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ABSTRACT

In long context scenarios, large language models (LLMs) face three main chal-
lenges: higher computational/financial cost, longer latency, and inferior perfor-
mance. Some studies reveal that the performance of LLMs depends on both the
density and the position of the key information (question relevant) in the input
prompt. Inspired by these findings, we propose LongLLLMLingua for prompt com-
pression towards improving LLMs’ perception of the key information to simulta-
neously address the three challenges. We conduct evaluation on a wide range
of long context scenarios including single-/multi-document QA, few-shot learn-
ing, summarization, synthetic tasks, and code completion. Experimental results
show that LongLLMLingua compressed prompt can derive higher performance
with much lower cost. The latency of the end-to-end system is also reduced. For
example, on NaturalQuestions benchmark, Longl.LMLingua gains a performance
boost of up to 17.1% over the original prompt with ~4x fewer tokens as input
to GPT-3.5-Turbo. It can drive cost savings of $28.5 and $27.4 per 1,000 sam-
ples from the LongBench and ZeroScrolls benchmark, respectively. Addition-
ally, when compressing prompts of ~10k tokens at a compression rate of 2x-10x,
Longl.LMLingua can speed up the end-to-end latency by 1.4x-3.8x.

1 INTRODUCTION

ChatGPT and other large language models (LLMs) have revolutionized user-oriented language tech-
nologies and are serving as crucial components in more and more applications. Carefully designing
prompts is necessary to achieve better performance in specific downstream tasks. The commonly
used technologies such as In-Context Learning (ICL) (Dong et al.| 2023)), Retrieval Augment Gener-
ation (RAG) (Lewis et al.}|2020), and Agent (Park et al.,|2023) are driving prompts to be increasingly
longer, even reaching thousands of tokens. Scenarios such as multi-document question answering,
code completion, and document summarization also necessitate the processing of long contexts.

There are three main challenges when LLMs are used in long context scenarios: (1) The higher com-
putational and financial cost required to run these models or to call APIs from companies providing
LLM services. This can be a significant barrier for individuals or smaller organizations with lim-
ited resources. (2) The longer latency associated with LLMs, which can cause delays in generating
responses or predictions and is particularly problematic in real-time scenarios where users expect
quick and accurate responses. (3) The inferior performance caused by the extended window size of
LLMs (Xiong et al.,[2023)), and the low density as well as the less sensitive position of the question-
relevant key information in the prompt. Figure [Ta shows that LLMs’ performance in downstream
tasks may decrease as the noisy information in the prompt increases (Shi et al., 2023). Moreover,
the purple curve in Figure |1b|indicates that LLMs’ ability to capture the relevant information de-
pends on their positions in the prompt (Liu et al.,[2023): they achieve the highest performance when
relevant information occurs at the beginning or end of the input context, and significantly degrades
if relevant information is located in the middle of long contexts.

Inspired by these observations, we propose LongLLMLingua to address the three challenges. Specif-
ically, we use the advanced while efficient LLMLingua (Jiang et al.,|2023a)) as our backbone frame-
work for prompt compression to address the first two challenges, i.e., reduce cost and latency. How-



Under review as a conference paper at ICLR 2024

100
- 75 K
g \ \ T
ag \ > - e
5] ‘ _70
: 95 i S
= "y >~
5 A T § 65
a 5 e
3 90 N 3
N < 60 @ Original
< #== Multi-Document QA ) LongLLMLingua
g 35 #== Code Completion S. = Wwlo Reorder (4x)
Z T Summarization 55 LongLLMLingua (4x)
1 5 10 15 20 Ist Sth 10th 15th 20th
Document Number in the Prompt Position of Document with the Answer
(a) Performance v.s. Document Number (b) Performance v.s. Key Information Position

Figure 1: (a) LLMs’ performance in downstream tasks may decrease as the noisy information in the
prompt increases. In this case, we keep k£ most relevant documents/paragraphs based on the ground
truth or LongLLMLingua r. A larger k£ implies more noise introduced into the prompt. To improve
the key information density in the prompt, we present question-aware coarse-to-fine compression.
(b) LLMs’ ability to capture the relevant information depends on their positions in the prompt. To
reduce information loss in the middle, we introduce a document reordering mechanism.

ever, in the case of long contexts, the distribution of question-relevant key information in the prompt
is generally sparse. Existing prompt compression methods like LLMLingua (Jiang et al.,2023a)) and
Selective-Context (Li,2023)) that do not consider the content of the question during compression may
retain too much noisy information in the compressed results, leading to inferior performance. In this
paper, LongLLMLingua is designed to enhance LLM’s perception of key information (relevant to
the question) in the prompt, so that the third challenge of inferior performance in long context sce-
narios could be addressed. Figure[Tb|is an example. The underlying principle of LongLLMLingua
is that small language models are inherently capable of capturing the distribution of key information
relevant to a given question.

Our main contributions are five-fold: (1) We propose a question-aware coarse-to-fine compression
method to improve the key information density in the prompt (Sec. @.1)); (2) We introduce a doc-
ument reordering mechanism to reduce information loss in the middle. (Sec. 4.2)); (3) We present
dynamic compression ratios to bridge the coarse-grained compression and fine-grained compression
for adaptive granular control (Sec. f.3); (4) We propose a post-compression subsequence recovery
strategy to improve the integrity of the key information (.4). (5) We evaluate LongLLMLingua on
three benchmarks, i.e., NaturalQuestions (Liu et al., [2023), LongBench (Bai et al., [2023), and Ze-
roSCROLLS (Shaham et al., [2023). Experimental results demonstrate that compared with original
prompts, LongLLMLingua compressed prompts can achieve higher performance with much lower
costs. The latency of the end-to-end system is also reduced.

2 PROBLEM FORMULATION

)
prompt, which composed of the instruction xi" [ documents x;'.‘oc, and the question x4"°. In fact,
the prompt can be modified according to specific application scenarios. For example, x™™ at the
beginning can be removed, x%°° can be any requirement specified by users, and (x{°°, - - - , x9) can
be any additional materials that users append to the prompt to get a better response from LLMs for
x%"¢. The objective of a prompt compression system can be formulated as:

min D (y, ) + M=o, 1)

Following LLMLingua (Jiang et al., |2023a), we use x = (Xins, x‘}oc . ,x‘}?c, x9"¢) to represent a

where X denotes the compressed prompt and is a token-level subsequence of x. y represents the
ground-truth output texts with x as the input and y represent the LLM-generated results derived
by X. D is a distance measure between two distributions, such as KL divergence. We expect the
distribution of y and y to be as similar as possible. \ is a trade-off hyper-parameter regarding the
compression ratio. In this work, we additionally incorporate an operation space of permutation over
the K documents (x°¢, - - - , x9¢) for joint optimization.
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Figure 2: Framework of LongLLMLingua. Gray Italic content: As in LLMLingua.

3  PRELIMINARY: LLMLINGUA

LLMLingua (Jiang et al.l [2023a) uses a small language model Mg to calculate the perplexity of
each token in the original prompt and then removes tokens with lower perplexities. The rationale
behind this approach is that tokens with lower perplexities contribute less to the overall entropy gain
of the language model, so removing them will have a relatively minor impact on the LLM’s compre-
hension of the context. LLMLiungua consists of three components: a budget controller, an iterative
token-level prompt compression algorithm, and a distribution alignment mechanism, as shown by
Italic texts in Figure 2] The budget controller allocates different compression ratios to the various
components in the original prompt (i.e., instruction, demonstrations, question), and performs coarse-
grained compression at the demonstration level. The intermediate results are divided into segments
and the token-level compression is then performed segment by segment, with the perplexity of each
token conditioned on previous compressed segments calculated by M g. For distribution alignment,
it performs instruction tuning on Mg with the data generated by the target LLM to narrow the gap
between the distribution of LLM and that of Mg used for prompt compression.

4 LONGLLMLINGUA

LongL.LMLingua is developed upon the framework of LLMLingua towards prompt compression in
long context scenarios. The primary challenge in long context scenarios is how to enhance LLM’s
perception of key information relevant to the question in the prompt. LongLLMLingua addresses
this challenge from three perspectives, and further applies a subsequence recovery strategy to im-
prove the accuracy and reliability of the information provided to users. We elaborate on each com-
ponent in this section.

4.1 HOW TO IMPROVE KEY INFORMATION DENSITY IN THE PROMPT?

Question-Aware Coarse-Grained Compression In coarse-grained compression, we aim to figure
out a metric r to evaluate the importance of each document x%"“ = {m%og i\fl, where N, is the
number of tokens in x$°°. We only keep x$°° with higher r, as the intermediate compressed results.

LLMLingua uses document-level perplexity to represent the importance of documents: 7, =
1/Ng va’“ p(x%"f) log p(zg‘?g), ke€{1,2,---,K}. Although the retained documents typically con-
tain a lot of information, they are irrelevant to the question x9"° and instead become noise, reducing
key information density in the compressed results and bringing difficulties for LLM to output cor-
rect answers. As shown in Figure 34 the recall@16 of LLMLingua only reaches 50%, indicating its
incompetence in retaining key information during compression.
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Retrieval-based methods are also feasible here. We can use x%"° to retrieve the most relevant doc-
uments among (x$°¢, - x‘}?c) as the compressed results. However, these methods struggle to
distinguish question- related fine-grained semantic information. Some documents with key informa-
tion may be discarded during retrieval. As shown in Figure [3a] embedding-based methods such as
Sentence BERT and OpenAl Embedding only achieve ~75% accuracy in recall@5, which implies
that the final accuracy upper bound of LLMs with 4x compression is only 75%.
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Figure 3: (a) Comparison of recall on NaturalQuestions Multi-documemnt QA dataset. (b) Compari-
son between perplexities and contrastive perplexities of tokens in the prompt from Multi-documemnt
QA dataset. The document with the ground truth is located on the left side of the dashed line.

One approach to improve key information density in the compressed results is to calculate document-
level perplexity conditioned on the question x%"¢. However, this method may not be effective be-
cause documents often contain a significant amount of irrelevant information. Even when condi-
tioned on x9"°, the perplexity scores computed for entire documents may not be sufficiently distinct,
rendering them an inadequate metric for document-level compression. Therefore, we propose to use
the perplexity of the question x9*¢ conditioned on different contexts x° to represent the association
between them. We append a restrictive statement x‘“‘“cﬂ after x4 to strengthen the interconnection
of x9"¢ and xi"c It can be regarded as a regularization term that mitigates the impact of hallucina-
tions. This can be formulated as:

N Z Que restrict doc) logp( que, restrlcll doc) k e {1 2, K}, )

trict . . . .
where 23" s the i-th token in the concatenated sequence of x9"¢ and x™"t and N, in the

number of tokens.

Figure [3a] demonstrates that our coarse-level compression approach achieves the highest recall with
different numbers of retained documents, suggesting that it preserves the most key information from

the documents (x$°, - - -, x9%) in the compressed results.

Question-Aware Fine-Grained Compression In fine-grained compression, we assess the impor-
tance of each token in the instruction x™™, the question x4, and K’ documents {x3°¢} K t | retained
after coarse-grained compression. We incorporate the iterative compression mechamsm following
LLMLingua and directly calculate token perplexities to compress x™ and x9°°. In this section,
we investigate how to make the fine-grained token-level compression over {x{°°} K’ aware of the
question x9"¢, so that the compressed results could contain more question-relevant key information.

A straightforward solution for the awareness of x1'® is to simply concatenate it at the beginning of
the whole context. However, this will result in low perplexities of relevant tokens in the context
following the condition, further reducing their differentiation from general tokens. In this paper, we
propose contrastive perplexity, i.e., the distribution shift caused by the condition of the question,
to represent the association between the token and the question. The contrastive perplexity based

"'Specifically, “We can get the answer to this question in the given documents”.
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. . . ’
importance metric s; for each token z; in {x¢*}/_, can be formulated as:

s; = perplexity(x;|x<;) — perplexity (z; |z, x ;). 3)

Figure |3b| illustrates the difference between perplexities and contrastive perplexities. We can see
that tokens of high perplexities are widely distributed in all documents. However, tokens with high
contrastive perplexities concentrate more on the left side of the dashed line, which corresponds to
the document that contains the answer to the question. This suggests that the proposed contrastive
perplexity can better distinguish tokens relevant to the question, thus improving the key information
density in the compressed results.

4.2 HOW TO REDUCE INFORMATION LOSS IN THE MIDDLE?

As demonstrated in Figure [Ib] LLM achieves the highest performance when relevant information
occurs at the beginning and significantly degrades if relevant information is located in the mid-
dle of long contexts. After the coarse-grained compression, we have obtained a set of documents
{xc}1 K’ with their corresponding importance scores {r }£ | indicating their association with the
question x9"®. Therefore, we reorder documents using their importance scores to better leverage
LLMs’ information perception difference in positions:

(Xins7 Xclloc) . ,XdKO(/:, Xque) Tk (Xins7 Xgric7 . ,ng}g/ , Xque) (4)

4.3 HOW TO ACHIEVE ADAPTIVE GRANULAR CONTROL DURING COMPRESSION?

In fine-grained compression, LLMLingua applies the save compression ratio over all documents
obtained from coarse-grained compression. However, the key information density of different doc-
uments is different. The more relevant to the question a document is, the more budget (i.e., lower
compression ratio) we should allocate to it. Therefore, we bridge coarse-grained compression to
fine-grained compression and use the importance scores {rk}kK:,I obtained from coarse-grained
compression to guide the budget allocation in fine-grained compression. In this way, we can achieve
adaptive granular control on the whole.

Specifically, we first determine the initial budget for the retained documents 79 using the budget
controller of LLMLingua. During fine-grained compression, we follow the iterative token-level
compression algorithm in LLMLingua but dynamically assign the compression budget 'r,f"“ to each
document x?f“ according to the ranking index I(ry) (e.g., 0, 1) of its importance score from the
coarse-grained compression. In this paper, we employ a linear scheduler for the adaptive allocation.
Budget of each token x; can be formulated as:

T = TH VY € x°,
2I(rg) ®)
70 o1 +79,0), 1),

where ¢ and k is the index of token and document, K’ denotes the number of documents, and o7 is
a hyper-parameter that controls the overall budget for dynamic allocation.

3¢ — max(min((1 —

4.4 HOW TO IMPROVE THE INTEGRITY OF KEY INFORMATION?

Certain tokens of key entities may be discarded during the fine-grained token-wise compression. For
example, the time entity “2009” in the original prompt might be compressed to “209” and the name
entity “Wilhelm Conrad Rontgen” might be compressed to “Wilhelmgen”. This can cause problems
for fact-based tasks like document QA, where language models tend to replicate information from
the prompt, as shown in Figure 4]

To improve the accuracy and reliability of the information provided to users, we propose a subse-
quence recovery method to restore the original content from LLMs’ responses. This method relies on
the subsequence relationship among tokens in the original prompt, compressed prompt, and LLMs’

’In LLMLingua, it is 7%™ for demonstrations.
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Document [1](Title: List of Nobel laureates in Physics) The first Document [1](Title: List of Nobelates in {Wilhelmgen}
Nobel Prize in Physics was awarded in 1901 to {Wilhelm Conrad | Physics) The first Nobell {wilhelm gen}
Rontgen{Wilhelm Con rad R6 nt gen}, of Germany,... {WilhelmgenK{Wilhelm gen}, of, who

Original Prompt | received, .... Compressed Prompt | LLMs’ Response

Figure 4: The example of Subsequence Recovery, the red text represents the original text, and the
blue text is the result after using the LLaMA 2-7B tokenizer.

response. The overall procedure includes: i) Iterate through tokens y; in LLMs’ response and select
the longest substring Yey; = {1, Y141, ..., Y} that appears in the compressed prompt . ii) Find
the maximum common shortest subsequence x; ; = {z;,Zi41,...,2;} in the original prompt x,
corresponding to the representation ¥iey,; in the original prompt (accelerated using prefix trees or
sequence automata). iii) Replace the matched tokens ¥yey; in LLMs’ response with the correspond-
ing subsequence x; ; from the original prompt. For more details, please refer to Algorithm T}

5 EXPERIMENTS
Here, we investigate: (1) How effective is LongLLMLingua? (2) How efficient is LongLLMLingua?

Implementation details In this paper, we use GPT—3.5—Turbo-O61f] and LongChat-13B-16k as
the target LLMs, both accessible via OpenA]E] and HuggingFaceEl To ensure stable and reproducible
results, we employ greedy decoding and set the temperature to O in all experiments. For the small
language models used for compression, we apply LLaMA-2—7B—Chaﬂ which has been aligned by
supervised fine-tuning and RLHF. We implement our approach with PyTorch 1.13.1 and Hugging-
Face Transformers. We set up hyperparameters following LLMLingua except for the segment size
used in iterative token-level compression set to 200 here. More details are provided in Appendix

Dataset & evaluation metric We use NaturalQuestions for the multi-document QA task, and use
LongBench and ZeroSCROLLS for general long context scenarios. We also test on multi-hop QA
tasks using MuSiQue dataset (Trivedi et al.| [2022]), and long dependency QA tasks using LooGLE
benchmark (L1 et al.,[2023b)). Please refer to Appendix @]for more details on datasets.

(1) NaturalQuestions (Liu et al., |2023)): This benchmark is similar to the retrieval-augmented gen-
eration setup in commercial search and question-answering scenarios like Bing Chat. Specifically,
each question has 20 related documents in the original prompt. One of them contains the correct
answer and there are five different ground truth document position settings in the prompt: 1st, Sth,
10th, 15th, and 20th. Following Liu et al.|(2023)), we use accuracy as the evaluation metric.

(ii) LongBench (Bai et al., 2023): This benchmark consists of six task types: single-document QA,
multi-document QA, summarization, few-shot learning, code completion, and synthetic tasks. We
used the English portion that covers 16 datasets for evaluation. We use the metrics and scripts
provided along with the benchmark for evaluation.

(iii) ZeroSCROLLS (Shaham et al.,[2023): This benchmark consists of four task types: summariza-
tion, QA, sentiment classification, and reordering, covering 10 datasets. We used the validation set
for evaluation. We use the provided metrics and scripts for evaluation.

Baselines We include two sets of baselines in following experiments:

(i) Retrieval-based Methods. We measure the association between the question and the documents
in the prompt using five SoTA retrieval methods: BM25, Gzip (Jiang et al., 2023b)), Sentence-
BERT (Reimers & Gurevych, 2019), OpenAl Embedding, and the important metric r used in
LongLLMLingua coarse-grained compression. We discard sentences or paragraphs with low associ-
ation until the compression constraint is met while keeping the original document order unchanged.

3For experiments with original prompts exceeding 4k tokens, we utilize GPT-3.5-Turbo-16k-0613.
*https://platform.openai.com

Shttps://huggingface.co/lmsys/longchat-13b-16k

Shttps://ai.meta.com/llama/
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Table 1: Performance of different methods with different compression ratios on NaturalQuestions
(20 documents) (Liu et al., |2023). Reorder: we reorder the documents with relevance metrics of
different baselines as our document reordering strategy described in Sec. [4.2] In the case of OpenAl,
it corresponds to LongContextReorder in the LangChain framework (Chase| 2022). For results
reported under 1st to 20th, we do not use the reordering strategy for all methods.

GPT3.5-Turbo LongChat-13b Length Latency

Methods Ist 5th 10th 15th 20th Reorder| Ist 5th 10th 15th 20th Reorder | Tokens 1/7 |Latency Speedup

2x constraint

Retrieval-based Methods

BM25 537 493 479 499 469 503 [509 449 44.1 429 432 46.0 1,545 19x| 2.1 1.9x
Gzip 64.6 63.8 60.5 583 573 644 |619 557 52.7 50.8 50.9 593 1,567 19x| 2.1 1.9x
SBERT 72.5 679 633 65.0 66.2 68.7 |658 57.5 549 534 557 614 1,549 19x| 22 1.9x
OpenAl 73.0 65.6 66.5 654 655 699 |659 575 56.2 542 5577 617 1,550 19x| 49 0.8x

LongLLMLingua rx | 73.9 67.7 68:7 66.0 65.6 743 |68.5 59.1 56.8 553 569 652 1,548 19x| 2.3 1.8x

Compression-based Methods
Selective-Context | 45.4 39.0 33.8 33.5 41.5 - 532 263 254 242 333 - 1,478 2.0x 7.4 0.6x
LLMLingua 39.7 39.5 404 37.1 423 415 |38.7 373 357 34.1 375 37.1 1,410 2.1x| 2.8 1.5x

LongLLMLingua |77.2 72.9 70.8 70.5 70.6 76.2 |68.7 59.4 57.3 559 584 66.1 1429 2.Ix| 29 1.4x

4x constraint

Retrieval-based Methods

BM25 40.6 38.6 382 374 36.6 363 [39.5 37.5 36.8 36.4 355 377 798  3.7x 1.5 2.7x
Gzip 63.1 61.0 59.8 61.1 60.1 623 |57.6 529 51.0 50.1 504 57.2 824  3.6x 1.5 2.7x
SBERT 66.9 61.1 59.0 61.2 60.3 644 |62.6 56.6 55.1 53.9 550 59.1 808  3.6x 1.6 2.5x
OpenAl 638 64.6 654 64.1 63.7 63.7 |61.2 56.0 55.1 544 550 588 804 3.7x| 43 1.0x

LongLLMLinguary | 71.1 70.7 69.3 68.7 68.5 71.5 |67.8 59.4 57.7 57.7 58.6 64.0 807  3.7x 1.7 2.4x

Compression-based Methods
Selective-Context | 31.4 19.5 24.7 24.1 43.8 - 382 17.2 159 16.0 273 - 791 37x| 6.8 0.6x
LLMLingua 255 27.5 23.5 265 30.0 27.0 |32.1 30.8 29.9 289 324 305 775  3.8x 1.8 2.2x

LongLLMLingua |75.0 71.8 71.2 71.2 747 755 |68.7 60.5 59.3 58.3 613 66.7 748 39x| 21 2.0x

Original Prompt ‘75.7 57.3 54.1 554 63.1 - ‘68.6 574 553 52.5 55.0 - ‘ 2,946 - ‘ 4.1 -
Zero-shot | 56.1 | 35.0 | 15 196x| 1.1 3.7x

(ii) Compression-based Methods. We compare our approach with two state-of-art methods for
prompt compression, i.e., Selective Context (L1, 2023) and LLMLingua (Jiang et al.| 2023a). Both
methods employ LLaMA-2-7B-Chat as the small language model for compression. In LLMLingua,
a coarse-to-fine approach is used to handle constraints of compression ratio: the original prompt is
first compressed to k times the constraint at a coarse level, where & is the granular control coeffi-
cient; token-level is then performed to reach the overall constraint. Our method follows the same
coarse-to-fine logic to achieve the constraint.

Main results Table [1| and [2| present the performance of various methods under different com-
pression constraints. There are multiple observations and conclusions: (1) Our LongLLMLingua
achieves the best performance across different tasks and constraints of compression ratios. Com-
pared to the original prompt, our compressed prompt can derive higher performance with much
lower cost. For example, LonglLLMLingua gains a performance boost of 17.1% on NaturalQues-
tions with the ground-truth document at the 10th position, while the number of tokens input to
GPT3.5-Turbo is ~4x less. (2) Compression-based methods like Selective Context (L1, |2023) and
LLMLingua (Jiang et al.| |2023a)) perform poorly on most tasks, especially those with abundant
irrelevant information in the original prompt. This is due to their pure information entropy based
compression mechanism, which includes too much noise in the compressed results and even leads to
performance worse than the zero-shot setting, e.g., on NaturalQuestions. (3) Retrieval-based meth-
ods work well with low compression rates. However, their performance declines as the compression
progresses, e.g., 2x — 4x; 3000 tokens — 2000 tokens. This may be caused by the decreased re-
call. Figure[3ais the illustration of cases on NaturalQuestions. (4) LongLLMLingua as well as our
coarse-grained compression metric 7 only is much more robust than all other baselines under dif-
ferent tasks and compression constraints. With the increase of the compression rate, e.g., 2x — 4z,
Longl.LMLingua even achieves a little performance gain. We mainly owe this to the question-aware
coarse-to-fine compression, which can better figure out the key information and reach a higher key

Shttps://python.langchain.com/docs/modules/data_connection/document_transformers/post_retrieval/
long_context_reorder
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Table 2: Performance of different methods under different compression ratios on LongBench (Bai
et al. 2023) and ZeroSCROLLS (Shaham et al., 2023) using GPT-3.5-Turbo. Considering the
dataset structure, we do not use the reordering strategy here.

Methods LongBench ZeroSCROLLS
SingleDoc MultiDoc Summ. FewShot Synth. Code AVG Tokens 1/7 Latency ‘ AVG Tokens 1/r Latency

3,000 tokens constraint

Retrieval-based Methods

BM25 323 343 25.3 57.9 45.1 489 40.6 3417 3x 7.52.1x) | 198 3379 3x 55(2.2x)

SBERT 353 374 26.7 63.4 51.0 345 414 3399 3x 7.7(2.0x) | 240 3,340 3x 5.9(2.1x)

OpenAl 345 38.6 26.8 63.4 49.6 37.6 41.7 3421 3x 13.3(1.2x)|224 3362 3x 11.7(1.0x)

LongLLMLingua 7 37.6 429 26.9 68.2 499 534 465 3424 3x 82(19x) [293 3350 3x 6.2(2.0x)

Compression-based Methods

Selective-Context 233 39.2 25.0 23.8 275 53.1 320 3328 3x 50.6(0.3x)|20.7 3460 3x 54.2(0.2x)

LLMLingua 31.8 375 26.2 67.2 83 532 374 3421 3x 9.2(1.7x) | 30.7 3,366 3x 7.4(1.7x)

LongLLMLingua | 40.7 46.2 27.2 70.6 53.0 552 488 3283 3x 8.0(1.6x) | 328 3412 3x 82(1.5x)
2,000 tokens constraint

Retrieval-based Methods

BM25 30.1 29.4 21.2 19.5 124 29.1 236 1985 5x 4.6(3.4x)[20.1 1,799 5x 3.8(3.2x)

SBERT 33.8 359 259 235 180 17.8 258 1947 5x 4.83.4x) 205 1,773 6x 4.1(3.0x)

OpenAl 343 36.3 24.7 324 263 248 29.8 1,991 5x 10.4(1.5x)|20.6 1,784 5x  9.9(1.2x)

LongLLMLingua 7 37.8 41.7 26.9 66.3 53.0 524 463 1960 5x 4.7(3.3x) |249 1,771 6x 10.4(1.2x)

Compression-based Methods

Selective-Context 16.2 34.8 24.4 15.7 84 492 248 1925 5x 47.1(0.3x)| 19.4 1,865 5x 47.5(0.3x)

LLMLingua 224 32.1 24.5 61.2 104 568 34.6 1950 5x 59(2.6x)|27.2 1,862 5x 4.8(2.5x)

LongLLMLingua | 39.0 42.2 274 69.3 538 566 48.0 1809 6x 6.1(2.6x) |325 1753 6x 52(2.3%)

Original Prompt | 397 38.7 26.5 67.0 37.8 542 440 10295 - 156 325 9788 - 12.2

Zero-shot | 156 313 15.6 40.7 1.6 362 235 214 48x 1.6(9.8x) [ 10.8 32  306x 1.0(12.2x)

information density with a higher compression rate. (5) The proposed reordering method helps in not
only our approach but also other baselines as shown in Table [T} well demonstrating its effectiveness.

Ablation study To evaluate the contributions
of different components in Longl.LMLingua, we
introduce following variants of it for ablation
study. (1) Variants about Question-aware Coarse-
grained Compression, include: ours w/o Question-
awareness, which calculates question-text rele-
vance 7, using information entropy in LLMLingua,
ours w/ SBERT, which employs SBERT to com-

Table 3: Ablation study on NaturalQuestions
with 2x constraint using GPT-3.5-Turbo.

Ist 5th 10th 15th 20th
77.272.9 70.8 70.5 70.6

LongLLMLingua
Question-aware Coarse-grained

- w/o Question-awareness 42.140.3 39.7 40.1 40.3

‘ toc | que rodict ‘ -w/SBERT =~ 73.2 68.5 65.7 66.1 66.7
pute 7, ours w/ p(x$>|x; ), which replace - w/ p(xdoe|giereic) 56.0 52.6 53.4 51.6 51.1
- w/o restrict 75.172.270.3 70.3 70.2

p(l‘?ueq«esll«icl|X2‘0C) with p(ngjc|x?ue,reslricl) in Eq.

. . - wi tion- Fine-grained 75.8 71.0 68.9 68.4 69.3
and ours w/o restrict, which only calculates the con- /o Question-aware Fine-graine

- w/o Dynamic Compression Ratio 74.4 70.7 68.7 67.9 68.1

ditional probability corresponding to x9"¢. (2) Ours
w/o Question-aware Fine-grained, which disregards

- w/o Subsequence Recovery
- w/ Document Reordering

76.7 71.7 69.4 69.3 69.7
76.276.276.2 76.2 76.2

- w/ GPT2-small

LLMLingua
- w/ Subsequence Recovery

74.6 71.7 70.1 69.8 68.5

39.739.5 40.4 37.1 42.3
43.844.143.5433444

Eq. (3) and only applies Iterative Token-level Prompt
Compression as LLMLingua. (3) Ours w/o Dynamic
Compression Ratio, where all documents share the
same compression ratio in fine-grained compression.
(4) Ours w/o and (5) LLMLingua w/ Subsequence Recovery, which either removes or adds the post-
processing subsequence recovery strategy. (6) Ours w/ GPT2-small, which uses the GPT2-small
model as the small language model.

Table 3] shows the results of the ablation study. In summary, removing any component proposed for
Longl.LMLingua will lead to a performance drop regardless of the position of the ground-truth an-
swer. This well validates the necessity and effectiveness of the proposed question-aware mechanism
during coarse-to-fine compression, the dynamic compression ratio, and the subsequence recovery
strategy. It also shows that applying SBERT for coarse-grained compression will result in inferior
performance, which implies the superiority of our question-aware importance metric in Eq. [2] over
SBERT. In addition, replacing p(z{"*""|xd°¢) with p(xdo¢|z{"“*"") can greatly affect perfor-
mance due to the large noise in calculating p(xi"c) since the perplexity of document depends on
many other information besides the question. Removing the restrictive statement can increase the
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hallucination of small language models, leading to a decrease in performance. Moreover, our subse-
quence recovery strategy can also bring performance gains for LLMLingua. However, without our
question-aware mechanism, results from LLMLingua are still less satisfactory. For more detailed
cases, please go to Appendix [F

Latency evaluation We conducte end-to-end latency testing on a V100-32G, using the prompts
from Multi-document QA, LongBench, and ZeroSCROLLS in the API call, and results are shown
in Table[T|and P} The latency includes the time cost for prompt compression and the request time for
LLMs, with multiple measurements taken and averaged over. Results demonstrate that LongL.LM-
Lingua does indeed speed up the overall inference under different compression ratios and scenarios.
Moreover, with the compression ratio increasing, the acceleration effect becomes more pronounced
up to 2.6x. However, the OpenAl embedding and Selective-Context results in longer latency time,
due to repeated API calls and the sequential entropy calculation of semantic units, respectively.

6 RELATED WORKS

Long context for LLMs. Recent research has focused on expanding the window size of LLMs.
Main approaches include: (1) Staged pre-training (Nijkamp et al.} 2023) which gradually increases
the context window; (2) Modifying (Press et al.} 2022) or interpolating position embeddings
et al Peng et al) Han et al., 2023); (3) Using linear or sparse attention mecha-

nisms (Ding et al.l 2023} [Sun et all 2023); (4) Utilizing external memory modules for context
storage (Bertsch et al., 2023} [Tworkowski et al.} 2023). While these methods address context win-

dow expansion, their impact on downstream task performance has yet to be discussed.

Information distribution in prompt. Recent empirical experiments have shown that LLM per-

formance decreases with less effective information in a prompt (Bai et all, 2023}, [Li et al), [2023a}
Shi et al.l [2023). Moreover, the position of relevant information in a prompt has a significant im-

pact on performance(Wu et all, 2022). [Liu et al.| (2023) suggests that LLMs have more difficulty
comprehending information located in the middle of a prompt compared to those at the edges.

Retrieval methods can be categorized as dense or sparse retrieval methods. Sparse retrieval meth-
ods, like BM25, determine the relevance between queries and documents based on n-gram informa-
tion. Conversely, dense retrieval methods assess the relevance between queries and documents in
latent space using dense vectors, such as SentenceBERT (Reimers & Gurevychl 2019) and OpenAl
Embedding. Recently, Jiang et al.| (2023b)) proposed an unsupervised dense retrieval method that
leverages traditional compression algorithms, such as gzip, and k-nearest neighbors.

Prompt compression methods can be grouped into three main categories: (1) Token pruning
let all, 2020} [Kim & Chol 2021}, Modarressi et al., 2022)) and token merging (Bolya et al.l [2023),
which need model fine-tuning or intermediate results during inference and have been used with
BERT-scale models. (2) Soft prompt tuning methods like GIST 2023), AutoCompres-
sor (Chevalier et al.,[2023)), and ICAE 2023), which require LLMs’ parameter fine-tuning,
making them suitable for specific domains but not directly applicable to black-box LLMs. (3)
Information-entropy-based approaches such as Selective Context and LLMLingua
2023a)), which use a small language model to calculate the self-information or perplexity of
each token in the original prompt and then remove tokens with lower perplexities.

7 CONCLUSION

We propose LongL.LMLingua to address the three challenges, i.e., higher computational/financial
cost, longer system latency, and inferior performance for LLMs in long context scenarios. We de-
velop LongLLMLingua from the perspective of efficient prompt compression, thus reducing both
computational/financial cost and the system latency. We further design four components, i.e., a
question-aware coarse-to-fine compression method, a document reordering mechanism, dynamic
compression ratios, and a post-compression subsequence recovery strategy to improve LLMs’ per-
ception of the key information, with which LongLLMLingua demonstrate superior performance.
Experiments on one multi-document QA benchmark and two long context benchmarks demonstrate
that LongLLMLingua compressed prompt can derive higher performance than original prompts
while both API costs for inference and the end-to-end system latency are largely reduced.
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A TOKEN-LEVEL SUBSQUENCE RECOVERY DETAILS

Algorithm 1 Pseudo code of Token-level Subsquence Recovery.

Input: The original prompt x; the compressed prompt &; the generation response of LLMs y.
1: Set the final response list yr.c = ¢, the left token index of subsquence [ to 0.
2: while! < y.len() do
3: if Substring y; € & then
4: Find the longer substring Ywey,: = {¥1, Y141, .-, Yr} € T.
5 Find the maximum common shortest subsequence x; ; = {x;, i1, ..., ¢; } in the original prompt

x.
6 Add the subsequence x; ; = {xs, Tit1, ..., £; } to the response Yrec.
7: Set the left index [ to r + 1.

8 else

9: Add the token y; to the response Yrec.
10: Set the left index [ to [ + 1.

11: end if

12: end while
Qutput: The final response list Yrec.

B DERIVATION OF QUESTION-AWARE FINE-GRAINED COMPRESSION

Based on the definition of Eq.[3} we can derive that,
s; = perplexity(z;|x<;) — perplexity (z; |2, x ;)
= q(w;) log p(z:[2™°, 2 <;) — q(x:) log p(wi|r<;)
p(xilz?, v ;)
p(zi|r<i)

In the actual calculation of perplexity, a log operation is performed to avoid overflow, and ¢(x;)
represents the probability distribution of the ground-truth.

(6)
= q(;)log

At the same time, we can derive the following expanded expression based on Bayes’ theorem.

P22, 1<) = p@ile®, 2<)p(@™) _ p(mque)pi(xilmque’xQ)
p(i|T i) p(i|r<i)

)
The probability distribution p(29"®) of the question and the ground-truth distribution ¢(z;) of z; are
constants, hence s; can be considered as the representation of Eq.[7}

si o¢ p(x4|2s, <4) ®)

So we can utilize Eq. [3| to represent the probability distribution p(x9“¢|x;, x~,;), which represents
the condition likelihood of generating %' given the token x;. Therefore, we can represent the
token-level sensitive distribution for the question x9"¢ using just a single inference. For tokens that
are unrelated to 29", such as the tokens on the right side of Figure 3D] their original amount of
information may be high, but the contrastive perplexity remains at a relatively low level.

C EXPERIMENT DETAILS

C.1 DATASET DETAILS

NaturalQuestions multi-document QA A multi-document question-answering dataset, com-
prising 2,655 problems, was built by |Liu et al| (2023) based on the NaturalQuestions
dataset (Kwiatkowski et all, 2019). This dataset provides a realistic retrieval-augmented gener-
ation setup that closely resembles commercial search and question-answering applications (e.g.,
Bing Chat). Each example in the dataset contains a question and k related documents, utilizing
the Contriever retrieval system (Izacard et all, [2022), one of which includes a document with the
correct answer. To perform this task, the model must access the document containing the answer
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within its input context and use it to answer the question. The dataset’s data is sourced from the
NaturalQuestions dataset, which contains historical queries issued to the Google search engine and
human-annotated answers extracted from Wikipedia. The average prompt token length in this bench-
mark is 2,946. For our experiments, we used the version provided by (2023) that includes
20 documentsﬂ The dataset comprises five different ground truth document position settings in the
prompt: Ist, Sth, 10th, 15th, and 20th.

LongBench A multi-task long context benchmark consists of 3,750 problems in English and in-
cludes six categories with a total of 16 tasks. These tasks encompass key long-text application
scenarios, such as single-document QA, multi-document QA, summarization, few-shot learning,
synthetic tasks, and code completion. The average prompt token length in this benchmark is 10,289.
For our experiments, we used the English dataset and evaluation scripts provided by Bai et al.|(2023)
for this benchmarkf]

ZeroSCROLLS The multi-task long context benchmark consists of 4,378 problems, including
four categories with a total of 10 tasks. These tasks cover summarization, question answering,
aggregated sentiment classification, and information reordering. The average prompt token length
in this benchmark is 9,788. For our experiments, we used the validation set and evaluation scripts
provided by Shaham et al.|(2023) for this dataseﬂ

MuSiQue The multi-hop question-answer dataset is composed of 39,876, 4,834, and 4,918 prob-
lems in the training, validation, and testing datasets, respectively. This dataset requires the language
model to conduct multiple inferences based on the content of several documents and provide cor-
responding answers, thereby necessitating a certain capability for global information processing.
The average token length for prompts in this dataset is 2,477. For our experiments, we utilized the
validation set and evaluation scripts provided by [Trivedi et al.| (2022) for this datasem

LooGLE The multi-task long context benchmark comprises 6,448 problems, divided into three
categories: summarization, short dependency question answering, and long dependency question
answering. The average prompt token length in this benchmark stands at 24,005. For our exper-
iments, we focused on the long dependency question answering subset, which includes four types
of tasks: information retrieval, timeline reordering, computation, and comprehension. This subset
contains 1,101 problems. We utilized the evaluation scripts provided by (2023D)) for this
datase

C.2 OTHER IMPLEMENTATION DETAILS

All experiments were conducted using a Tesla V100 (32GB). We use tiktokerﬂ and GPT-3.5-Turbo
model to count all the tokens. We set the granular control coefficient k to 2. We use the pre-defined
compression rates T, = 0.85 and 7ge = 0.9 for instructions and questions. The segment size
used in the iterative token-level compression is set to 200. The 67 used in dynamic compression
ratio is set to 0.25. For a fair comparison, we only used reordering in the NaturalQuestions Multi-
document QA and noted this in Table[I] We use “We can get the answer to this question in the given
documents.” as the guideline sentence in Equation (3).

For the baselines experiment, we use the currently recommended strongest model, all-mpnet-
base—VQEL as the dense representation model for SentenceBERT. We use the recommended “text-
embedding-ada-002” as the embedding model for OpenAl Embeddinﬂ We use the GPT2—d011}E]
as the small language model in w/ GPT2-small ablation experiments.

"https://github.com/nelson-liu/lost-in-the-middle
8https://github.com/THUDM/LongBench
“https://www.zero.scrolls-benchmark.com/
Ohttps://github.com/stonybrooknlp/musique
https://github.com/bigai-nlco/LooGLE
Zhttps://github.com/openai/tiktoken
Bhttps://www.sbert.net/docs/pretrained_models.html
“https://platform.openai.com/docs/guides/embeddings/
Shttps://huggingface.co/lgaalves/gpt2-dolly
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D ADDITIONAL EXPERIMENTAL RESULTS

D.1 DOCUMENT-LEVEL AVERAGE PERPLEXITY DISTRIBUTION
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Figure 5: The distribution of document-level average perplexity when the ground-truth document is
in different positions.

Figure 5] shows the distribution of the document’s average perplexity when the ground-truth is lo-
cated at different positions within the prompt. As can be observed, as the context length increases,
the original perplexity curve remains relatively stable. In unrelated documents, a higher perplexity
is still retained, making it easier to remove relevant tokens from the related documents in the prompt
compression process, thereby damaging the corresponding semantic information. Contrarily, con-
trastive perplexity shows an increase in perplexity in documents related to the question. According
to the theoretical derivation in Appendix [B} it’s known that contrastive perplexity characterizes the
conditional probability of tokens corresponding to the question. The higher the relevance, the higher
the contrastive perplexity, thereby retaining key information in the prompt compression process.

D.2 ZEROSCROLLS BREAKDOWNS

Table 4: Performance breakdown of different methods under different compression ratios on Zero-
SCROLLS (Shaham et al| [2023) using GPT-3.5-Turbo.

Methods |GvRp SSFD QMsm SQAL QALT Nrtv Qspr MuSQ SpDg BkSS AVG|Tokens 1/7

3,000 tokens constraint

Retrieval-based Methods

BM25 9.7 34 117 143 571 59 257 112 296 29.6 19.8] 3,379 3x
SBERT 165 9.8 123 152 60.0 14.6 234 12.1 394 364 24.0] 3,340 3x
OpenAl 143 83 120 153 66.7 133 243 11.7 312 264 224 3,362 3x

LongLLMLinguary | 19.5 11.6 147 155 66.7 205 27.6 13.0 60.8 434 293| 3350 3x

Compression-based Methods
Selective-Context 208 9.1 11.7 134 50.0 9.8 26.1 11.0 46.0 95 20.7| 3,460 3x
LLMLingua 187 100 149 168 619 269 272 234 629 445 30.7] 3,366 3x

LongLLMLingua | 219 127 155 170 669 276 31.1 238 656 464 32.8| 3412 3x

2,000 tokens constraint

Retrieval-based Methods

BM25 88 25 111 135 600 7.0 49 203 399 329 20.1| 1,799 5x
SBERT 102 79 137 132 600 81 108 1.7 372 428 20.5| 1,773 6x
OpenAl 1.1 80 11.8 136 600 7.1 132 40 336 436 20.6| 1,784 5x

LongLLMLinguary | 182 9.8 123 159 571 101 17.8 73 577 423 249 1,771 6x

Compression-based Methods
Selective-Context 19.0 84 9.7 124 470 125 216 115 412 11.0 194 1,865 S5x
LLMLingua 194 119 131 160 62.1 237 240 224 339 449 272 1,862 5x

LongLLMLingua | 199 123 147 165 649 274 306 235 683 47.1 325 1,809 6x

Original Prompt | 21.8 121 179 174 667 253 29.8 200 69.7 44.1 325] 9,788 -
Zero-shot | 94 3.0 8.6 114 429 106 124 55 42 00 128] 32 306x
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Table[]presents a detailed performance breakdown on the ZeroSCROLLS benchmark. It can be ob-
served that in the four summarization tasks - GvRp, SSFD, QMsm, SQAL, LongL.LLMLingua closely
matches or slightly surpasses the original results under two compression constraints. Meanwhile, in
the four long context QA tasks - Qsqr, Nrtv, QALT, MuSQ, there is a significant improvement. No-
tably, in the MuSiQue task, which is based on a question-answering dataset from books and movie
scripts, there is a 2.1 point increase even under a 2,000 tokens constraint. It’s worth mentioning that
MusSiQue is a multi-hop question-answering dataset that requires LLMs to utilize global information
for long dependency QA. LongL.LLMLingua can also improve by 3.5 points under a 6x compression
ratio. In the two ordering tasks, SpDg and BkSS, LongLLMLingua can better retain globally sensi-
tive information, resulting in a 3.0 point improvement in BkSS after prompt compression.

It’s important to note that although the ZeroScrolls validation dataset is relatively small, it still
demonstrates conclusions similar to previous experimental observations across various methods and
tasks. Furthermore, this study conducted an in-depth analysis of the multi-hop QA task - MuSiQue,
and another long context benchmark - LooGLE. The results can be found in Appendix [D.3] and

Appendix [D.6]
D.3 MUSIQUE

Table[]presents the results from the MuSiQue multi-

hop question-answer dataset. From the table, it can Tgple 5: Performance of different methods
be observed that in the multi-hop QA task, requir-  and ablation study on MuSicQue (Trivedi

ing global information: 1) LongL.LMLingua can re- 2022) with 2x constraint using GPT-
duce noise in the prompt by eliminating irrelevant 3 5-Turbo.

information and putting more related information at

the l?eginning or end of the prompt, thereby im-  Mehods Fl Tokens 1/7
proving performgnce by 5.4 points. 2) Thq Per~ 5 iinal Prompt 458 2427 -
formance drop is more pronounced for retrieval-  pyps 285 1.295 1.9x
based methods, particularly for n-gram-based meth-  SBERT 36.2 1,288 1.9x
ods like BM25. Due to long dependencies, direct ~ LongLLMLingua ry 46.3 1,295 1.9x
matching information is lost, resulting in less rel- ~ Selective-Context 19.6 1,141 2.1x
. . . LLMLingua 40.1 1,110 2.2x
evant information being recalled. 3) The perfor- .
mance of compression-based methods is slightly dif- Ié‘;‘gtllf;“’fllv;;“rgugoam grained 51.2 1,077 2.3x
ferent. Selectlve—Context doeg not dlstmgl.nsh.be- ~wlo Question-awareness 432 1.076 2.3x
tween different modules’ sensitivity, resulting in a - w/ SBERT _ 473 1,070 2.3x
loss of question and instruction-related information, - wy p(xdoc |2t 44.0 1,066 2.3x
thereby leading to poorer performance. However, - w/o restrict 49.2 1,078 2.3x
LLMLingua can still retain relevant key informa- - w/o Question-aware Fine-grained 48.4 1,118 2.2x
tion at around a 2x compression ratio. 4) The abla- - w/o Dynamic Compression Ratio 48.2 1,090 2.2x
tion experiments show that every module designedin - W; o ]S)“bseq“e‘t‘%e Redco‘,’ery Zg; 18;; %;"
. . . - wW/0 Document keordering . s X
LongLLMLingua plays a role in the multi-hop task. 0/ sps_cmon 48.4 1,095 2.2x

The removal of the question-aware coarse-grained
and w/ p(x$°¢ |23 modules, which have dif-
ficulty in perceiving the importance distribution of corresponding questions, can cause a drop of
up to 8 points. Removing the restrict prompt in the question-aware coarse module can also cause
a 2-point drop due to the hallucination issue of small LLM. In addition, removing question-aware
fine-grained, dynamic compression ratio, and document reordering can all cause a drop of 0.5-2.8
points. 5) Moreover, if the small language model in LonglLLMLingua is replaced with GPT2-small,
it can further improve the acceleration ratio and still achieve a result that is 2.6 points better than the
original prompt.

D.4 ABLATION IN LONGBENCH

Table [f] presents the results from the ablation experiment in the LongBench long context bench-
mark. It can be observed that in various long context tasks: 1) Removing the question-aware coarse-
grained, question-aware fine-grained, dynamic compression ratio, document reordering, and subse-
quence recovery proposed by LonglL.LMLingua all result in different degrees of performance drop.
2) Among these, question-aware coarse-grained is particularly important for document-based QA
and synthetic tasks, with the maximum drop being 35.8 points; its impact on summarization and
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Table 6: Ablation on LongBench (Bai et al.,[2023) using GPT-3.5-Turbo.

Methods | SingleDoc MultiDoc Summ. FewShot Synth. Code AVG Tokens 1/7
LongLLMLingua | 390 422 27.4 69.3 53.8 56.6 48.0 1,809 6x
Question-aware Coarse-grained

- w/o Question-awareness 27.1 38.7 25.4 62.0 18.0 533 374 1,945 5x
- w/ SBERT _ 34.0 38.7 24.1 579 325 311 364 1790 6x
- W/ p(xoc | duerestriety 225 289 232 53.0 225 333 30.6 1,794 o6x
- w/o restrict 37.8 39.5 26.4 64.8 52.5 55.8 46.1 1,834 o6x
- w/o Question-aware Fine-grained 35.7 41.1 26.4 62.9 445 548 442 1,807 6x
- w/o Dynamic Compression Ratio 36.1 40.6 26.9 67.2 48.0 55.8 457 1851 6x
- w/o Subsequence Recovery 38.6 41.8 27.3 69.0 53.8 56.6 47.8 1,809 6x
- w/ Document Reordering 39.9 43.2 274 69.8 53.0 56.7 483 1,822 6x
- w/ GPT2-small 359 39.4 25.0 60.6 42.0 554 430 1,892 5x

code tasks is relatively smaller. 3) The design of the conditional probability in the question-aware
coarse-grained module improves the results in all tasks, including code completion, single-document
question-answer, and synthetic tasks. Changing the order of conditional probabilities or removing
the restrict prompt both lead to varying degrees of performance decline. 4) Removing question-
aware fine-grained, dynamic compression ratio has a more significant impact on document-based
QA and synthetic tasks. 5) The subsequence recovery module can enhance reference-based tasks,
but its improvement on tasks like summarization, code, synthetic, etc., is relatively smaller. 6) Doc-
ument reordering is effective for all types of tasks. Reordering at the document level does not affect
LLMs’ understanding of context information, even for timeline-related tasks (see timeline reorder
in LooGLE, Table[8). On the contrary, reordering can effectively alleviate the “lost in the middle”
issue, thereby improving LLMs performance. 7) Using GPT2-small reduces the capture of effective
tokens, but it can still achieve results close to or even slightly better than the original prompt.

D.5 LONGBENCH USING LONGCHAT-13B-16K

Table 7: Performance of different methods under different compression ratios on LongBench
2023) using LongChat-13b. Considering the dataset structure, we do not use the reordering
strategy here.

Methods \SingleDoc MultiDoc Summ. FewShot Synth. Code AVG Tokens 1/7
Original Prompt | 274 30.3 20.3 49.9 125 425 305 10295 -
Retrieval-based Methods

BM25 24 2.6 16.4 8.7 0.0 447 125 1985 5x
SBERT 11.6 13.7 21.1 16.2 7.5 300 167 1947 5x
LongLLMLingua 7 30.3 324 245 41.0 27.5 38.1 323 1960 5x
Compression-based Methods

Selective-Context 16.1 23.5 21.8 214 25 359 202 1,925 5x
LLMLingua 20.6 22.3 224 35.6 00 354 227 1950 5x
LongLLMLingua | 31.1 34.1 24.5 45.7 28.0 48.6 353 1,809 6x

Table[7) presents the experiment results in the LongBench long context benchmark using LongChat-
13b-16k. It can be seen that the compressed prompt can also achieve good results on other LLMs,
such as LongChat-13b-16k. Specifically, 1) there is a maximum improvement of 15.5 points in
synthetic tasks. Except for a slight drop in few-shot Learning, there is an improvement of 3-5 points
in other tasks. 2) The performance trends of retrieval-based and compressed-based baselines are
similar to the results in GPT-3.5-Turbo.

D.6 LOOGLE
Table[§] presents the experiment results in the LooGLE long dependency benchmark, which features

longer prompts (~30k) and more global dependencies. From the table, we can observe that: 1)
LonglLLMLingua can effectively improve the performance of long context tasks by compressing

17



Under review as a conference paper at ICLR 2024

Table 8: Performance of different methods on LooGLE (Li et al., 2023b) long dependency QA.

Methods \ Retrieval Timeline Reorder Computation Reasoning AVG Tokens 1/7
Retrieval-based Methods

BM25 20.4 21.7 8.2 26.3 19.2 3,185 10x
SBERT 28.9 21.1 10.7 27.2 220 3,169 10x
LongLLMLingua r 38.6 322 16.2 26.3 28.3 3,158 10x
Compression-based Methods

Selective-Context 16.7 5.0 2.3 17.6 104 3,710 8x
LLMLingua 10.0 25.0 133 21.1 17.3 3,404 9x
LongLLMLingua 40.0 35.0 19.7 33.6 321 3,121 10x
LongLLMLingua w/o Reorder| 39.3 33.8 18.7 31.6 309 3,119 10x
Original Prompt | 241 20.9 13.5 32.1 22.6 30,546 -
Zero-shot | 87 6.3 1.2 14.5 7.7 43 710x

prompts, even for long dependency tasks. The results show that LonglLLMLingua significantly im-
proves performance in tasks such as retrieval, timeline reorder, and computation, with the maximum
improvement reaching 15.9 points. 2) The document reorder in Longl.LMLingua is effective in all
types of tasks, even in tasks highly related to the timeline, it can effectively improve performance
by alleviating the “lost in the middle” issue. 3) Retrieval-based methods tend to lose performance
in tasks that have longer dependencies, such as computation and reasoning. 4) For compression-
based methods, due to the difficulty in perceiving question information, there tends to be a larger
performance loss in retrieval tasks within long contexts.

E EcoNoMmic CoST
Table 9: The inference costs(per 1,000 samples $) for various datasets using GPT-3.5-Turbo.

Multi-document QA LongBench  ZeroScolls MuSicQue LooGLE

Original 4.6 31.5 30.6 3.8 93.6
Ours 1.3 3.0 32 1.8 5.6

Table[9 presents the estimated per 1,000 samples inference costs for various datasets, encompassing
input prompts and generated output text, based on GPT-3.5-Turbo pricinﬂ Our approach demon-
strates substantial savings in computational resources and monetary expenses, particularly in long
context situations. Cost reductions of $3.3, $28.5, $27.4, $2.0, and $88.0 per 1,000 samples are
observed for Multi-document QA, LongBench, ZeroScrolls, MuSiQue, and LooGLE, respectively.

F ABLATION ANALYSIS

G CASES STUDY

1https://openai.com/pricing
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Ours w/o Token-level Question-aware:

Compressed Prompt:

Write a high-quality answer for the given question using only the provided search results
(some of which might be irrelevant).

Document [1](: Physics)gen,, who received2K, which is ,73,0 in0O. Johnen only to twice6.
Mariaie won, for.g was, untillestate he. Two:Mayer (1963). As of 2017, the prize has been
awarded

Question: who got the first nobel prize in physics

Answer:

LLMs’ Response:

No answer found in the given search results.

Ours w/ Token-level Question-aware:

Compressed Prompt:

Write a high-quality answer for the given question using only the provided search results
(some of which might be irrelevant).

1Title: List of Nobelates in The first Nobel Prize was1 to | Wilhelmrad |, of who received

1582 which,70 in0 en the prize. Skska also won two Nobeles for physics3g01, theate he
women prize:ertMayer (1963). As of 2017, the prize has been awarded

Question: who got the first nobel prize in physics

Answer:

LLMs’ Response:

Wilhelmrad

LLMs’ Response after Subsquence Recovery:

Wilhelm Conrad Rontgen

Ground Truth:

Wilhelm Conrad Rontgen

Figure 6: Comparing the compressed prompt and LLMs’ response before and after using Question-
aware Fine-grained Compression and Subsequence Recovery(1/7=30x, high compression ratio set-
ting) from NaturalQuestions Multi-document QA (Liu et al.} 2023)) using GPT-3.5-Turbo.
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Original Prompt:

Document [1](Title: Dancing on Ice) It was confirmed on 25 January 2018, that Dancing on
Ice had been recommissioned for an eleventh series to air in 2019.

Compressed Prompt:

Write a high-quality answer for the given question using only the provided search results
(some of which might be irrelevant).

1Title: Dancing on was confirmed on 2 January 2018 that Dancing on had been recommis-

sioned for an eleventh series air in .

Document [2Title: Dan on) Dan on Ice Dancing on British presented by Phillip Schof
alongside Holly Willough from 26 to 2011, and Christine Bleakley from 2012 to 204 The
show consists of celebrit and professional partners figure skating in front of a panel of
judges The, broadcast on ITV, started on January 2006 and ended on 9 March 2014 after
showcontract not renewed by ITV On 4 September 2017, it was announced that rev series
would on I 7 January 201 Sch and Willby returning as a

5;: on ( on () The third series of a from January to168TV. The from Saturdays, with
Holby present Kar,y Sliner Robin Cins returned to Panel”, with Ruth H joining the panel
as replacement for Natalia Bestova. The commission of the was confirmed by at the07
announcedova depart the series Robinen Bar,ater and Jasoniner announced

7( on ()) Dan 2 second of Dan on a from January to1207 ITV It presented Phillip Sch
Holly Willough, and judged the I P consisting Nicky Slater, Nataliaian Karenres Jason
Gardiner Karen Barber and Robin Cousins Jaynevill and Christopher Dean co and trained
the contestants In this series, cele to ten in first series. The series was won former Kyran
Bracken, with Mel Lambert the winner. It announced thatenresge

Document []( on Ice on 08 on TV edition started 8 TV2 The Russian version “any) being
on channel0, and renamed in8 to ” Ice” (). Its counterpart called Ice Age (, ’Stars on Ice
on Channel Oneak IceHviezdyiJ. The Turkish version” is called Dans” ("ance on
Document1 on Ice its, all,é () and Sje Chris de In series.2 edition

]1(: on Ice world) Dan Ice is a made competition world format, and been subsequently Italy
Chile where titled after series There have a, the show was broadcast on Channel 13 as a
Document [17](Title: Dancing on Ice) the insight to the training of the celebrities over the
last week. It was presented by television presenter Ben Shephard and former contestant
and "Loose Women” star Coleen Nolan. The show was broadcast from 8 pm to 8.30 pm
on Friday evenings on ITV throughout the duration of the main shows season. STV who
broadcast the main show did not broadcast this on the Friday evening but after repeating
the previous weeks main show on the following Saturday afternoon. Due to poor ratings,
”Dancing on Ice Friday” was axed prior to the 2011 series. The show was based in the
Question: when is dancing on ice on the tv

Answer:

LLMs’ Response:

209

LLMs’ Response after Subsquence Recovery:

2019

Ground Truth:
2019

Figure 7: Cases study on NaturalQuestions Multi-document QA dataset (Liu et al. 2023) in 4x
constraint using GPT-3.5-Turbo.
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Compressed Prompt:
Please complete the code given below.

public class MessageArchiveManagement
private static final long MILLISECONDS_IN_DAY = 24 % 00 *0;
public static final long_CUP = MCON_DAY

/oo
.("", .getStart
add
ifget () >0
Node end ("
end. ("
endNode.Value ("", Util.getTimestamp (query.getEnd
addNode
} if (.withid null && contact null && !isference
Node with (" .with
.Value ("valuewith
- (
// queryMessageive (connection, nextQuery

final (connectionProtocol (), query
synchronized (eries)
// queries.add (nextQuery
}
}

public boolean queryInProgress ( contact, OnLoaded
moreMessagesLoadedListener)
ized (eries)

(Query query : queries)
if (query.getWith () .equals (contact.getUserId()))
if (query.onMoreMessagesLoaded == null &&MessagesListener

null) qgquery.setOnMoreMessagesLoaded (Listener}
return true; }}
return false; }}
private void finalizeQuery (Protocol protocol, Query query)
synchronized (queries) {
.remove (query) ;
}
Contact contact = null;
if (query.getWith() !'= null) {
contact = protocol.getItemByUID (query.getWith());
}

if (contact != null) {

Next line of code:
LLMs’ Response:

contact.setlLastMessageTransitted (query.getEnd()); \n

Ground Truth:
if (contact.setLastMessageTransmitted (query.getEnd()))

Zero-shot LLLMs’ Response:

contact.removeQuery (query) ; \n

Figure 8: Cases study on lcc code completion task in LongBench benchmark (Bai et al.| |2023) in
2,000 constraint using GPT-3.5-Turbo.
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Compressed Prompt:

Please the of the question. questions

are sometimes your cold but the of you isnt:ason: What food hasges:: Who the first coach
the Clevelandns What arch the Placede: Other: Who created Harryime What Carbean cult
didvey:: did Iraqi troops::ose cover is of an of Universal Import What the of Betty theest
thectic:: Wh the founder and of The National Review:: was T Tims What the historicalals
following the of Agra is whiteolate: of What the the: is a of everything:ase and:ose old
London come- was : “y my sweet:: The major team in is called: Group or organization
of: How dorow: M of: the name to ofese ?: Animal: is gymnia: of the between k and
ch: of: the lawyer for Randy C:: the Francisco What year the in whereci became What
country most is g the Who the to P What are the states the the name , Elino: What manmade
waterways is1.76: Other of Z:ivalent of: of What was the:: How do ants have: of: the Dow
first the high sound that hear in ear every then , but then it away ,:: didist control in:: How
can I ofies ° What did theramid-ers of Egypt eat:: How does Belle her inast: M of: When
reading classs does EENTY :: Expression abbre: When was Florida:: manyelies were killed
the: Whative on Punchl Hill and has1 What the Filenes the cookies in Internet: What word
contains: Word with a special is Larry: a person: a Frenchist: of What American wrote :
Goodors:: Where theiestk rail stations:: many people ofosis: the worsticane Whatbean is
of was Jean: What the2 What caused Harryini What buildingately enough the theld bill:
Other location: many logmic there a rule:: the the word , JJ the average hours per months
byOL:: How a cop of: many are of is Ch:: is Whatation does: the the Whatte is ““ a whole
new: Other: the Chyl nuclear:

the first the: Invention, book and otherative What does *“ Philebus-:: didoco painting: the
between: is Po What. the lowest highestation 6:: How the inpy: an the “ What was General
Douglasthur in was by Presidentuman: How isaster: an the forini:: was Dick:: Where can
find on religion and health the and: Other Whatian the TV51 theBC show for How the is of
What Englishrighted “ thee , so What song put James:ative piece

What new school in Philadelphia: Whatwestern isbed is B: is What Asian was as The Little
Brown theans What of thean meeting: is: much the91 ?:: On which isbor: Who first:: the::
How you a paint: an What then-der theterset ,:ivalent What is to hold the lens the the star:
Why toason

a for behavior , or that the accepted of:ivalent of Perg What religion What country you the
What does V:: Where I a goodboard for:: buyies on the the the: areter cookiespped with
cres: theoe thated ofasticitations , as ° the rules to *“: the three What do for an:: CNN in:: is
a:ose special bears was onl7 the Who used Au an electionan: what book: is to the various
ways can measure IT:chni and method is software What British minister and wereins: aic
the to overcome fear What drink would the biggest:: the States do people longest:: which
the the rare disease as : , andentizations , , and is of a is What Russian mastery What
a perfect a: What ¢ was Thomas in: Other: did the of What did What can feature the
different:ques the-O the ons lips at What anetic did Victoria used her child: D What do:
many from to of ofors , body: and is What causes get in: the G What is Other Who thel
century-stone who gained of Florence but endedake:

of c: the oldest relationship sister with The the world of a to detectchni Whaty make:: Stuart
is first: is w What a character by Rs

Question: What is a fuel cell ?

Type:

LLMs’ Response:

Definition of something

LLMs’ Response after Subsquence Recovery:
Definition of something

Ground Truth:
Definition of something

Figure 9: Cases study on trec few-show learning in LongBench benchmark (Bai et al., |2023) in
2,000 constraint using GPT-3.5-Turbo.
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