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Abstract

Deep learning systems typically suffer from catastrophic forgetting of past knowl-
edge when acquiring new skills continually. In this paper, we emphasize two
dilemmas, representation bias and classifier bias in class-incremental learning, and
present a simple and novel approach that employs explicit class augmentation
(classAug) and implicit semantic augmentation (semanAug) to address the two
biases, respectively. On the one hand, we propose to address the representation bias
by learning transferable and diverse representations. Specifically, we investigate
the feature representations in incremental learning based on spectral analysis and
present a simple technique called classAug, to let the model see more classes
during training for learning representations transferable across classes. On the
other hand, to overcome the classifier bias, semanAug implicitly involves the si-
multaneous generating of an infinite number of instances of old classes in the deep
feature space, which poses tighter constraints to maintain the decision boundary
of previously learned classes. Without storing any old samples, our method can
perform comparably with representative data replay based approaches.

1 Introduction

Deep neural networks (DNNs) have enabled great success in many machine learning tasks, based on
stationary, large-scale, computationally expensive, and memory-intensive training data [1, 2, 3]. Yet
the need of the ability to acquire sequential experience in dynamic and open environments [4, 5, 6]
poses a serious challenge to modern deep learning systems, which only perform well on homogenized,
balanced, and shuffled data [7]. Typically, DNNs suffer from drastic performance degradation of
previously learned tasks after learning new knowledge, which is a well-documented phenomenon,
known as catastrophic forgetting [8, 9, 10]. Recently, incremental learning (IL), also referred to as
lifelong learning or continual learning, has received extensive attention [11, 12, 13, 14] to enable
DNNs to preserve and extend knowledge continually.

Many earlier studies focus on task-incremental learning, which uses separate output layers for
different tasks, and needs the task identity for inference [11, 15, 16]. In this work, we consider a more
realistic and challenging setting of class-incremental learning (Class-IL), where the model only has
access to data of new classes at each stage and needs to learn a unified classifier that can classify all
seen classes [13, 17, 18]. Unfortunately, the learning paradigm of Class-IL will lead to two problems:
representation bias and classifier bias, as shown in Figure 1. First, for representation learning, if the
feature extractor is fixed after learning old classes, the learned representations could be preserved,
but suffer from the lack of transferability for new classes; on the contrary, if we update the feature
extractor on new classes, the updated representations would be no longer suitable for old classes.
Consequently, the old and new classes would be easily overlapped in the deep feature space. We
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Figure 1: Two inherent problems in Class-IL: representation bias and classifier bias.

denote this dilemma as the representation bias. Second, to distinguish new classes from old classes,
the training loss is typically calculated on all classes. Without old training data, the class weights of
old classes would be ill-updated and mismatched with the updated representation space. We denote
this dilemma as the classifier bias. In this work, we investigate the learning of representation and
classifier in incremental learning and propose a simple and effective dual augmentation framework to
overcome these two biases in Class-IL without storing and replaying training data of old classes.

Learning Representation for Incremental Learning. Existing works typically regularize network
parameters explicitly [11, 15, 16] or implicitly [12] to reduce the representation shift when learning
new classes. In this paper, instead of asking how to keep previously learned representations unchanged,
we investigate the following question:

What properties of learned representations could facilitate incremental learning?
We hypothesize that learning transferable and diverse representations is an important requirement
for incremental learning. Intuitively, with such representations, it could be easier to find a model to
perform well on all tasks and improve both plasticity and stability, since different tasks would be
closer in the parameters space. From a spectral analysis viewpoint, we investigate which components
of feature representations are more transferable and less forgettable in the incremental learning
process. It is found that spectral components with large eigenvalues are less forgettable. Furthermore,
we exploit this finding to propose a simple technique named classAug, which can enlarge the spectral
components to introduce more diverse and transferable representations for incremental learning.

Learning Classifier for Incremental Learning. Recently, several works were proposed to alleviate
the classifier bias in data replay based methods [18, 19, 20]. However, in non-exemplar based (i.e.,
without storing and replaying old data) Class-IL setting, the classifier bias is more serious and the
above methods can not be directly used. A straightforward way is storing instances of old classes
in the deep feature space. However, this strategy is undesirable due to the limited memory resource
and scalability. This work delves into the classifier learning for Class-IL and proposes an implicit
semantic augmentation (semanAug) approach to generate an infinite number of instances of old
classes in the deep feature space by leveraging the distribution information. SemanAug is inspired
by MCF [21] and ISDA [22], which have performed semantic augmentation for linear models and
DNNs, respectively. However, both our way to leverage semantic augmentation and the motivation
fundamentally differ from them [21, 22].

Contributions. (i) We provide new insights into the representation learning in incremental learning by
analyzing the structural characteristics of the learned embedding space via spectral decomposition and
find that spectral components with large eigenvalues are less forgettable and carry more transferable
features. Based on this observation, we propose a simple and effective method of classAug to
learn better embedding space for incremental learning. (ii) For classifier learning in incremental
learning, we propose semanAug which implicitly involves simultaneous generating an infinite
number of instances of old classes in the deep feature space to maintain the decision boundary
of previously learned classes. (iii) Extensive experiments on benchmark datasets demonstrate the
superior performance of our dual augmentation framework for the challenging scenario of Class-IL.

2 Related Work

Incremental Learning. Diverse approaches have been proposed for incremental learning of DNNs.
They can be roughly divided into three categories: regularization based, data replay based, and
architecture based approaches. Regularization based methods focus on weight regularization by

2



estimating and preventing the important network weights from changing [11, 15, 16]. The difference
among those methods is the way to compute the importance of the parameters. However, it is
hard to design a reasonable metric to measure the importance of parameters, and it is known that
regularization strategies show poor performance in Class-IL scenario [23, 24]. Data replay based
methods address both the representation bias and classifier bias straightforwardly by storing a
fraction of old data to jointly train the model with current data. With stored real samples, some
works [17, 13, 25] use a distillation loss to prevent forgetting, while others [26, 27, 28] develop
gradient-based regularization to make more efficient use of the rehearsal data. To avoid storing real
data, another line of works generates pseudo-samples of all previous classes for replay using deep
generative models [29, 30, 31, 32]. Nevertheless, storing real data is undesirable for resource-limited
or privacy and safety concerning scenarios. Moreover, training big generative models for complex
datasets is inefficient. Architecture based methods dynamically extend the network structure during
the course of incremental learning [33, 34, 35, 36]. However, growing architecture is unfeasible for
large numbers of tasks, and those methods are often impractical for Class-IL.

Data Augmentation. Literature is rich on data augmentation for improving the generalization of
DNNs. Classical strategies commonly synthesize “positive” new samples in a way that is consistent
with the underlying data distribution of the original dataset [3]. Recent works show that label mixing
based methods such as Mixup [37] and Cutmix [38] can greatly improve the generalization of DNNs.
In complement to the input space augmentations mentioned above, some works have explored
feature space augmentations which augment the learned representations in deep embedding space
to enhance classifier performance. The intuition behind those works is that certain directions in the
deep feature space correspond to meaningful semantic transformations [39, 40]. For instance, deep
feature interpolation [40] leverages simple interpolations in the embedding space to achieve semantic
augmentation. A recently proposed ISDA [22] performs semantic augmentation by estimating and
leveraging the category-wise distribution of deep representations in an online manner. Despite the
simplicity, ISDA shows its effectiveness in semi-supervised learning [22], contrastive learning [41],
domain adaptation [42] and long-tailed recognition [43].

3 Dual Augmentation Framework for Class-Incremental Learning

We first formalize the problem of Class-IL, and then introduce the proposed classAug for repre-
sentation learning and semanAug for classifier learning, respectively. Finally, we present the dual
augmentation framework for Class-IL by combing the two augmentations.

Problem Definition. Typically, a Class-IL problem involves the sequential learning of T tasks that
consist of disjoint classes sets, and the model has to classify all seen classes at any given point in
training. At incremental step t ∈ {1, ..., T }, (x, y) ∈ Dt denotes a training sample, where x is an
sample in the input space X and y ∈ Ct is its corresponding label. Ct is the class set of task t. To
facilitate analysis, we represent the DNN based model with two components: a feature extractor
and a unified classifier. Specifically, the feature extractor fθ : X → Z , parameterized by θ, maps
the input x into a feature vector z = fθ(x) ∈ Rd in the deep feature space Z; the unified classifier
gϕ : Z → RC1:t , parameterized by ϕ, produces a probability distribution gϕ(z) as the prediction for
x. Denote the overall parameters by Θ = (θ,ϕ).

The general objective is to correctly classify test examples from all seen classes [44]. The key
challenge of Class-IL is that data from previous tasks are assumed to be unavailable, which means
that the best configuration of the model for all seen tasks must be sought by minimizing the predefined
loss function L (e.g., cross-entropy) on current data Dt:

argmin
θ,ϕ

E(x,y)vDt [L(gϕ(fθ(x)), y)]. (1)

A widely used strategy to preserve old knowledge is knowledge distillation [45], which typically
matches the current model with previous model response to current training data using the teacher-
student framework [12, 13, 19].

3.1 Learning Representation with Class Augmentation

As we focus on non-exemplar based Class-IL, we intentionally avoid storing training samples of
old classes. To maintain the generalizability of the learned representations for old classes, existing
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methods typically restrain the feature extractor from changing [11, 15, 16, 12]. However, this would
lead to a trade-off between the plasticity and stability [5], and it would be hard to perform long-step
incremental learning. Our high-level idea is to learn transferable and diverse representations to bridge
the old and new classes in a better feature space. To delve into this problem, we want to answer two
questions: (1) Which part of feature representations tends to be forgotten in incremental learning?
(2) How to facilitate the representation learning for incremental learning?

3.1.1 Analyzing Forgetting via Spectral Decomposition

In what follows, we explore which part of feature representations tends to be forgotten and may not
be transferable across different tasks in incremental learning. To this end, we propose to quantify the
sensitivity of the model to different directions in the deep feature space by measuring the similarity
of the space before and after learning new tasks.

Formally, given a feature extractor fθ,old trained on dataset Dold = {(xi, yi)}ni=1. A new dataset
Dnew that contains disjoint classes with Dold is used to update fθ,old, and the updated feature
extractor is denoted as fθ,new. For the samples in Dold, we can get two groups of deep features
mapped by fθ,old and fθ,new, respectively. Using eigenvalue decomposition, we could respectively
decompose the features mapped by original feature extractor (i.e., fθ,old(xi)) as well as the features
mapped by updated feature extractor (i.e., fθ,new(xi)) to different directions as following:

1

n

n∑
i=1

fθ(xi)fθ(xi)
T =

d∑
j=1

ujλju
T
j , (2)

where λj represents the eigenvalue with index j and uj is its eigenvector. d is the dimensionality of
the feature space. Through spectral factorization in Eq. (2), we can represent the original and new
representations with two groups of eigenvectors: {uold,1, ...,uold,d} and {unew,1, ...,unew,d}.
Next, we investigate the forgetting or transferability of each direction. Shonkwiler [46] introduced
the principal angles [47] to measure the similarity of two subspaces. However, it is unreasonable to
treat all eigenvectors equally to calculate the principal angles, regardless of their relative eigenvalues.
Inspired by [48], we use corresponding angles, denoted by ψ, to explore the distance between two
subspaces in incremental learning:

Definition 1 (Corresponding Angle) Given two groups of eigenvectors: {uold,1, ...,uold,d} and
{unew,1, ...,unew,d}, corresponding angle represents the angle between two eigenvectors correspond-
ing to the same eigenvalue value index. The cosine value of the corresponding angle is:

cos(ψj) =
〈uold,j ,unew,j〉
‖uold,j‖ · ‖unew,j‖

, (3)

where uold,j is the j-th eigenvectors with the j-th largest eigenvalue in the old feature space, and
similarly for unew,j . Note that ‖uold,j‖ = 1 and ‖unew,j‖ = 1. For IL, the meaning of “preserve
old knowledge” refers to maintain the previously learned decision boundary among classes. At
representation level, for an old class, the shape (i.e., covariance) of the distributions should not
be changed too much. If an eigenvector direction only changes slightly after updating the feature
extractor, the corresponding angle is small, and vice versa. Intuitively, the corresponding angle could
capture the representation shift between the old and updated feature extractor during incremental
learning, and reflect the forgetting along certain directions in the deep feature space.

Based on the metric defined above, we explore the forgetting of different directions in Class-IL. We
use LwF-MC [12, 13] as baseline method and train a ResNet-18 [1] on CIFAR-100 [49] using SGD
in a 2-step manner. Concretely, the model is first trained on the first 50 classes and then updated on
the other 50 classes. Figure 2 (a) shows the absolute cosine values of corresponding angles between
the old and new eigenvectors. We can observe that eigenvectors with larger eigenvalues produce
larger similarity (small corresponding angles), which indicates those directions are more transferable
and less forgettable across different tasks. On the contrary, the eigenvectors with small eigenvalues
prefer to move after updating the model on new tasks, and could be regarded as forgettable directions.

Transferable and Diverse Representations. As demonstrated above, the directions with larger
eigenvalues transfer better and suffer less forgetting. This thought-provoking observation indicates
that our learned representations should have the following properties: (1) Transferability: the
eigenvalues of those several significant directions should be enlarged to transfer across tasks (or
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Figure 2: (a) Absolute cosine values of corresponding angles. (b) Distribution of eigenvalues for
baseline, Mixup [37], LS [50], and our classAug training based models.

classes). (2) Diversity: the number of the directions with significant eigenvalues should be increased.
Note that those properties are different from that in the common single-task learning scenario.
Actually, reducing the number of directions with significant variance has been seen as a form of
feature compression [51], which is linked to generalization by information theory [52, 53]. However,
the usual concepts of generalization may not entirely be appropriate for IL, since standard learning
only aims to learn compact representations within training classes without considering new class
generalizability. In IL, those less discriminative directions for the current task could capture useful
representations for future tasks. A recent paper [54] has shown that strong compressed representations
can actually hurt the generalization ability in the deep metric learning setting. Therefore, to reduce
forgetting and enhance the transferability of the representations, it is important to enlarge the
eigenvalues and increase the number of eigenvectors with significant variance.

3.1.2 Learning Representations via Class Augmentation

We now exploit our above analysis to propose a simple method for representation learning in Class-
IL. Our key idea is to learn transferable and diverse representations by learning more classes at
each incremental stage t. To do so, a direct way is to introduce real classes from other datasets
as auxiliary. However, it is unrealistic to always have access to other real classes, and which
datasets should be used remains unknown. Therefore, we propose class augmentation (classAug)
to augment the original classes by synthesizing auxiliary classes based on Dt. Concretely, inspired
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Figure 3: Illustration of classAug.

by Mixup [37], classAug randomly interpo-
lates two samples xa and xb from two different
classes a and b to generate a new sample xnew

ab
representing a new class:

xnew
ab = λxa + (1− λ)xb, (4)

where λ is a random number of interpolation
coefficient. For a k-class problem, we can gen-
erate k(k − 1)/2 new classes using the above
method, which can be further merged to m aux-
iliary classes. As a result, the original k-class
problem in the current task is extended to a (k +m)-class problem. Moreover, we restrict the λ to be
sampled from the interval of [0.4, 0.6], to reduce the overlap between the augmented and original
classes. At the end of each IL stage, the augmented class nodes in the classifier would be removed.

Discussion. The proposed classAug is related to Mixup [37] which applies random interpolation
on a pair of training samples and the respective one-hot labels. However, the interpolated samples
in Mixup are near original data, and the number of classes is not changed, but in our method, it
is increased. By learning to classify more classes in each stage t, the model could learn more
transferable and diverse representations. Figure 2 (b) displays and compares the eigenvalues 2 of
representations learned with different methods on the first 50 classes of CIFAR-100. It is obvious
that the proposed classAug can enhance the value of eigenvalues significantly, and produce more
directions with significant variance compared with other methods. On the contrary, Mixup and
Label-Smoothing (LS) [50] lead to significantly smaller eigenvalues for the several top eigenvectors,
which represent more compact representations. Indeed, the compression effect of soft-label based
methods has also been demonstrated in [51, 50]. As shown in Section 4.3, classAug can improve the
performance of Class-IL significantly, while Mixup and LS have negative effect in our experiments.

2To visualize the distribution clearly, we do not include the largest eigenvalue in the figure.
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3.2 Learning Classifier with Semantic Augmentation

As demonstrated in Section 1, classifier bias is another problem in Class-IL. When learning new
classes, the previously learned decision boundary would suffer from catastrophic distortion and thus
the test samples from old classes could be easily mapped to wrong classes. To overcome this issue,
we propose semantic augmentation (semanAug), which leverages the distribution information (i.e.,
class mean and covariance) of old classes to regularize the learning of the classifier. Formally, for
each old class k ∈ {1, ..., Cold}, we can generate M instances in the deep feature space from its
distribution, i.e., z̃k v N (µk, γΣk), in which γ is a non-negative coefficient. Then the generated
instances of old classes and real instances of new classes in the deep feature space can be jointly fed
to the classifier for minimizing cross-entropy loss:

Lt =
1

nt

nt∑
i=1

−log

(
eϕ

T
yi
zi+byi∑Call

c=1 e
ϕT
c zi+bc

)
︸ ︷︷ ︸
Lt,new: loss on real features of new classes

+
1

Cold

Cold∑
k=1

1

M

M∑
m=1

−log

(
eϕ

T
k z̃k,m+bk∑Call

c=1 e
ϕT
c z̃k,m+bc

)
︸ ︷︷ ︸

Lt,old: loss on generated features of old classes

, (5)

where nt is the number of training samples in current task dataset Dt, Cold is the number of total
old classes upon stage t, and Call = Cold + Ct is the number of all seen classes at stage t. ϕ =
[ϕ1, ...,ϕCall ]

T ∈ RCall×d and b = [b1, ..., bCall ]
T ∈ RCall are the weight matrix and bias vector of

the last fully connected layer, respectively.

In Class-IL, the second term in Eq. (5), Lt,old, is computationally inefficient when M and Cold are
large. In the following, we present an easy-to-compute way to implicitly generate infinite instances in
the deep feature space for old classes.

Upper bound of Lt,old. Concretely, in the case of M →∞, the second term in Eq. (5):

Lt,old =
1

Cold

Cold∑
k=1

Ez̃k

[
−log

(
eϕ

T
k z̃k+bk∑Call

c=1 e
ϕT
c z̃k+bc

)]
=

1

Cold

Cold∑
k=1

Ez̃k

[
log

(Call∑
c=1

e(ϕ
T
c −ϕ

T
k )z̃k+(bc−bk)

)]

6
1

Cold

Cold∑
k=1

log

(
Ez̃k

[Call∑
c=1

e(ϕ
T
c −ϕ

T
k )z̃k+(bc−bk)

])

=
1

Cold

Cold∑
k=1

log

(Call∑
c=1

ev
T
c,kµk+(bc−bk)+

γ
2
vTc,kΣkvc,k

)
.

(6)
In above equation, vc,k = ϕc − ϕk. The inequality is based on Jensen’s inequality E[log(X)] 6
logE[X], and the last equality is obtained by using the moment-generating function E[etX ] =

etµ+
1
2σ

2t2 , X v N (µ, σ2), due to the fact that (ϕc − ϕk)z̃k + (bc − bk) is a Gaussian random
variable. As can be seen, Eq. (6) is an upper bound of original Lt,old, which provides an elegant and
much efficient way to implicitly generate infinite instances in the deep feature space for old classes.
The Lt,old in Eq. (6) can be write in the common cross-entropy loss form:

Lt,semanAug , Lt,old =
1

Cold

Cold∑
k=1

−log

(
eϕ

T
kµk+bk∑Call

c=1 e
ϕT
c µk+bc+

γ
2 v

T
c,kΣkvc,k

)
. (7)

Intuitively, Lt,old implicitly performs semantic transformations for µk based on Σk. To maintain the
decision boundary, γ should be smaller if the distribution of a class is near the decision boundary;
instead, γ should be bigger if the distance is relatively far. We set γ = 2 in our experiments. In
addition, we can observe that when γ = 0, only the class means are used for knowledge retention.

Discussion. (1) Although the derivation of the upper bound in Eq. (6) is similar with ISDA [22],
both our motivation and the way to leverage semanAug are different from ISDA. When learning
new classes, we only apply semanAug for the class mean of each old class based on the memorized
distribution information. While ISDA applies semanAug on all the training samples to improve
generalization in standard supervised learning. In addition, a crucial step in ISDA is to estimate the
mean and covariance matrix of each class in an online manner. Differently, semanAug is naturally
suitable for Class-IL, since the distribution of old classes can be estimated with all training samples
at the end of each learning stage. (2) Using previous class statistics for IL has also been explored in
IL2M [55]. However, our method differs from IL2M in both the statistics information and the way to
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Figure 4: Illustration of our dual augmentation framework (IL2A) for Class-IL. On the one hand, the
training samples of new classes at current task are augmented via the proposed classAug. On the
other hand, the distributions of old classes are retained by semanAug in the deep feature space.

leverage them. First, The class statistics in IL2M is the prediction score of the classifier, while ours is
the class distribution statistics in the deep feature space. Second, IL2M uses the class statistics to
calibrate the prediction of a continual learner in a post-processing manner, while our method leverage
the statistics to automatically learn a balanced classifier.

3.3 The Dual Augmentation Learning Framework

With classAug for representation bias and semanAug for classifier bias, Figure 4 describes the
learning process of the dual augmentation framework (IL2A). We also use the well-known knowledge
distillation (KD) [19] for two reasons. Firstly, classAug and KD are complementary and focus on
different aspect of learning representation. Secondly, KD can reduce the change of feature extractor,
which is crucial for semanAug because it implicitly generate instances in the deep feature space from
old distribution. The total learning objective at each stage t is as following:

Lt = Lt,new + αLt,semanAug + βLt,kd, (8)

where α and β are two hyper-parameters. Lt,new and Lt,semanAug are shown in Eq. (5) and Eq. (7),
respectively. Lt,kd = 1

nt

∑nt
i=1 ‖fθt−1(xi) − fθt(xi)‖. Note that Lt,new and Lt,semanAug are

applied to both the original and synthesized samples. Algorithm 1 presents the pseudo code of IL2A.

4 Experiments

4.1 Evaluation Protocol

Algorithm 1: IL2A: Dual augmentation algorithm

Randomly initialize Θ0 = {θ0,ϕ0}; S0 = ∅;
foreach incremental stage t ∈ {1, ..., T } do

Input: model Θt−1, data Dt = {(xi, yi)}nti=1;
Output: model Θt;
Θt ← Θt−1;

Dt,aug = {(x′
i, y
′
i)}

n′t
i=1 via classAug;

add class nodes for augmented classes;
if t = 1 then

train Θt by minimizing L(gϕ(fθ(x′)), y′);
else

train Θt by minimizing Eq. (8);
s← compute {µ,Σ} for each class in Dt;
St ← St−1 ∪ s;
remove augmented class nodes in classifier;

Datasets. We perform our experiments on
CIFAR-100 [49] and Tiny-ImageNet [56].
A common setting is to train the model
on half of classes for first task, and equal
classes in the remaining incremental steps.
Based on this, we split the CIFAR-100
dataset in different settings: 50 + 5× 10,
50+10×5, 40+20×3. For instance, 50+
10×5 represents that the first task contains
50 classes and there are 5 classes for the
following 10 tasks. Similarly, the settings
for Tiny-ImageNet are 100+5×20, 100+
10×10 and 100+20×5. Intuitively, more
classes in each tasks requires the model to
learn a harder problem for each task, while
increasing the length of the task sequence
challenges the model’s retention.

Implementation Details. In our experi-
ments, we follow [44] to utilize the ResNet-18 [1] as our base architecture, and train it from scratch
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Figure 5: Results of top-1 accuracy on CIFAR-100 and Tiny-ImageNet under different settings. Solid
lines present methods that do not store old exemplars, dashed lines present data replay based methods.

in each experiment. All models are trained using Adam [57] optimizer with an initial learning
rate of 0.001 for 100 epochs with the mini-batch size of 64. The learning rate is reduced by a
factor of 10 at 45 and 90 epochs. We use the same hyper-parameter value for all experiments.
Specifically, we set α = 10 and β = 10 in Eq. (8). The number of augmented classes (i.e. The
number of augmented classes (i.e., m) depends on the number of (original) classes at current in-
cremental step. Taking CIFAR-100 as an example, the m is 45 for 5 phases setting where each
incremental step has 10 classes; and m is 10 for 10 phases setting where each incremental step has
5 classes. At the end of each incremental stage, we evaluate the model on all seen classes after
removing the class nodes of the m augmented classes in the classifier. Our code is available at
https://github.com/Impression2805/IL2A.

Comparison Methods. Our method (IL2A) does not store any old samples for replay when learning
new classes. Therefore, we first compare IL2A with several non-exemplar based approaches: MAS
[16], LwF-MC [13], MUC [58], LwM [59]. In addition, we also compare with several exemplar
based methods such as iCaRL [13], EEIL [18] and LUCIR [19]. Specifically, for the data replay
based methods, we follow [13, 19] to store 20 samples for each class using ‘herd’ selection technique
[13]. We report the average top-1 accuracy of all previously seen classes up to each incremental step
t. For iCaRL, we respectively report its results of CNN predictions and nearest-mean-of-exemplars
classification, denoted as iCaRL-CNN and iCaRL-NME.

4.2 Experimental Results

Main Results. Comparative results are shown in Figure 5. Firstly, we observe that our method
performs much better than non-exemplar based methods such as LwF-MC and MUC in the trend of
accuracy curve under different settings. Particularly, the gap appears unbridgeable in the long-step
Class-IL setting, e.g., 10 phases and 20 phases. This suggests that only constraining old parameters
does not suffice to prevent forgetting. We argue that this is partly due to the unaddressed classifier
bias. When compared to representative data replay based methods such as iCaRL, EEIL and LUCIR,
our method remarkably shows strong performance without storing old samples.

The success of our method can contribute to the proposed classAug and semanAug. Specifically,
classAug is applied to new classes of current task, which enables the model to learn more transferable
and diverse representations for future classes and in turn, reduces the forgetting of old parameters
when learning new classes. While semanAug is applied to old classes of previous tasks, which
leverage the valuable distribution information of old classes to learn a unified classifier to connect the
classes from different tasks to each other.

Ablation Study. To evaluate the effect of each component in IL2A, we perform the ablation study
and show the results of 10 phases setting (CIFAR-100) in Table 1. Specifically, the baseline denotes
the method that does not generate pseudo-instance using semanAug, but only replays the class-mean
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Table 1: The effect of each component in IL2A.

Method\Incremental stage 1 2 3 4 5 6 7 8 9 10 Final

Knowledge Distillation 78.78 30.18 20.71 14.61 11.87 8.80 7.70 7.23 7.10 6.05 6.04
baseline 78.86 62.85 56.96 54.66 51.72 47.33 43.61 40.12 40.76 36.55 34.71

+ semanAug 79.16 69.14 60.68 58.18 54.77 50.89 48.45 46.29 46.97 44.38 42.09
+ classAug 79.72 68.30 64.15 60.15 56.21 52.61 51.48 46.48 46.36 43.63 41.56

+ classAug + semanAug 81.08 74.54 66.28 63.89 58.80 54.97 51.32 48.64 49.74 47.05 45.07

of each old class when training new classes. By doing so, we aim to validate the effectiveness
of semanAug compared with only replaying class-mean. In summary, we can observe that: (1)
Baseline improves the performance of KD significantly. (2) SemanAug improves the performance of
baseline from 34.71% to 42.09%. Those results indicate the effect of the distribution information
for maintaining old knowledge in Class-IL. (3) ClassAug also has remarkably effect on baseline,
and (4) the performance can be further improved by combing with semanAug, which indicates that
those two modules are complementary. Similar results are observed in other settings of CIFAR-100
and Tiny-ImageNet datasets. (5) As for the computational complexity, classAug involves input
level sample mixing and the augmented samples are fed to feature extractor. Differently, semanAug
performs implicit old instance generation in the deep feature space. Therefore, semanAug is cheaper
compared with classAug from the computation perspective.

4.3 Further Analysis

ClassAug Improves both Plasticity and Stability in Class-IL. To analyze the effectiveness of
classAug more concretely, we explore how it affects the new tasks accuracy (↑) and average forgetting
(↓) (CIFAR-100, 10 phases setting). Average forgetting [60] is defined to estimate the forgetting
of previous tasks. The forgetting measure f ik of the i-th task after training k-th task is defined as
f ik = max

t∈1,...,k−1
(at,i − ak,i),∀i < k, in which am,n is the accuracy of task n after training task m.

The average forgetting measure Fk is then defined as Fk = 1
k−1

∑k−1
i=1 f

i
k. Intuitively, new task

accuracy can be viewed as the plasticity of the incremental learner and the average forgetting can
be viewed as the stability of the incremental learner. Figure 6 (a) and (b) report the results, from
which we see that classAug simultaneously improves the new task accuracy and reduces the average
forgetting. Specifically, the significant improvement on new task accuracy implies that the model
training with classAug is a good initialization for the following tasks. Consequently, classAug is
effective to improve the trade-off between plasticity and stability of a continual learner.
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Figure 6: (a, b) ClassAug can simultaneously improve the new task accuracy and reduce the average
forgetting. (c) Compared with classAug, Mixup and LS have negative effect for Class-IL.

Compare ClassAug with Other Regularizers. We compare the proposed classAug with Mixup and
LS in Figure 6 (c), where the baseline (with semanAug) represents our IL2A without using classAug.
As can be seen, Mixup and LS have negative effect on the final accuracy. This phenomenon could be
interpreted based on the analysis in Section 3.1.1 and Figure 2 (b). Specifically, those regularizers
result in more compressed representations, damaging the transferability of the representations.
Besides, the label smoothing strategy also affects the weights of old classes in the classifier, thus
increasing the classifier bias. Similar results have also been reported in [61].

Discussion of Covariance Matrix. In our main experiments, we use the original covariance matrix
for semanAug. However, storing the original covariance matrix might be inefficient when the
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Table 2: OOD detection results. ↑ indicates higher is better.

OOD
AUROC ↑ AUPR-In ↑ AUPR-Out ↑

baseline Mixup classAug baseline Mixup classAug baseline Mixup classAug

MNIST 87.02 92.46 94.99 79.89 89.00 93.05 92.26 95.48 97.20
Fashion-MNIST 90.28 93.37 94.40 86.18 89.11 92.43 94.26 96.19 96.78

LSUN 88.50 88.80 93.90 83.48 74.71 91.08 92.92 94.09 96.73
Tiny-ImageNet 88.49 84.96 93.92 83.84 64.02 91.77 92.70 92.19 96.55

Mean 88.57 89.90 94.30 83.35 79.21 92.08 93.04 94.49 96.81

matrix dimension is large. An alternative way is to only store the elements on the diagonal, which
could greatly reduce the cost of memory. Figure 7 also reports the results of using the diagonal
covariance matrix. Under different settings, using the original covariance matrix is slightly better
than the diagonal form. This is reasonable because the original covariance matrix stores more
distribution information of old classes. However, using the diagonal covariance matrix would be
more memory-efficient in practice.
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Figure 7: Original v.s. diagonal
covariance matrix. CIFAR-100.

ClassAug Improves Confidence Reliability. During continuous
use of a machine learning system in open-world applications, there
are mainly three key steps [62]. The first step is out-of-distribution
(OOD) detection [63], which requires the system to detect un-
known samples from novel classes. The second step is to label the
collected unknown samples by humans or automatic algorithms
[64]. Finally, the system must scale and adapt incrementally to
learn the novel classes, which is the Class-IL problem studied in
this paper. Recently studies found that DNNs are overconfident
for their predictions [63, 65], lacking the ability to detect samples
from unknown classes. In real-world applications, we expect a
continual learner has good OOD detection ability.

We explore the OOD detection ability of the proposed classAug. Concretely, we train a ResNet-18
on CIFAR-10, and the test samples from CIFAR-10 are in-distribution. For OOD examples, we
test on MNIST [66], Fashion-MNIST [67], LSUN (resized) [68] and Tiny-ImageNet (resized). As
shown in Table 2, classAug noticeably improves the OOD detection performance of baseline [63] on
commonly used metrics such as AUROC, AUPR-In and AUPR-Out [63]. By recognizing synthetic
samples, DNNs could learn more robust and transferable representations which could be generalized
to OOD samples. Moreover, as shown in Table 2, Mixup sometimes damages the performance of
OOD detection, which further demonstrates the superiority of classAug.

5 Conclusion

In this paper, we propose a simple and effective dual augmentation framework to address the
representation bias and classifier bias in Class-IL. We first investigate the transferability (or forgetting)
of representations via spectral decomposition, which motivates us to propose classAug that can learn
transferable, diverse and less compact representations for IL. Furthermore, we propose to use
semanAug to implicitly generate infinite instances of old classes in the deep feature space during
jointly learning of the unified classifier. Experiments show that our method could achieve remarkable
performance compared with state-of-the-art Class-IL methods. Future works will consider the dual
augmentation framework for more challenging scenarios like Class-IL with distribution shift and
OOD data, few-shot Class-IL, and federated incremental learning.
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