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Abstract

Multimodal Large Language Models (MLLMs) excel at sim-

ple vision-language tasks but struggle when faced with com-

plex tasks that require multiple capabilities, such as simul-

taneously recognizing objects, counting them, and under-

standing their spatial relationships. This might be par-

tially the result of the fact that Visual Instruction Tun-

ing (VIT), a critical training step for MLLMs, has tra-

ditionally focused on scaling data volume, but not the

compositional complexity of training examples. We pro-

pose COMPACT (COMPositional Atomic-to-Complex Vi-

sual Capability Tuning), which generates a training dataset

explicitly controlling for the compositional complexity of

the training examples. The data from COMPACT al-

lows MLLMs to train on combinations of atomic capabil-

ities to learn complex capabilities more efficiently. Across

all benchmarks, COMPACT achieves comparable perfor-

mance to the LLAVA-665K VIT while using less than 10%

of its data budget, and even outperforms it on several, es-

pecially those involving complex multi-capability tasks. For

example, COMPACT achieves substantial 83.3% improve-

ment on MMStar and 94.0% improvement on MM-Vet com-

pared to the full-scale VIT on particularly complex ques-

tions that require four or more atomic capabilities. COM-
PACT offers a scalable, data-efficient, visual compositional

tuning recipe to improve on complex visual-language tasks.

1. Introduction
Multimodal Large Language Models (MLLMs) have shown
impressive progress in a wide range of vision-language
tasks [1, 2, 19]. Yet, from early diagnostic works [30, 32] to
recent state-of-the-art models like LLaVA [22, 23], Cam-
brian [37], and Eagle [21, 34], compositionality remains
a challenge. Consider the following question: “Are there
more blue squares or red circles on the image?” A model
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Figure 1. Compositional Complexity Comparison. Comparison
between visual instruction tuning data (LLAVA-665K [24] VIT)
and our compositional tuning data (COMPACT). The VIT data is
dominated by simple queries (k = 1), while our COMPACT data
is balanced across compositional complexity levels (k = 1, 2, 3).

that is capable of recognizing shapes, colors and counting
objects should be able to answer it correctly. Despite years
of progress, state-of-the-art models still fail on such com-

positional questions, even though they can answer simpler
ones correctly (e.g. “What color is the square?”). This
has been a long-standing issue and such failures suggest
that current models do not systematically generalize to tasks
with higher compositional complexity.

To address this, recent efforts have primarily scaled up
the amount of training data used for Visual Instruction Tun-
ing (VIT) [21, 24, 25, 34, 37], an essential but data- and

compute-heavy step for MLLM training. However, such
datasets (e.g. LLAVA-665K [24]) are dominated by sim-
ple queries that require only one capability, lacking suffi-
cient compositional complexity (Fig. 1). Even with large-
scale instruction tuning, recent studies show that models
still struggle with integrating capabilities and generalizing
to complex visual tasks due to limitations in the composi-
tional complexity of their training data [29, 40].

Instead of treating compositionality as a byproduct of
scale, we encourage compositional capabilities in MLLMs
with hierarchically structured compositional training data.
In this work, we introduce COMPACT (COMPositional
Atomic-to-complex Visual Capability Tuning), a data

https://princetonvisualai.github.io/compact/


recipe that scales capabilities of MLLMs from atomic (k =
1) to composite (k > 1) complexity levels. We define a set
of 10 atomic capabilities and then combine them to generate
a compositional training dataset that can promote model’s
internalization of the compositional structures of complex
tasks in a compute-efficient manner. We summarize our key
contributions:
• We introduce COMPACT, a visual compositional tun-

ing data recipe that builds complex capabilities from sim-
ple atomic capabilities. By systematically combining 10
atomic capabilities to control the complexity of training
samples, COMPACT addresses a key limitation of con-
ventional VIT methods that rely on incidental capability
composition through data scaling.

• We develop a structured data recipe that enforces a bal-
anced distribution across different levels of compositional
complexity (k = 1, 2, 3) to cover a wider range of task
regimes. This approach flattens the complexity cliff in
conventional VIT datasets [24], where 90.1% of the ques-
tions require two or fewer capabilities.

2. Method
2.1. Atomic Visual Capabilities
Atomic capabilities are foundational skills that can be com-
bined to solve complex tasks. For example, a model needs
to acquire object recognition, color attribution, and spatial
relationship understanding capabilities to identify how ob-
jects of different colors are spatially oriented. For each task
T , we identify a set of atomic visual capabilities {c1, . . . ck}
required to solve this task. We define the number of atomic
capabilities required to solve the task T as its compositional

complexity k.
We build a taxonomy of atomic capabilities from the ex-

isting literature on MLLMs and their general visual rea-
soning skills [15, 40]. Extremely low-frequency and non-
perceptual capabilities (e.g. cultural knowledge, histori-
cal context, and math) are removed, resulting in 10 fine-
grained atomic capabilities that focus on visual understand-
ing (Fig. 2). We categorize these atomic capabilities into
three major categories: Attribution (color and shape),
Recognition (objects, actions, text, spatial recognition, and
counts), and Relation (spatial relationship, object interac-
tion, or scene understanding).

2.2. Visual Compositional Tuning Data Recipe
In our proposed approach COMPACT, we generate multi-
capability questions Dcomp by prompting vision-language
models to create questions that require natural1 integration

1We use the term “natural” to denote combination of visual capabili-
ties that correspond to their co-occurrence patterns in real-world settings,
wherein multiple capabilities are integrated in a way that is contextually
and semantically meaningful.

of exactly k atomic visual capabilities. This process in-
volves four key steps.

Step 1: Capability Sampling. We start by taking a random
sample of images from LLAVA-665K [24]. For each im-
age, we repeatedly sample k → {1, 2, 3} capabilities from
our predefined pool of 10 atomic visual capabilities. We do
the following in each round of capability sampling: (a) pri-
oritize the capabilities that have not been selected for that
image, and (b) drop duplicate combinations of capabilities
for the same image. These efforts ensure that our train-
ing examples efficiently capture diverse visual information
from the images.

Step 2: Conversation Generation. For each capabil-
ity combination that is sampled, we prompt Gemini-2.0-
Flash [36] to generate a conversational question-answer pair
that integrates all capabilities in the combination, as well as
a score between 0 and 100 that represents its confidence
in the quality of the conversation. Our carefully designed
prompt enforces several key constraints: (a) questions must
require the use of visual information from the image and
cannot be answered from its text alone, (b) answers must be
concise, (c) questions must integrate exactly the specified
capabilities naturally (without using conjunctions to simply
conjoin single-capability questions), and (d) questions must
reference objects and features actually present in the image.
The purpose of these constraints is to produce vision-centric
conversations that are unambiguous and natural.

Step 3: Quality Verification. We include a verification
process with Gemini-2.0-Flash [36] to ensure the quality
and diversity of the training dataset. We filter out ques-
tions with uninformative answers (e.g., “unknown”, “not
visible”) or those with confidence scores below 70%. Then,
we perform capability verification by prompting Gemini-
2.0-Flash [36]. Questions that require unspecified capabil-
ities or do not utilize all k capabilities are rejected. The
generation and verification processes in steps 2 and 3 repeat
iteratively until we collect 2-3 high-quality conversations
per k for each image.

Step 4: Dataset Assembly. The final training dataset
combines two components: (1) a random 5% subset of the
LLAVA-665K [24] VIT dataset, and (2) our COMPACT-
generated compositional tuning data. The VIT subset main-
tains the model’s ability to handle diverse response for-
mats and instructions required by modern MLLM bench-
marks (e.g., multiple-choice questions [9], open-ended an-
swers [24]). On the other hand, our compositional data
trains the model’s capability to reason about multiple visual
aspects within a single complex question.



Figure 2. COMPACT’s Data Generation Pipeline. (Left): We sample k → {1, 2, 3} atomic capabilities such as color, object recognition,
and spatial relationship. (Center): We generate questions that integrate all k sampled capabilities. (Right): We verify the quality of
generated conversations and combine them with instruction tuning data to maintain instruction following capability. This structured data
recipe explicitly models atomic-to-complex learning procedure, in contrast to standard LLAVA-665K [24] VIT that promotes learning
from simple queries.

Recipe # Data InfoVQA [27] SeedBench2Plus [17] MME [9] TextVQA [35] MM-Vet [43] CV-Bench [37] MMStar [6] LLaVA-W [24] Rel. (%)

LLAVA-665K [24] 665K 20.80 41.72 1478.48 46.99 29.22 60.92 35.11 68.50 100.00

Random 65K 20.05 41.85 1327.70 42.88 30.46 54.71 34.13 64.30 95.38
ICONS [39] 65K 21.0 42.03 1402.75 43.12 31.23 55.96 35.96 61.8 97.47
COMPACT (ours) 65K 23.68 43.13 1379.94 44.37 31.74 55.28 36.13 64.50 100.18

Table 1. Baseline Comparisons. Performance comparison of COMPACT with baselines. With only 5% of the LLAVA-665K [24]
VIT data and 32K of our compositional tuning data (65K total), COMPACT outperforms the random subset of the VIT data (Random),
gradient-based approach selected subset of the VIT data (ICONS [39]), and even the full VIT data on diverse multimodal benchmarks. The
best and second best results for each benchmark are shown in bold and underlined, respectively. COMPACT integrates atomic capabilities
into tasks of higher compositional complexity, enabling models to generalize and handle complex tasks without explicit decomposition.

3. Experiments
3.1. Evaluation Testbed

Model. We train LLaVA-v1.5-7B-LoRA [24] model’s pre-
visual-instruction-tuning checkpoint2 on our COMPACT
training dataset. This checkpoint has not been exposed
to any visual instruction tuning data prior to COMPACT
training. The training dataset includes 32K-sample compo-
sitional tuning data unless otherwise stated. Additionally,
we mix 5% of LLAVA-665K [24] to preserve instruction
following capability. We train the model for one epoch with
its official LLaVA-v1.5 LoRA fine-tuning settings.

Baselines. We compare the effectiveness of our COM-
PACT data recipe with several baseline datasets by train-
ing models with the same architecture under identical train-
ing configurations. LLAVA-665K: The full LLAVA-
665K [24] VIT dataset (665K samples) used in LLaVA-

2LLaVA-v1.5-mlp2x-336px-pretrain-vicuna-7b-v1.5, which has no
prior exposure to visual instruction tuning data.

v1.5. This serves as our primary performance base-
line. Random: A 65K-sample random subset of LLAVA-
665K [24] that matches our training data size. This base-
line controls for data volume. ICONS [39]: A 65K-sample
subset of LLAVA-665K [24] selected using the ICONS
method, which is a gradient-driven influence-consensus
based data selection method that selects the most informa-
tive samples for data-efficient visual instruction tuning. We
evaluate models trained with different data recipes on mul-
timodal benchmarks that assess complex visual capabilities.

3.2. Main Results

Overall Performance. As shown in Tab. 1, our
COMPACT achieves an average relative performance of
100.18%, outperforming even the full LLAVA-665K [24].
In comparison, the random baseline achieves 95.38%, and
the ICONS [39] baseline 97.47%, highlighting the effec-
tiveness of our compositional data generation strategy.

Visual Compositional Tuning is Data-Efficient. We
study the data efficiency of COMPACT by analyzing how
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Figure 3. Performance Across Compositional Tuning Data Scales. We fix the VIT subset (5% of LLAVA-665K [24]) and scale the
compositional tuning data in COMPACT from 2K to 32K. For comparison, we remove the compositional tuning data and add more VIT
data (2K-32K) instead to prepare VIT only recipes with equal data budgets. COMPACT (solid lines) consistently outperforms LLAVA-
665K [24] VIT (dashed lines) with fewer data. The performance gap is pronounced for complex reasoning benchmarks such as MM-Vet
and MMStar, where the 8K COMPACT model often exceeds the LLAVA-665K [24] VIT baseline at 32K. This demonstrates the data
efficiency of COMPACT, requiring substantially less data than LLAVA-665K [24] VIT to achieve comparable or better results.

Figure 4. Compositional Generalization to Higher-Complexities. Performance comparison across compositional complexities (k).
COMPACT shows competitive performance against LLAVA-665K [24] VIT training. It exceeds the LLAVA-665K [24] baseline at
higher compositional complexity tasks (k = 4 and k = 5) while using significantly less training data. The k-distribution rows show the
distribution of compositional complexities in each benchmark.

its performance changes as we scale the amount of compo-
sitional tuning data. We fix the VIT subset (5% of LLAVA-
665K [24]) and scale the compositional tuning data in
COMPACT from 2K to 32K. As comparison, we remove
the compositional tuning data and add more VIT data (2K-
32K) instead to match the dataset size. Fig. 3 shows that
as the number of compositional tuning samples increases,
COMPACT performance trends upward across all bench-
marks while the random baseline shows mixed behavior as
the size of the dataset increases. Furthermore, across all
dataset sizes, COMPACT performs consistently better than
the random baseline, and the gap increases as the size of the
dataset grows. This demonstrates that COMPACT makes
more effective use of training data compared to the base-
lines.

Performance Gains on Complex Compositional Ques-
tions. COMPACT’s notable performance improvements
on complex compositional questions demonstrate its poten-
tial for strong compositional generalization. As shown in
Fig. 4, COMPACT achieves competitive performance on
the MM-Vet [43] and MMStar [6] benchmarks across vari-
ous levels of compositional complexity (k). Despite not be-

ing explicitly trained on k > 3 data, our model effectively
generalizes to even higher k regimes. For MM-Vet [43], the
scores are 57.5 (COMPACT) vs 32.5 (LLAVA-665K [24])
when k = 4, and 20.0 (COMPACT) vs 0.0 (LLAVA-
665K [24]) when k = 5. For MMStar [6], the scores
are 64.7 (COMPACT) vs 35.3 (LLAVA-665K [24]) when
k = 4. This shows that COMPACT performs robustly in
scenarios with higher compositional complexity.

4. Discussion

Conclusion. In this work, we introduce COMPACT, a
data recipe that systematically combines atomic visual ca-
pabilities (e.g., object recognition, spatial reasoning, shape
attribution) into composite capabilities to solve complex
multimodal tasks. Our experimental results show that
explicit training on compositions of atomic capabilities
matches the full LLAVA-665K [24] VIT in performance
across benchmarks with less than 10% of its data budget.
Our work presents the potential of structured compositional
learning as a scalable, data-efficient pathway toward mul-
timodal models that can solve complex, multi-capability
tasks via compositional generalization.
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