
Under review as submission to TMLR

A Bias Correction Mechanism for Distributed Asynchronous
Optimization

Anonymous authors
Paper under double-blind review

Abstract

We develop an asynchronous gradient method for training Machine Learning models with
asynchronous distributed workers, each with its own communication and computation pace,
and its own local data distribution. In the modern distributed machine learning training
process, local data distribution across workers is often heterogeneous (a.k.a. client bias),
which is a significant limiting factor in the analysis of most existing distributed asynchronous
optimization methods. In this work, we propose AsyncBC, a distributed asynchronous variant
of the SARAH (Nguyen et al., 2017) method, and show that this is an effective Bias Correction
mechanism for distributed asynchronous optimization. We show that AsyncBC can effectively
manage arbitrary data heterogeneity, as well as handle gradient updates that arrive in an
uncoordinated manner and with delays. As a byproduct of our analysis, we also provide a
deeper understanding of the impacts of different stochasticity models on the convergence of
the SARAH method.

1 INTRODUCTION

Modern machine learning relies heavily on gradient descent and its many variants (Kingma and Ba, 2017).
As the size of modern machine learning models grows dramatically, the data required to train such models
also becomes huge, making it infeasible to collect all the data on a single machine. Therefore, it is often
necessary to perform the training of modern machine learning models (e.g. large language models (Shoeybi
et al., 2019), generative models (Ramesh et al., 2021; 2022), and others (Wang et al., 2020)) in a distributed
fashion (Bekkerman et al., 2011), where data are distributed across different machines (clients/workers)
and updates are coordinated by a parameter server. Another important setting is the federated learning
setting (Konečný et al., 2016; Kairouz et al., 2019), where clients (e.g., edge devices or hospitals) jointly train
a model without sharing their local data.

Performing gradient methods for large models in this data-distributed setting faces many practical challenges,
and there is a long line of research attempting to resolve some practical obstacles in distributed training,
including communication compression (Seide et al., 2014; Koloskova et al., 2020a; Fatkhullin et al., 2023; Gao
et al., 2024), decentralization (Lian et al., 2017), local steps (Mishchenko et al., 2022c; Stich, 2018; Jiang
et al., 2024) and their combinations (Condat et al., 2024; Huang et al., 2024). An implicit assumption made
in all of these methods is that all workers’ computations and communications are synchronized, where all
workers and the server wait for the slowest node before starting the next round of computations. In practice,
there are several possible sources for delays, including network latency and hardware heterogeneity (Horvath
et al., 2021; Kairouz et al., 2019), and slower “straggler” nodes might significantly hinder the performance of
the distributed training process.

A natural approach to mitigate the negative impact of the straggler nodes is the asynchronous optimization
paradigm. In the asynchronous setting, the server and workers do not wait for the straggler nodes, and when
the server receives a gradient from any worker, it immediately takes a step to compute the next point and
assigns it to some workers. There is a long line of research studying asynchronous methods (Nedić et al.,
2001; McDonald et al., 2010; Agarwal and Duchi, 2011; Arjevani et al., 2020; Stich et al., 2021; Nguyen
et al., 2022a). Among them, Nguyen et al. (2022a) proposed the FedBuff method that demonstrated the

1



Under review as submission to TMLR

practical relevance and superiority of asynchronous methods in the distributed setting that we focus on in
this paper. Notably, several recent works attempt to improve the analysis of asynchronous methods in this
setting: Koloskova et al. (2022) provided a sharper analysis using the empirical average delay of the workers,
Mishchenko et al. (2022a) analyzed the convergence under arbitrary delay patterns, and Islamov et al. (2023)
provided a unified analysis of several different asynchronous paradigms.

However, the convergence analysis in these works relies on the bounded gradient dissimilarity assumption,
i.e., the distance between the gradient of the local function and the gradient of the global function is upper
bounded by some value ζ. The convergence rates of these methods depend on the value of ζ, and therefore
their performances would degrade severely when ζ is large, and when there is no finite value ζ that satisfies
the gradient dissimilarity bound, the algorithm does not converge. In practice, the value of ζ is typically
unknown, making algorithms that depend on this value less robust. The case where gradient dissimilarity
is close to 0 is referred to as the data homogeneous setting, but it is often unrealistic in many modern
distributed optimization scenarios, especially the cross-device Federated Learning setting (Kairouz et al.,
2019; Karimireddy et al., 2020a). To make asynchronous methods applicable to training beyond the data
centers where the data is shuffled across all workers, it is crucial to design an asynchronous method that is
not affected by data heterogeneity.

1.1 Contribution

In this work, we investigate the distributed asynchronous gradient method under arbitrary data heterogeneity.

• We propose and analyze AsyncBC, a distributed asynchronous variant of SARAH, and show that it
is an effective bias correction mechanism for distributed asynchronous optimization. While most
existing works on distributed asynchronous optimization rely on gradient dissimilarity assumptions
to obtain their convergence rate, our method provably converges without any such assumptions, and
it is therefore more robust in the practical setting where data heterogeneity might be large.

• We provide convergence analysis of our method in the stochastic setting under a mildly stronger
structural assumption of the local functions, and we provide some insights into the necessity of the
assumption. As a byproduct, we also demonstrate that SARAH (Nguyen et al., 2017) might fail to
converge in the presence of independent stochastic noise.

• We also conduct numerical experiments to corroborate our theoretical findings.

1.2 Related Work

Table 1: Theoretical comparison of our proposed method with asynchronous gradient methods without bias
correction. We compare the rates in terms of the number of communications to the server

Algorithm BG(a) BGD(b) Rate(c)

Async-GD
(Koloskova et al., 2022) No Yes LmaxF0

√
τCτmax

T +
√

LmaxF0ζ2
√

T
+
(

LmaxF0τCζ
T

)2/3

AsGrad
(Islamov et al., 2023) Yes Yes LmaxF0τC

T +
√

LmaxF0ζ2
√

T
+
(

LmaxF0τCG
T

)2/3

AsyncBC-GD
Ours No No LmaxF0

√
τCτmax

T + F0
√

LLmaxτmax√
T

(a) BG stands for bounded gradient assumption: ∥∇fi(x)∥2 ≤ G2 for all i ∈ [n].
(b) BGD stands for bounded gradient dissimilarity assumption: ∥∇fi(x) − ∇fj(x)∥2 ≤ ζ2 for all i, j ∈ [n].
(c) We present the best-known rates under the most relevant set of assumptions as we use in the analysis. f is assumed to be
L-smooth and each local function fi is assumed to be Lmax smooth. We omit the initializations that are independent of the target
error.

Asynchronous Parallel Optimization. There is a vast amount of literature in the field of asynchronous
optimizations, dating back to the late 1989 (Bertsekas and Tsitsiklis, 2015). Earlier works on asynchronous

2



Under review as submission to TMLR

methods deal with coordinate-wise asynchronicity and the parallel setting, with the Hogwild! method being
one of the most known works (Recht et al., 2011). There is a line of works extending the methodology
of Hogwild!, either improving the analysis (Nguyen et al., 2018) or proposing new variants of the method,
including variance-reduction-type variants (Reddi et al., 2015; Zhao and Li, 2016; Mania et al., 2017; Leblond
et al., 2017; 2018). These earlier works typically assume that the data is shared across all workers and rely
on the sparsity assumption on the local functions (i.e., each local function only affects a small number of
coordinates). In the parallel settings, asynchronicity is typically quantified in terms of bounded overlaps of
the update, which is not applicable in the distributed setting.

Asynchronous Distributed Optimization. In this work, we do not pursue the parallel direction, which
might not fit the practical setting of modern machine learning, where each local function typically affects the
entire model, and data is distributed across different workers in a potentially heterogeneous manner (Nguyen
et al., 2022a). Instead, we consider the distributed optimization setting. In this setting, there is a parameter
server that handles the updates, and the asynchronicity is therefore quantified in terms of the delay (or
staleness) of the client’s state. In recent years, there has been a surge of interest in the distributed setting
due to its closer relevance to the modern machine learning practice, especially in the federated learning
paradigm (Kairouz et al., 2019). Arjevani et al. (2020) and Stich and Karimireddy (2020) provided the
first tight convergence analysis for constant delays, while Koloskova et al. (2022), Mishchenko et al. (2023),
and Islamov et al. (2023) improved various aspects of the analysis of the distributed asynchronous gradient
methods. Nguyen et al. (2022b) proposed the FedBuff method, which utilized a server buffer to balance the
trade-off between the asynchronicity and update quality in practical settings. Such a technique is orthogonal
to our method, and might be used in conjunction with our method. Recently, asynchronous reinforcement
learning methods have also been studied in (Lan et al., 2024).

In Table 1, we compare our method to recent works on asynchronous gradient methods without bias correction.
As is standard in the literature, we measure the complexity of the asynchronous methods in terms of the
number of communications on the server side. This is asymptotically equivalent to the total number of
finished local gradient oracle calls. We omit the computation of the initial inputs that are independent of the
target error.

Bias Correction. The seminal work SCAFFOLD of Karimireddy et al. (2020b) introduced the concept of
client bias (or client drift) and the idea of bias correction (or drift control) to the distributed and federated
learning community. Following SCAFFOLD, there is a large body of works studying the bias correction
mechanism for various distributed optimization settings, including distributed or decentralized optimization
with communication compression (Mishchenko et al., 2019; Stich, 2020; Richtárik et al., 2021; Gao et al.,
2024), local updates with infrequent communication (Mishchenko et al., 2022b; Jiang et al., 2024), and the
combination of these settings (Condat et al., 2023; Grudzień et al., 2023; Huang et al., 2024). Many existing
works on bias correction apply global or local control variates that draw inspiration from variance-reduction-
type methods (Johnson and Zhang, 2013; Defazio et al., 2014; Nguyen et al., 2017). We are only aware of
one concurrent work that studies bias correction in the distributed asynchronous setting (Wang et al., 2025).
Their bias correction mechanism is based on the SAG/SAGA style variance reduction methods (Schmidt et al.,
2017; Defazio et al., 2014) and is different from ours. We further point out that, while SCAFFOLD style bias
correction mechanism is the building block for many existing bias correction methods in other settings, it
is not directly applicable to the asynchronous setting, since SCAFFOLD requires the server to collect full
gradients in an epoch-wise manner, which requires epoch-wise synchronizations of the workers.

2 PROBLEM FORMULATION

We consider the distributed optimization problem of the form

min
x∈Rd

[
f(x) := 1

n

n∑
i=1

fi(x)
]

, (1)

where the global objective function f : Rd → R is defined as the sum of n local objective functions fi : Rd →
R, i ∈ [n]. x represents the parameters of the model. Each worker (client) i ∈ [n] can only access the local

3



Under review as submission to TMLR

function fi and its gradient ∇fi. As is standard in the analysis of non-convex optimization algorithms, we
assume that there exists some f⋆ such that f(x) ≥ f⋆ for all x ∈ Rd. The problem (1) covers a wide range of
optimization problems arising in the training process of Machine Learning models in distributed (Stich, 2018)
or federated (Nguyen et al., 2022b) fashion.

We make the following smoothness assumption on the global function f :
Assumption 1. We say that f is L-smooth, i.e. it has L-Lipschitz gradient, such that for all x, y ∈ Rd

∥∇f(x) − ∇f(y)∥ ≤ L ∥x − y∥ .

Note that the smoothness assumption is standard in the non-convex optimization literature. While recent
works on asynchronous optimization (Koloskova et al., 2022; Islamov et al., 2023; Mishchenko et al., 2023)
make the stronger assumption that each local function fi is also L-smooth, we instead make the following
weaker Hessian dissimilarity assumption on the local functions fi:
Assumption 2. We assume that there exists some δ > 0 such that for each fi, we have:

∥∇f(x) − ∇f(y) − (∇fi(x) − ∇fi(y))∥ ≤ δ ∥x − y∥ .

Note that even though this is called a dissimilarity assumption, this should not be confused as a mere
replacement of the usual additional gradient dissimilarity assumption used in prior works (Koloskova et al.,
2022; Islamov et al., 2023). Instead, this is a more fine-grained characterization of the Li-smoothness
assumption for the local functions, and our results still hold when Assumption 2 is replaced by the usual
smoothness assumption of the local functions. In particular, we have the following simple fact:
Fact 1. If each fi is Li-smooth, then there must exist 0 ≤ δ ≤ (L+Li) such that f and fi satisfies Assumption 2
with parameter δ.

The proof of Fact 1 is straightforward, and we omit it here. Interested readers can refer to Definition 1 in
(Jiang et al., 2024) or (Khaled and Jin, 2022) and the discussions therein. The main advantage of using
this weaker Hessian dissimilarity assumption instead of the usual Li-smoothness assumption for fi is that it
allows us to more clearly characterize the effect of each smoothness parameter. Existing works studied the
convergence in terms of Lmax := maxi∈[n] Li (by assuming that each Li = Lmax). Note that L ≤ 1

n

∑
i∈[n] Li

which is at most, but can potentially be much smaller than, Lmax.1 In other words, we have the following
chain of inequalities, where the gaps might be large:

0 ≤ δ ≤ L + Lmax ≤ 2Lmax.

By considering the global smoothness and the local smoothness separately via Hessian dissimilarity, we obtain
a more fine-grained understanding of the convergence rate’s dependency on the smoothness parameters.

Finally, we discuss the assumptions related to asynchronicity and concurrency.
Assumption 3. We assume that the staleness of the local states at the clients is at most τmax. In other
words, when a client’s output is received by the server at time t, the client’s state is at a time t − τt ≥ t − τmax.

The assumption that the local gradients computed by each worker are delayed by at most τmax rounds is
standard in the distributed asynchronous optimization literature (Stich and Karimireddy, 2020; Nguyen et al.,
2022a; Koloskova et al., 2022; Islamov et al., 2023). There exist works that do not make any assumptions on
the delay pattern (Mishchenko et al., 2022a). However, Mishchenko et al. (2022a) was only able to prove the
convergence in the data-homogeneous regime. Under the data-heterogeneous setting without any assumption
on the delay pattern, it is fundamentally impossible to obtain any meaningful convergence beyond the gradient
dissimilarity: suppose that client 1 never responds, then one can only hope to minimize f − f1/n, instead of
the true global objective f .
Definition 1. Throughout the paper, we write τC as the concurrency, the number of active works at each
iteration.

1Consider the simple case where fn(x) = a∥x∥2

2 and fi(x) = 0, ∀i ∈ [n − 1].Lmax/L = n.

4



Under review as submission to TMLR

Algorithm 1 AsyncBC-GD
1: Input: x0, x1, m0 = ∇f(x0) and concurrency τC . Set x1 = x0 − ηm0
2: sever selects u.a.r. a set of active clients of size τC and sends them x1 and x0
3: each active client k computes gk

1 = 1
τC

(∇fk(x1) − ∇fk(x0))
4: for t = 1, 2, . . . do
5: server receives gjt

t−τt
from client jt

6: server updates mt = mt−1 + gjt

t−τt
▷ server updates momentum

7: server updates xt+1 = xt − ηmt ▷ server updates parameters
8: server selects u.a.r. a new client kt+1 ∼ [n] and sends xt+1 and xt

9: client kt+1 starts computing gkt+1
t+1 = ∇fkt+1(xt+1) − ∇fkt+1(xt) ▷ computes next gradient difference

In practice, to best utilize available resources, the concurrency τC would typically be set to n, the number of
workers. We note that when the concurrency τC equals 1, the asynchronous method reduces to a synchronized
method. Such a connection might be useful for understanding the limitations of the asynchronous methods.
See also our discussion on the basic asynchronous gradient method’s dependence on gradient dissimilarity
assumptions in the next section.

3 BIAS CORRECTION FOR ASYNC OPTIMIZATION

As discussed earlier, the convergence rate of the basic asynchronous gradient method (Koloskova et al.,
2022; Islamov et al., 2023) depends on bounded gradient dissimilarity, more precisely, the assumption that
∥∇fi(x) − ∇f(x)∥2 ≤ ζ2 for all i ∈ [n] and x ∈ Rd. This is a very restrictive assumption of the objective.
We point out that this undesirable dependency on ζ is not simply a technical deficiency in the analysis,
instead, it is a limitation of the method itself. Consider the simplest setting where the number of workers
is n > 1 while the concurrency is one. Then the basic asynchronous method reduces to SGD for finite sum
optimization of batch size one. It is well-known that the convergence of SGD is dependent on ζ (Lan, 2020;
Garrigos and Gower, 2023).2 Therefore, a bias correction mechanism specialized for distributed asynchronous
optimization is necessary to address the algorithm’s convergence in the data-heterogeneous regime.

In this section, we propose AsyncBC-GD that provides a bias correction mechanism for asynchronous
optimization. At an intuitive level, each local client only contributes the difference between their local
gradients at the current point and the previous point, which cancels out the heterogeneity in the local data
distribution, while we apply a server-side momentum to ensure sufficient progress. This mechanism is inspired
by the SARAH variance reduction mechanism (Nguyen et al., 2017). More precisely, AsyncBC-GD maintains a
server-side momentum term mt. When the server receives the gradients from client jt, whose gradients might
be computed at stale points xt−τt and xt−τt−1, the server updates its momentum term and takes a step in
the direction of the new momentum. We highlight the key update steps of AsyncBC-GD below:

mt = mt−1 + ∇fjt
(xt−τt

) − ∇fjt
(xt−τt−1),

xt+1 = xt − ηmt.
(2)

The server then selects another worker kt+1 and sends the updated xt+1 and xt to the worker. In this
algorithm, the server selects the next worker uniformly at random out of all workers. Such sampling can
typically be replaced by a more greedy one where only inactive workers are sampled in the data-homogeneous
regime. In the data heterogeneous regime, the greedy sampling might incur a bias error and lead to non-
convergence (Mishchenko et al., 2023; Islamov et al., 2023), but Wang et al. (2025) recently proposed a
different approach that claims to support greedy sampling.

We summarize AsyncBC-GD in Algorithm 1. Note that on the client side, at Line-3, we reweight the gradient
difference of the initial points. Intuitively, this reweighting at the initial points is important to keep all the
computed gradients in balance, since the initial points x1 and x0 are the only points at which the gradient
differences are computed by τC workers.

2The analysis might be improved to only depend on the gradient dissimilarity at the optimum in some cases (Garrigos and
Gower, 2023).

5



Under review as submission to TMLR

Remark 1 (Communication cost and scalability). At each iteration of AsyncBC, the server receives one
message from a client, performs an update and immediately sends two parameter vectors to a chosen client.
Therefore the communication cost is not affected by the number of clients n, and scaling up with more clients
will not increase the communication workload in each iteration. While as the model size d increases, the cost
of communicating a full parameter or gradient vector will increase, there are compression techniques that can
be applied to reduce the communication cost (Stich and Karimireddy, 2020; Gao et al., 2024). We leave it for
future work to investigate the possibility of applying these techniques to AsyncBC. In addition, as the number
of clients n increases, the purely asynchronous setting where the server updates the model immediately after
receiving a message from a client might not be practical, as the server would have to go through at least n
updates before seeing a message from all clients, which might be inefficient as n increases. To address this in
practice, we might consider a semi-asynchronous setting where the server buffers some amount of messages
from clients before performing one update, similar to the FedBuff setting (Nguyen et al., 2022b). We also
leave it for future work.

3.1 Convergence Analysis of AsyncBC-GD

In this section, we sketch the convergence analysis of Algorithm 1. All missing proofs can be found in the
supplement. The main ingredient of our analysis is the virtual iteration technique introduced by Mania et al.
(2017). The main difference is that we define the virtual iterates x̃t in terms of another virtual iterates m̃t,
the virtual momentums. The analysis is based on carefully bounding the errors between both the virtual
momentum and the true momentum, and the virtual iterate and the true iterate. Variants of virtual iteration
techniques that involve multiple virtual iterates have been considered in the literature (Leblond et al., 2018),
but our formulation in terms of virtual momentum seems to be novel and might be of independent interest.

But first, it would be handy to also define the set of active workers (and its corresponding timestamp) at
each time t precisely: we let C1 := {(k, 1) : k ̸= j1 is an initial active worker} be the set of active workers
at time 1 (after the first worker j1 has communicated its output), and define Ct+1 := Ct \ {(jt+1, t + 1 −
τt+1)} ∪ {(kt+1, t + 1)} for t ≥ 1. In the asynchronous optimization literature (Koloskova et al., 2022), the
active worker set is often simply defined via the worker only. We use the worker-timestamp notation to more
conveniently handle the initialization phase of the algorithm, as the initial states (timestamp 1) are assigned
to τC workers. For t > 1, there is a one-to-one correspondence between the timestamp t and the assigned
worker kt, and we do not need the pair notation.

With the active worker set defined, we can now define our virtual iterate and virtual momentum. We set
x̃0 := x0, x̃1 := x1 and m̃0 := m0 and the following update rules:

x̃t+1 := x̃t − ηm̃t, ∀t ≥ 1 (3)

and
m̃1 := m̃0 +

∑
(k,1)∈C1∪{(j1,1)} gk

1
m̃t := m̃t−1 + gkt

t ∀t ≥ 2 (4)

One of the key limiting factors in existing works (Koloskova et al., 2022; Islamov et al., 2023) is in the upper
bound of the errors between the virtual and true iterates, where a gradient dissimilarity assumption or a
bounded gradient assumption has to be introduced to control the error. In our work, the error is controlled
in terms of local gradient differences, instead of local gradients themselves, and we can therefore bypass the
gradient dissimilarity assumption. In particular, we have the following upper bound on the errors:
Lemma 1. Given Assumptions 1 and 2, the sequences {x̃t}, {xt}, {m̃t} and {mt} satisfy the following:

∥mt − m̃t∥2 ≤ 2η2τC(δ2 + L2)
∑

(k,i)∈Ct

∥mi−1∥2,

∥xt − x̃t∥2 ≤ 2η4(t − 1)(δ2 + L2)τ2
max

t−1∑
i=1

∥mi−1∥2.
(5)

6



Under review as submission to TMLR

Algorithm 2 AsyncBC-SGD
1: Input: x0, x1, m0 = ∇f(x0) and concurrency τC . Set x1 = x0 − ηm0
2: sever selects u.a.r. a set of active clients of size τC and sends them x1 and x0
3: each active client k computes gk

1 = 1
τC

(∇fk(x1, ξ1) − ∇fk(x0, ξ′
1))a

4: for t = 1, 2, . . . do
5: server receives gjt

t−τt
from client jt

6: server updates mt = mt−1 + gjt

t−τt

7: server updates xt+1 = xt − ηmt

8: server selects u.a.r. a new client kt+1 ∼ [n] and sends xt+1 and xt

9: client kt+1 starts computing gkt+1
t+1 = ∇fkt+1(xt+1, ξt+1) − ∇fkt+1(xt, ξ′

t+1)a

a In Section 4.1 we analyze the convergence of the algorithm under the assumption that the stochastic oracle at xt+1 and xt

share the same randomness ξt+1. This is natural when the randomness comes from sampling a mini-batch of the local data. In
most cases, this should be default setup. In Section 4.2 we demonstrate why such an assumption on the randomness is crucial,
by constructing a lower bound where the algorithm does not converge when this assumption is violated.

Note that indeed the upper bound is independent of the data heterogeneity. Now we can state the convergence
rate3 of Algorithm 1:
Theorem 1. Given Assumptions 1 and 2, for the sequence {xt} generated by Algorithm 1, if η :=

min
{

1
6(δ+L)√

τCτmax
, 1

12
√

L(δ+L)τmaxT

}
, then we have:

1
T

T −1∑
t=0

E
[
∥∇f(xt)∥2

]
≤ O

(
(δ + L)√τCτmaxF0

T
+
√

L(δ + L)τmaxF0√
T

)
,

where F0 := f(x0) − f⋆ is the initial suboptimality gap.

Here we see the advantage of using the δ-Hessian dissimilarity assumption instead of a universal Lmax-
smoothness assumption. The Lmax assumption for both the global f and the local fi made in existing
works (Koloskova et al., 2022; Islamov et al., 2023) would lead to Lmax dependency in the second term, which
might be worse than the

√
L(δ + L) dependency that we have now. In the worst case that L = Lmax and

δ = 2Lmax, our convergence rate becomes O
(

Lmax
√

τCτmaxF0/T +
√

LLmaxτmaxF0/
√

T
)
.

Now comparing to the best rates known for Async-GD without bias correction (Koloskova et al., 2022) (see
Table 1), we see that our method in the worst case obtains the same higher-order term LmaxF0

√
τCτmax/T . For

the 1/
√

T term, our method obtains F0
√

LLmaxτmax/
√

T which is independent of the data heterogeneity. On the
other hand, the rate in Koloskova et al. (2022) is

√
LmaxF0ζ2/

√
T , which depends on the gradient dissimilarity

ζ2. Note that in the data homogeneous case (ζ2 = 0), the basic asynchronous gradient descent converges at a
1
T rate which is asymptotically faster than ours, while in the data heterogeneous case, our method converges
faster when ζ2 ≥ LF0τmax. There also exist simple objectives for which the gradient dissimilarity assumption
does not hold for any finite ζ, rendering the basic asynchronous gradient descent non-convergent.4 While our
method is inspired by variance reduction/incremental gradient mechanisms, there exist incremental gradient
methods (e.g. SAG (Schmidt et al., 2017) and SAGA (Defazio et al., 2014)) that achieve a O(1/T) convergence
rate in the synchronized setting. Our method’s O(1/

√
T) rate seems to be inherent to the algorithm design (as

it is also present in the analysis of the synchronized single-loop SARAH method (Nguyen et al., 2017) in the
synchronized setting).

4 STOCHASTIC ORACLE AND STOCHASTICITY ASSUMPTIONS

In the previous sections, we mostly considered the deterministic setting, where each client computed the local
gradients exactly. The cross device Federated Learning setting (Kairouz et al., 2019; Karimireddy et al.,

3We omit the initial computation of m0 = ∇f(x0), which incurs an additional n term that does not depend on the target
error.

4Consider fi(x) = i∥x∥2/2.

7



Under review as submission to TMLR

2020a) encompasses a distributed optimization scenario where there might be an extremely large number of
clients while each client is resource-poor. In such a setting, the local objectives might be highly heterogeneous,
and the local gradients might be computed exactly. However, another important setting of Federated Learning
is the cross-silo setting, where there is a smaller number of clients that might be resource-rich. In such a case,
local gradients are often only approximated stochastically. In this section, we briefly discuss the stochastic
variant Algorithm 2 and the stochasticity assumptions that are suitable for our method. As is common in the
literature, we will always assume that the stochastic gradients are unbiased:
Assumption 4. For each client i ∈ [n], the stochastic gradient ∇fi(x, ξ) is unbiased, i.e. E [∇fi(x, ξ)] =
∇fi(x).

4.1 Convergence of AsyncBC-SGD with Mean-Squared-Smoothness

In this section, we first show that if we make a slightly stronger structural assumption on the smoothness of
the local functions, Algorithm 2 converges. In particular, we introduce the following assumption:
Assumption 5. We say that fi(·) = Eξ [fi(·, ξ)] is ℓ-mean-squared-smooth if:

Eξ

[
∥∇fi(x, ξ) − ∇fi(y, ξ)∥2

]
≤ ℓ2 ∥x − y∥2

.

Further, we also assume that Algorithm 2 access the stochastic oracle for all pairs (xt+1, xt) with the same
randomness ξt+1.

This assumption is sometimes referred to as mean-squared-smoothness in the literature (Xu and Xu, 2022),
and it can also be seen as a stochastic strengthening of the smoothness assumption for each local function. In
particular, if for each ξ, f(x, ξ) is Lmax-smooth, then ℓ ≤ Lmax. It is a popular stochasticity assumption in the
literature of SGD, especially for variance reduction methods (Fang et al., 2018; Cutkosky and Orabona, 2019;
Tran-Dinh et al., 2022; Wang et al., 2019; Xu and Xu, 2022). The mean-squared-smoothness assumption
relaxes the individual smoothness assumption with respect to each randomness ξ. When each local function
fi is a logistic regression loss and each randomness ξ represents a mini-batch of the local data, then fi(·, ξ) is
indivually smooth and fi is therefore mean-squared-smooth.

In Assumption 5 we also assume that we can sample the local gradient at different points with the same
randomness. This is natural when, say, the randomness comes from sampling a mini-batch of the local
data. With this assumption, it is easy to have the following convergence statement, independent of any
heterogeneity assumption:
Theorem 2. Given Assumptions 1, 4 and 5, for the sequence {xt} generated by Algorithm 2, if η :=

min
{

1
ℓ
√

6τCτmax
, 1

10ℓ
√

T
, 1

2
√

2Lℓτmax(T −1)

}
, then we have:

1
T

T −1∑
t=0

E
[
∥∇f(xt)∥2

]
≤ O

(
ℓ
√

τCτmaxF0

T
+ (ℓ +

√
Lℓτmax)F0√

T

)
.

4.2 Unconvergence of AsyncBC-SGD with Independent Noise

In Section 4.1 we showed the convergence of AsyncBC-SGD under Assumption 5. This assumption implies
that the noise of the stochastic local gradient is structurally dependent on the local objective. This is natural
in many settings, including the popular empirical risk minimization paradigm in most machine learning
training processes. In this section, we further illustrate why such a dependence between the noise and the
local objective seems necessary for the convergence of AsyncBC-SGD.

In the following, we show that without Assumption 5, if the outputs of each client i are injected with a
large independence noise, then the algorithm does not converge even when the concurrency τC is 1. As we
have noted in Section 2, when τC = 1, the algorithm reduces to a synchronized method. We remark that in
this case our Algorithm 2 recovers a stochastic version of SARAH variance reduction method (Nguyen et al.,
2017) where for each fi the gradient difference oracle gi = ∇fi(x, ξ) − ∇fi(y, ξ′) = ∇fi(x) − ∇fi(y) + ξ′′

8



Under review as submission to TMLR

with E [ξ′′] = 0 and E
[
∥ξ′′∥2

]
= σ2. Note that, unlike Assumption 5, here we do not assume that the oracle

accesses at x and y need to share the same randomness, but rather, we only quantify the expectation and
the variance of gi. Our next theorem shows that when σ2 > 0 Algorithm 2 (and hence SARAH) does not
converge to the stationary point.
Theorem 3 (Lower bound with independent noise). Consider the single concurrency setting, where fi(x) =
∥x+bi∥2

/2 for any bi and x0 is not a stationary point of f . If each gi
t output of client i is given by

gi
t = ∇fi(xt) − ∇fi(xt−1) + ξt where ξt ∼ N (0, σI) is an independent Gaussian noise, then the sequence {xt}

generated by Algorithm 2 does not converge to the stationary point of f for any η < 1.

In words, we show that when the gradient difference oracle of Algorithm 2 is injected with independent
noise with nonzero variance σ2 > 0, then depending on the stepsize, the algorithm either diverges to infinity
or does not make enough progress to the stationary point. We verify Theorem 3 with numerical results
in Appendix C. In the following we also briefly explain why Theorem 3 does not refute Theorem 2:
Remark 2. We point out that the oracle gi

t violates Assumption 5 in the following sense: if gi
t := ∇fi(xt, ζt)+

∇fi(xt−1, ζt) where ∇fi(xt, ζt) and ∇fi(xt−1, ζt) both satisfy Assumption 5, then the variance of the oracle
becomes:

Eζt

[
∥∇fi(xt, ζt) + ∇fi(xt−1, ζt) − (∇fi(xt) − ∇fi(xt−1))∥2

]
≤ (L2 + ℓ2) ∥xt − xt−1∥2

.

Therefore, oracles that follow Assumption 5 will have variance dependent on the distance ∥xt − xt−1∥2,
whereas in Theorem 3 the variance is a constant σ2.

5 EXPERIMENTS

In this section, we conduct numerical experiments to validate the theoretical results of our algorithms. All
experiments were run on an Intel(R) Xeon(R) CPU E7-8890 v4 @ 2.20GHz chip. All our code can be accessed
at here and here. All additional details of the experiments can be found in Appendix D.

100 101 102 103 104
Iteration

10−3

10−2

10−1

100

101

kx
¡
x

⋆
k2

³=0; ¿=10
Async-GD
AsyncBC-GD

100 101 102 103 104
Iteration

10−3

10−2

10−1

100

101

kx
¡
x

⋆
k2

³=10; ¿=10
Async-GD
AsyncBC-GD

100 101 102 103 104
Iteration

10−3

10−2

10−1

100

101

kx
¡
x

⋆
k2

³=20; ¿=10
Async-GD
AsyncBC-GD

Figure 1: Convergence of AsyncBC-GD and Async-GD under different data heterogeneity. We see that the
performance of Async-GD deteriorates as the data heterogeneity increases, while AsyncBC-GD is unaffected.

0 2000 4000 6000 8000 10000
Iteration

0.60

0.65

0.70

0.75

0.80

Ac
cu
ra
cy

®=0:1; ¿=50

Async-SGD
AsyncBC-SGD

0 2000 4000 6000 8000 10000
Iteration

0.60

0.65

0.70

0.75

0.80

Ac
cu
ra
cy

®=0:01; ¿=50

Async-SGD
AsyncBC-SGD

0 2000 4000 6000 8000 10000
Iteration

0.60

0.65

0.70

0.75

0.80

Ac
cu
ra
cy

®=0:001; ¿=50

Async-SGD
AsyncBC-SGD

Figure 2: Performance of AsyncBC-SGD and Async-SGD for the Fashion MNIST dataset under different data
heterogeneity. Decreasing α means increasing data heterogeneity. We see that AsyncBC-SGD’s performance is
smooth and robust against increasing α.

Synthetic Least Squares Problem We first consider a simple synthetic least squares problem and verify
our algorithm’s independence of data heterogeneity. We study the following problem as in (Koloskova et al.,
2020b): Each worker i has access to fi(x) := 1

2 ∥Aix − bi∥2, where A2
i := i2

n · Id and each bi is sampled from

9

https://anonymous.4open.science/r/abc-synthetic-A272/README.md
https://anonymous.4open.science/r/abc-logistic-87FB/README.md


Under review as submission to TMLR

N (0, ζ2

i2 Id) for some parameter ζ. It is easy to see that the ζ parameter controls the gradient dissimilarity (at
the optimum5). In particular, when ζ = 0, ∇fi(x⋆) = 0, ∀i. The detailed setting of the synthetic experiment
can be found in Appendix D.1.

In Figure 1 we investigate the effect of ζ on the convergence of AsyncBC-GD and Async-GD. To simulate
the different computation speeds of the workers, we set each worker i’s computation time for each task
to i×τ/n, where τ controls the asynchronicity. We set τ = 10. We perform a grid search for the best η
parameter for both algorithms. We observe that AsyncBC-GD’s performance is consistent for different ζ
values, as predicted by our theory, while Async-GD takes longer to converge when ζ increases. Note that in
the data homogeneous case (ζ = 0), Async-GD converges faster than AsyncBC-GD, which is consistent with
the theory. Regularized Logistic Regression For Fashion MNIST Classification Now we consider a
regularized logistic regression problem for the opensourced Fashion MNIST dataset (Xiao et al., 2017). We
use a nonconvex regularizer following (Zhao et al., 2022). The objective function over a pair of data (a, b) is
given as the following:

f(x; (a, b)) := log(1 + exp(−ba⊤x)) + ρ

d∑
i=1

x2
i

1 + x2
i

,

where the last term is a nonconvex regularizer and ρ = 0.05 is the regularization parameter. We distribute
the training dataset to clients using the Dirichlet distribution with parameter α to control the data het-
erogeneity (Hsu et al., 2019). In particular, the datasets held by the clients get more heterogeneous as α
approaches zero. Additional details can be found in Appendix D.2.

In Figure 2 we summarize the performance of AsyncBC-SGD and Async-SGD for the Fashion MNIST dataset.
We observe that, as data heterogeneity increases, the performance of Async-SGD deteriorates and becomes
highly unstable, while AsyncBC-SGD is robust against data heterogeneity and outperforms Async-SGD.
Moreover, AsyncBC-SGD attains a much smoother curve consistently. The stability of the accuracy curve for
AsyncBC-SGD verifies the robustness of our method against stochastic noise in a practical setting.

6 CONCLUSION AND OUTLOOKS

In this work, we investigate the distributed asynchronous gradient methods and address their convergence
analysis in the arbitrarily data-heterogeneous setting. We propose and analyze AsyncBC-GD, a distributed
asynchronous variant of SARAH. We prove that it is an effective Bias Correction mechanism in that it
converges without the restrictive bounded gradient or bounded gradient dissimilarity condition, and is
therefore superior in the high data heterogeneous regime than the basic asynchronous methods without bais
correction (Nguyen et al., 2022a; Koloskova et al., 2022; Mishchenko et al., 2022a; Islamov et al., 2023). We
also study the suitable stochasticity assumptions for our method and prove the method’s convergence under
the mean-squared-smoothness assumption. As a byproduct of our analysis, we also prove the non-convergence
of the popular SARAH variance reduction method in the presence of independent gradient noise. Future
works can investigate the possibility of obtaining a O(1/T) rate for distributed asynchronous optimization
with either our bias correction mechanism or other methods. Another important theoretical challenge is to
further understand the delay dependence of the convergence of bias-corrected asynchronous methods. In
particular, future work can investigate the possibility of improving the dependence on τmax to τavg, or refute
such possibility with a lower bound construction.

References
Alekh Agarwal and John C Duchi. Distributed delayed stochastic optimization. In Advances in Neural

Information Processing Systems, 2011.

Yossi Arjevani, Ohad Shamir, and Nathan Srebro. A tight convergence analysis for stochastic gradient descent
with delayed updates. In Algorithmic Learning Theory, 2020.

5This is a somewhat more relaxed notion of gradient dissimilarity than the one considered in (Koloskova et al., 2022; Islamov
et al., 2023).

10



Under review as submission to TMLR

Ron Bekkerman, Mikhail Bilenko, and John Langford. Scaling up machine learning: Parallel and distributed
approaches. In Association for Computing Machinery, 2011.

Dimitri Bertsekas and John Tsitsiklis. Parallel and distributed computation: numerical methods. In Athena
Scientific, 2015.

Laurent Condat, Ivan Agarskỳ, Grigory Malinovsky, and Peter Richtárik. Tamuna: Doubly accelerated
federated learning with local training, compression, and partial participation. In arXiv, 2023.

Laurent Condat, Ivan Agarský, and Peter Richtárik. Provably doubly accelerated federated learning: The
first theoretically successful combination of local training and communication compression. In Openreview,
2024.

Ashok Cutkosky and Francesco Orabona. Momentum-based variance reduction in non-convex sgd. In
Advances in Neural Information Processing Systems, 2019.

Aaron Defazio, Francis Bach, and Simon Lacoste-Julien. Saga: A fast incremental gradient method with
support for non-strongly convex composite objectives. In Advances in Neural Information Processing
Systems, 2014.

Cong Fang, Chris Junchi Li, Zhouchen Lin, and Tong Zhang. Spider: Near-optimal non-convex optimization
via stochastic path-integrated differential estimator. In Advances in Neural Information Processing Systems,
2018.

Ilyas Fatkhullin, Alexander Tyurin, and Peter Richtárik. Momentum provably improves error feedback! In
arXiv, 2023.

Yuan Gao, Rustem Islamov, and Sebastian U Stich. EControl: Fast distributed optimization with compression
and error control. In International Conference on Learning Representations, 2024.

Guillaume Garrigos and Robert M Gower. Handbook of convergence theorems for (stochastic) gradient
methods. In arXiv, 2023.

Michał Grudzień, Grigory Malinovsky, and Peter Richtárik. Can 5th generation local training methods
support client sampling? yes! In International Conference on Artificial Intelligence and Statistics, 2023.

Samuel Horvath, Stefanos Laskaridis, Mario Almeida, Ilias Leontiadis, Stylianos Venieris, and Nicholas Lane.
Fjord: Fair and accurate federated learning under heterogeneous targets with ordered dropout. In Advances
in Neural Information Processing Systems, 2021.

Tzu-Ming Harry Hsu, Qi, and Matthew Brown. Measuring the effects of non-identical data distribution for
federated visual classification. In arXiv, 2019.

Xinmeng Huang, Ping Li, and Xiaoyun Li. Stochastic controlled averaging for federated learning with
communication compression. In International Conference on Learning Representations, 2024.

Rustem Islamov, Mher Safaryan, and Dan Alistarh. Asgrad: A sharp unified analysis of asynchronous-sgd
algorithms. In arXiv, 2023.

Xiaowen Jiang, Anton Rodomanov, and Sebastian U Stich. Federated optimization with doubly regularized
drift correction. In International Conference on Machine Learning, 2024.

Rie Johnson and Tong Zhang. Accelerating stochastic gradient descent using predictive variance reduction.
In Advances in Neural Information Processing Systems, 2013.

Peter Kairouz, H. Brendan McMahan, Brendan Avent, Aurélien Bellet, Mehdi Bennis, Arjun Nitin Bhagoji,
Kallista A. Bonawitz, Zachary Charles, Graham Cormode, Rachel Cummings, Rafael G. L. D’Oliveira,
Salim El Rouayheb, David Evans, Josh Gardner, Zachary Garrett, Adrià Gascón, Badih Ghazi, Phillip B.
Gibbons, Marco Gruteser, Zaïd Harchaoui, Chaoyang He, Lie He, Zhouyuan Huo, Ben Hutchinson, Justin
Hsu, Martin Jaggi, Tara Javidi, Gauri Joshi, Mikhail Khodak, Jakub Konečný, Aleksandra Korolova,

11



Under review as submission to TMLR

Farinaz Koushanfar, Sanmi Koyejo, Tancrède Lepoint, Yang Liu, Prateek Mittal, Mehryar Mohri, Richard
Nock, Ayfer Özgür, Rasmus Pagh, Mariana Raykova, Hang Qi, Daniel Ramage, Ramesh Raskar, Dawn
Song, Weikang Song, Sebastian U. Stich, Ziteng Sun, Ananda Theertha Suresh, Florian Tramèr, Praneeth
Vepakomma, Jianyu Wang, Li Xiong, Zheng Xu, Qiang Yang, Felix X. Yu, Han Yu, and Sen Zhao. Advances
and open problems in federated learning. In arXiv, 2019.

Sai Praneeth Karimireddy, Martin Jaggi, Satyen Kale, Mehryar Mohri, Sashank J Reddi, Sebastian U Stich,
and Ananda Theertha Suresh. Mime: Mimicking centralized stochastic algorithms in federated learning. In
arXiv, 2020a.

Sai Praneeth Karimireddy, Satyen Kale, Mehryar Mohri, Sashank Reddi, Sebastian Stich, and
Ananda Theertha Suresh. Scaffold: Stochastic controlled averaging for federated learning. In Inter-
national Conference on Machine Learning, 2020b.

Ahmed Khaled and Chi Jin. Faster federated optimization under second-order similarity. In arXiv, 2022.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In arXiv, 2017.

Anastasia Koloskova, Tao Lin, Sebastian Stich, and Martin Jaggi. Decentralized deep learning with arbitrary
communication compression. In International Conference on Learning Representations, 2020a.

Anastasia Koloskova, Nicolas Loizou, Sadra Boreiri, Martin Jaggi, and Sebastian Stich. A unified theory
of decentralized sgd with changing topology and local updates. In International Conference on Machine
Learning, 2020b.

Anastasia Koloskova, Sebastian U. Stich, and Martin Jaggi. Sharper convergence guarantees for asynchronous
sgd for distributed and federated learning. In arXiv, 2022.

Jakub Konečný, H. Brendan McMahan, Felix Yu, Peter Richtárik, Ananda Theertha Suresh, and Dave
Bacon. Federated learning: strategies for improving communication efficiency. In NIPS Private Multi-Party
Machine Learning Workshop, 2016.

Guangchen Lan, Dong-Jun Han, Abolfazl Hashemi, Vaneet Aggarwal, and Christopher G Brinton. Asyn-
chronous federated reinforcement learning with policy gradient updates: Algorithm design and convergence
analysis. arXiv preprint arXiv:2404.08003, 2024.

Guanghui Lan. First-order and stochastic optimization methods for machine learning. In Springer, 2020.

Rémi Leblond, Fabian Pedregosa, and Simon Lacoste-Julien. Improved asynchronous parallel optimization
analysis for stochastic incremental methods. In Journal of Machine Learning Research, 2018.

Rémi Leblond, Fabian Pedregosa, and Simon Lacoste-Julien. ASAGA: Asynchronous Parallel SAGA. In Aarti
Singh and Jerry Zhu, editors, Proceedings of the 20th International Conference on Artificial Intelligence
and Statistics, volume 54 of Proceedings of Machine Learning Research, pages 46–54. PMLR, 20–22 Apr
2017. URL https://proceedings.mlr.press/v54/leblond17a.html.

Xiangru Lian, Ce Zhang, Huan Zhang, Cho-Jui Hsieh, Wei Zhang, and Ji Liu. Can decentralized algorithms
outperform centralized algorithms? a case study for decentralized parallel stochastic gradient descent. In
Advances in Neural Information Processing Systems, 2017.

Horia Mania, Xinghao Pan, Dimitris Papailiopoulos, Benjamin Recht, Kannan Ramchandran, and Michael I
Jordan. Perturbed iterate analysis for asynchronous stochastic optimization. In SIAM Journal on
Optimization, 2017.

Ryan McDonald, Keith Hall, and Gideon Mann. Distributed training strategies for the structured perceptron.
In North American Chapter of the Association for Computational Linguistics, 2010.

Konstantin Mishchenko, Eduard Gorbunov, Martin Takáč, and Peter Richtárik. Distributed learning with
compressed gradient differences. In arXiv, 2019.

12

https://proceedings.mlr.press/v54/leblond17a.html


Under review as submission to TMLR

Konstantin Mishchenko, Francis Bach, Mathieu Even, and Blake E Woodworth. Asynchronous sgd beats
minibatch sgd under arbitrary delays. In Advances in Neural Information Processing Systems, 2022a.

Konstantin Mishchenko, Grigory Malinovsky, Sebastian Stich, and Peter Richtárik. Proxskip: Yes! local
gradient steps provably lead to communication acceleration! finally! In International Conference on
Machine Learning, 2022b.

Konstantin Mishchenko, Grigory Malinovsky, Sebastian Stich, and Peter Richtarik. ProxSkip: Yes! Local
gradient steps provably lead to communication acceleration! Finally! In International Conference on
Machine Learning, 2022c.

Konstantin Mishchenko, Francis Bach, Mathieu Even, and Blake Woodworth. Asynchronous sgd beats
minibatch sgd under arbitrary delays. In arXiv, 2023.

Angelia Nedić, Dimitri P Bertsekas, and Vivek S Borkar. Distributed asynchronous incremental subgradient
methods. In Studies in Computational Mathematics, 2001.

John Nguyen, Kshitiz Malik, Hongyuan Zhan, Ashkan Yousefpour, Mike Rabbat, Mani Malek, and Dzmitry
Huba. Federated learning with buffered asynchronous aggregation. In International Conference on Artificial
Intelligence and Statistics, 2022a.

John Nguyen, Kshitiz Malik, Hongyuan Zhan, Ashkan Yousefpour, Mike Rabbat, Mani Malek, and Dzmitry
Huba. Federated learning with buffered asynchronous aggregation. In International Conference on Artificial
Intelligence and Statistics, 2022b.

Lam Nguyen, Phuong Ha Nguyen, Marten Dijk, Peter Richtárik, Katya Scheinberg, and Martin Takác. Sgd
and hogwild! convergence without the bounded gradients assumption. In International Conference on
Machine Learning, 2018.

Lam M Nguyen, Jie Liu, Katya Scheinberg, and Martin Takáč. Sarah: A novel method for machine learning
problems using stochastic recursive gradient. In International Conference on Machine Learning, 2017.

Aditya Ramesh, Mikhail Pavlov, Gabriel Goh, Scott Gray, Chelsea Voss, Alec Radford, Mark Chen, and Ilya
Sutskever. Zero-shot text-to-image generation. In International Conference on Machine Learning, 2021.

Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu, and Mark Chen. Hierarchical text-conditional
image generation with clip latents. In arXiv, 2022.

Benjamin Recht, Christopher Re, Stephen Wright, and Feng Niu. Hogwild!: A lock-free approach to
parallelizing stochastic gradient descent. In Advances in Neural Information Processing Systems, 2011.

Sashank J Reddi, Ahmed Hefny, Suvrit Sra, Barnabas Poczos, and Alexander J Smola. On variance reduction
in stochastic gradient descent and its asynchronous variants. In Advances in Neural Information Processing
Systems, 2015.

Peter Richtárik, Igor Sokolov, and Ilyas Fatkhullin. Ef21: A new, simpler, theoretically better, and practically
faster error feedback. In Advances in Neural Information Processing Systems, 2021.

Mark Schmidt, Nicolas Le Roux, and Francis Bach. Minimizing finite sums with the stochastic average
gradient. Mathematical Programming, 162:83–112, 2017.

Frank Seide, Hao Fu, Jasha Droppo, Gang Li, and Dong Yu. 1-bit stochastic gradient descent and its
application to data-parallel distributed training of speech dnns. In International Speech Communication
Association, 2014.

Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick Le Gresley, Jared Casper, and Bryan Catanzaro.
Megatron-lm: Training multi-billion parameter language models using model parallelism. In arXiv, 2019.

Sebastian Stich, Amirkeivan Mohtashami, and Martin Jaggi. Critical parameters for scalable distributed
learning with large batches and asynchronous updates. In International Conference on Artificial Intelligence
and Statistics, 2021.

13



Under review as submission to TMLR

Sebastian U Stich. Local sgd converges fast and communicates little. In International Conference on Learning
Representations, 2018.

Sebastian U. Stich. On communication compression for distributed optimization on heterogeneous data. In
arXiv, 2020.

Sebastian U Stich and Sai Praneeth Karimireddy. The error-feedback framework: Better rates for sgd with
delayed gradients and compressed updates. In Journal of Machine Learning Research, 2020.

Quoc Tran-Dinh, Nhan H Pham, Dzung T Phan, and Lam M Nguyen. A hybrid stochastic optimization
framework for composite nonconvex optimization. In Mathematical Programming, 2022.

Meng Wang, Weijie Fu, Xiangnan He, Shijie Hao, and Xindong Wu. A survey on large-scale machine learning.
In IEEE Transactions on Knowledge and Data Engineering, 2020.

Xiaolu Wang, Yuchang Sun, Hoi To Wai, and Jun Zhang. Incremental aggregated asynchronous SGD for
arbitrarily heterogeneous data, 2025. URL https://openreview.net/forum?id=m3x4kDbYAK.

Zhe Wang, Kaiyi Ji, Yi Zhou, Yingbin Liang, and Vahid Tarokh. Spiderboost and momentum: Faster variance
reduction algorithms. In Advances in Neural Information Processing Systems, 2019.

Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset for benchmarking
machine learning algorithms. In arXiv, 2017.

Yangyang Xu and Yibo Xu. Momentum-based variance-reduced proximal stochastic gradient method for
composite nonconvex stochastic optimization. In arXiv, 2022.

Haoyu Zhao, Boyue Li, Zhize Li, Peter Richtárik, and Yuejie Chi. Beer: Fast o(1/t) rate for decentralized
nonconvex optimization with communication compression. Advances in Neural Information Processing
Systems, 2022.

Shen-Yi Zhao and Wu-Jun Li. Fast asynchronous parallel stochastic gradient descent: A lock-free approach
with convergence guarantee. In Association for the Advancement of Artificial Intelligence, 2016.

A ANALYSIS OF AsyncBC-GD

Recall that we consider the following virtual iterates:

x̃t+1 := x̃t − ηm̃t, ∀t ≥ 1
and

m̃1 := m̃0 +
∑

(k,1)∈C1∪{j1} gk
1

m̃t+1 := m̃t + gkt
t ∀t ≥ 1

For our convergence analysis, we also consider the following virtual optimality gap:

F̃t := E [f(x̃t) − f⋆] (6)

We first give a complete analysis of the error of the virtual iterate and virtual momentum:
Lemma 2. Let {xt}, {mt}, {x̃t} and {m̃t} be defined by Algorithm 1,Equation (3) and Equation (4). Then
we have:

mt − m̃t = −
∑

(k,i)∈Ct

gk
i ∀t ≥ 1

xt − x̃t = η

t−1∑
i=2

τ t−1
i gki

i + η
∑

(k,1)∈C1

τk,t−1
1 gk

1 ∀t ≥ 2
(7)

14

https://openreview.net/forum?id=m3x4kDbYAK


Under review as submission to TMLR

where τ t
i is defined to be the number of times that gki

i is delayed until time t − 1 and τk,t−1
1 is the number of

times gk
1 is delayed until time t − 1.

Proof. We first prove the first equation in Equation (7) via induction. By Algorithm 1 and Equation (4), one
can easily verify that it holds for m1 − m̃1. For t ≥ 2, we have:

mt − m̃t = mt−1 − m̃t−1 + gjt

t−τt
− gkt

t

= (−
∑

(k,i)∈Ct−1

gk
i ) + gjt

t−τt
− gkt

t = −
∑

(k,i)∈Ct

gk
i ,

where the last equality follows from the definition of Ct.

It remains to prove the error of the virtual iterate. For the second equation in Equation (7), we have for
t ≥ 2:

xt − x̃t = −η

t−1∑
s=1

(ms − m̃s)

= −η

t−1∑
s=1

∑
(k,i)∈Cs

gk
i

= η

t−1∑
i=2

τ t−1
i gki

i + η
∑

(k,1)∈C1

τk,t−1
1 gk

1 ,

where in the last term we treat the gk
1 and gki

i , i ≥ 2 separately since the time stamp 1 is the only timestamp
that corresponds to multiple workers.

Now we upper bound the error between the virtual iterates and the true iterates, using Lemma 2:
Lemma 1. Given Assumptions 1 and 2, the sequences {x̃t}, {xt}, {m̃t} and {mt} satisfy the following:

∥mt − m̃t∥2 ≤ 2η2τC(δ2 + L2)
∑

(k,i)∈Ct

∥mi−1∥2,

∥xt − x̃t∥2 ≤ 2η4(t − 1)(δ2 + L2)τ2
max

t−1∑
i=1

∥mi−1∥2.
(5)

Proof. Consider any worker-time pair (k, t) that was active, we first give a simple upper bound on
∥∥gk

t

∥∥2. If
t ≥ 1, we have:∥∥gk

t

∥∥2 = ∥∇fk(xt) − ∇fk(xt−1) ± (∇f(xt) − ∇f(xt−1))∥2

(i)
≤ 2 ∥∇fk(xt) − ∇fk(xt−1) − (∇f(xt) − ∇f(xt−1))∥2 + 2 ∥∇f(xt) − ∇f(xt−1)∥2

(ii)
≤ 2(δ2 + L2) ∥xt − xt−1∥2

,

where in (i) we used the Young’s inequality and in (ii) we Assumption 1 and Assumption 2. We can prove
something similar for t = 1, with an improvement of 1

τ2
C

: for any (k, 1) ∈ C1, we have:

∥∥gk
1
∥∥2 ≤ 2

τ2
C

(δ2 + L2) ∥x1 − x0∥2

15



Under review as submission to TMLR

We first upper bound the error ∥mt − m̃t∥2
, ∀t ≥ 1:

∥mt − m̃t∥2 =

∥∥∥∥∥∥
∑

(k,i)∈Ct

gk
i

∥∥∥∥∥∥
2

≤ τC
∑

(k,i)∈Ct

∥∥gk
i

∥∥2

≤ 2τC(δ2 + L2)
∑

(k,i)∈Ct

∥xi − xi−1∥2

= 2η2τC(δ2 + L2)
∑

(k,i)∈Ct

∥mi−1∥2

Similarly, we can upper bound ∥xt − x̃t∥2
, ∀t ≥ 2:

∥xt − x̃t∥2 = η2

∥∥∥∥∥∥
t−1∑
i=2

τ t−1
i gki

i +
∑

(k,1)∈C1

τk,t−1
1 gk

1

∥∥∥∥∥∥
≤ η2(t − 1)

t−1∑
i=2

(τ t−1
i )2

∥∥∥gki
i

∥∥∥2
+ η2(t − 1)(τC − 1)

∑
(k,1)∈C1

(τk,t−1
1 )2 ∥∥gk

1
∥∥2

≤ 2η2(t − 1)
t−1∑
i=2

(τ t−1
i )2(δ2 + L2) ∥xi − xi−1∥2

+ 2η2(t − 1)(τC − 1)2
∑

(k,1)∈C1

(τk,t−1
1 )2

τ2
C

(δ2 + L2) ∥x1 − x0∥2

≤ 2η4(t − 1)(δ2 + L2)
t−1∑
i=2

(τ t−1
i )2 ∥mi−1∥2 + 2η4(t − 1)(δ2 + L2)

∑
(k,1)∈C1

(τk,t−1
1 )2

τC
∥m0∥2

≤ 2η4(t − 1)(δ2 + L2)τ2
max

t−1∑
i=1

∥mi−1∥2

We can also give a simple corollary of Lemma 1 that lower bounds ∥m̃t∥2 in terms of ∥mt∥2’s

Corollary 1. Given Assumption 1 and Assumption 2, we have:

∥m̃t∥2 ≥ ∥mt∥2

2 − 2η2τC(δ2 + L2)
∑
i∈Ct

∥mi−1∥2

This is a simple application of Lemma 1 and Young’s inequality and we omit the proof here.

Next we get a descent lemma on the descent of F̃t

Lemma 3. Given Assumption 1, the sequences {x̃t}, {xt}, {m̃t} and {mt} satisfy the following:

F̃t+1 ≤ F̃t − η

2E
[
∥∇f(xt)∥2

]
− (η

4 − Lη2

2 )E
[
∥m̃t∥2

]
+ η

2E
[
∥∇f(xt) − m̃t∥2

]
+ ηL2E

[
∥x̃t − xt∥2

]
(8)

16



Under review as submission to TMLR

Proof. By Assumption 1, we have:

f(x̃t+1)
(i)
≤ f(x̃t) − η⟨∇f(x̃t), m̃t⟩ + Lη2

2 ∥m̃t∥2

= f(x̃t) − η⟨∇f(xt), m̃t⟩ + η⟨∇f(xt) − ∇f(x̃t), m̃t⟩ + Lη2

2 ∥m̃t∥2

= f(x̃t) − η

2 ∥∇f(xt)∥ − η

2 ∥m̃t∥2 + η

2 ∥∇f(xt) − m̃t∥2

+ η⟨∇f(xt) − ∇f(x̃t), m̃t⟩ + Lη2

2 ∥m̃t∥2

(ii)
≤ f(x̃t) − η

2 ∥∇f(xt)∥ − η

2 ∥m̃t∥2 + η

2 ∥∇f(xt) − m̃t∥2

+ η ∥∇f(xt) − ∇f(x̃t)∥2 + η

4 ∥m̃t∥2 + Lη2

2 ∥m̃t∥2

= f(x̃t) − η

2 ∥∇f(xt)∥2 − (η

4 − Lη2

2 ) ∥m̃t∥2 + η

2 ∥∇f(xt) − m̃t∥2 + η ∥∇f(xt) − ∇f(x̃t)∥2

(iii)
≤ f(x̃t) − η

2 ∥∇f(xt)∥2 − (η

4 − Lη2

2 ) ∥m̃t∥2 + η

2 ∥∇f(xt) − m̃t∥2 + ηL2 ∥x̃t − xt∥2
,

where in (i) we used Assumption 1, in (ii) we used Young’s inequality, and in (iii) we used Assumption 1
again. Subtracking f⋆ and taking expectation on both sides, we get the desired results.

Next we bound the gradient error term E
[
∥∇f(xt) − m̃t∥2

]
recursively

Lemma 4. Given Assumption 2, for all t ≥ 1, the sequences {xt}, {m̃t} and {mt} satisfy the following:

E
[
∥∇f(xt) − m̃t∥2

]
≤ E

[
∥∇f(xt−1) − m̃t−1∥2

]
+ η2δ2E

[
∥mt−1∥2

]
(9)

Proof. We first consider the case t > 1. Observe that, since kt is sampled uniformly at random, we have:

E [∇f(xt) − ∇f(xt−1) − (∇fkt
(xt) − ∇fkt

(xt−1))] = 0

Therefore:

E
[
∥∇f(xt) − m̃t∥2

]
= E

[
∥∇f(xt) − m̃t−1 − (∇fkt(xt) − ∇fkt(xt−1))∥2

]
= E

[
∥∇f(xt−1) − m̃t−1 + (∇f(xt) − ∇f(xt−1)) − (∇fkt(xt) − ∇fkt(xt−1))∥2

]
= E

[
∥∇f(xt−1) − m̃t−1∥2

]
+ E

[
∥∇f(xt) − ∇f(xt−1) − (∇fkt(xt) − ∇fkt(xt−1))∥2

]
+ E [⟨∇f(xt−1) − m̃t−1, ∇f(xt) − ∇f(xt−1) − (∇fkt

(xt) − ∇fkt
(xt−1))⟩]

= E
[
∥∇f(xt−1) − m̃t−1∥2

]
+ E

[
∥∇f(xt) − ∇f(xt−1) − (∇fkt(xt) − ∇fkt(xt−1))∥2

]
(i)= E

[
∥∇f(xt−1) − m̃t−1∥2

]
+ δ2E

[
∥xt − xt−1∥2

]
= E

[
∥∇f(xt−1) − m̃t−1∥2

]
+ η2δ2E

[
∥mt−1∥2

]
,

where in (i) we used Assumption 2. The case t = 1 can be handled similarly with a slightly improved
bound, but the looser bound is sufficient for our purpose. However, we note that a key point in the proof is
the unbiasedness of m̃1 − m̃0, which is guaranteed by the reweighting of the initial gradient differences in
Algorithm 1.

Corollary 2. Given Assumption 2, for all t ≥ 1, the sequences {xt}, {m̃t} and {mt} satisfy the following:

E
[
∥∇f(xt) − m̃t∥2

]
≤

t∑
i=1

η2δ2E
[
∥mi−1∥2

]

17



Under review as submission to TMLR

Proof. We sum over 1 to t on both sides of Equation (9) and get:

E
[
∥∇f(xt) − m̃t∥2

]
≤ E

[
∥∇f(x0) − m̃0∥2

]
+

t∑
i=1

η2δ2E
[
∥mi−1∥2

]
(i)=

t∑
i=1

η2δ2E
[
∥mi−1∥2

]
,

where for (i) we used the fact that m̃0 = m0 = ∇f(x0).

Now we are ready to derive the convergence rate of Algorithm 1 and prove Theorem 1:
Theorem 1. Given Assumptions 1 and 2, for the sequence {xt} generated by Algorithm 1, if η :=

min
{

1
6(δ+L)√

τCτmax
, 1

12
√

L(δ+L)τmaxT

}
, then we have:

1
T

T −1∑
t=0

E
[
∥∇f(xt)∥2

]
≤ O

(
(δ + L)√τCτmaxF0

T
+
√

L(δ + L)τmaxF0√
T

)
,

where F0 := f(x0) − f⋆ is the initial suboptimality gap.

Proof. We plug Lemma 1, Corollary 1, and Corollary 2 into Equation (8) and get for all t ≥ 0:

F̃t+1 ≤ F̃t − η

2E
[
∥∇f(xt)∥2

]
− (η

4 − Lη2

2 )

E
[
∥mt∥2

]
2 − 2η2τC(δ2 + L2)

∑
i∈Ct

E
[
∥mi−1∥2

]
+ η3δ2

2

t∑
i=1

E
[
∥mi−1∥2

]
+ 2η5(t − 1)L2(δ2 + L2)τ2

max

t−1∑
i=1

∥mi−1∥2

Assume that η ≤ L
4 , we get:

F̃t+1 ≤ F̃t − η

2E
[
∥∇f(xt)∥2

]
− η

8

E
[
∥mt∥2

]
2 − 2η2τC(δ2 + L2)

∑
i∈Ct

E
[
∥mi−1∥2

]
+ η3δ2

2

t∑
i=1

E
[
∥mi−1∥2

]
+ 2η5(t − 1)L2(δ2 + L2)τ2

max

t−1∑
i=1

∥mi−1∥2

Now we sum over 0 to T − 1 on both sides and get:

η

2

T −1∑
t=0

E
[
∥∇f(xt)∥2

]
≤ F̃0 − η

16

T −1∑
t=0

E
[
∥mt∥2

]
+ η3τC(δ2 + L2)

4

T −1∑
t=1

∑
i∈Ct

E
[
∥mi−1∥2

]
︸ ︷︷ ︸

A

+ η3δ2

2

T −1∑
t=1

t∑
i=1

E
[
∥mi−1∥2

]
︸ ︷︷ ︸

B

+ 2η5L2(δ2 + L2)
T −1∑
t=1

(t − 1)τ2
max

t−1∑
i=1

∥mi−1∥2

︸ ︷︷ ︸
C

18



Under review as submission to TMLR

We first bound the third term A on the right-hand side. Note that each of the E
[
∥mi−1∥2

]
is delayed by at

most τmax rounds, and hence appears at most τmax times in A, therefore:

A ≤ η3τCτmax(δ2 + L2)
4

T −2∑
t=0

E
[
∥mt∥2

]
We simply bound B by:

B ≤ η3δ2T

2

T −2∑
t=0

E
[
∥mt∥2

]
Similarly, we bound C by:

C ≤ 2η5L2(δ2 + L2)τ2
max(T − 1)2

T −2∑
t=0

E
[
∥mt∥2

]
Therefore, if

η ≤ min
{

1
6(δ + L)√τCτmax

,
1

10δ
√

T
,

1
8
√

L(δ + L)τmax(T − 1)

}
Then we must have that A + B + C ≤ η

16
∑T −1

t=0 E
[
∥mt∥2

]
. Hence,

1
T

T −1∑
t=0

E
[
∥∇f(xt)∥2

]
≤ 2F̃0

ηT
= 2F0

ηT

Note that by Fact 1, it suffices to set

η = min
{

1
6(δ + L)√τCτmax

,
1

12
√

L(δ + L)τmaxT

}
For such a choice of η, we get:

1
T

T −1∑
t=0

E
[
∥∇f(xt)∥2

]
≤

12(δ + L)√τCτmaxF0

T
+ 24

√
L(δ + L)τmaxF0√

T

B ANALYSIS OF AsyncBC-SGD

The convergence analysis of Algorithm 2 under Assumption 5 is very similar to its deterministic counterpart.
We point out that most of the differences are due to the application of Assumption 5. Note that Lemma 2
remains the same.
Lemma 5. Given Assumptions 4 and 5, the sequences {x̃t}, {xt}, {m̃t} and {mt} satisfy the following:

E
[
∥mt − m̃t∥2

]
≤ η2τCℓ2∑

(k,i)∈Ct
E
[
∥mi−1∥2

]
E
[
∥xt − x̃t∥2

]
≤ η4(t − 1)ℓ2τ2

max
∑t−1

i=1 E
[
∥mi−1∥2

] (10)

Proof. The proof of Lemma 5 is very similar to that of Lemma 1, except that we need to use Assumption 5
instead of Assumption 2 to bound

∥∥gk
t

∥∥2:

E
[∥∥gk

t

∥∥2] = E
[
∥∇fk(xt, ξt) − ∇fk(xt−1, ξt)∥2

]
≤ ℓ2E

[
∥xt − xt−1∥2

]
= η2ℓ2E

[
∥mt−1∥2

]

19



Under review as submission to TMLR

Again, we first uppper bound the rror E
[
∥mt − m̃t∥2

]
, ∀t ≥ 1:

E
[
∥mt − m̃t∥2

]
= E


∥∥∥∥∥∥
∑

(k,i)∈Ct

gk
i

∥∥∥∥∥∥
2


≤ τC
∑

(k,i)∈Ct

E
[∥∥gk

i

∥∥2]
≤ τCℓ2

∑
(k,i)∈Ct

E
[
∥xi − xi−1∥2

]
= η2τCℓ2

∑
(k,i)∈Ct

∥mi−1∥2

Now for E
[
∥xt − x̃t∥2

]
, ∀t ≥ 2:

E
[
∥xt − x̃t∥2

]
= η2E


∥∥∥∥∥∥

t−1∑
i=2

τ t−1
i gki

i +
∑

(k,1)∈C1

τk,t−1
1 gk

1

∥∥∥∥∥∥
2


≤ η2(t − 1)
t−1∑
i=2

(τ t−1
i )2E

[∥∥∥gki
i

∥∥∥2
]

+ η2(t − 1)(τC − 1)
∑

(k,1)∈C1

(τk,t−1
1 )2E

[∥∥gk
1
∥∥2]

≤ η2(t − 1)
t−1∑
i=2

(τ t−1
i )2ℓ2E

[
∥xi − xi−1∥2

]
+ η2(t − 1)(τC − 1)2

∑
(k,1)∈C1

(τk,t−1
1 )2

τ2
C

ℓ2E
[
∥x1 − x0∥2

]

≤ η4(t − 1)ℓ2
t−1∑
i=2

(τ t−1
i )2E

[
∥mi−1∥2

]
+ η4(t − 1)ℓ2

∑
(k,1)∈C1

(τk,t−1
1 )2

τC
E
[
∥m0∥2

]

≤ η4(t − 1)ℓ2τ2
max

t−1∑
i=1

E
[
∥mi−1∥2

]

We also have the following simple corollary of Lemma 5 that lower bounds E
[
∥m̃t∥2

]
in terms of E

[
∥mt∥2

]
’s:

Corollary 3. Given Assumption 5, we have for all t ≥ 1:

E
[
∥m̃t∥2

]
≥

E
[
∥mt∥2

]
2 − η2τCℓ2

∑
i∈Ct

E
[
∥mi−1∥2

]

Proof. Again, this is a simple application of Lemma 5 and Young’s inequality and we omit the proof here.

Note that Lemma 3 still holds, and it remains to give a stochastic version of Lemma 4:
Lemma 6. Given Assumptions 4 and 5, for all t ≥ 1, the sequences {xt}, {m̃t} and {mt} satisfy the
following:

E
[
∥∇f(xt) − m̃t∥2

]
≤ E

[
∥∇f(xt−1) − m̃t−1∥2

]
+ η2ℓ2E

[
∥mt−1∥2

]
(11)

20



Under review as submission to TMLR

Proof.

E
[
∥∇f(xt) − m̃t∥2

]
= E

[
∥∇f(xt) − m̃t−1 − (∇fkt

(xt, ξt) − ∇fkt
(xt−1, ξt))∥2

]
= E

[
∥∇f(xt−1) − m̃t−1 + (∇f(xt) − ∇f(xt−1)) − (∇fkt

(xt) − ∇fkt
(xt−1))∥2

]
= E

[
∥∇f(xt−1) − m̃t−1∥2

]
+ E

[
∥∇f(xt) − ∇f(xt−1)∥2

]
+E

[
∥∇fkt

(xt, ξt) − ∇fkt
(xt−1, ξt)∥2

]
+2E [⟨∇f(xt−1) − m̃t−1, ∇f(xt) − ∇f(xt−1)⟩]
−2E [⟨∇f(xt−1) − m̃t−1, ∇fkt

(xt, ξt) − ∇fkt
(xt−1, ξt)⟩]

−2E [⟨∇f(xt) − ∇f(xt−1), ∇fkt
(xt, ξt) − ∇fkt

(xt−1, ξt)⟩]
(i)= E

[
∥∇f(xt−1) − m̃t−1∥2

]
− E

[
∥∇f(xt) − ∇f(xt−1)∥2

]
+E

[
∥∇fkt(xt, ξt) − ∇fkt(xt−1, ξt)∥2

]
(ii)
≤ E

[
∥∇f(xt−1) − m̃t−1∥2

]
+ ℓ2E

[
∥xt − xt−1∥2

]
= E

[
∥∇f(xt−1) − m̃t−1∥2

]
+ η2ℓ2E

[
∥mt−1∥2

]
,

where in (i) we used E [∇fkt(xt, ξt) − ∇fkt(xt−1, ξt)] = ∇f(xt)−∇f(xt−1), and in (ii) we used Assumption 5.

Therefore, we also have the following corollary:

Corollary 4. Given Assumptions 4 and 5, for all t ≥ 1, the sequences {xt}, {m̃t} and {mt} satisfy the
following:

E
[
∥∇f(xt) − m̃t∥2

]
≤

t∑
i=1

η2ℓ2E
[
∥mi−1∥2

]

Now we can prove the convergence of Algorithm 2 under Assumption 5:

Theorem 2. Given Assumptions 1, 4 and 5, for the sequence {xt} generated by Algorithm 2, if η :=

min
{

1
ℓ
√

6τCτmax
, 1

10ℓ
√

T
, 1

2
√

2Lℓτmax(T −1)

}
, then we have:

1
T

T −1∑
t=0

E
[
∥∇f(xt)∥2

]
≤ O

(
ℓ
√

τCτmaxF0

T
+ (ℓ +

√
Lℓτmax)F0√

T

)
.

Proof. Now we plug Lemma 5 and corollaries 3 and 4 to Equation (8):

F̃t+1 ≤ F̃t − η

2E
[
∥∇f(xt)∥2

]
− (η

4 − Lη2

2 )

E
[
∥mt∥2

]
2 − η2τCℓ2

∑
i∈Ct

E
[
∥mi−1∥2

]
+ η3ℓ2

2

t∑
i=1

E
[
∥mi−1∥2

]
+ η5(t − 1)L2ℓ2τ2

max

t−1∑
i=1

∥mi−1∥2

21



Under review as submission to TMLR

Assume that η ≤ L
4 , we get:

F̃t+1 ≤ F̃t − η

2E
[
∥∇f(xt)∥2

]
− η

8

E
[
∥mt∥2

]
2 − η2τCℓ2

∑
i∈Ct

E
[
∥mi−1∥2

]
+ η3ℓ2

2

t∑
i=1

E
[
∥mi−1∥2

]
+ η5(t − 1)L2ℓ2τ2

max

t−1∑
i=1

∥mi−1∥2

Now we sum over 0 to T − 1 on both sides and get:

η

2

T −1∑
t=0

E
[
∥∇f(xt)∥2

]
≤ F̃0 − η

16

T −1∑
t=0

E
[
∥mt∥2

]
+ η3τCℓ2

8

T −1∑
t=1

∑
i∈Ct

E
[
∥mi−1∥2

]
︸ ︷︷ ︸

A

+ η3ℓ2

2

T −1∑
t=1

t∑
i=1

E
[
∥mi−1∥2

]
︸ ︷︷ ︸

B

+ η5L2ℓ2
T −1∑
t=1

(t − 1)τ2
max

t−1∑
i=1

∥mi−1∥2

︸ ︷︷ ︸
C

We first bound the third term A on the right-hand side. Note that each of the E
[
∥mi−1∥2

]
is delayed by at

most τmax rounds, and hence appears at most τmax times in A, therefore:

A ≤ η3τCτmaxℓ2

8

T −2∑
t=0

E
[
∥mt∥2

]
We simply bound B by:

B ≤ η3ℓ2T

2

T −2∑
t=0

E
[
∥mt∥2

]
Similarly, we bound C by:

C ≤ η5L2ℓ2τ2
max(T − 1)2

T −2∑
t=0

E
[
∥mt∥2

]
Therefore, if

η ≤ min
{

1
ℓ
√

6τCτmax
,

1
10ℓ

√
T

,
1

2
√

2Lℓτmax(T − 1)

}

Then we must have that A + B + C ≤ η
16
∑T −1

t=0 E
[
∥mt∥2

]
. Hence,

1
T

T −1∑
t=0

E
[
∥∇f(xt)∥2

]
≤ 2F̃0

ηT
= 2F0

ηT

For such a choice of η, we get:

1
T

T −1∑
t=0

E
[
∥∇f(xt)∥2

]
≤ 2ℓ

√
6τCτmaxF0

T
+ (20ℓ + 4

√
2Lℓτmax)F0√
T

Finally, we give the lower bound construction for when the gradient oracles are injected noise with bounded
variances:

22



Under review as submission to TMLR

Theorem 3 (Lower bound with independent noise). Consider the single concurrency setting, where fi(x) =
∥x+bi∥2

/2 for any bi and x0 is not a stationary point of f . If each gi
t output of client i is given by

gi
t = ∇fi(xt) − ∇fi(xt−1) + ξt where ξt ∼ N (0, σI) is an independent Gaussian noise, then the sequence {xt}

generated by Algorithm 2 does not converge to the stationary point of f for any η < 1.

Proof. For any xt, xt−1, we have that ∇fi(xt) − ∇fi(xt−1) = xt − xt−1. Therefore, mt = m0 +
∑t

s=1 gjs
s =

m0 + xt − x0 +
∑t

s=1 ξs.

Now we can write down xt+1 recursively:

xt+1 = xt − ηmt = (1 − η)xt − η(m0 − x0) − η

t∑
s=1

ξs

Divide both sides by (1 − η)t+1, we have:

xt+1

(1 − η)t+1 = xt

(1 − η)t
− η(m0 − x0)

(1 − η)t+1 − η

t∑
s=1

ξs

(1 − η)t+1

Summing both sides from t = 1 to T − 1, we have:

xT

(1 − η)T
= x1

1 − η
− η(m0 − x0)

T −1∑
t=1

1
(1 − η)t+1 − η

T −1∑
t=1

t∑
s=1

ξs

(1 − η)t+1

Now we multiply both sides by (1 − η)T and get:

xT = (1 − η)T −1x1 − η(m0 − x0)
T −1∑
t=1

(1 − η)T −t−1 − η

T −1∑
t=1

t∑
s=1

(1 − η)T −t−1ξs

For the last term we have:
T −1∑
t=1

t∑
s=1

(1 − η)T −t−1ξs =
T −1∑
s=1

T −1∑
t=s

(1 − η)T −t−1ξs

=
T −1∑
s=1

1 − (1 − η)T −s

η
ξs

Now by the above equation and the independence of ξi, we have:

E
[
∥xT ∥2

]
≥ η2σ2

T −1∑
s=1

(
1 − (1 − η)T −s

η

)2

= σ2
T −1∑
s=1

(1 − (1 − η)T −s)2

For step sizes 1
2T ≤ η ≤ 1, we have (1 − η)T −s ≤ 1

1+(T −s)η ≤ 1
3
2 − s

2T

. For s ≤ T
2 , we have (1 − η)T −s ≤ 5

4 .
Therefore,

E
[
∥xT ∥2

]
≥ σ2

⌊T/2⌋∑
s=1

(1 − (1 − η)T −s)2

≥ σ2⌊T/2⌋
25

23



Under review as submission to TMLR

100 101 102 103 104 105 106

Iteration
10-3

10-2

10-1

100

101

kx
¡
x

⋆
k2

³=0; ¾=0:1
SARAH (´=1:0£ 10¡2)
SARAH (´=1:0£ 10¡4)
SARAH (´=1:0£ 10¡6)
SARAH (´=1:0£ 10¡8)
SARAH (´=1:0£ 10¡10)

Figure 3: Convergence of SARAH on the synthetic least squares problem with independent noise. We see that
the algorithm fails to converge with any of the stepsize choices.

which goes to infinity as T → ∞.

On the other hand, for η ≤ 1
2T , we show that even under the data homogeneous (bi = 0) and noiseless regime

(σ2 = 0), we cannot reach stationarity if the starting point is not a stationary point. Note that when bi = 0
and σ2 = 0, the only stationary point is 0. If m0 = ∇f(x0) = x0, we have xT = (1 − η)T −1x1 = (1 − η)T x0.
Therefore,

∥xT ∥2 = (1 − η)T ∥x0∥2

≥ (1 − Tη) ∥x0∥2

≥ ∥x0∥2

2

Therefore, xT cannot converge to 0 when η ≤ 1
2T .

C SYNTHETIC LEAST SQUARES EXPERIMENT WITH INDEPENDENT NOISE

In this section, we provide an additional experiment verifying Theorem 3. We consider the synthetic least
squares problem introduced in Section 5, where we set n = 4, ζ = 0 and concurrency 1, i.e., there is
only one active worker. In this case, our algorithm AsyncBC-SGD reduces to SARAH. For each output
of the client, we add independent, zero-mean, Gaussian noise with variance σ2 = 0.01, i.e., the client
outputs gi

t = ∇fi(xt) − ∇ft(xt−1) + ξt where ξt ∼ N (0, σ). We run the algorithm for stepsizes η ∈
{10−2, 10−4, 10−6, 10−8, 10−10} and we see that the algorithm fails to converge for any of the stepsizes. This
verifies the lower bound in Theorem 3.

D ADDITIONAL EXPERIMENTAL DETAILS

D.1 Synthetic Least Squares Problem

For the synthetic least squares problem, we set the number of clients n = 4, problem dimension d = 10, and
target error (the average of the last 20 iterations) at 0.01. η is searched over {1.0×10−10, 5.0×10−10, · · · , 1.0×
10−1}.

D.2 Regularized Logistic Regression For Fashion MNIST Classification

We use 20% of the training dataset for the validation dataset. We set the number of clients n = 64, set the
batch size to 32, and simulate the different computation speeds as in the previous section, where we set
τ = 50. We perform a grid search over {0.5, 0.1, 0.05, 0.01, 0.005} for the best η parameter, and select the
step size with the best average accuracy at the last 10 iterations. For α = 0.1, 0.01 and 0.001, the selected η
for AsyncBC-SGD are 0.01, 0.005, 0.005 respectively, and for Async-SGD are 0.01, 0.1, 0.05 respectively.

24


	INTRODUCTION
	Contribution
	Related Work

	PROBLEM FORMULATION
	BIAS CORRECTION FOR ASYNC OPTIMIZATION
	Convergence Analysis of AsyncBC-GD

	STOCHASTIC ORACLE AND STOCHASTICITY ASSUMPTIONS
	Convergence of AsyncBC-SGD with Mean-Squared-Smoothness
	Unconvergence of AsyncBC-SGD with Independent Noise

	EXPERIMENTS
	CONCLUSION AND OUTLOOKS
	ANALYSIS OF AsyncBC-GD
	ANALYSIS OF AsyncBC-SGD
	SYNTHETIC LEAST SQUARES EXPERIMENT WITH INDEPENDENT NOISE
	ADDITIONAL EXPERIMENTAL DETAILS
	Synthetic Least Squares Problem
	Regularized Logistic Regression For Fashion MNIST Classification


