robotic ma-
nipulation tasks [12]. The comparison results between our
method and the baselines are presented in Table I.
Baselines: We compare our framework with two baselines:
(1) Heuristic Policy: A heuristic action policy that first
selects object contact points and applies a pose estimation
method to the object 3D flow in the following steps. This
method is implemented in General Flow [13], and we provide

the ground-truth 3D flow as input. (2) Im2Flow2Act: A
two-stage flow-based imitation learning method [12], which
follows a similar flow generation pipeline but trains task-
agnostic flow-based Diffusion Policy using simulated heuris-
tic actions instead of online RL training.
Evaluation: Following existing practice [12], we evaluate
in two setups: Demo-conditioned execution, which evalu-
ates each flow-based policy conditioned on the oracle flow
extracted from expert demos in the dataset and Language-
conditioned execution, which evaluates each policy condi-
tioned the generated flow from the initial frame and task
language descriptions.
Key Findings: The results in Table I demonstrate that our
method outperforms all the baselines in these five tasks,
especially on challenging Folding and Pivoting. We can
observe that our method clearly outperforms the baselines
in both demo-conditioned and language-conditioned setups.
For the deformable object manipulation task, Folding, the
superior robustness of our method can be attributed to two
key factors: Firstly, our policy is consistent in training and
evaluation in that our policy is learned with noisy generated
flows. Second, in contrast to previous works, our proposed
condensed δ-flow representation is superior in reducing the
noise of generated flows. For contact-rich manipulation task,
Pivoting, our approach can leverage interactions with envi-
ronment to gather a more diverse set of trajectories, thereby
ensuring better alignment with the expert motion prior.
B. How Effective is Object-Centric Representation for RL?

To investigate, we compare the training success rate of
our framework with four RL-based baselines with different

Demonstration-Conditioned Language-Conditioned
PickNP. Pour Open Fold Pivot PickNP. Pour Fold Fold Pivot

Heuristic [13] 70 50 30 0 0 / / / / /
Im2Flow2Act [12] 100 95 95 90 60 90 85 90 35 45
GENFLOWRL (Ours) 100 100 100 95 90 95 95 95 80 85

TABLE I: Performance comparison for reward model ablations across various methods on 5 challenging simulation tasks
under two setups: demonstration-conditioned and language-conditioned execution. Scores reported in success rate.

Fig. 3: Comparing with other video-based reward models. The shaded area is the standard deviation for three random seeds.

representations on five robotic manipulation tasks in Meta-
World [17]. Comparison results are shown in Fig. 3.
Baselines: We compare our framework with four base-
lines: (1) Pure Sparse Reward (PSR) only uses state-aware
sparse reward, which aims to evaluate the effectiveness of
reward shaping via a pre-trained generative model. (2)
Diffusion Reward [10] is the state-of-the-art video-based
reward shaping method, which also utilizes diffusion model
for video generation with conditional-entropy based reward
shaping. (3) VIPER [16] uses video generation model,
VideoGPT [18], as video prediction model and utilizes log-
likelihood of agent observation as reward. (4) Random Net-
work Distillation (RND) [19] encourages exploration with a
novelty-seeking reward, different from pre-trained generative
model based reward shaping.
Key Findings: Compared with non-pretrained methods like
PSR and RND, reward shaping with a model pre-trained from
expert demonstrations achieves superior performance. While
these baselines perform competitively on simpler tasks like
Door Close and Coffee Push, they struggle in more challeng-
ing contact-rich manipulation tasks such as Assembly. When
compared with pre-trained video generation models, the gen-
erated object-centric flow shows better training efficacy, indi-
cating that extracting essential manipulation-relevant features
from complex video distributions is particularly challenging
for intricate tasks. In contrast, our framework leverages δ-
flow as a more robust representation with manipulation-
centric spatiotemporal features, effectively guiding explo-
ration with expert motion priors.

C. Reward Shaping with Human Hand Demonstration
We perform a case study in this section to show how

effectively can our flow-derived reward model perform cross-
embodiment human-to-robot transfer. Thus, we set up exper-
iments on two tasks from Im2Flow2Act on a real XArm7
robot arm: Pouring and Folding. Our goal is to evaluate
whether the cross-embodiment object-centric flow from hu-
man collected data can be used for real-robot reward shaping.
For each task, we collect five expert human hand demon-
strations with varying object placements, and then roll out
open-loop robot trajectories aligned with each expert motion.

In Fig. 4, the visualized results confirm that our flow-derived
reward is effectively derived from expert object-centric flow
from human demonstrations, and produces a monotonic
reward signal, indicating the potential of deploying our
policy into the real world with easy-to collect human hand
demonstrations. We present more implementation details and
qualitative results in Fig. 14

Fig. 4: Real World Evaluations. The visualization and
reward curve of the real world human to robot flow matching.
The shade area represents the standard deviation for five
random rollouts.

IV. CONCLUSION
We presented GENFLOWRL, a novel framework that

leverages generated flow for reward shaping in visual rein-
forcement learning, enabling robust and generalizable policy
learning. Experiments on 10 challenging manipulation tasks
demonstrate the strong performance of our method, outper-
forming a series of baselines. As future work, we plan to
explore whether full 3D flow can overcome the limitations
of 2D flow, which may struggle with tasks that involve out-
of-plane rotations (e.g., twist-off).

REFERENCES

[1] P.-C. Ko, J. Mao, Y. Du, S.-H. Sun, and J. B.
Tenenbaum, “Learning to Act from Actionless Videos
through Dense Correspondences,” arXiv:2310.08576,
2023.

[2] S. Huang et al., “Ardup: Active region video diffusion
for universal policies,” in 2024 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems
(IROS), 2024, pp. 8465–8472.

[3] J. Liang et al., “Dreamitate: Real-world visuomotor
policy learning via video generation,” arXiv preprint
arXiv:2406.16862, 2024.

[4] B. Wang, N. Sridhar, C. Feng, M. Van der
Merwe, et al., “This&that: Language-gesture con-
trolled video generation for robot planning,” arXiv
preprint arXiv:2407.05530, 2024.

[5] D. Yarats, R. Fergus, A. Lazaric, and L. Pinto,
“Mastering visual continuous control: Improved data-
augmented reinforcement learning,” in International
Conference on Learning Representations, 2022.

[6] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and
O. Klimov, Proximal policy optimization algorithms,
2017. arXiv: 1707.06347 [cs.LG].

[7] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine,
Soft actor-critic: Off-policy maximum entropy deep
reinforcement learning with a stochastic actor, 2018.
arXiv: 1801.01290 [cs.LG].

[8] D. Yang, D. Tjia, J. Berg, D. Damen, P. Agrawal,
and A. Gupta, “Rank2reward: Learning shaped re-
ward functions from passive video,” in 2024 IEEE
International Conference on Robotics and Automation
(ICRA), IEEE, 2024, pp. 2806–2813.

[9] S. Levine, A. Kumar, G. Tucker, and J. Fu, “Of-
fline reinforcement learning: Tutorial, review, and
perspectives on open problems,” arXiv preprint
arXiv:2005.01643, 2020.

[10] T. Huang, G. Jiang, Y. Ze, and H. Xu, “Diffusion
reward: Learning rewards via conditional video dif-
fusion,” European Conference on Computer Vision
(ECCV), 2024.

[11] H. Xiong, Q. Li, Y.-C. Chen, H. Bharadhwaj, S.
Sinha, and A. Garg, “Learning by watching: Physical
imitation of manipulation skills from human videos,”
in 2021 IEEE/RSJ International Conference on In-
telligent Robots and Systems (IROS), IEEE, 2021,
pp. 7827–7834.

[12] M. Xu et al., Flow as the cross-domain manipulation
interface, 2024. arXiv: 2407.15208 [cs.RO].

[13] C. Yuan, C. Wen, T. Zhang, and Y. Gao, “General flow
as foundation affordance for scalable robot learning,”
arXiv preprint arXiv:2401.11439, 2024.

[14] C. Gao, H. Zhang, Z. Xu, C. Zhehao, and L. Shao,
“FLIP: Flow-centric generative planning for general-
purpose manipulation tasks,” in The Thirteenth In-
ternational Conference on Learning Representations,
2025.

[15] I. Guzey, Y. Dai, G. Savva, R. Bhirangi, and L. Pinto,
Bridging the human to robot dexterity gap through
object-oriented rewards, 2024. arXiv: 2410.23289
[cs.RO].

[16] A. Escontrela et al., “Video prediction models as re-
wards for reinforcement learning,” Advances in Neural
Information Processing Systems, vol. 36, 2024.

[17] T. Yu et al., Meta-world: A benchmark and evaluation
for multi-task and meta reinforcement learning, 2021.
arXiv: 1910.10897 [cs.LG].

[18] W. Yan, Y. Zhang, P. Abbeel, and A. Srinivas,
Videogpt: Video generation using vq-vae and trans-
formers, 2021. arXiv: 2104.10157 [cs.CV].

[19] Y. Burda, H. Edwards, A. Storkey, and O. Klimov,
Exploration by random network distillation, 2018.
arXiv: 1810.12894 [cs.LG].

[20] L.-H. Lin, Y. Cui, A. Xie, T. Hua, and D. Sadigh,
“Flowretrieval: Flow-guided data retrieval for few-
shot imitation learning,” in 8th Annual Conference on
Robot Learning, 2024.

[21] M. Levy, S. Haldar, L. Pinto, and A. Shirivastava, P3-
po: Prescriptive point priors for visuo-spatial general-
ization of robot policies, 2024. arXiv: 2412.06784
[cs.RO].

[22] G. Jiang, Y. Sun, T. Huang, H. Li, Y. Liang, and H. Xu,
“Robots pre-train robots: Manipulation-centric robotic
representation from large-scale robot datasets,” arXiv
preprint arXiv:2410.22325, 2024.

[23] R. Zheng et al., “Tracevla: Visual trace prompting
enhances spatial-temporal awareness for generalist
robotic policies,” arXiv preprint arXiv:2412.10345,
2024.

[24] P. Yu, A. Bhaskar, A. Singh, Z. Mahammad, and P.
Tokekar, Sketch-to-skill: Bootstrapping robot learning
with human drawn trajectory sketches, 2025.

[25] Y. Han, Z. Chen, K. A. Williams, and H. Ravichandar,
Learning prehensile dexterity by imitating and emu-
lating state-only observations, 2024. arXiv: 2404.
05582 [cs.RO].

[26] Y. Chen, C. Wang, Y. Yang, and C. K. Liu, Object-
centric dexterous manipulation from human motion
data, 2024. arXiv: 2411.04005 [cs.RO].

[27] W. Huang, C. Wang, Y. Li, R. Zhang, and L. Fei-
Fei, “Rekep: Spatio-temporal reasoning of relational
keypoint constraints for robotic manipulation,” in 8th
Annual Conference on Robot Learning, 2024.

[28] W. Tang et al., Embodiment-agnostic action plan-
ning via object-part scene flow, 2024. arXiv: 2409.
10032 [cs.RO].

[29] S. Liu et al., “Grounding dino: Marrying dino
with grounded pre-training for open-set object detec-
tion,” in European Conference on Computer Vision,
Springer, 2025, pp. 38–55.

[30] N. Karaev, I. Rocco, B. Graham, N. Neverova, A.
Vedaldi, and C. Rupprecht, “CoTracker: It is better
to track together,” 2023.

https://arxiv.org/abs/1707.06347
https://arxiv.org/abs/1801.01290
https://arxiv.org/abs/2407.15208
https://arxiv.org/abs/2410.23289
https://arxiv.org/abs/2410.23289
https://arxiv.org/abs/1910.10897
https://arxiv.org/abs/2104.10157
https://arxiv.org/abs/1810.12894
https://arxiv.org/abs/2412.06784
https://arxiv.org/abs/2412.06784
https://arxiv.org/abs/2404.05582
https://arxiv.org/abs/2404.05582
https://arxiv.org/abs/2411.04005
https://arxiv.org/abs/2409.10032
https://arxiv.org/abs/2409.10032

[31] Y. Guo et al., Animatediff: Animate your personalized
text-to-image diffusion models without specific tuning,
2024. arXiv: 2307.04725 [cs.CV].

[32] P. Esser, R. Rombach, and B. Ommer, “Taming trans-
formers for high-resolution image synthesis,” CoRR,
vol. abs/2012.09841, 2020. arXiv: 2012.09841.

[33] E. J. Hu et al., Lora: Low-rank adaptation of
large language models, 2021. arXiv: 2106.09685
[cs.CL].

[34] R. Rombach, A. Blattmann, D. Lorenz, P. Esser,
and B. Ommer, High-resolution image synthesis with
latent diffusion models, 2022. arXiv: 2112.10752
[cs.CV].

[35] E. Todorov, T. Erez, and Y. Tassa, “Mujoco: A physics
engine for model-based control,” in 2012 IEEE/RSJ
International Conference on Intelligent Robots and
Systems, 2012, pp. 5026–5033.

[36] C. Doersch et al., Tapir: Tracking any point with per-
frame initialization and temporal refinement, 2023.
arXiv: 2306.08637 [cs.CV].

[37] A. Radford et al., Learning transferable visual mod-
els from natural language supervision, 2021. arXiv:
2103.00020 [cs.CV].

[38] I. Loshchilov and F. Hutter, Decoupled weight de-
cay regularization, 2019. arXiv: 1711 . 05101
[cs.LG].

[39] A. Kirillov et al., “Segment anything,” arXiv preprint
arXiv:2304.02643, 2023.

[40] C.-C. Hsu et al., Spot: Se(3) pose trajectory diffusion
for object-centric manipulation, 2024. arXiv: 2411.
00965 [cs.RO].

[41] S. Patel et al., A real-to-sim-to-real approach to
robotic manipulation with vlm-generated iterative key-
point rewards, 2025. arXiv: 2502.08643 [cs.RO].

[42] OpenAI et al., Gpt-4 technical report, 2024. arXiv:
2303.08774 [cs.CL].

[43] H. Touvron et al., Llama: Open and efficient foun-
dation language models, 2023. arXiv: 2302.13971
[cs.CL].

[44] J. Liang et al., “Code as policies: Language model
programs for embodied control,” in arXiv preprint
arXiv:2209.07753, 2022.

[45] D. Driess et al., “Palm-e: An embodied multimodal
language model,” in arXiv preprint arXiv:2303.03378,
2023.

[46] T. Xie et al., Text2reward: Reward shaping with lan-
guage models for reinforcement learning, 2024. arXiv:
2309.11489 [cs.LG].

[47] Y. J. Ma et al., “Eureka: Human-level reward design
via coding large language models,” arXiv preprint
arXiv: Arxiv-2310.12931, 2023.

[48] Z. Li, K. Yu, S. Cheng, and D. Xu, “LEAGUE++:
EMPOWERING CONTINUAL ROBOT LEARNING
THROUGH GUIDED SKILL ACQUISITION WITH
LARGE LANGUAGE MODELS,” in ICLR 2024
Workshop on Large Language Model (LLM) Agents,
2024.

[49] C. Chi et al., Diffusion policy: Visuomotor policy
learning via action diffusion, 2024. arXiv: 2303 .
04137 [cs.RO].

[50] J. Fu, K. Luo, and S. Levine, Learning robust rewards
with adversarial inverse reinforcement learning, 2018.
arXiv: 1710.11248 [cs.LG].

[51] J. Ho and S. Ermon, Generative adversarial imitation
learning, 2016. arXiv: 1606.03476 [cs.LG].

[52] S. Kareer et al., Egomimic: Scaling imitation learning
via egocentric video, 2024. arXiv: 2410 . 24221
[cs.RO].

[53] K. Yu, Y. Han, Q. Wang, V. Saxena, D. Xu, and Y.
Zhao, “Mimictouch: Leveraging multi-modal human
tactile demonstrations for contact-rich manipulation,”
in 8th Annual Conference on Robot Learning, 2024.

https://arxiv.org/abs/2307.04725
https://arxiv.org/abs/2012.09841
https://arxiv.org/abs/2106.09685
https://arxiv.org/abs/2106.09685
https://arxiv.org/abs/2112.10752
https://arxiv.org/abs/2112.10752
https://arxiv.org/abs/2306.08637
https://arxiv.org/abs/2103.00020
https://arxiv.org/abs/1711.05101
https://arxiv.org/abs/1711.05101
https://arxiv.org/abs/2411.00965
https://arxiv.org/abs/2411.00965
https://arxiv.org/abs/2502.08643
https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/2309.11489
https://arxiv.org/abs/2303.04137
https://arxiv.org/abs/2303.04137
https://arxiv.org/abs/1710.11248
https://arxiv.org/abs/1606.03476
https://arxiv.org/abs/2410.24221
https://arxiv.org/abs/2410.24221

APPENDIX

A. Object-Centric Flow Generation

Flow Generation Process: Overall, the entire flow
generation process is a three-step pipeline: (1) flow dataset
construction: we convert an offline trajectory video dataset
into an object-centric flow dataset by detecting the positions
of interactive objects at the initial frame using Grounding-
Dino [29], and then uniformly sampling the keypoints in
the detected object bounding box utilizing an off-the-shelf
tracker [30]. (2) generative model adaptation: we adapt
the pre-trained diffusion-based video generation architecture,
AnimateDiff [31], as our flow generator, conditioned on
task descriptions in two fine-tuning stages. First, we utilize
the autoencoder of the VQ-GAN [32] and only finetune
the decoder of it to better adapt the latent embeddings to
the flow; Second, we finetune the LoRA [33] injected into
the latent motion module to model the temporal dynamics
of object flows. (3) post-processing of generated flows:
we apply a series of motion filters to ensure the sampled
and generated keypoints reside within the object boundaries,
making them applicable for reward computation.

B. Flow-Derived Reward Model

δ-Flow Construction: To further reduce the noises in
generated object-centric flow (from Sec. II-A), we propose
to transform it into the condensed δ-flow representation.
It characterizes each timestep information of the original
keypoint flow with three primary statistical estimates: the
2D centroid positions of object keypoints P̄t, between-frame
average translation of keypoints δttr, and between-frame
average rotary transformation of keypoints δtrot at t-th step.
The definitions of these estimates are formulated as:

P̄t =
1

N

N∑
i=1

Pt
i , δttr = P̄t − P̄1, (1)

δtrot =
1

N

N∑
i=1

[(
Pt

i − P̄t
)
⊙
(
P1

i − P̄1
)]

, (2)

where Pt
i denotes the 2D image coordinates of i-th keypoint

on the t-th frame, and both δttr, δ
t
rot are computed with P̄1,

the centroid of the 1st frame. For simplicity, we summarize
the object motion at t-th step as T t = (δttr; δ

t
rot), which we

refer to as the δ-flow. Finally, we differentiate between two
types of object motion: the robot execution or observational
δ-flow, denoted as T t

R, and the generated δ-flow, as T t
G.

The δ-flow representation provides a compact yet in-
formative characterization of object 2D motion/dynamics.
With its Monte Carlo strategy, it effectively reduces the
negative impact of unreliable noisy keypoints predicted by
the flow generation module. This enhances the robustness
and reliability of reward computation, ultimately improving
the efficiency of RL training (evidenced in Sec. III-B).
δ-Flow Matching as Dense Reward: The generated δ-flow,
despite its imperfections, can readily serve as an effective
continuous prior for object motion, guiding policy learning
for coarse movements, which helps to overcome the sparse

reward issue. Thus, we aim to design a dense reward with
a proposed δ-flow matching strategy, i.e., by quantifying
the alignment between the observation flow induced by the
online policy and the generated flow prior. Specifically, we
consider the t-th timestep of generated and robot flows, T t

G

and T t
R, as samples drawn from their respective underlying

probabilistic distributions, PTR
and PTG

, which captures
the inherent uncertainty present in each stochastic δ-flow
trajectory. Furthermore, we quantify the alignment between
these flows with a distributional distance functional D that
maps two distributions to a scalar. Intuitively, the t-th step
of the δ-flow matching reward, Rt

δ , should be inversely
proportional to the distributional distance:

Rt
δ ∝ −D

(
PT t

R
(·|x1:t,P

1, c), PT t
G
(·|x1,P

1, ϕ, c)
)

(3)

where x1:t denotes the observations up to t timestep. PT t
R

is assumed to be a Gaussian distribution of the δ-flow with
its true mean approximated by T t

R using sampled keypoints
on objects; while PT t

G
is also assumed to be a Gaussian

modeled by a flow generative model parameterized by ϕ and
conditioned on task c.

Our objective is to align two flows by maximizing the
per-timestep reward, equivalently, minimizing the distance
between the two δ-flow distributions. In practice, for simplic-
ity, we assume tied variance and use the Kullback–Leibler
divergence (KLD) as our distance metric D. Consider that the
KLD between two Gaussian with tied variance is L2-norm of
mean, under these conditions, the normalized flow-matching
reward at the t-th step is formulated as follows:

Rt
δ = 1− clip

(
T t
R − T t′

G

)2

C
, 0, 1

 (4)

where C is a scaling parameter to control the variance
of approximation. In practice, to improve the stability of
reinforcement learning training, we clip and normalize the
δ-flow reward to the interval [0, 1].
Overall Reward Model: In addition to tracking the expert
motion prior in the generated δ flow, we propose an object
state-aware reward derived from the environmental feedback
to reshape the sparse reward that is only grounded on task
completion. This state-aware reward not only accelerates
RL training but also provides the policy task-specific in-
formation, making it capable to accomplish the tasks. By
incorporating δ-flow and state-aware rewards, our entire
reward model is designed as:

Rt =

α · (1− tanh(τ · dgrip)) , if dgrip > 0,

α, if finish subgoal,
α+ β ·Rt

δ, After subgoal,
1.0, if completed.

(5)

where dgrip is the distance between the gripper to the object.
In practice, we set α = 0.25, β = 0.75 and the temperature
τ = 10. This task-agnostic design of our reward signal
ensures its broad generalizability across diverse tasks.

Representation RL Compatibility Geo. Complexity

Low-Dim. Cross-Emb. Reward. Deform. Artic.

Video [10, 16] ✓ ✓
Gripper Keypoints [20, 21] ✓ ✓ ✓ ✓
Active Region [2, 22] ✓ ✓
Trace [23, 24] ✓ ✓ ✓
Object Pose [25, 26] ✓ ✓ ✓
Object Keypoints [16, 27] ✓ ✓ ✓ ✓
Object Parts [28] ✓ ✓
Object Flows [12–14] ✓ ✓ ✓ ✓ ✓

TABLE II: General comparisons among widely-adopted manipulation-centric representations for Robot Learning,
evaluated on their compatibility with RL and scalability to object geometric complexity. Three key dimensions are considered
for RL compatibility: (1) the dimensionality of the raw observational representation (Low-Dimensionality); (2) generalizability
across different embodiments (Cross-Embodiment); and (3) supporting reward shaping from raw observations (Rewardability).
Two key aspects are considered for geometric complexity: (1) representability of deformable objects (Deformable); and (2)
representability of articulated objects (Articulated). From the comparison, we observe that object-centric flow offers the
highest flexibility and representational capacity and being well-suited for RL.

C. Policy Design

Specifically, We define the input space of the policy
as: (1) the current robot state st, (2) the current centroid
positions of object keypoints P̄t, (3) the current observa-
tional object δ-flow during robot execution T t

R, (4) the k-
step lookahead generated keypoint centroid P̄t+1:t+k

G , (5)
the k-step lookahead generated δ-flow T t+1:t+k

G , and (6)
the 3D centroid positions at the 1st frame P̄1

3d. Our policy
is formulated as:

at = π
(
st, P̄

t, T t
R, P̄

t+1:t+k
G , T t+1:t+k

G , P̄1
3d

)
(6)

where the output action at is a 6D pose displacement
used for RL exploration and policy learning, which is then
transformed by the inverse kinematics (IK) module into
joint commands for the robot. During policy training, we
optimize the policy by maximizing our flow-derived reward,
leveraging the DrQv2 [5] algorithm and replay experience
accumulated from interactions.

D. Cross-Embodiment and Cross-Domain Data Collection

To train the flow generation model, we collect a dataset
contains 12k trajectories three different embodiments in ten
different tasks from two different task domains. We aim to
utilize different embodiments for highlighting that object-
centric flow can be trained with large scale of diverse training
data.

In the setting of Im2Flow2Act [12], we utilize their
sphere robot dataset as the first kind of cross-embodiment
data. Four tasks, which are PickNPlace, Pouring, Opening,
and Folding, are used for data collection. Also shown in
Im2Flow2Act [12], this kind of data are proposed to emulate
the cross-embodiment human data in the real world. Out of
those tasks, we design a new contact-rich manipulation task
Pivoting with the UR5 robot for collecting data. To collect
robot data, we place the robot in different initial positions

Cross-embodiment Dataset

Sphere Robot Sawyer Robot UR5 RObot

Fig. 5: Visualization of cross-embodiment data.

and use a manipulation script to move it to five different
contact points. Then, we apply five different action scripts
to enable the robot to stand the peg up and make contact
with the wall. For data in the MetaWorld [17], the task
setting and robot used for data collection was totally different
from the Im2Flow2Act[12]. We choose five different tasks,
which are Assembly, Coffee Push, Door Close, Lever Pull,
and Stick Pull. Those data are collected by the Saywer
Robot. In this benchmark, we rollout the trained RL model in
MetaWorld [17] for data collection. Each task contain 1200
trajectories, where we have 12k training data in total. The
visualization of each embodiment are shown in Fig. 5.

E. Implementation and Task Settings

Implementation Details: For our flow generative model
(Sec. II-A), we conduct two-stage fine-tuning for the pre-
trained StableDiffusion-1.5 [34] on a cross-embodiment
dataset with 12k trajectories from ten different tasks across
three different embodiments: sphere robot, UR5, and Sawyar.
See our Supp. for more dataset and training details.
Tasks Settings: We construct our benchmark from: Meta-
World [17], Im2Flow2Act [12], and our implementation.
We sample four tasks—PickNPlace, Pouring, Opening, and
Folding from Im2Flow2Act. Additionally, we construct a

PickNPlace

Put the mug
into the plate

Pouring

Pour water from
the mug to the

bowl

Generated Flows Robot ExecutionPrompt

Opening

Open the
drawer

Pouring

Pivot the peg
perpendicular

to the wall

Pouring

Fold the cloth
to the diagonal

corner

Pusing

Push the coffee
mug to the goal

Levering

Push the lever
to the top

Prompt

Assembly

Assemble the
peg with circle
to the cylinder

Stick Pulling

Pick a stack and
use it to pull the

kettle

Closing

Close the
cabinet door

Generated Flows Robot Execution

Fig. 6: Tasks Overview Overview of the tasks set-
ting and robot execution process. Left is the task in
Im2Flow2Act [12] and Right is the task in MetaWorld [17].
The elements of each row are the input prompt, generated
flow, and robot execution, respectively.

novel contact-rich task, Pivoting, within its environment.
These tasks involve contact-rich and deformable object ma-
nipulation and thus are tailored to ablation with flow-based
imitation learning (in Sec. III-A). For MetaWorld, we sample
five challenging tasks for evaluation—Assembly, Close Door,
Coffee Push, Lever Pull, and Stick Pull. All these tasks are
designed based on Mujoco Engine [35]. An UR5e robot
and an Sawyar robot are used to collect data and do online
exploration during RL training process, respectively. Task
details are presented in Fig. 6.

For more details, descriptions of those four tasks from
Im2Flow2Act [12], five tasks from MetaWorld [17], and one
self-designed task pivoting are shown below:

• PickNPlace: Pick a mug from one random position to
the bowl in another random position.

• Pouring: Pick a mug from one random position and
pour the water to a bowl in another random position.

• Opening: Grasp the handle and open the carbinet.
• Folding: Fold the cloth from one corner to another

corner.
• Pivoting: Contact with the peg without grasping, and

pivot it to stand up by interacting with the wall.
• Coffee Push: Push the coffee mug to a specific position.
• Door Close: Close the door of a carbinet.
• Assembly: Pick up a stick and align its square hole with

a peg on the table.
• Lever Pull: Grasp the lever and pull it up to the up right

position.
• Stick Pull: Pick up a stick, insert it into a kettle, and

pull the kettle to a specific position.

F. Flow Generation Implementation Details

In this section, we aim to share more details about imple-
mentation, training, and processing of our flow generation
model, which is similar to Im2Flow2Act [12].

G. Implementations

The first step is getting the training dataset. We use
Grounding DINO [29] to detect the bounding box of the
described object from the initial RGB frame, and then
uniformly sample keypoints within the box. To track those
keypoints from the video, we apply the SOTA keypoint
tracking foundation model [30] for keypoint tracking. Unlike
the TAPIR [36] used in previous work [12], CoTracker [30]
can track occluded objects in the image, which is extremely
important for contact-rich manipulation tasks. Then, we
formulate the tracked keypoints as object-centric flow F0 ∈
R3×T×H×W with temporal representation in T time space.
The first two channels represent the pixel coordinates of
object keypoints in image space, while the third represents
their visibility during the execution.

The generated flow is conditioned on the initial image
of the task, the initial keypoints, and the text description.
The encoder deisgn for the inputs are also the same as
the [12]. The text descriptions are processed into the
CIIP [37] to obtain text embeddings. For the initial image, we
utilize the CLIP encoder to get the patch embeddings. The
initial keypoints are encoded through fixed 2D sinusoidal
positional encoding. Finally, those inputs are processed into
the denosing process through cross-attention.

With this flow representation, we can leverage the
diffusion-based video generation based on AnimateDiff [18]
for flow generation. Same as the Im2FLow2Act [12], we
encode the object flow into a latent space and train the
generative model based on it. Similar to the StableDif-
fusion [34], we use the auto encoder VA-GAN [32] to
encode the flow into low dimentional embeddings. Then, to
utilize the low-dimensional latent space, we utilize a two-
stage training process. Firstly, we fix the encoder from the
AE and finetune the pretrained decoder to better adapt it
to the flow images. Then, same as the Im2Flow2Act, we
insert the motion module layer into StableDiffusion proposed
by Animatediff [31] to model the temporal dynamics for
flow generation. The second stage is training the motion
module layer from scratch but only insert LoRA (Low-Rank
Adaptation) layers [33] into the SD model.

1) Training Details: Training with cross-embodiment data
from two different task domains, we process both the image
from the tasks in Im2Flow2Act [12] and MetaWorld [17]
into resolutions 480 × 480. For extracting keypoints from
the bounding box generated by Grounding Dino [29], we
set the spatial and temporal resolution to H = W = 32
and T = 32 for generating flow for 1024 keypoints over
100 steps, which also means that 100 keypoints set can be
used for reward shaping in our reward model. To train the
model on our cross-embodiment dataset, we firstly train the
decoder of VQ-GAN [32] in StableDiffusion [34] for 400
epoches with a learning rate of 5e−5. Secondly, for training

AnimateDiff, we insert the LoRA [33] with a rank of 128 into
the Unet from StableDiffusion and train the motion module
layer from scratch with the same hyperparameter shown in
Im2Flow2Act [12], which is trained with learning rate of
1e − 4 for 300 epochs using Adamw [38] optimizer with
weight deacy 1e− 2 betas (0.9, 0.999), and epsilon 1e− 8.

2) Flow Post Processing: We use motion filter to ex-
tract moving keypoints from the object itself. Similar to
Im2Flow2Act [12], we use moving filter to remove those
static keypoints and use SAM [39] filter to remove keypoints
which are not on the object, such as keypoints on the robot
or the table.
Moving Filter: Since some of the keypoints selected from
bounding box are sampled from the environment, we use the
moving filter to extract the moving points from those key-
points. Then, we use moving filter to remove those keypoints
whose movement in the image space (480× 480) is below a
certain threshold. For all the tasks, we select 50 pixels as the
threshold for removing those static keypoints. This method
can effectively remove those background keypoints.
SAM Filter [39]: Since we also use robot data in our dataset,
those keypoints on the robot are also will be counted as
moving keypoints. Then, using SAM [39] to do semantic seg-
mentation and remove those moving keypoints on the robot
is necessary. We utilize SAM to obtain the segmentation and
then iterate through the keypoints, filtering out those whose
corresponding segment area exceeds a predefined threshold.
To preserve keypoints on objects with rich textures, we set
a high threshold of 10,000 across all tasks.

Finally, we randomly sampled 128 points from the selected
keypoints for our reward model and policy input.

H. RL Implementation Details

1) Reward and Policy Input with Generated Flow: For
both RL training in Im2Flow2Act [12] and MetaWorld [17],
we firstly need to generate the initial flow from the first frame
for each iteration, which will be used for both policy input
and reward shaping. Then, the observation space of the policy
input is 128× 3, where we sampled 128 keypoints from the
object.

To do online flow matching with the generated flow, we
also utilize CoTracker [30] for online tracking in the real-
robot execution. Using the same motion filters, 128 keypoints
will be sampled from the real-time motion. The online
keypoint tracking will be generated for each timestep during
the robot execution. Then, those keypoints will be processed
as δ-flow for reward shaping.

Since our flow generation model will generate 100 frames
with keypoints subset, we can use each centroid calcu-
lated from the keypoints subset of those 100 frames as
reward. For reward calculation and policy input. We limit
the max step episode into number less or equal to 100 steps
(respectively for different tasks) and use them for real-time
flow matching in reward generation and policy learning.

a) RL Reward Design: Out of the flow-derived reward,
our RL training Pipeline also require specific reward design
for achieveing the goal.

Reaching Reward: For all the tasks, we need to define
similar reaching reward to guide to robot move toward the
object. For tasks which required robot to grasp the object,
robot needs to open their gripper and reach the grasping
position. For the tasks which required robot to push or
contact with the object, the robot will be guided to move
to contact with a certain area. The reward will be define as:
(1− tanh(10.0 · dgrip)).
Grasping / Contact Reward: We also design sparse reward
as a subgoal for guiding robot to accomplish the task. For
grasping task, we will set the reward to be 0.25 as the reward.
For contact reward, we will set the reward to be 0.25 once
the gripper is contact with a certain area of the object.
Goal-conditioned Reward: For all the task, we need to
define a goal state to showcase that the robot successfully
acchieve the goal. For most of the task, it should be easily,
such as those defined task in MetaWorld [17] and some
simple task like PickNPlace. We can just define the final
position for object to be. For some other harder-to-define
tasks like pouring, we set up a target pose range as the
goal, which is limited to a certain position with certain
orientations, where the orientation is sampled from (5π16

7π
16).

For opening, the reward will be defined by the opening
distance, which is 0.1m.

b) Training Details: The Training hyperper parameters
have been shown in Table. III

TABLE III: Hyperparameters for DrQv2 with Flow-derived
Reward.

Hyperparameter Value

Environment

Action repeat 3 (MetaWorld)
3 (Im2Flow2Act)

Frame stack 1
Rendered Image 480× 480
Observation size 128× 3
Reward type Sparse

DrQv2

Data Augmentation ±4 RandomShift
Replay buffer capacity 106

Discount γ 0.99
n-step returns 3
Seed frames 4000
Exploration steps 2000
Exploration stddev. clip 0.3
Exploration stddev. schedule Linear(1.0, 0.1, 3× 106)
Soft update rate 0.01
Optimizer Adam
Batch size 256
Update frequency 2
Learning rate 10−4

I. How Does the Choice of Object-Centric Representation
Affect Performance?

In this section, we aim to identify the most effective
object-centric representation for reward shaping. We evaluate
the training success rate of our framework using three
alternative object-centric representations across three tasks

in Im2Flow2Act [12]. Figure 7 shows a comparison between
our framework and the baselines.

Fig. 7: Representation Evaluations. The comparison of RL
training results with different object-centric representations
in three tasks. The shaded area represents the standard
deviation for three random seeds.
Baselines: We compare the object-centric flow with three
other representations: (1) 6D object poses [25, 26, 40],
which uses the object’s 6D pose trajectory for reward
shaping. (2) 3D keypoints [27, 41], which defines key-
points relative to the object’s 6D pose and uses their initial
and goal positions for reward shaping. (3) 3D keypoints
trajectory, which extends keypoint-based reward shaping
by incorporating keypoint trajectories instead of just initial
and goal positions. We exclude certain manipulation-centric
representations from Table II due to their unsuitability for re-
ward computation or incompatibility with cross-embodiment
datasets.
Evaluation: To evaluate different object-centric representa-
tions, we use ground-truth demonstrations as policy input.
We select PickNPlace, Pouring, and Pivoting as the tasks for
evaluation since the other non fine-grained representations
cannot handle deformable object manipulation tasks like
cloth folding. Notably, the 3D keypoints [27, 41], defined
relative to the object’s 6D pose, are unsuitable for deformable
or articulated object manipulation.
Key Findings: Beyond enabling deformable and articulated
objects manipulation, GENFLOWRL achieves competitive or
superior performance across all evaluated tasks, particularly
excelling in the contact-rich Pivoting task.

3D keypoints, which capture only initial and final positions
without temporal information, struggle in Pivoting as they
provide limited expert guidance. In contrast, representations
with temporal features, e.g., 6D poses and 3D keypoint
trajectories, perform better by preserving motion dynamics.
While 3D keypoint trajectories can accelerate early training
due to their 3D representation, they often face challenges
when used directly as inputs, particularly in tasks involving
orientation changes, such as Pouring and Pivoting. These
limitations underscore the advantages of δ-flow and our
policy input design (Sec. II-C). Specifically, our δ-flow ex-
tracts spatiotemporal manipulation-centric features from low-
dimensional representations, making it especially beneficial
for complex tasks with more dynamic motions.

J. Ablation Study

We compare the performance of GENFLOWRL with three
model variants on three tasks in Im2Flow2Act (PickNPlace,
Pouring, and Pivoting): (1) MLP: Instead of δ-flow, MLP is
used to encode tracked keypoints into low dimensional space

as the input. (2) w/o 3D Initial Centroids [15]: Removeing
initial 3D centroids from GENFLOWRL. (3) 64 keypoints:
Randomly sampling 64 keypoints instead of 128 keypoints.
All other settings are the same as GENFLOWRL, differing
only in input representations. The results are shown in Fig. 8.

Fig. 8: Ablation Evaluations. The comparison of RL train-
ing results with ablations of GENFLOWRL in three tasks.
The shaded area represents the standard deviation for three
random seeds.

These experiments provide three key insights: (a) Com-
pared to MLP, utilizing δ-flow and future generated δ-flow as
inputs better captures the object’s spatiotemporal dynamics,
leading to improved performance. (b) Utilizing initial 3D
keypoints as the input can produce improvement since it is
helpful for learning structured 6D actions from 2D keypoint
transformations. (c) Since we use the processed flow to
randomly sample keypoints and compute their centroid, the
number of keypoints does not have a significant impact.

K. Ablations on Tracking Module

To further investigate the effects of the tracking module
on our GENFLOWRL, we conduct the following ablations.

1) Different Off-the-shelf Tracker: We compare the qual-
ity of tracked points from two recent state-of-the-art trackers,
i.e., CoTracker V3 [30] and Tapir [36]. As shown in the
qualitative results (Fig. 9), CoTracker demonstrates superior
temporal consistency, greater robustness to occlusions and
contacts, and significantly fewer jittering artifacts. Therefore,
we adopt CoTracker V3 [30] to better align with the demands
of contact-rich manipulation.

2) Failure Case Analysis: We conduct an additional case
study of CoTracker on four challenging real-world tasks:
Pivoting, Folding, Insertion, and Twisting, fea-
turing high occlusions and dynamic motions. As shwon in
Fig. 10, we identify two primary failure modes: (1) In the
Insertion task, when half of the object becomes occluded
by the hole, the tracker, lacking prior physical knowledge,
misinterprets it as a deformation and shifts the corresponding
keypoints to the visible part. (2) In the Twisting task,
the tracker fails to capture the dynamic rotation of round,
glossy lids due to the lack of discriminative visual features,
a challenge even for human observers.

L. Sensitivity Analysis on Noises in Generated Flows

In real-world scenarios, the flow trajectory predicted by
the generator network or the tracker can be biased by
noise. To investigate the effect of these noises on policy
performance, we simulate real-world noises on our method.
Specifically, we build a noise model to cumulatively perturb
trajectories and deviate endpoints, using the composition of

Tapir

CoTracker

t

Fig. 9: Visualization of the comparison of trackers.

Folding

Pivoting

t

Twisting

Insertion

Fig. 10: Visualization of the case study of the CoTracker.

Brownian motion (Gaussian random walk) and Brownian
bridge, with separate controllable standard deviations. We set
up four types of random noise: small Gaussian (gauss=1x,
drift=0x), large Gaussian (gauss=4x, drift=0x), small drift
(gauss=2x, drift=1x), and large drift (gauss=2x, drift=2x). A
vivid visualization of our noise composite model applied to
a Bessel smoothed trajectory is displayed in Fig. 11.

We evaluate the performance of our model after applying
this noise model to the generated flow in five challenging
tasks. The result is shown in Table IV. Since our model is
already trained on generated flows with different magnitudes
of noise and due to our task-oriented rewards, it has the
robustness to noise in the generated flows. Therefore, our
method still achieves a similar performance with trajectory
noise, especially for the cases with large Gaussian noises.
Furthermore, our method can maintain relatively high per-
formance when the goal position is largely drifted from
the ground-truth by ≥ 20 pixels in the tasks with position-

Fig. 11: Visualization of the simulated noised 2D trajectory.

PickNP. Pour Open Fold Pivot

GENFLOWRL 95 95 95 80 85
+Gauss×1 Drift×0 95 95 90 80 85
+Gauss×4 Drift×0 95 90 90 75 80
+Gauss×2 Drift×1 95 90 90 70 85
+Gauss×2 Drift×2 85 75 85 65 75

TABLE IV: Performance for noise sensitivity analysis on five
tasks. Noises are added to flow trajectories for comparisons.

sensitive evaluation, e.g., Folding and Pouring (Fig. 11).

M. Failure Cases Analysis

In this section, we analyze the failure cases of the trained
policies. In Coffee Push task, generated flows occasion-
ally diverge from the intended path before reaching the
goal. In Stick Pull task, flow generation often fails
after contact with the bottle, leading to premature task
termination. These defect examples are visualized in Fig. 12.
We argue that the primary limitation stems from the dataset
contamination by some defective demonstrations with noisy
policies. Besides, occlusions of the tiny object may further
lead to tracking difficulties. Therefore, collecting higher-
quality training data is essential to mitigate these failure
cases.

N. Real World Case Study Details

In this section, we set collect actions from robot actions
script with a limit for 200 steps and 100 steps for Folding and
Pouring respectively. The robot control frequency and the
CoTracker frequency are both 2.5 Hz. For collecting human
demonstrations, the frequency of the CoTracker is 5 Hz, and
the final number of steps are the same as the robot demo.
Then, we calculate the flow matching reward between them
based on it.

Coffee Push

Stick Pull

t

Fig. 12: Visualization of failed generated flows.

O. Related Work

Generative Models for Robot Learning. Extensive work
has explored the utility of generative models for robot
learning, including LLMs [42, 43], VLMs [37, 42], and
Diffusion [31]. These methods have been widely used in
planning [44, 45], reward generation [46–48], and policy
learning [49]. More recently, advancements in foundational
video generative models, e.g., Stable Video Diffusion [34],
have paved the way for leveraging generated videos for learn-
ing universal robot policies [1–4]. However, these methods
are often limited by the uncontrollable quality of generated
videos and their reliance on open-loop policies. Instead, we
integrate generated object-centric flow with RL, enhancing
policy robustness through active interaction with the envi-
ronment.

Video-based Reinforcement Learning. Designing task-
specific dense reward in reinforcement learning often re-
quires huge amount of human efforts. To overcome this
challenges, inverse RL [50, 51], reward generation frame-
work [46, 47], and video-based RL [8, 10, 11, 16] are
proposed. Recent advancements in video-based RL mainly
utilize video prediciton models for shaping dense reward [8,
10, 16]. However, these methods often struggle in capturing
manipulation-centric features directly from the generated
video due to the inherent uncertainty in video generation.
Unlike them, our work proposes to use low-dimensional
spatiotemporal object-centric flow instead of video, offering
a more structured and efficient approach to reward shaping.

Manipulation-Centric Representations. Manipulation-
centric representations can be roughly categorized into
gripper-centric representations such as keypoints [21],
trace [23], or active region [2, 22] from the gripper, and
object-centric representations, such as object keypoints [27,
41], 6D object poses [25, 26, 40], and object parts [28].
Despite their promising results for robot learning, gripper-
centric representations rely on real robot demonstrations,
making them hard to utilize easy-to-collect human hand
demonstrations [12, 52, 53], while most object-centric rep-
resentations still struggle with deformable and articulated
object manipulation due to their limited granularity as sum-

marized in Table II.

t

P
i
c
k
N
P
l
a
c
e

P
o
u
r
i
n
g

O
p
e
n
i
n
g

F
o
l
d
i
n
g

P
i
v
o
t
i
n
g

C
o
f
f
e
e

A
s
s
e
m
b
l
y

C
l
o
s
i
n
g

L
e
v
e
r

S
t
i
c
k

P
u
l
l

Fig. 13: The qualitative result of the policy rollout in simulatior.

t

H
u
m
a
n

R
o
b
o
t

H
u
m
a
n

R
o
b
o
t

Fig. 14: The qualitative result of the Flow Matching Reward Case Study in the real world.

	Introduction
	Methodology
	Object-Centric Flow Generation
	Flow-Derived Reward Model
	Policy Design

	Experiments
	How Robust is RL with Flow-Derived Reward Model?
	How Effective is Object-Centric Representation for RL?
	Reward Shaping with Human Hand Demonstration

	Conclusion
	Object-Centric Flow Generation
	Flow-Derived Reward Model
	Policy Design
	Cross-Embodiment and Cross-Domain Data Collection
	Implementation and Task Settings
	Flow Generation Implementation Details
	Implementations
	Training Details
	Flow Post Processing

	RL Implementation Details
	Reward and Policy Input with Generated Flow

	How Does the Choice of Object-Centric Representation Affect Performance?
	Ablation Study
	Ablations on Tracking Module
	Different Off-the-shelf Tracker
	Failure Case Analysis

	Sensitivity Analysis on Noises in Generated Flows
	Failure Cases Analysis
	Real World Case Study Details
	Related Work

