
Under review as a conference paper at ICLR 2024

IF LLM IS THE WIZARD, THEN CODE IS THE WAND:
A SURVEY ON HOW CODE EMPOWERS LARGE LAN-
GUAGE MODELS TO SERVE AS INTELLIGENT AGENTS

Anonymous authors
Paper under double-blind review

ABSTRACT

The prominent large language models (LLMs) of today differ from past language
models not only in size, but also in the fact that they are trained on a combination
of natural language and code. As a medium between humans and computers, code
translates high-level goals into executable steps, featuring standard syntax, logical
consistency, abstraction, and modularity. In this survey, we present an overview of
the various benefits of integrating code into LLMs’ training data. In addition, we
trace how these profound capabilities of LLMs, brought by code, have led to their
emergence as intelligent agents (IAs). Finally, we present several key challenges
and future directions of empowering code-LLMs to serve as IAs.

1 INTRODUCTION

Code has become an integral component in the training data of large language models (LLMs), not
only because the acquired programming skills facilitate commercial applications, such as Github
Copilot1, but also because it improves the models’ previously lacking reasoning abilities (Liang et al.,
2023b), enabling the models to handle a wider range of more complex tasks. Consequently, LLMs
rapidly emerge as a primary decision-making hub for intelligent agents (IAs) dealing with tasks that
involve more intricate steps (Zhao et al., 2023). As depicted in Figure 1, this survey aims to explain
the widespread adoption of code-specific training in the general LLM training paradigm and how
code enhances LLMs to act as IAs, based on the taxonomy of relevant papers (see Figure 2).

Organization of This Survey We define code as formal language that is both machine-executable
and human-interpretable (see our detailed definition of code and typical methods for LLM code train-
ing in Appendix A). With insights from characteristics of code (see our case studies in Appendix B.1),
our literature review reveals that integrating code into LLM training i) enhances their programming
and reasoning capabilities (§2); ii) enables the models to directly generate executable, fine-grained
steps during decision-making, thereby facilitating their scalability in incorporating various tool
modules through function calls (§3); and iii) situates the LLMs within a code execution environment,
allowing them to receive automated feedback from integrated evaluation modules and self-improve
(§4). In addition, as LLMs are becoming key decision-makers for IAs in complex real-world tasks,
our survey also explores how these advantages facilitate their functioning as IAs (§5). We discuss
several open challenges and promising future directions in Appendix C.

2 CODE PRE-TRAINING BOOSTS LLMS’ PERFORMANCE

Pre-training LLMs on code, exemplified by OpenAI’s GPT Codex (Chen et al., 2021), expands their
task scope beyond natural language. Code’s requirement for logically coherent, ordered sequences of
executable steps enhances LLMs’ chain-of-thought (CoT) performance, improving complex reasoning
skills (Lyu et al., 2023; Zhou et al., 2023a; Fu & Khot, 2022). By implicitly learning from code’s
structured format, code LLMs excel in commonsense structured reasoning tasks (Furuta et al., 2023;
Liu et al., 2023a).

1https://github.com/features/copilot.

1



Under review as a conference paper at ICLR 2024

Figure 1: An illustration of how code empowers large language models (LLMs) and enhances their
downstream applications as intelligent agents (IAs). While traditional LLMs excel in conventional
natural language tasks like document classi�cation and question answering, further pre-training or
�ne-tuning LLMs with human-interpretable and machine-executable code serves as an additional
power-up — akin to equipping wizards with mana-boosting wands. This signi�cantly boosts their
performance as IAs through intricately woven operational steps.

In the following sections, we outline three key areas where code pre-training bene�ts LLMs:i)
improving programming pro�ciency in§2.1,ii) enhancing complex reasoning capabilities in§2.2,
andiii) facilitating the capture of structured commonsense knowledge in§2.3, as depicted in Figure
3.

2.1 STRENGTHENLLM S' PROGRAMMING SKILLS

LLM as a strong coder. Earlier language models only generate domain-speci�c programs (Ellis
et al., 2019) or restrict to one of the generic programming languages, such as Java or C# (Alon
et al., 2020). Empowered by the increasing number of parameters and computing resources, recent
LLM-based code generation models (such as AlphaCode (Li et al., 2022), CodeGen (Nijkamp et al.,
2022), SantaCoder (Allal et al., 2023), PolyCoder (Xu et al., 2022)) could master more than 10
languages within the same model and show unprecedented success. A well-known work is CodeX
(Chen et al., 2021), with 12 billion parameters that reads the entire GitHub database and is able to
solve 72.31% of challenging Python programming problems created by humans. Recent studies (Zan
et al., 2023; Xu et al., 2022; Du et al., 2023; Vaithilingam et al., 2022; Wong et al., 2023; Fan et al.,
2023) have provided systematic surveys and evaluations of existing code-LLMs.

With its strong code generation ability, LLMs bene�t various applications that rely on code, such
as database administration (Zhou et al., 2023b), embedded control (Liang et al., 2023a), game
design (Roberts et al.), spreadsheet data analysis (Liu et al., 2023c), and website generation (Cal�o &
De Russis, 2023).

LLM as a state-of-the-art code evaluator. Interestingly, LLMs themselves could also serve as
state-of-the-art evaluators (i.e., analyze and score) for human or machine-generated codes. Kang et al.
(2023a) leverage LLM-based models for code fault localization, while Zhuo (2023) uses GPT-3.5 to
evaluate the functional correctness and human preferences of code generation. In addition, Deng et al.
(2023a) design a LLM-based penetration testing tool and �nd that LLMs demonstrate pro�ciency in
using testing tools, interpreting outputs, and proposing subsequent actions. Two recent efforts (Li
et al., 2023a; Mohajer et al., 2023) also utilize LLM for examining and analyzing source code without
executing it. Furthermore, LLMs are used for automatic bug reproduction in Kang et al. (2023b) and
vulnerable software evaluation in Noever (2023).

Multi-LLM collaboration solves complex coding problems. Collaborative coding among several
role-speci�c LLM agents exhibits more accurate and robust performance towards complex tasks.

2



Under review as a conference paper at ICLR 2024

H
ow

C
od

e
E

m
po

w
er

s
LL

M
s

to
S

er
ve

as
IA

s

How Code
Assists LLMs

Boost LLMs'
Performance (§2)

Strengthen LLMs'
Programming Skills
(§2.1)

LLM as a Strong
Coder

AlphaCode (Li et al., 2022), SantaCoder (Allal et al., 2023), PolyCoder
(Xu et al., 2022), CodeX (Chen et al., 2021), CodeGen (Nijkamp et al., 2022)

LLM as a SOTA
Code Evaluator

AutoFill (Kang et al., 2023a), GPT-3.5Eval (Zhuo, 2023), PentestGPT
(Deng et al., 2023a), SkipAnalyzer (Mohajer et al., 2023), LIBRO (Kang et al., 2023b)

Collaboration Coding
Solves Complex Tasks

MetaGPT (Hong et al., 2023), ChatDev (Qian et al., 2023a), DyLAN
(Liu et al., 2023g), Autogen (Wu et al., 2023b), Self-planning (Jiang et al., 2023)

Empower LLMs'
Complex Reasoning
(§2.2)

Enhancing Task Deco-
mposition with Chain
of Thought

Code Training Improves LLM CoT (Fu & Khot, 2022), When to Train LLM On Code
(Ma et al., 2023a)

Program-of-Thought
LM Decomposers (Ye et al., 2023), PoT (Chen et al., 2023b), Pal (Gao et al., 2023)
LM Theorem Proving (Polu & Sutskever, 2020), LM Math Solving (Drori et al., 2022),
Binding LMs (Cheng et al., 2023), SelfzCoT (Lei & Deng, 2023)

Enhances LLMs in
Capturing Structur-
ed Knowledge
(§2.3)

Commonsense Reaso-
ning Graph

COCOGEN (Madaan et al., 2022), CODE4STRUCT (Wang et al., 2023e),
ViStruct (Chen et al., 2023d)

Visually Situated Nat-
ural Language WebGUM (Furuta et al., 2023), Pix2Struct (Lee et al., 2023),

Connect LLMs to
Other Functional
Ends (§3)

Relate LLMs to
Digital Ends (§3.1)

Text-based Tools TALM (Parisi et al., 2022b), Toolformer (Schick et al., 2023), ToolAlpaca (Tang et al., 2023),
Gorilla (Patil et al., 2023), RestGPT (Song et al., 2023), ToolkenGPT (Hao et al., 2023)

Multimodality Tools
HuggingGPT (Shen et al., 2023), VISPROG (Gupta & Kembhavi, 2023),
ViperGPT (Suŕ�s et al., 2023), TaskMatrix.AI (Liang et al., 2023d),
VPGEN (Cho et al., 2023)

Relate LLMs to P-
hysical Ends (§3.2)

ProgPrompt (Singh et al., 2022), Code-as-Policies (Liang et al., 2023a), VoxPoser (Huang et al., 2023a),
ChatGPT4Robotics (Vemprala et al., 2023), LaMPilot (Ma et al., 2023b), RRR (Cui et al., 2023a)

Provide LLM with
an Executable Envi-
ronment for Autom-
ated Feedback (§4)

Feedbacks from
Code Execution
(§4.1)

Ds-1000 (Lai et al., 2023), CodeRL (Le et al., 2022), Self-debugging(Chen et al., 2023c), Leti (Wang et al., 2023f)

Methods for Enhan-
cing LLM's Perfor-
mance with Feedb-
ack (§4.2)

Selection Method CODET (Chen et al., 2022), SRank (To et al., 2023), Lever (Ni et al., 2023)

Prompting Method Mint (Wang et al., 2023g), Self-Debugging (Chen et al., 2023c)

Finetuning Method Leti (Wang et al., 2023f), CodeRL (Le et al., 2022), CompCoder (Wang et al., 2022),
Self-edit (Zhang et al., 2023a), CodeScore (Dong et al., 2023a), ILF (Chen et al., 2023a)

How Code-
LLMs bene�t
IAs (§5)

Decision-making
(§5.1)

Environment
Perception Webshopping (Yao et al., 2022b), Mind2Web (Deng et al., 2023b), Progprompt (Singh et al., 2022),

Planning Code as Policies (Liang et al., 2023a), ProgPrompt (Singh et al., 2022), Experimental assistants (Boiko et al., 2023)

Execution (§5.2)

Action Grounding AgentBench (Liu et al., 2023f), Voyager (Wang et al., 2023b), Mint (Wang et al., 2023g), Progprompt (Singh et al., 2022)

Memory
Organization Toolmaker (Cai et al., 2023), CRAFT (Yuan et al., 2023), Creator (Qian et al., 2023b), Voyager (Wang et al., 2023b)

Self-improvement
(§5.3) Voyager (Wang et al., 2023b), Chameleon (Lu et al., 2023), Agents for Science problems (Bran et al., 2023; Swan et al., 2023; Wu et al., 2023b)

Figure 2: The organization of our paper, with a curated list of the most representative works. The
complete work list is provided in Appendix D.

(a) Strengthen LLMs' program-
ming and code evaluation skills
(§2.1).

(b) Empower LLMs' complex
reasoning, decoupling computa-
tion from language understanding
(§2.2).

(c) Enable LLM to better capture
structured knowledge and better
understand complex multimedia
data (§2.3).

Figure 3: How code pre-training boosts LLMs' performance.

Hong et al. (2023) incorporates human programming work�ows as guides to coordinate different
agents. Dong et al. (2023b) assigned three roles: analyst, coder, and tester to three distinct “GPT-3.5”s,
which surpasses GPT-4 in code generation. Meanwhile, Qian et al. (2023a) designs a chat-powered
software development process, assigning more than three roles to separate LLM agents. Other
similar methods (Liu et al., 2023g; Talebirad & Nadiri, 2023; Wu et al., 2023b; Jiang et al., 2023)
all employ multiple code-LLM agents or different phases of the same agent for code generation,
software developments, or leveraging generated intermediate codes for other general purpose tasks.

3



Under review as a conference paper at ICLR 2024

2.2 EMPOWERLLM S' C OMPLEX REASONING

Code pre-training improves chain-of-thought performance. CoT prompting, where prompt
inputs are designed with chains of reasoning, allows the LLM to condition its generation with further
steps of reasoning (Wei et al., 2023). CoT has seen successful in the task decomposition of many
problem settings, including planning (Huang et al., 2022b) and evidence-based question answering
(Dua et al., 2022; Ye et al., 2023).

While LLM CoT ability was originally mainly attributed to dramatically increased model sizes
(Wei et al., 2022b), recent evidence compiled by Fu & Khot (2022) suggests that much of the
performance improvements from CoT stems from its pre-training on code. In support of this
hypothesis, Ma et al. (2023a) show that pre-training on code in small-sized LLMs (2.6B) (Zeng et al.,
2021) enhances performance when using CoT, and even more remarkably that smaller code-pretrained
LLMs outperform their larger non-code counterparts across many different tasks. Furthermore, their
study indicates that incorporating a greater volume of code during the initial phases of LLM training
signi�cantly enhances its ef�cacy in reasoning tasks. Notably, both Fu & Khot (2022) and Ma
et al. (2023a) show that pre-training on code improves LLM performance in both standard and CoT
prompting scenarios across downstream tasks.

Program-of-thought outperforms chain-of-thought. Furthermore, in comparison to vanilla CoT
methods, LLMs that �rst translate and decompose a natural language task into code (Chen et al.,
2023b; Gao et al., 2023), typically termed program-of-thought (PoT) prompting or program-aided
language model, see sizable gains in tasks that require disambiguation in both language and explicit
longitudinal structure. This approach is especially effective in complex areas such as theoretical
mathematics (Polu & Sutskever, 2020), undergraduate mathematics (Drori et al., 2022), and question
answering with data retrieval (Sun et al., 2023b; Cheng et al., 2023).

PoT enhances performance due to the precision and veri�ability inherent in code as a machine-
executable language. PoT implementations from Chen et al. (2023b), Gao et al. (2023), and Ye et al.
(2023) show that by directly executing code and verifying outcomes post translation by LLMs, one
can effectively mitigate the effects of incorrect reasoning in CoT (Ji et al., 2023). Such improvements
are not limited to purely executable coding languages such as Python or SQL, nor are they limited
to tasks that are speci�cally rigid in structure such as mathematics (Drori et al., 2022) and data
retrieval (Rajkumar et al., 2022). Enhancements also extend to the realm where even translating into
pseudo-code to decompose a task can improve zero-shot performance (Lei & Deng, 2023) in word
problems containing numbers, and general reasoning tasks such as StrategyQA (Geva et al., 2021).

2.3 ENABLE LLM S TO CAPTURE STRUCTUREDKNOWLEDGE

Code generation unveils superior structural commonsense reasoning.Given that code possesses
the graph structure of symbolic representations, translating textual graphs, tables, or charts into code
empowers a code-driven LLM to logically process such information according to code reasoning and
generation principles. Previous work (Madaan et al., 2022; Wang et al., 2023e) shows that LLMs
undergoing code pre-training may rival, or even exceed, their �ne-tuned natural language counterparts
in tasks involving structural commonsense reasoning, even with limited or no training data.

COCOGEN (Madaan et al., 2022) �rst reframed the commonsense reasoning graph completion task
as a code generation task and demonstrated improved few-shot performance in reasoning graphs, table
entity state tracking, and explanation graph generation. Building on this perspective, CODE4STRUCT
(Wang et al., 2023e) applied code-LLMs to semantic structures, focusing on the event argument
extraction task. By leveraging code's features such as comments and type annotation, it achieved
competitive performance with minimal training instances. ViStruct (Chen et al., 2023d) extended this
approach further to multimodal tasks, leveraging programming language for representing visually
structural knowledge.

Markup code mastery evolves visually situated natural language understanding. An additional
research stream involves using markup code (e.g., HTML and CSS) to delineate and derender struc-
tured graphical information in graphical user interfaces (GUIs) or visualizations in documents, aiding
large vision-language models (LVLMs) in capturing visually situated natural language (VSNL). For
LVLMs' markup code understanding,WebGUM(Furuta et al., 2023) exempli�ed autonomous web

4



Under review as a conference paper at ICLR 2024

(a) The code-centric tool-calling paradigm serves as
a uni�ed interface between LLMs and various func-
tional ends, thus enabling many cross-modality and
cross-domain tasks. (§3).

(b) LLMs can be embedded into a code execution en-
vironment, where they collect faithful, automatic, and
customizable feedback for self-improvement. (§4).

Figure 4: How code connects LLMs to other function ends and how code execution environments
provide LLMs with feedback.

navigation. It employed a pre-training approach using webpage screenshots and the corresponding
HTML as input, and navigation action as output, showcasing the effectiveness of pre-training model
with markup code augmentation in webpage understanding. For markup code generation, Pix2Struct
(Lee et al., 2023) achieved SOTA in VSNL understanding by pre-training an image-to-text model
on masked website screenshots, and further training with OCR, language modeling, and image
captioning objectives.

3 CODE CONNECTSLLM S TO OTHER FUNCTION ENDS

Recent studies reveal that connecting LLMs to diverse functional ends enhances their task performance
(Mialon et al., 2023; Parisi et al., 2022a; Peng et al., 2023; Gou et al., 2023). These functional ends
enable LLMs to access external knowledge, engage with different modalities, and interact effectively
with various environments. As shown in Table 1 in the appendix, a prevalent trend is observed where
LLMs generate programming languages or use pre-de�ned functions to connect with other functional
ends—a phenomenon we termed thecode-centric paradigm, which provides a simple and clear
interaction method for LLMs, boosting �exibility and scalability. Notably, as illustrated in Figure 4a,
it allows LLMs to interact with functional ends across diverse modalities and domains, expanding
their capacity to handle complex tasks.

In §3.1, we explore textual and multimodal (digital) tools connected to LLMs, while§3.2 focuses
on physical-world functional ends, including robots and autonomous driving. This showcases the
versatility of LLMs in addressing challenges across various modalities and domains.

3.1 RELATE LLM S TO DIGITAL ENDS

Text-Based Tools. The code-centric framework initially drive progress in text-based tools. Prior to
the popularity of this framework, research on augmenting LMs with single tools like information
retrivers (Guu et al., 2020; Lewis et al., 2020; Izacard et al., 2022) required a hardcoded-in-inference-
mechanism (e.g. always calling a retriever before the generation starts), limiting �exibility and
scalability. TALM (Parisi et al., 2022b) �rst incorporates multiple text-based tools by invoking API
calls with a pre-de�ned delimiter, enabling unambiguous calls to any text-based tools at any position
of generation. Following their work, Toolformer (Schick et al., 2023) marks API calls with< API>
< /API> along with their enclosed contents. Later, diverse tool-learning approaches were introduced
to facilitate the integration of numerous text-based tools across various foundational models (Song
et al., 2023; Hao et al., 2023; Tang et al., 2023). The code-centric framework facilitates the invocation
of a diverse range of external text modules. These include calculators, calendars, machine translation
systems, web navigation tools, as well as APIs from HuggingFace and TorchHub (Thoppilan et al.,
2022; Yao et al., 2022c; Shuster et al., 2022; Jin et al., 2023; Yao et al., 2022a; Liu et al., 2023e; Jin
et al., 2023; Patil et al., 2023).

Multimodal Tools. The high scalability of the code-centric LLM paradigm extends tool-learning to
other modalities. Early work (Gupta & Kembhavi, 2023; Sur�́s et al., 2023; Subramanian et al., 2023)

5


	Introduction
	Code Pre-Training Boosts LLMs' Performance
	Strengthen LLMs' Programming Skills
	Empower LLMs' Complex Reasoning
	Enable LLMs to Capture Structured Knowledge

	Code Connects LLMs to Other Function Ends
	Relate LLMs to Digital Ends
	Relate LLMs to Physical Ends

	Code Provides LLM with an Executable Environment for Automated Feedback
	Various Feedback from Code Execution
	Methods for Enhancing LLM's Performance with Feedback

	Application: Code-empowered LLMs Facilitate Intelligent Agents
	Decision Making
	Execution
	Self-improvement

	Conclusion
	Preliminaries
	Our Definition of Code
	LLM Code Training Methods

	Discussions
	Intrinsic Qualities of Code that Contribute to LLM Empowerment
	Breadth by Code Delegation or Depth by Multimodality Joint Learning
	The Potential of Using Code-centric Framework for Intelligent Agent Construction

	Challenges
	The Causality between Code Pre-training and LLMs' Reasoning Enhancement
	Acquisition of Reasoning Beyond Code
	Challenges of Applying Code-centric Paradigm
	Learning from multi-turn interactions and feedback

	The Comprehensive Paper List
	Paper Statistics from Arxiv
	Benchmarks for Evaluating Complex Reasoning with Code:
	Mappings of Sections to Core Code features

