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Abstract

Recent years have witnessed growing interests001
in incorporating external knowledge such as002
pre-trained word embeddings (PWEs) or pre-003
trained language models (PLMs) into neural004
topic modeling. However, we found that em-005
ploying PWEs and PLMs for topic modeling006
only achieved limited performance improve-007
ments but with huge computational overhead.008
In this paper, we propose a novel strategy to in-009
corporate external knowledge into neural topic010
modeling where the neural topic model is pre-011
trained on a large corpus and then fine-tuned012
on the target dataset. Experiments have been013
conducted on three datasets and results show014
that the proposed approach significantly outper-015
forms both current state-of-the-art neural topic016
models and some topic modeling approaches017
enhanced with PWEs or PLMs. Moreover, fur-018
ther study shows that the proposed approach019
greatly reduces the need for the huge size of020
training data.021

1 Introduction022

Topic models have been widely used for discov-023

ering hidden themes from a large collection of024

documents in an unsupervised manner. Recently,025

to avoid the complex and specific inference pro-026

cess of graph model-based method such as LDA027

(Blei et al., 2003), neural topic modeling that uti-028

lizes neural-network-based black-box inference has029

been the main research direction in this field (Blei,030

2012; Miao et al., 2016; Srivastava and Sutton,031

2017). Typically, neural topic models infer topics032

of a document by utilizing its bag-of-words (BoWs)033

representation to capture word co-occurrence pat-034

terns. The BoWs representation, however, fails to035

encode rich word semantics, leading to relatively036

inferior quality of topics generated by the topic037

models. Therefore, approaches have been proposed038

to address the limitation of BoWs representation039

by incorporating the external knowledge, such as040

pre-trained word embeddings (PWEs) (Das et al., 041

2015; Wang et al., 2020; Dieng et al., 2020). 042

In recent years, pre-trained language models 043

(PLMs) (Peters et al., 2018; Devlin et al., 2019; 044

Brown et al., 2020) have achieved state-of-the-art 045

performance on a wide range of natural language 046

processing tasks. Different from PWEs1 in which a 047

word is mapped to a static word emebdding, PLMs 048

generate a specific word embedding for each oc- 049

currence of a word depending on the context. It 050

is appealing to incorporate PLMs into topic mod- 051

els since contextualized embeddings generated by 052

PLMs encode richer semantics and naturally deal 053

with word polysemy (Pasini et al., 2020). One 054

straightforward way is to replace BoWs representa- 055

tion with the outputs of PLM (Bianchi et al., 2020b) 056

in existing topic models or take PLM outputs as 057

additional inputs to topic modeling (Bianchi et al., 058

2020a). A more sophisticated approach is to dis- 059

till the knowledge of a PLM into a topic model. 060

For example, (Hoyle et al., 2020) employed the 061

probability estimates of a teacher PLM over a text 062

sequence to guide the training of a student topic 063

model. 064

However, the approaches mentioned above still 065

have limitations. Firstly, using PLMs for topic 066

model training in such ways leads to huge compu- 067

tational overhead. Most neural topic models are 068

based on shallow multi-layer perceptions with few 069

hidden units. However, most popular PLMs are 070

based on deep Transformers (Vaswani et al., 2017) 071

where at each layer expensive self-attention opera- 072

tions are performed, which have a time complexity 073

quadratic in document length. Therefore, the over- 074

all training time is dominated by PLM, and it will 075

be worse if PLM is further fine-tuned, as shown in 076

(Hoyle et al., 2020). Secondly, there is the gap of 077

training objectives between PLMs and topic mod- 078

els, where PLMs are trained to learn the semantic 079

and syntactic knowledge within a sentence while 080

1In this paper, PWEs refer to context-free embeddings.
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topic models focus on extracting main themes over081

whole corpus. As shown in Table 4, a model based082

on GloVe embeddings (Pennington et al., 2014) per-083

forms better than PLMs-based models such as those084

proposed in (Bianchi et al., 2020a) and (Bianchi085

et al., 2020b).086

To overcome these challenges, we propose a087

simple yet effective strategy, namely Pre-trained088

Neural Topic Model (PT-NTM), to utilize exten-089

sive knowledge from large corpora for neural topic090

modeling with low computational complexity. In-091

stead of pre-training the embeddings and acquiring092

knowledge indirectly, PT-NTM directly pre-trains093

the topic model itself on the knowledge source cor-094

pora. In specific, a neural topic model is firstly095

trained on a large corpus only once, which is called096

pre-training. Afterward, it is fine-tuned on any097

other dataset, which is called fine-tuning. As the098

architecture of the neural topic model used in pre-099

training and fine-tuning is the same, it incurs little100

computational overhead to any subsequent training.101

Experiments have been conducted on three datasets102

and the results show that the proposed approach103

significantly outperforms not only some state-of-104

the-art neural topic models but also the topic model-105

ing approaches using PWEs and PLMs. Moreover,106

it is observed that on the NYTimes dataset, the107

neural topic model trained on 1% of the whole108

dataset using the proposed approach achieves supe-109

rior performance than other baseline models that110

are trained on the whole dataset. It further shows111

that the proposed approach greatly reduces the need112

for the huge size of training data.113

The main contributions are:114

• We proposed a simple yet effective strategy115

for training neural topic models in which the116

models are pre-trained on a large corpus and117

then fine-tuned on a specific dataset.118

• We conducted extensive experiments and the119

results show that the pre-trained neural topic120

models significantly outperform baselines in121

terms of topic coherence and topic diversity.122

• The proposed approach greatly reduces the123

amount of training data needed. In our ex-124

periments on the NYTimes dataset, a pre-125

trained model fine-tuned with 1% of docu-126

ments achieves superior performance than127

baselines that are trained on the whole dataset.128

2 Related Work 129

2.1 Neural Topic Modeling 130

Due to the flexible modeling choices and high rep- 131

resentation capacity, neural networks have been 132

widely used for topic modeling in recent years. 133

Some approaches (Kingma and Welling, 2013; 134

Miao et al., 2016) model topics with variational 135

autoencoders (VAEs) and view the latent variables 136

of VAEs as document topics. However, topic mod- 137

els typically use Dirichlet distribution as the prior 138

of multinomial topic distributions, while the repa- 139

rameterization trick required by VAEs hinders the 140

usage of a Dirichlet prior. Therefore, some follow- 141

up works (Srivastava and Sutton, 2017; Card et al., 142

2018) used logistic normal to approximate Dirich- 143

let. Another family of neural topic models (Nan 144

et al., 2019; Wang et al., 2020; Hu et al., 2020) 145

overcome the problem with adversarial training 146

(Goodfellow et al., 2014) by encouraging the model 147

to generate topic distributions that are similar to 148

samples randomly drawn from a Dirichlet prior. 149

2.2 Topic Modeling with External Knowledge 150

There are mainly two ways to incorporate external 151

knowledge into topic modeling, namely by PWEs 152

and PLMs. 153

Some attempts incorporate pre-trained word rep- 154

resentations into neural topic models. For example, 155

(Card et al., 2018; Dieng et al., 2020) used PWEs to 156

initialize word embeddings of topic models. (Wang 157

et al., 2020) built a generative process that models 158

word embeddings with per-topic Gaussian distribu- 159

tions. 160

Beyond static word embeddings, researchers 161

also tried to utilize PLMs. (Bianchi et al., 2020b,a) 162

treated PLM outputs as an additional knowledge 163

source to enhance or replace BoW-based inputs. 164

(Hoyle et al., 2020) employed knowledge distilla- 165

tion to guide the training of a student topic model 166

with a PLM teacher network. Recently, (Song et al., 167

2020) proposed TopicOcean to train LDA-based 168

topic models on large corpora and then transfer the 169

knowledge of accumulated topics to new corpora 170

which can also be considered a way of pre-training. 171

It should be pointed out that the proposed PT- 172

NTM differs from the previous PLMs-based topic 173

models or TopicOcean in that the architecture of 174

neural topic models during pre-training and fine- 175

tuning are the same in PT-NTM while other meth- 176

ods combine the large PLM with the topic models, 177

the two different model architectures. 178
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Figure 1: The architecture of neural topic model em-
ployed in PT-NTM. Both the encoder on the left and the
decoder on the right have N + 1 layers.

3 Methodology179

In this section, we describe the detailed processes180

of PT-NTM. First, we will introduce the architec-181

ture of neural topic model, which we call NTM in182

the following, employed in PT-NTM. Then, we will183

introduce how to pre-train the neural topic model184

on a large-scale dataset. Finally, we will introduce185

how to fine-tune the pre-trained neural topic model186

on the target dataset.187

3.1 Neural Topic Model Architecture188

For the architecture of NTM, we follow the189

encoder-decoder architecture, as employed by190

many neural topic models (Srivastava and Sutton,191

2017; Miao et al., 2017; Nan et al., 2019). The192

encoder takes a document’s BoW x ∈ RV as input193

and infers its topic distribution ẑ ∈ RK , where V194

is the vocabulary size and K the topic number. The195

decoder then reconstructs the original document196

from ẑ, denoted as x̂.197

The whole architecture of NTM is shown in Fig-198

ure 1. In specific, the encoder is a stack of N + 1199

MLP layers. From the bottom to the top, the first N200

layers have an identical structure. Each layer has201

four sub-layers: Dropout (Srivastava et al., 2014),202

Linear, BatchNorm (Ioffe and Szegedy, 2015), and203

LeakyReLU (Maas et al., 2013). The final layer is a204

Dropout sub-layer and a Linear transformation fol-205

lowed by a Softmax. The decoder shares the same206

architecture as the encoder, though they may vary207

in input/output dimensions. In our experiments, we 208

set a Dropout probability of 0.5 in the first encoder 209

layer and 0.2 in the remaining encoder and decoder 210

layers. All LeakyReLU sub-layers have a negative 211

slope of 0.01. 212

Combining the encoder and the decoder, we now 213

have the reconstruction loss: 214

Lrec(X, X̂) = −E(x log x̂), (1) 215

which encourages the decoder outputs X̂ = 216

{x̂(i)}mi=1 to be as similar as the corresponding 217

encoder inputs X = {x(i)}mi=1 for each training 218

batch, where m is the batch size. 219

For topic distribution ẑ, what we have done 220

above is insufficient to generate reasonable topics 221

since ẑ’s distribution Q is not well defined. To this 222

end, we follow a similar approach proposed in (Nan 223

et al., 2019) and further impose on ẑ a Dirichlet 224

prior P by minimizing the Maximum Mean Dis- 225

crepancy (MMD) (Gretton et al., 2012) between 226

the two distributions P and Q: 227

LMMD(Z, Ẑ) = − 2

m2

∑
i,j

k(z(i), ẑ(j))+ 228

1

m(m− 1)

∑
i̸=j

(k(z(i), z(j)) + k(ẑ(i), ẑ(j))), (2) 229

where Z = {z(i)}mi=1 are topic distributions ran- 230

domly drawn from the prior P , Ẑ = {ẑ(i)}mi=1 231

are encoder outputs, and k is the kernel function 232

that is information diffusion kernel (Lebanon and 233

Lafferty, 2003) in our experiments following (Nan 234

et al., 2019). 235

The overall training objective is: 236

L = Lrec(X, X̂) + λrLMMD(Z, Ẑ), (3) 237

where we balance Lrec and LMMD with a hyperpa- 238

rameter λ and another factor 239

r =
∥∇b(N+1)Lrec(X, X̂)∥2
∥∇b(N+1)LMMD(Z, Ẑ)∥2

, (4) 240

where ∥·∥2 denotes L2 normalization and b(N+1) 241

is the bias term of the last Linear sub-layer of the 242

encoder, i.e., the one just before the Softmax sub- 243

layer. Equation (4) shows that the two losses are 244

balanced with their relative gradient norm with 245

respect to b(N+1). We found in our experiments 246

that r greatly reduces the effort of tuning λ and 247

generally produces better results. 248
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3.2 Pre-training249

By pre-training the topic model on a large and250

topically diverse corpus, we expect the model251

would learn topic-related knowledge that is gen-252

eral enough to be reused on other corpora. For the253

proposed approach, the knowledge may include254

word semantics, common senses, and document255

encoding and decoding patterns at each layer.256

The details of the pre-training procedure are257

presented in Algorithm 1. The pre-training cor-258

pus D is the subset00 of the OpenWebText dataset259

(Gokaslan and Cohen, 2019), an open-source recre-260

ation of the WebText dataset as detailed in (Radford261

et al., 2019). We preprocess data by tokenization,262

lemmatization, stopword removal, and only keep-263

ing words occurred in at least 50 documents. After264

preprocessing, there are about 392K documents,265

consisting of 45K unique words, in the resulting266

dataset. At each training mini-batch, we update267

model parameters according to Equation (3) using268

the Adam optimizer (Kingma and Ba, 2014).269

Algorithm 1 Pre-training.

Require: D, the pre-training corpus; E, the en-
coder; D, the decoder; θ, parameters of E and
D; θ0, initial parameters; m, the batch size;
n, the number of training epochs; P (z), the
Dirichlet prior.

1: θ ← θ0
2: for i = 1, · · · , n do
3: Shuffle D.
4: for each X = {x(j)}mj=1 from D do
5: Ẑ ← E(X); X̂ ← D(Ẑ)
6: Sample Z = {z(j)}mj=1 ∼ P (z).
7: Compute L by Equation (3).
8: θ ← Adam(∇θ

1
m

∑m
j=1 L(j),θ)

9: end for
10: end for

3.3 Fine-tuning270

Fine-tuning is the process of adapting the pre-271

trained topic model to a specific dataset. However,272

directly fine-tuning the pre-trained model on a new273

dataset does not always work and may introduce se-274

vere bias to subsequent tuning steps since the ideal275

number of topics might change and the corpus-wide276

topic distributions might be different. Therefore,277

our fine-tuning begins with the pre-trained model278

but randomly re-initializes parameters in the last279

encoder layer and the first decoder layer. If we fine-280

tune the model without any re-initialization, we 281

find that in our experiments the corpus-wide topic 282

distributions discovered by the fine-tuned model 283

would be biased towards the topic distribution of 284

the pre-training corpus, which is unexpected. The 285

proposed fine-tuning strategy with re-initialization 286

solves this issue. Algorithm 2 shows the fine-tuning 287

steps. We keep the pre-trained parameters fixed for 288

the first n1 epochs and use a small learning rate 289

in the remaining training epochs since they have 290

already been well trained before fine-tuning. 291

Algorithm 2 Fine-tuning.

Require: D′, the target corpus; E, the encoder; D,
the decoder; θr, randomly initialized parame-
ters; θp, pre-trained parameters; m, the batch
size; n, the number of training epochs; n1,
n1 ∈ N and 0 ≤ n1 ≤ n; P (z), the Dirichlet
prior.

1: for i = 1, · · · , n do
2: Shuffle D′.
3: for each X = {x(j)}mj=1 from D′ do
4: Ẑ ← E(X); X̂ ← D(Ẑ)
5: Sample Z = {z(j)}mj=1 ∼ P (z).
6: Compute L by Equation (3).
7: θr ← Adam(∇θr

1
m

∑m
j=1 L(j),θr)

8: if i > n1 then
9: θp←Adam(∇θp

1
m

∑m
j=1 L(j),θp)

10: end if
11: end for
12: end for

By comparing Algorithm 1 with Algorithm 2, it 292

can be observed that the fine-tuning process adds 293

little overhead to the training stage. More impor- 294

tantly, the proposed method does not introduce any 295

additional computations or parameters during in- 296

ference. 297

4 Experiments 298

We used three datasets in (Hu et al., 2020): NY- 299

Times2, Grolier3, and 20Newsgroups4. We did 300

not include the DBPedia dataset as it is based on 301

Wikipedia and potentially overlaps with the dataset 302

used for our pre-training. The dataset statistics are 303

shown in Table 1. 304

The proposed basic model, NTM, is the one de- 305

scribed in Section 3 without pre-training. Both the 306

2http://archive.ics.uci.edu/ml/
datasets/Bag+of+Words

3https://cs.nyu.edu/~roweis/data
4http://qwone.com/~jason/20Newsgroups
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Dataset #Documents Vocabulary Size

NYTimes 99,992 12,604
Grolier 29,762 15,276
20Newsgroups 11,258 2,000

Table 1: Dataset statistics.

encoder and the decoder have three layers (N = 2)307

and 300 neurons at each hidden layer. We have308

four variants:309

• NTM-w2v, we initialize weights we1 ∈310

RV×300 of the first encoder Linear sub-layer311

and wd3 ∈ R300×V of the the last decoder312

Linear sub-layer with the corresponding 300-313

dim Word2Vec embeddings trained on Google314

News.315

• NTM-glv, same as NTM-w2v but utiliz-316

ing 300-dim GloVe embeddings trained on317

Wikipedia and Gigaword 5.318

• PT-NTM-w2v, pre-training from NTM-w2v319

initialization and then fine-tuning.320

• PT-NTM-glv, pre-training from NTM-glv ini-321

tialization and then fine-tuning.322

The number of training epochs is 200 for pre-323

training, fine-tuning (PT-* models) and fresh train-324

ing (NTM). We used the Dirichlet prior distribution325

whose parameters are all 1
K , where K is the topic326

number. MMD loss weight λ is 1 for all models327

expect the fine-tuning of *-pre models in which328

λ is 0.3. We will analyze the effect of λ in our329

experiments. During pre-training, the batch size330

is 1,024, the learning rate is 2e-2, and the topic331

number is 200. For fine-tuning, n1 is 100, and the332

learning rates for reinitialized and pre-trained pa-333

rameters are 2e-2 and 1e-5, respectively (Algorithm334

2), showing that the pre-trained parameters are only335

slightly tuned. The batch size of fine-tuning and336

fresh training varies on different datasets depend-337

ing on their sizes. Specifically, it is set to 128 for338

20Newsgroups, 256 for Grolier and 512 for NY-339

Times. Finally, it should be noted that fine-tuning340

on each datasets shares the same pre-trained model341

checkpoint for each model variant.342

We compare our models with following base-343

lines:344

• LDA (Blei et al., 2003), we used the imple- 345

mentation of GibbsLDA++5. 346

• ProdLDA (Srivastava and Sutton, 2017), a 347

VAE-based model that employs logistic nor- 348

mal prior for topic distributions. 349

• W-LDA (Nan et al., 2019). Our model fol- 350

lows W-LDA loss but differs in training and 351

implementation. 352

• BAT (Wang et al., 2020), an adversarially 353

trained neural topic model. 354

• ToMCAT (Hu et al., 2020), an adversarial neu- 355

ral topic model with cycle-consistency objec- 356

tive. 357

• ZeroShotTM (Bianchi et al., 2020b), tak- 358

ing Sentence-BERT (Reimers and Gurevych, 359

2019) embeddings as input. 360

• CombinedTM (Bianchi et al., 2020a), same 361

as ZeroShotTM but combining the input with 362

BoWs. 363

• G-BAT (Wang et al., 2020), extending BAT to 364

incorporate pre-trained word embeddings. 365

• TopicOcean (Song et al., 2020), integrating 366

well-trained LDAs and transferring the knowl- 367

edge of accumulated topics to new corpora, 368

which is re-implemented by ourselves. 369

We evaluate the model performance with three 370

topic coherence measures and one topic diversity 371

measure. Topic coherence measures first calcu- 372

late the coherence scores of pairs of top words 373

ranked by their topic-associated probabilities for 374

each topic and then aggregate all topic scores as 375

the final topic coherence. The used topic coherence 376

measures are C_A (Aletras and Stevenson, 2013), 377

C_P (Röder et al., 2015), and NPMI (Aletras and 378

Stevenson, 2013) of top-10 topic words, imple- 379

mented in Palmetto (Röder et al., 2015) 6. Topic 380

coherence measures are highly correlated with hu- 381

man evaluation but have no penalizing mechanism 382

for repetitive or similar topics. We remedy the prob- 383

lem by also evaluating topic diversity. Our topic 384

diversity measure is calculate by TD = 1− Nrep
Ntotal

, 385

where Ntotal = 10×K is the total number of topic 386

words and Nrep counts the number of repetitions 387

in all topic words. For example, 5 identical words 388

would add 4 to Nrep. 389

5http://gibbslda.sourceforge.net/
6https://github.com/AKSW/Palmetto
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Model
NYTimes Grolier 20Newsgroups

C_A C_P NPMI TD C_A C_P NPMI TD C_A C_P NPMI TD

BoWs-based

LDA 0.215 0.323 0.081 0.82 0.196 0.197 0.053 0.81 0.186 0.282 0.064 0.79
ProdLDA 0.184 0.125 0.015 0.69 0.148 -0.065 -0.019 0.83 0.178 0.071 -0.044 0.67
W-LDA 0.225 0.335 0.078 0.79 0.235 0.258 0.073 0.86 0.229 0.341 0.062 0.72
BAT 0.236 0.375 0.095 0.80 0.211 0.231 0.061 0.73 0.199 0.296 0.055 0.69
ToMCAT 0.245 0.385 0.095 0.79 0.229 0.275 0.081 0.90 0.208 0.314 0.066 0.68
NTM 0.229 0.269 0.056 0.90 0.215 0.146 0.030 0.93 0.242 0.372 0.070 0.82

PWEs-based
G-BAT 0.249 0.414 0.108 0.72 0.219 0.258 0.074 0.78 0.229 0.394 0.087 0.78
NTM-w2v 0.238 0.404 0.096 0.93 0.236 0.273 0.087 0.92 0.258 0.482 0.113 0.82
NTM-glv 0.247 0.388 0.103 0.90 0.257 0.334 0.106 0.93 0.278 0.526 0.129 0.80

PLMs-based
ZeroShotTM - - - - - - - - 0.190 0.249 0.042 0.81
CombinedTM - - - - - - - - 0.182 0.235 0.039 0.79

Pretrain-based

TopicOcean 0.266 0.419 0.099 0.68 0.197 0.289 0.060 0.61 0.195 0.289 0.070 0.61
PT-NTM 0.312 0.651 0.148 0.91 0.325 0.616 0.127 0.93 0.279 0.532 0.124 0.80
PT-NTM-w2v 0.276 0.539 0.131 0.96 0.325 0.621 0.160 0.95 0.271 0.538 0.127 0.87
PT-NTM-glv 0.304 0.614 0.152 0.95 0.345 0.673 0.181 0.96 0.287 0.560 0.140 0.84

Table 2: Average topic coherence (C_A, C_P, and NPMI) and topic diversity (TD) scores of 5 topic number settings
(20, 30, 50, 75, 100) on 3 datasets (NYTimes, Grolier, and 20Newsgroups). Bold values indicate best-performing
models under corresponding settings. NYTimes and Grolier only have BoW data so we cannot evaluate ZeroShotTM
and CombinedTM, which require word order information, on them.

4.1 Topic Modeling Results390

The topic modeling results are presented in Table 2.391

We report results averaged over five runs with topic392

number set to 20, 30, 50, 75, and 100 respectively393

in all our experiments unless otherwise specified.394

From Table 2, we can observe that: 1) Among395

all models, PT-NTM and its variants outperform396

other methods by a large margin. Since PT-397

NTM and NTM share the identical model architec-398

ture, we attribute the improvements of PT-NTM399

over NTM to the pre-training strategy. 2) For400

PLMs-based methods, both ZeroShotTM and Com-401

binedTM performs badly, for some metric even402

worse than regular methods. We think the reason403

maybe the gap between the learning objectives of404

PLMs (word order-based) and topic models (word-405

cooccurrence based). 3) For PWEs-based methods,406

non-pretrained methods (NTM, BAT) benefits a lot407

from the PWEs. We think the reason maybe the408

PWEs are also trained based on word-cooccurrence,409

so the gap between PWEs and topic models is rel-410

atively small. Another interesting thing is that the411

benefit of using PWEs in topic modeling seems412

diminishing with our proposed topic model pre-413

training strategy. For example, PT-NTM gives414

similar results compared to PT-NTM-w2v and PT-415

NTM-glv. This shows that word semantic knowl-416

edge has somehow been captured to a certain de-417

gree by pre-training the topic model on a large cor-418

pus. 4) For pre-training-based models, PT-NTM419

outperforms TopicOcean, consider the performance420

gap between their base models (NTM for PT-NTM 421

and LDA for TopicOcean), the improvement of PT- 422

NTM is even larager. What’s more, our method 423

is based on neural network, which is easier to in- 424

corporated with PWEs or other information than 425

TopicOcean, which is based on graphical models. 426

One concern about PT-NTM may be that the 427

whether the fine − tuning stage works. To get 428

a sense of the topics extracted by our model, we 429

list in Table 3 top 4 topics extracted by PT-NTM 430

on the pre− training and fine− tuning dataset. 431

The topic labels are assigned manually. The whole 432

topics are presented in the attachment. 433

4.2 Contextualized vs. Static word 434

embeddings 435

Contextualized word embeddings like those pro- 436

duced by BERT (Devlin et al., 2019) provide richer 437

semantic than static ones like Word2Vec (Mikolov 438

et al., 2013) or GloVe (Pennington et al., 2014). 439

Thus we also conducted experiments to test their 440

performance on topic modeling. The baseline 441

models are ZeroShotTM (Bianchi et al., 2020b) 442

and CombinedTM (Bianchi et al., 2020a). Ze- 443

roShotTM and CombinedTM both take Sentence- 444

BERT (Reimers and Gurevych, 2019) embeddings 445

as inputs but CombinedTM additionally uses BoW. 446

We also implement three NTM-based models, 447

namely BERT-NTM, Word2Vec-NTM, and GloVe- 448

NTM, according to the input embeddings they used. 449

BERT-NTM follows the idea of ZeroShotTM, aim- 450
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tesla marijuana tpp gtx racist shrimp fat wedding

autonomous legalization nafta geforce racism sauce protein daughter
waymo cannabi ustr nvidia trump cuisine calories bride

driverless legalize trade amd black broth carbohydrate mother
car norml freeland gpu feminist basil cup gown

musk drug trump radeon political pork diet father
vehicle dispensary tpa evga racial onion sugar wife

autopilot decriminalization fta directx politic pastry chocolate husband
automaker recreational mexico sli party garlic cholesterol sister
hyperloop prohibition climate mhz women chef vitamin son

Grolier (Fine-tuning) 20Newsgroups (Fine-tuning)

Myth Artist History Biology Politics Terrorist Football Crime
thor art emperor biology clinton bomb player police

norse picasso empire organism president fbi game cop
mythology artist justinian evolutionary bush fire team officer
poseidon museum ottoman species tax waco nhl woman
chariot sculpture byzantine physiology senate kill coach gun
goddess painting throne gene political police defensive car
athena exhibition king molecular secretary soldier season man

god pollock roman fossil government military draft fbi
sword portrait serbian genetic economy weapon winnipeg murder
dragon monet war evolution administration terrorist league suspect

Table 3: Top 4 topics extracted by PT-NTM on OpenWebText, NYTimes, Grolier and 20Newsgroups dataset.

Model C_A C_P NPMI TD

ZeroShotTM 0.190 0.249 0.042 0.81
CombinedTM 0.182 0.235 0.039 0.79
BERT-NTM 0.236 0.382 0.072 0.80
Word2Vec-NTM 0.233 0.388 0.079 0.79
GloVe-NTM 0.250 0.407 0.083 0.80

Table 4: Topic modeling results on 20Newsgroups.

ing at providing a fair comparison between BERT-451

based topic models. Word2Vec-NTM only uses452

pre-trained embeddings in the encoder, which is453

different from NTM-w2v as the latter use the the454

pre-trained Word2Vec embeddings in both the first455

encoder layer and the last decoder layer. The same456

setup applies to GloVe-NTM.457

The experimental results on 20Newsgroups7 are458

shown in Table 4. All the models have similar459

topic diversity. Our NTM variants outperform both460

ZeroShotTM and CombinedTM on all three topic461

coherence measures. The possible reasons could462

be: 1) Topic modeling does not quite rely on word463

order information, at least for our experimented464

dataset; and 2) Training of GloVe utilizes global465

word-word co-occurrence statistics that are also466

helpful for topic modeling. As topic modeling467

7The other two datasets only contain word counts, making
it impossible to extract BERT embeddings since no word
context information is present.

#Layers C_A C_P NPMI TD

2 0.238 0.375 0.071 0.82
3 0.287 0.560 0.140 0.84
4 0.292 0.588 0.146 0.80
5 0.286 0.578 0.143 0.78

Table 5: The impact of the #layers on 20Newsgroups.

can be viewed as a form of word clustering, our 468

results are somewhat inline with previous findings 469

reported in Meng et al. (2019) that using BERT 470

leads to poor performance on text clustering. 471

4.3 Ablation Study and Further Analysis 472

Number of model layers We vary the number 473

of encoder and decoder layers of pre-training and 474

fine-tuning models, and show the results in Table 5. 475

It can be observed that the four-layer and the three- 476

layer models achieve the highest topic coherence 477

and topic diversity respectively. Further increasing 478

the layer number resulted in slight declines in all 479

four metrics. 480

MMD loss weight λ We present the impact of λ 481

on our model in Figure 2. With λ increasing from 482

0.03 to 30, the NPMI of PT-NTM-glv first gradu- 483

ally increases, peaking at about 0.14 when λ = 1, 484

and then gradually decreases. For Topic Diversity 485

(TD), however, we observe a steady decline for 486
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Figure 2: NPMI and TD results on 20Newsgroups of
PT-NTM-glv and NTM w.r.t. MMD loss weight λ.

PT-NTM-glv. PT-NTM also has a similar trend but487

with more drastic changes. Given these findings, it488

seems that there is a trade-off towards generating489

more coherent or diverse topics.490

Nevertheless, it is worth noting that in compar-491

ison to NTM, the PT-NTM-glv is very robust to492

the choices of λ. The NPMI values of PT-NTM-493

glv only fluctuate in the range of [0.11, 0.14] while494

its TD values vary between 0.74 and 0.86. This495

is in contrast to NTM in which it has poor topic496

coherence for λ ≤ 0.1 and low topic diversity for497

λ ≥ 10. We attribute the advantage of the pre-498

trained model to our proposed fine-tuning strategy.499

During fine-tuning, we mainly update a small set of500

parameters that are directly related to topics while501

only slightly tune others, which consequently en-502

ables more controllable data/gradient flows and503

thus produces more stable results.504

Data efficiency With pre-training, a topic model505

indeed captures extensive knowledge from an exter-506

nal corpus. As have been shown in our experiments,507

the acquired knowledge can improve the perfor-508

mance of subsequent fine-tuning on other datasets,509

It would be interesting to see to what extent such510

knowledge can increase data efficiency. To this511

end, we conducted experiments that take subsets512

of NYTimes dataset of varying sizes as training513

datasets. Specifically, we used dataset sizes includ-514

ing 1K, 2K, 4K, · · · , 64K, and 100K. For each size,515

we averaged the results over five runs whose train-516

ing datasets are randomly sampled from the whole517

dataset with different random seeds.518

The results are shown in Figure 3. PT-NTM-glv519

has a very high starting point when the document520

number is 1000: the NPMI and TD is about 0.15521

1 2 4 8 16 32 64 100

0

0.05

0.1

0.15

0.2

#Documents (× 1000)

N
PM

I

0.5

0.6

0.7

0.8

0.9

1

T
D

NPMI of PT-NTM-glv 
NPMI of NTM
TD of PT-NTM-glv 
TD of NTM

Figure 3: NPMI and TD results on NYTimes of PT-
NTM-glv and NTM w.r.t. the training dataset sizes.

and 0.89 respectively. While at the same time, 522

NTM has extremely poor performance with nega- 523

tive NPMI and low TD. Only when the document 524

number increases to 8000, the topics generated by 525

NTM has comparable topic diversity to topics from 526

PT-NTM-glv. But even when the whole dataset 527

is used by PT-NTM, i.e., the document number is 528

100K, NTM’s NPMI is still about 0.08 lower than 529

the 1000-document PT-NTM-glv, which indeed 530

represents a significant difference in topic quality. 531

In summary, pre-training the topic model greatly 532

reduces the need for training data and helps the 533

model achieve superior performance with only 1% 534

of documents on the NYTimes dataset. 535

5 Conclusion 536

In this paper, we proposed a simple yet effective 537

strategy to incorporating external knowledge into 538

neural topic modeling by pre-training topic models 539

on a large corpus before fine-tuning them on spe- 540

cific datasets. By experiments, we have presented 541

the effectiveness of the method of pre-trained neu- 542

ral topic model in terms of topic coherence, topic 543

diversity, and data efficiency over other methods 544

such as by incorporating PWEs and PLMs. Another 545

advantage of this approach is that it introduces little 546

overhead to the training and none to the inference. 547

Limited by computing resources, we did not exper- 548

iment pre-trainings on larger datasets, though we 549

believe there is still room for improvement given 550

more pre-training data. For future research, we en- 551

courage further explorations in model architectures, 552

pre-training objectives, and fine-tuning procedures. 553
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