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ABSTRACT

Dynamic graphs are ubiquitous across disciplines where observations usually
change over time. Regressions on dynamic graphs often contribute to diverse
critical tasks, such as climate early-warning and traffic controlling. Existing ho-
mophily Graph Neural Networks (GNNs) adopt physical connections or fea-
ture similarity as adjacent matrix to perform node-level aggregations. However,
on dynamic graphs with diverse node-wise relations, exploiting a pre-defined
fixed topology for message passing inevitably leads to the aggregations of target-
deviated neighbors. We designate such phenomenon as the topology-task discor-
dance, which naturally challenges the homophily assumption. In this work, we
revisit node-wise relationships and explore novel homophily measurements on
dynamic graphs with both signs and distances, capturing multiple node-level spa-
tial relations and temporal evolutions. We discover that advancing homophily ag-
gregations to signed target-oriented message passing can effectively resolve the
discordance and promote aggregation capacity. Therefore, a GReTo is proposed,
which performs signed message passing in immediate neighborhood, and exploits
both local environments and target awareness to realize high-order message prop-
agation. Empirically, our solution achieves significant improvements against best
baselines, notably improving 24.79% on KnowAir and 3.60% on Metr-LA.

1 INTRODUCTION

Graph-structured data mining has become a popular technique in numerous disciplines, such as
social networks (You et al., 2022), road networks (Chen et al., 2020), and molecule analysis (Abu-
El-Haija et al., 2019). However, existing solutions to graph mining usually make the assumption of
homophily on graphs where connected nodes tend to share similar features or have the same labels
(targets). Actually, in real-world graphs, the homophily assumption does not always hold on (Zhu
et al., 2020). Thus, Graph Neural Networks (GNNs) considering heterophily are proposed to break
the homophily assumption, which disentangle the complex neighborhood components (Ma et al.,
2019; Du et al., 2022) and model the edge diversity (Zhu et al., 2021a; Wang et al., 2022a) by
separately aggregating similar and dissimilar signals (Bo et al., 2021; Yan et al., 2021). Despite
achievements, heterophily GNNs are mostly investigated on classification tasks over static graphs
while less explored on node-level regressions over dynamic graphs. Therefore, it provides an oppor-
tunity to dissect how edge-type disentanglement boosts regression capacity on dynamic graphs.

Regression tasks are more challenging than classification as the latter only considers discrete labels
with much tolerance (Wang et al., 2022b). Actually, nodes in dynamic graphs are more prone to suf-
fer complex neighborhood distributions (Ma et al., 2022) due to the existence of time-varying values
and different edge types, incurring misleading message passing when aggregating target-deviated
neighbors. The misleading message passing is formally designated as the topology-task discordance
in our work (see Fig. 1(a)). We take traffic volumes of road networks as an intuitive example of edge
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diversity in Fig. 1(b)-(c). The neighboring intersections sharing an upstream-downstream connectiv-
ity can be positively correlated, while interactions locating parallelly on the same Origin-Destin tran-
sition tend to be negatively correlated with a contended relationship. These two-type edges respec-
tively account for homophily and heterophily components and these correlations will also change
over time with tidal patterns. Consequently, uniform aggregations on these two-type neighbors will
involve interfered noise and deteriorate the performances of GNNs, as not all of them have consis-
tent evolution direction towards targets. Empirically, in four real-world dynamic graphs, both low
homophily ratios within intra-graph frames and across temporal adjacent frames (Fig. 1(d)) imply
that physically-connected nodes are not necessarily with close observations1 or with same varia-
tion directions. This not only supports the argument of topology-task discordance, also manifests
the universality of such phenomenon across different dynamic graphs 2. Furthermore, due to the
heterogeneous local structures and neighborhood distributions, the topology-task discordance can
be propagated to high-order neighborhoods. In other words, the optimal receptive fields should be
adaptively and efficiently constructed to realize controllable neighborhood aggregation, thus avoid-
ing noise involvement. Therefore, for dynamic graphs, remedying topology-task discordance in both
immediate and high-order neighborhoods is urgently desired.

(d) Averaged graph homophily on four datasets(c) Heterophily neighborhood
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Figure 1: Illustration of edge-type diversity
and statistical graph homophily.

Challenges. Based on the spatial-temporal property
within node-wise relationships, adapting existing ho-
mophily theory to address such topology-task discor-
dance is still challenging. The key obstacles can be
summarized as 1) how to determine which pairs of
nodes belong to homophily components without cat-
egorical labels, 2) how to involve targets to reconstruct
node-wise correlations, thus materializing remedied
and powerful target-oriented aggregations, 3) how to
exploit the dynamic local neighborhood environments
to achieve personalized high-order propagations.

Present work. Our work empirically and theoretically
elucidates the existence of topology-task discordance
and explains the failure of homophily GNNs on dynamic graphs. To get rid of such dilemma, we
propose a novel GNN to Remedy Topology-task discordance via Target-homophily (GReTo). Firstly,
we extend the node-wise relations to a triple tuple based on signed-distance proximity, and construct
two measures including intra- and inter-graph homophily to capture diverse spatial-temporal rela-
tions and overcome lacking categorical labels. Secondly, by introducing the target awareness with a
transition homophily predictor, we incorporate two signed homophily measures to facilitate target-
oriented message passing, renewing the activeness of GNNs. Finally, instead of imposing a nested
or bi-level inefficient optimization (Xiao et al., 2021), we devise an adaptive layer-wise importance
measurement to promote the immediate neighborhood aggregation towards high-order propagations,
by identifying the informativeness of each propagation step relative to the expected targets. We
evaluate our solution on four dynamic graphs and successfully achieve 3.20% to 24.79% improve-
ments against baselines on MAPE, where KnowAir (↑ 24.79%) with higher intra-graph negative
heterophily ratios (Tab. 4) especially benefits from flexible signed message passing.

Contributions. (1) We formalize a dynamic graph homophily theory, jointly characterizing multi-
type node-wise relations considering spatial-temporal property. (2) On dynamic graphs, we analyze
the topology-task discordance and corresponding solution from its existence to the solution to per-
sonalized high-order propagation. (3) We propose GReTo, consisting of a signed target-oriented
message passing and layer-importance based high-order propagation, to refine the topology adapt-
ing to downstream regression tasks.

2 RELATED WORK

GNNs have become an admirable tool of diverse graph-structured data mining (Song et al., 2022;
Kipf & Welling, 2016; Abu-El-Haija et al., 2019). To boost the representation capacity of traditional

1Observations refer to the observed node features in the graph.
2Following graph construction on existing literature (Yu et al., 2018; Guo et al., 2019; Li et al., 2018), we

establish the edges between two nodes by selecting top-5% geographically proximal nodes as neighbors.
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GCNs, GAT (Veličković et al., 2018) modifies the conventional GNNs by allowing flexible node-
level attention, while Directional GNN (Beaini et al., 2021) exploits directional derivatives to en-
dow GNNs with the anisotropic property and overcome the oversmoothing issue. Recently, multiple
node-level relations motivate the research trend of homophily theory that measures the consistency
between the original topology and node-wise features (or labels) (Zhu et al., 2021b; Bo et al., 2021).
These techniques respectively design bi-kernel aggregations (Du et al., 2022; Yan et al., 2021) and
high-order neighborhood modeling (Ma et al., 2022; Zhu et al., 2020) to advance the standard GNNs
towards more powerful aggregation in addressing heterophily. Besides, researchers carefully devise
various high-order propagations by a bi-level learn-to-stop optimization (Xiao et al., 2021) or layer-
shared weighted aggregation (Chien et al., 2020). Even flourishing, graph theories mostly focus on
classification over static graphs, thus resulting in the opportunity of adapting emerging theories to
dynamic graphs. Dynamic graph learning usually adopts RNN backbones (Ruiz et al., 2020; You
et al., 2022; Bai et al., 2020) in a spatial-temporal manner, where they construct various adjacent
matrices via similarity (Zhou et al., 2020), or learnable embedding product (Wu et al., 2020b). And
two pioneering works D2STGNN (Shao et al., 2022) and TAMP-S2GCNET (Chen et al., 2021c),
respectively motivated by the dynamic composition separation and time-conditioned topology data,
are proposed to capture the spatiotemporal dynamics. Among them, all these works generate the
non-negative adjacencies and neglect the influence of evolution trend on topology. However, due to
the topology-task discordance induced by node dynamics and edge diversity, these works thus fail
to realize the target-oriented aggregations. In contrast, our work investigates the homophily theory
in dynamic graphs to capture ‘good’ neighbors by explicitly modeling the target-related temporal
evolution influences. Detailed related works can be found in A.2.

3 PRELIMINARIES

Let T = {1, 2, ..., T} be a temporal step set and denote the dynamic graphs as G =
{G1,G2, ...,Gt, ...,GT }. Given step t, Gt = {V,Xt,At} represents the valid observation of graph
G. Specifically, the node set V = {v1, v2, ..., vN} is with the cardinality of N , and the matrix
At ∈ RN×N describes the static weighted adjacency relationship of Gt. Let F be the number of fea-
ture dimensions of each node 3, then Xt = {xt1, xt2, ..., xtN} ∈ RN×F serves as the feature matrix.
The goal of our dynamic graph regression is to derive an optimized graph learning function F ∗

g to
predict the observations across the whole graph for the next step, i.e., X̂T+1 = F ∗

g (G,Xt,At|t =
1, 2, ..., T ;Θ). We name {(Xt,At)|t = 1, 2, ..., T} and XT+1 respectively as the historical and
targeted observations, while Θ refers to all learnable parameters.

3.1 DYNAMIC GRAPH HOMOPHILY THEORY

We first introduce the conventional graph homophily ratio in classification (Zhu et al., 2020; Ma
et al., 2021), which is defined as the fractions of nodes in their neighborhoods that with the same

label yi as vi, i,e., hoi =

∑
vj∈N(vi)

I(yi=yj)

|N (vi)| . Here, N (vi) refers to the neighboring node set of vi.
In contrast, we propose our dynamic graph homophily theory to adapt the continuous data space.
Our dynamic graph homophily theory includes descriptors of homophily measurements and local
neighborhood environments, which are two factors of node-level and neighborhood-level statistics
that inherently affect the information propagation. Concretely, we first exploit signed distances to
extend the binary relations to a triple tuple, compensating for non-explicit class boundaries. For
dynamic graphs, we formulate an intra-graph spatial homophily to capture node correlations in same
graph frames and an inter-graph transition homophily to extract temporal evolution between adjacent
temporal frames. Second, to numerically depict the neighborhood on both structures and neighbor
compositions, we integrate the topological feature (node degree di) with homophily distribution as
local neighborhood environments.

Definition 1 (Intra-graph spatial homophily and Inter-graph transition homophily) Both intra-
and inter-graph homophily can be categorized into three classes according to the feature distances
by a proximity threshold ε, with the signs indicating the direction of proximity. Given a serial graphs
G, temporal step t and node vi, the intra-graph homophily (πs

ij)t and inter-graph homophily (πT
ij)t

3We set F=1 but it is orthogonal to our theory as it can be easily extended to tensor formats.
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are respectively defined by a symmetric formation (see Fig. 5(a)) as,

(πs
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(vj ∈ N (vi)) (1)

In particular, the signed direction indicates how will the node value change when it aggregates a
specific neighbor in πs

ij , while the direction demonstrates how the node is expected to change to
reach the target in πT

ij .

Definition 2 (Local neighborhood environments (LNE)) LNE consists of local structure descrip-
tions and neighborhood distributions. Given node vi, we let the node degree di describe the local
structure and further partition the nodes of its neighborhood N (vi) into three groups based on
node-wise feature distances. In detail, the neighboring components those are proximal, positively
deviated, and negatively deviated away the central node vi are respectively considered as spatial
homophily (N (vi))s, positive heterophily (N (vi))qp, and negatively heterophily (N (vi))qn. We can
transfer the neighborhood components into a numerical Neighborhood Distributions vector πvi ,

πvi(ps, qp, qn) =


∑
j

I(πs
ij = ε)

|N (vi)|
,

∑
j

I(πs
ij = 1)

|N (vi)|
,

∑
j

I(πs
ij = −1)

|N (vi)|

 (vj ∈ N (vi)) (2)

where (ps, qp, qn) = {p(πs
ij = ε), p(πs

ij = 1), p(πs
ij = −1)}. Then the local neighborhood envi-

ronment can be denoted as LNEvi = (di, pi, qpi
, qni

).

4 DISCORDANCE BETWEEN TOPOLOGY AND TASKS

In this section, we show the discordance between the topology and task, when adopting traditional
homophily GNNs. Given a serial graphs G and node vi, (1) the ratio of intra-graph spatial homophily
πvi(ps) is simplified to pi, while the ratio of other node-level relations is denoted as qi = 1 − pi,
(2) the target coefficient γi quantifies the relationship between the targeted step T + 1 and a given
step t by xT+1

i = γix
t
i. Our analysis only considers aggregations from T to T + 1, and let xT+1

i =
γix

T
i . We ignore the temporal superscript for simplification in following analysis. Actually, given a

target coefficient γi, a successful aggregation can be equivalent to finding a valid di to construct an
appropriate neighborhood for achieving targets. Therefore, we establish the relationship between γi
and degree di, to find what conditions will the homophily-assumed graph aggregation fail.

Theorem 1 (Proof in Appendix B.1.) Consider impose a homophily GNN Fg onX for node-level regres-
sions, the relationship between the expected degree di and the target coefficient γi is,

di =


(−∞,−1), γi < pi
∞, γi = pi
[0,+∞), pi < γi ≤ 1
(−1, 0), γi > 1

(3)

Theorem 1 demonstrates that homophily aggregations cannot find the optimal neighborhoods to
achieve the targeted results when γi < pi and γi > 1. In other words, the homophily GNNs will fail
when the gap between historical observations and targeted prediction value is large.

5 REMEDY TOPOLOGY-TASK DISCORDANCE ON DYNAMIC GRAPHS

In this section, we propose our solution, GReTo, to remedy the topology-task discordance in dy-
namic graph regressions, where it consists of Signed target-oriented message passing, and Person-
alized high-order layer propagation. The framework overview is illustrated in Fig. 2.

5.1 SIGNED TARGET-ORIENTED MESSAGE PASSING

Overview. We first provide a theoretical analysis on the potential of aggregation capacity improve-
ment by exploiting homophily theory. Then we propose to design a signed target-oriented message
passing, which captures the task-oriented evolution direction to remedy the dynamic graph topology.
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Theorem 2 (Proof in Appendix B.2.) Given a central node vi, and target coefficient γi < pi or γi > 1,
the aggregation capability can be improved by a sign-preserved directional message passing that separately
aggregates positive and negative heterophily compositions. Under such message passing, we denote sp > 0
and sq < 0 as the signed kernels, then the aggregation algorithm can conditionally converge to xT+1

i where
di satisfies the following two conditions,E[hT

i ]− xT+1
i =

xi + dipi(1± ε̃)xi + sp
∑

j∈N+(vi)

wpxj + sq
∑

k∈N−(vi)

wqxk

di + 1
− γixi(di + 1)

di + 1
= 0

di ∈ Z+

(4)
where the expectation of neighbors with intra-graph homophily denotes dipi(1 ± ε)xi. N+(vi) and N−(vi)
denote the positively and negatively heterophily neighborhoods, and wp, wq are learnable weights. Detailed
conditions for obtaining targets are demonstrated in Appendix B.2. With these derived conditions, we can
estimate whether the GNN can successfully aggregate the neighbors towards targets when the dataset is given.
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Figure 2: Framework overview of GReTo.

Therefore, the key to our target-oriented message pass-
ing becomes investigating both intra- and inter-graph
homophily to discover the target-beneficial neighbor-
hoods, and devising meaningful directional aggrega-
tion. The technical stages are three-fold, 1) discover
the target-oriented homophily neighborhoods, 2) pre-
dict node-wise inter-graph transition homophily to en-
able target awareness, and 3) disentangle different
types of neighborhoods for target-aware aggregations.

Target-homophily neighborhood discovery. To ex-
plicitly distinguish target-oriented neighboring nodes,
we resort to our dynamic homophily theory with both
signed direction and proximity. Considering that the signs in these two homophily measurements
indicate the directional consistency, we couple the spatial one and transition one to derive con-
sistency between the intra-graph connections and the targeted graph. The signed target-oriented
neighborhood disentanglement matrix M̂ can be achieved by an element-wise division ∅, i.e.,
M̂ij = π̂T

ij
∅πs

ij , where π̂T
ij

is the estimated transition homophily that will be predicted in the next

subsection. This design of division enables each M̂ij ∈ {1,−1, ε,−ε, 1ε ,−
1
ε} in M̂ to possess in-

formative edge descriptions, i.e., each edge value can not only discriminate the target-oriented nodes
(with positive signs) as good neighbors, but also measure the degree of node-wise proximity where
larger values imply more target-oriented consistency and contribution. By splitting M̂ based on the
edge signs, we can achieve the target-oriented homophily and heterophily neighbors by,

M̂ = [M̂ ]P + [M̂ ]N (5)

In Eq 5, [M̂ ]P is the disentangled aggregation matrix with positive elements interpreting the target-
homophily adjacent connections, while [M̂ ]N composes negative values explaining the target-
heterophily relationship. Noted that although the original triple relations are shrunk into the signed
matrix for efficient implementations, the directional proximity indicating the informativeness for
aggregation towards targets is carefully preserved by diverse values in M̂ .

Inter-graph transition homophily predictor. Since the transition homophily is not available during
inference stages, we formulate a sequence classification task to predict which type of relation that the
transition homophily belongs to. However, computations among node-level transition homophily are
inefficient, we thus reduce the transition homophily to a self-transition homophily between adjacent
steps Sigti = (πT

ii)|t−1→t, which can be available from historical observations. Then, we leverage
the nice property of periodicity and continuity in time-series to construct the sequence learning. This
time-series learner concatenates two parallel LSTMs and one Conv1D to capture the evolution and
trend dependence by taking step-wise historical node observations and self-transition homophily
[Xt;Sig

t](t = 1, 2, .., T ) as inputs. Thus, we obtain the estimated next-step representation by,

Ŝig
T+1

R = Conv1D(LSTM(X1,X2, ...,XT ); LSTM(Sig1,Sig2, ...,SigT )) (6)
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We then utilize the time-series representation Ŝig
T+1

R for a three-category classification where the
class probability is estimated with an MLP parameterized byWs, i.e.,

[p̂, q̂p, q̂n]
T+1 = MLP(Ŝig

T+1

R ;Ws) (7)

The estimated p̂, q̂p, q̂n refer to probabilities of three homophily categories that Ŝig
T+1

R belongs

to, and then we can obtain the final Ŝig
T+1

based on these probabilities.

Disentangled signed directional message passing. With modified transition homophily SigT+1,
the disentangled target-oriented matrix can be altered as M̂ij = Ŝigti∅(πs

ij)
t. To accommodate

separate aggregations over different types of node-wise connections, we take advantage of the pos-
itive target-homophily matrix [M̂ ]P and negative target-heterophily matrix [M̂ ]N to respectively
filter the adjacence Âi where we impose a self-loop on the adjacence Â = A + I . Thus, the two
aggregation kernels can be realized as,

(fL)i = ([M̂ ]P )i ⊙ Ãi, (fH)i = ([M̂ ]N )i ⊙ Ãi (8)

where ⊙ is an element-wise Hadamard Product for kernel filtering. Considering the relational prop-
erty of node-wise signals over graphs, fL and fH are respectively interpreted as a low-pass filter and
a high-pass filter in graph convolutions (Bo et al., 2021). Then the disentangled signed directional
message passing can be formulated as,

AGGR(vi) = α
∑

j∈NL(vi)

(fL)ijxjwp + (1− α)
∑

k∈NH (vi)

(fH)ikxkwn (9)

where NL(vi) and NH(vi) denote the target-homophily and target-heterophily neighbor set re-
garding vi, and α adjusts the proportion between two compositions. In addition, wp ∈ WP and
wn ∈ WN are two learnable parameters for feature transformation. In Eq. 9, the negative kernels
can make sense when the aggregated neighbors are exactly negatively correlated with targets, which
potentially closes the gap between historical node observations and targeted ones. Thus, our strategy
can explicitly model multi-type edges and boost our aggregation power.

5.2 PERSONALIZED HIGH-ORDER LAYER PROPAGATION

Overview. Since the propagation step is a discrete value, it is intractable to directly optimize such
discrete values. In this subsection, we exploit the local neighborhood environments to quantify the
informativeness of node representations at each propagation step, which determines when to stop
the propagation in a soft manner. Concretely, our high-order propagation is with two components,
an adaptive layer importance measure and high-order propagation blocks.

Relationship between local neighborhood environments and propagation steps. Given node vi,
(1) the optimized propagation step is determined by the proportion of target-homophily neighbor-
hoods p̃i (rather than intra-graph homophily pi) and the substructure description di. (2) the smaller
values of di and p̃i are, the larger propagation step K is expected. By denoting INFO(hki ) as the
target-oriented information encapsulated in the representation of the k-th propagation step in mes-
sage passing, Theorem 3 demonstrates the quantitative relationship between the informativeness of
each propagation layer and the local neighborhood environments, to verify our qualitative analysis.

Theorem 3 (Proof in Appendix B.3) Consider a series of dynamic graphs G that conform to the neigh-
borhood distribution N (vi) ∼ πvi(p, qp, qn) where we enforce qn = ηqp, p + qp + ηqp = 1. Consider
xT+1
i = γix

T
i > xT

i with γi > 1, the quantitative relationship among the layer-specific target-oriented infor-
mation INFO(hk

i ), substructure di, and the target-homophily p̃i is as follows. Under this case, the expected
target-homophily compositions of neighborhoods p̃i becomes qn, and the difference between the probability of
hitting beneficial nodes in the second layer and the first layer ∆P (N+)|1−2 is (−1− 2η)q2p + qp. We have,{

INFO(h2
i ) > INFO(h1

i ), 0 < qp < 1
1+2η

INFO(h1
i ) ≥ INFO(h2

i ), qp ≥ 1
1+2η

(10)

The symmetric results can be achieved when we have a small γi satisfying γi < 1.
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Theorem 3 verifies that in dynamic graphs with complex neighborhood distributions, lower node-
level activeness and target-oriented homophily must result in larger receptive fields and vice versa.
Therefore, we are expected to pick the high-order neighbors that are target-homophily.

Adaptive layer importance measurement. To pick the high-order target-homophily neighbors, we
transfer this challenge to measuring the consistency between high-order neighborhood distributions
and transition homophily distribution of targets. First, we exploit the edge composition πvi to con-
struct a neighborhood distribution matrix NDh = NeighH (X) = [πv1 ;πv2 ; ..., πvN ] ∈ RN×3

where NeighH (X) is a neighborhood disentanglement function on graph-wide features X . Then
ND in the k-th propagation step is NDk

h = NeighH (AkX). Second, since dynamic graphs ex-
perience continuous temporal evolution, the variations of consecutive steps can imply fine-grained
fluctuations that progressively approach targets. Therefore, for each t, we exploit the estimated tran-
sition probability distribution on three categories predicted by Eq. 15 to construct the step-wise tran-
sition distribution matrix, i.e., (NDT )

t
i = [p̂, q̂p, q̂n]

t ∈ RN×3. As a result, (NDT )
t
i naturally

encapsulates the target information. Then, we can measure the consistency between the expected
k-th order neighborhood and the target-oriented transition homophily probability by imposing a
Hadamard Product to (NDk

h)
t

i and (NDT )
t
i. Then a MAX operation is applied in each row to pre-

serve the maximal result and suppress the non-target-oriented noise. Besides, a smaller degree tends
to encourage aggregating nodes of farther horizons while larger propagation layer should be less
weighted. Thus, the layer importance measurement ϕki for node vi at layer k can be computed by,

ϕk
i = LiM((NDk

h)i, (NDT )i) =
dki ·MAX ((NDk

h)i ⊙ (NDT )i)

k
(11)

where dki denotes the averaged degree of nodes in vi’s k-th order neighborhood.

ϕk
i =

dki ·MAX ((NDk
h)i ⊙ (NDT )i)

k
(12)

Personalized high-order propagation block. The core technique of high-order layer propagation
is learning a set of interpretable node-specific soft weights for aggregating multi-order neighbors.
To achieve such well-normalized aggregation weights, we impose Softmax on the estimated layer
importance ϕki , associated with an MLP parameterized by Wlim to enable it learnable, i.e., ϕ̃ki =

MLP(LiM((NDk
h)i, (NDT )i),Wlim). Given maximal propagation stepK, we can obtain the soft

weights over layer-wise aggregations ψ ∈ RN×K by ψi = Softmax
[
ϕ̃0i , ϕ̃

1
i , ..., ϕ̃

K−1
i

]
where ψi

is the i-th row in ψ. So far, we can build our high-order propagation blocks. As target-heterophily
compositions are less important during aggregations, we only consider the high-order propagation
over target-homophily neighborhoods while imposing one-layer aggregation on target-heterophily
components. Then the K-th layer representationH(K) can be achieved by,

H(K) = α⃗

K−1∑
k=0

ψkf
k
l XWp + (1− α⃗)fhXWn (13)

There are two distinctions of our designs. First, instead of tuning parameters, we instantiate an
α⃗ ∈ RN as a learnable gate to reduce the fine-tuning burden, i.e., α⃗ = σ(MLP(H(K);Wmlp))
and adjust the compositions between target-homophily and target-heterophily.Wmlp ∈ R2N×N are
learnable parameters. Second, rather than a complicated routing mechanism, we exploit a learnable
but interpretable matrix to reweight the importance of each layer specific to nodes, contributing to
efficient high-order message passing. We plug our layer propagation into every temporal step.

5.3 TEMPORAL INCEPTION LAYER AND OPTIMIZATION

Temporal inception layer. To efficiently capture the temporal evolution, we adopt a fully-
convolution based sandwich structure as the temporal inception layer, which is inherited from
STGCN (Yu et al., 2018). We can formulate the temporal inception layer asH(K) = Γ∗κ(F ∗

g (X̃))

and denote the final outputs as ŷi ∈ Ŷ . Details can be found in Appendix A.1.4.

Training objective. The optimization objective of GReTo composes of two parts, the transition
homophily estimation implemented by a cross-entropy-based multi-class classification, and the dy-
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Table 1: Performance comparisons on various baselines.
Metr-LA PeMS-Bay KnowAir Temperature

MAPE RMSE MAPE RMSE MAPE RMSE MAPE RMSE
GCN 0.0975 8.3098 0.0522 4.4952 0.3146 16.5635 0.3221 1.4439
GAT 0.0628 5.8018 0.0176 1.6610 0.2435 13.3114 0.3393 1.4855
GraphSAGE 0.0606 5.7550 0.0167 1.6173 0.2449 13.1932 0.1966 1.0233
SuperGAT 0.0623 5.7886 0.0175 1.6606 0.2535 13.3671 0.3224 1.3439
EGConv 0.0609 5.7554 0.0167 1.6139 0.2399 13.2189 0.1875 1.0097
H2GCN 0.0608 5.7292 0.0168 1.6599 0.2371 13.1207 0.1906 0.9971
STGCN 0.0554 3.8655 0.0197 1.5890 0.2437 12.3601 0.1704 1.1190
GWN 0.0528 3.8434 0.0163 1.5482 0.2288 12.8495 0.1607 0.9132
MTGNN 0.0526 3.8153 0.0170 1.5759 0.2271 12.9091 0.1682 0.9034
DCRNN 0.0532 3.8798 0.0161 1.5292 0.2392 13.0389 0.1351 0.9715
ASTGNN 0.0530 5.5313 0.0169 1.6229 0.2485 13.2274 0.2978 0.9330
GReTo (Ours) 0.0500 3.6552 0.0166 1.4813 0.1708 11.0369 0.1341 0.8704

namic graph regression based on MSE. The final objective can be written as,

Loss(Θ) = − 1

N

N∑
i=1

{
∑

p∗∈{p,
qp,qn}

(p∗i log p̂
∗
i − (1− p∗i ) log(1− p̂∗i ))}+

1

N

N∑
i=1

(ŷi − yi)
2 (14)

6 EXPERIMENT

6.1 IMPLEMENTATION DETAILS

Dataset description. We collect four cross-domain dynamic graph datasets. All of them possess
the mixed property of homophily and heterophily. Traffic: (1) Metr-LA: Highway traffic status
consisting of 207 loop detectors of Los Angeles (Li et al., 2018). (2) PeMS-Bay: Traffic statuses
collected by California Transportation Agency, including 325 sensors in Bay Area (Li et al., 2018).
Climate: (3) KnowAir : PM2.5 Concentrations, covering 184 main cities in China (Wang et al.,
2020). (4) Temperature: Urban Temperatures of the same 184 cities as KnowAir (Wang et al.,
2020). We construct the graphs based on geographical distances where the node values and virtual
topology can be varied across temporal steps. The δ% is set as 5% across all datasets to control the
proportion of node connections. Dataset details are elaborated in Table 3 and 4.

Protocols. We evaluate GReTo on the dynamic graph regression tasks and compare it with state-
of-the-art graph architectures. Training. We alternately train our model, i.e., train the transition ho-
mophily predictor by freezing other weights while utilizing the well-learned transition homophily
predictor to continue training the remaining architecture, where Adam SGD (Kingma, 2014) is the
optimization strategy. We initialize the learning rate of 1e-3 with a weight decay 0.99. Evaluations.
We employ classic GNNs, topology-refined GNNs, heterophily GNN and spatiotemporal net-
works for comparisons, and adopt MAPE/RMSE to jointly evaluate the regression performances.
Parameters. The homophily criteria ε are set as 0.08, 0.10, 0.10 and 0.12, while the maximal propa-
gation steps K are set as 6, 6, 3, 4 on MetrLA, PeMS-Bay, KnowAir and Temperature, according to
empirical evaluations. The size of TCN kernels is set to 1 ∗ 3 on all datasets. For fairness, for each
compared GNN, the number of hidden layers is set to 6 and the hidden dimension for each GCN is
set to 64. For GAT, the number of heads is set to 8 according to the default setting in their papers.

(a) Prediction on MetrLA and KnowAir with different 𝜸 (b) Prediction on MetrLA and PeMS with 12-step setting

Figure 3: Detailed evaluations on different γ and multi-step prediction.

Baseline. We compare our solutions with respective four types of baselines. [1] Classic GNN mod-
els: (1) GCN (Kipf & Welling, 2016), (2) GAT (Veličković et al., 2018), (3) GraphSAGE (Hamilton
et al., 2017). [2] Topology refined models: (4) SuperGAT (Kim & Oh, 2020). (5) EGConv (Tailor

8



Published as a conference paper at ICLR 2023

et al., 2021). [3] Heterophily GNN: H2GCN (Zhu et al., 2020). [4] Spatiotemporal graph learn-
ing: (1) STGCN (Yu et al., 2018). (2) MTGNN (Wu et al., 2020b). (3) GraphWaveNet (GWN) (Wu
et al., 2019). (4) DCRNN (Li et al., 2018). (5) ASTGNN (Guo et al., 2019).

Accuracy of transition homophily prediction. We present the Classification Accuracy between
the estimated ones and groundtruth, i.e., 0.78/0.60/0.86/0.68 on respectively four datasets (1)-(4).
As observed, the higher intra-graph homophily tends to lead the higher prediction accuracy and we
can also obtain a barely satisfactory result on PeMS and Temperature, which probably benefits from
the data property of proximity and continuity. These promising accuracy can imply the feasibility of
our transition homophily predictor and ensure the rationality of following implementations.

Performance comparison. Comparison results are figured in Table 1. The best result is in bold and
the second best is underlined. Our solution almost beats all SOTA baselines, achieving promising
performances on four datasets with both 2 metrics. Promisingly, GReTo improves MAPE by 24.79%
and 3.61% respectively on KnowAir and MetrLA, where KnowAir with high negative heterophily
qn benefits from flexible signed message passing instead of only similarity-based aggregation. In
detail, classic GNNs fail to involve the transition-oriented temporal information approaching real
targets, reasonably resulting in large performance margins between theirs and our GReTo, also infe-
rior to other spatiotemporal networks. Generally, EGConv and H2GCN obtain better results and we
can observe that the higher heterophily of the graphs is, the more superior performances of GReTo,
EGConv and H2GCN reveal. The underlying distinctions lie in the spatially-varying adaptive filters
of EGConv and heterophily tolerance of H2GCN, supporting our idea of target-homophily topology
refinement in dynamic graphs. Extensive comparisons illustrate that our work advances the interpre-
tation and designs of graph-based theory forward spatiotemporal learning and benefits learning on
graphs that are with dynamic topology and heterophily compositions.

Table 2: Performance comparisons (MAPE)
on ablative variants

Datasets Metr-LA PeMS-Bay KnowAir Temperature
V-TO 0.0805 0.0430 0.2891 0.2357
V-Mix 0.0516 0.0176 0.1799 0.2523

V-ULW 0.0519 0.0180 0.1800 0.2434
GReTo 0.0500 0.0166 0.1708 0.1341

Ablation study. (1) Ablate the target-oriented
neighborhood calibration, reducing to traditional
GCN (V-TO). (2) Replace the high-order layer
propagation with layer-wise weighted fusion, re-
ducing to Mixhop (V-Mix). (3) Reduce the high-
order layer propagation to a uniform multi-layer
fusion with the same weight (V-ULW). We report
MAPE on four datasets in Table 2. Overall, promising results confirm the effectiveness of the
two well-designed modules. In particular, target-oriented designs play significant roles across all
datasets with the improvement ranging from 37% to 61%, while the personalized high-order prop-
agation reveals prominent improvements on Temperature. Regarding the fusion strategy, the layer-
wise weighted fusion and uniform aggregation share similar performances while our node-specific
personalized propagation shows a remarkable promotion. Noted that these ablation results also show
that two modules are with diverse sensitivity to datasets with different properties such as graph sizes
or graph homophily, but our GReTo is a general solution revealing promotions across four datasets.

Generalization on different γ and multi-step prediction. We respectively select two datasets for
a detailed study. First, we derive the statistical MAPE at different γ ranging from 0.5 to 2.1. Results
are shown in Figure 3(a). The performances reveal a ’V’ shape with γ increasing, indicating bet-
ter results when γ approaches 1 while inferior performances as it deviates away from 1. Similarly
but promisingly, our solution exhibits lower errors and more robustness, which can be attributed
to signed target-oriented message passing. Second, we present our multi-step performances against
several representative baselines by modifying our framework to a 12-step forecasting with a se-
quential output where results are in Figure 3(b). We observe that longer horizons enforce the target-
oriented design to gradually lose ground as our GReTo does not tailor for multi-horizon settings.
Even so, our solution still achieves comparable performances with best baselines, which verifies the
generalization and potential of GReTo in modeling longer horizons.

7 CONCLUSION

In this paper, we propose a dynamic homophily theory by revisiting node-wise relationships from
spatial-temporal perspectives and show the opportunity to renew aggregation capacity of conven-
tional GNNs. Technically, a novel GNN, i.e., GReTo is proposed, which integrates the signed target-
oriented message passing and the layer importance based propagation, to refine the topology in both
immediate and high-order neighborhoods. Empirical experiments have validated the superiority of
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our GReTo on four dynamic graphs. We will continue to work on how homophily theory improves
generalized dynamic graph learning, e.g., edge-type prediction and multi-step series predictions.
Our code is available at https://github.com/zzyy0929/ICLR23-GReTo.
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A APPENDIX

A.1 MORE DETAILS ABOUT PROPOSED GRETO

A.1.1 MOTIVATION OF GRETO

In general, we discover that some topologically connected neighbors sometimes tend to be dissimi-
lar with targets and the aggregation of these target-deviated neighbors will introduce noise and harm
the performance. In dynamic graphs, the node values will change over time thus the node-wise re-
lationship, i.e., homophily on graphs, will also accordingly tend to be time-varying. To this end, the
intuition of this work is that not all neighbors are beneficial to aggregate for achieving targets, es-
pecially in dynamic graph regression tasks, where we designate such phenomenon as topology-task
discordance. Actually, only target-oriented neighbors are beneficial and encouraged to be aggre-
gated. Therefore, inspired by the homophily theory in static graphs, we extend the graph homphily
theory to dynamic graph scenarios and highlight the beneficial nodes based on fine-grained analysis
of neighborhood compositions to remedy the topology-task discordance. We further design layer-
wise importance measures to propagate over high-order neighborhoods, generalizing the topology
remediation to high-order message passing.

A.1.2 FRAMEWORK OVERVIEW

We propose a novel GNN architecture to Remedy Topology via Target-oriented homophily (GReTo),
which simultaneously performs adaptive immediate neighborhood aggregation and high-order layer
propagation, from the perspective of target-oriented homophily disentanglement. Specifically, the
proposed two homophily measurements respectively capture node-level intra-graph spatial proxim-
ity and inter-graph connections between adjacent steps. Therefore, we take advantage of both two
homophily measurements to find target-oriented neighbors, thus calibrating the original topology.
Since GNNs have two major processes, i.e., node-wise aggregations and layer-wise propagation,
our GReTo on topology-task remediation correspondingly consists of two stages, Singed target-
oriented message passing, and Personalized high-order layer propagation, as illustrated in Figure 4.
We also detailedly demonstrate the spatial and transition homophily as well as the step-wise topol-
ogy refinement in Figure 5.
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Figure 4: Framework overview of GReTo on remedying topology-task discordance

A.1.3 TECHNICAL DETAILS OF TRANSITION HOMOPHILY PREDICTOR

Motivations. Although we have derived the formation of target-homophily neigh-
borhood, the transition homophily from step T to T + 1 cannot be available. How-
ever, realizing a predictor to estimate the node-wise transition homophily is in-
tractable due to following two challenges. 1) the unavailability of xT+1 and 2) com-
puting transition homophily between all node pairs is computationally inefficient.
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To this end, we make one simplification and convert
the homophily estimation into an efficient sequence
classification task to address above issues. First, we
reduce the transition homophily to a self-transition ho-
mophily Sigti. Our Sigti = (πT

ii)|t−1→t measures the
degree of node-level self variations between adjacent
steps, which can be available from historical observations and encourages efficient computations.
Second, to complement the unavailable xT+1, we find the serial inter-graph transition homophily
obeys the favorable property of time-series, i.e., the periodicity and continuity. Therefore, we for-
mulate a time-series classification task.

Techniques. Concretely, the time-series learner concatenates two parallel LSTMs and one 1D-
convolution (Conv1D) to capture the evolution and trend dependence by taking all available his-
torical observations of both node values and self-transition homophily [Xt;Sig

t](t = 1, 2, .., T ) as
inputs. Thus, we obtain the estimated next-step representation by,

Ŝig
T+1

R = Conv1D(LSTM(X1,X2, ...,XT ); LSTM(Sig1,Sig2, ...,SigT )) (15)

We then exploit the learned time-series representation Ŝig
T+1

R for a three-category classification
where the class probability is estimated with an MLP parameterized byWs, i.e.,

[p̂, q̂p, q̂n]
T+1 = MLP(Ŝig

T+1

R ;Ws) (16)

The estimated p̂, q̂p, q̂n refer to three probabilities that Ŝig
T+1

R belongs to corresponding cate-

gories, and then we can obtain the final Ŝig
T+1

based on these probabilities.

A.1.4 TECHNICAL DETAILS ON TEMPORAL INCEPTION LAYER

Instead of highly computational recurrent learning (Bai et al., 2020; Li et al., 2018), we adopt an
efficient fully-convolution based sandwich structure for temporal inception, following the learning
order of ’temporal-spatial-temporal’ (Yu et al., 2018). Specifically, the temporal convolution kernel
Γ is implemented as a gate by taking self observations as the feature inputs to control the message
passing. By involving both upper and bottom temporal blocks with our GReTo, the whole learning
process can be written as,

X̃ = Γ∗κX =X ⊙ σ(X); H(K) = F ∗
g (X̃) (17)
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Ŷ = Γ∗κH(K) =H(K) ⊙ σ(H(K)) (18)

Then the convolution is implemented by the element-wise Hadamard product ⊙ between self-
observation and the gate, and κ is the length of convolution kernel for temporal aggregation fol-
lowing the setting of (Yu et al., 2018)4. With this well-designed structure, our solution can not only
sufficiently learn the temporal dependence, but also avoid the insufficiency of RNN-based methods.

A.2 RELATED WORK

In this section, we revisit a series of related works on Graph Neural Networks (GNNs), homophily
theory in GNNs as well as dynamic graph learning.

A.2.1 GRAPH NEURAL NETWORKS (GNNS)

Graph-structured data has received significant interest to energize substantial domains including
molecular modeling (Rong et al., 2020; Beaini et al., 2021), social networks (Zhao et al., 2021)
and smart grids (Lin et al., 2021). Early GNNs, which categorized to spectral methods, extend the
convolution from grid data to irregular graph data by imposing Fourier transformations on graphs
and extract informative structures (Defferrard et al., 2016; Xu et al., 2018). After that, researchers
find that spectral GNNs suffer the issues of high computational costs and non-alignment to vertex
domain. Therefore, spatial methods are proposed to relax the equal number neighbors to flexible
neighborhood constructions by directly defining the kernel functions (Hamilton et al., 2017; Kipf
& Welling, 2016; Niepert et al., 2016). To enable a global node-wise correlation learning, attention
methods of Graph Attention Networks (Veličković et al., 2018) and ASTGNN (Guo et al., 2019)
are subsequently proposed. However, graph-structured data in real scenarios are more complex than
assumptions in most existing research. For example, multi-type edges and multi-type nodes in graphs
are pervasive in many areas such as chemical bonds in molecules and heterogeneous relationships in
social networks or citation networks (Wang et al., 2022a). Also, with the increasing layers of deep
graph neural networks, node representations tend to go towards similar by iterative aggregations.
To address these challenges, heterogeneous GNN (Zhang et al., 2019), adaptive relational graph
learning (Wang et al., 2022a; Schlichtkrull et al., 2018), and heterophily GNNs (Yan et al., 2021;
Ma et al., 2021) have raised. Even so, adapting the GNN architecture to more complex scenarios
still remains as emerging research topic and less explored.

A.2.2 HOMOPHILY AND HETEROPHILY IN GNNS

The homophily-heterophily theory aims to quantify local neighborhood distributions, i.e., the pro-
portions of different types of neighbors that approaching and deviating from targets. Given the ’op-
posites attract’ phenomenon in real-world graphs, emerging GNNs are proposed to tackle the het-
erophily issue. (Bo et al., 2021) first explain multi-type node-wise correlations with low and high
frequency components and design frequency adaptation GCN to allow both high and low frequency
message passing. After that, Yan et, al. propose a signed message passing and degree-correction (Yan
et al., 2021), to enable actively identifying different components on graphs by extracting signs of
node-level pair-wise similarity, and re-weighting layer-wise information by degree corrections. At
the same time, Zhu et, al. design a compatibility matrix to model the node heterophily (Zhu et al.,
2021b) and investigate three principles considering neighboring aggregation and high-order propa-
gations, to adapt heterophily scenarios (Zhu et al., 2020). Actually, the homophily ratios of different
substructures can experience large variances (Du et al., 2022). In this way, GPR-GNN (Chien et al.,
2020) and MixHop (Abu-El-Haija et al., 2019) enable learnable weights over different layers to
achieve high-order propagation. Unfortunately, these high-order propagations cannot specify the
weights over node-level, and all above solutions are tailored for classification.

A.2.3 LEARNING ON DYNAMIC GRAPHS

Majority of dynamic graph learning can be classified into link prediction and node-level regressions.
Tasks of link predictions unversally exist in recommendation system (Xia et al., 2022; Göpfert et al.,
2022), social networks (You et al., 2022) and heterogeneous academic networks (Kang et al., 2022)
where these studies exploit the dynamics of user preference and interests to achieve time-varying

4The size for temporal convolution kernels is set to 1*3 across four datasets.
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Table 3: Dataset statistics

Dataset Node
#

Time
step #

Time
span

Interval
length

Intra-graph
homophily

Metr-LA 207 34,272 03/01/2012-
06/30/2012 5min 0.2273

PeMS-Bay 325 52,116 01/01/2017-
05/31/2017 5min 0.1073

KnowAir 184 11,688 01/01/2015-
12/31/2018 3h 0.2481

Temperature 184 11,688 01/01/2015-
12/31/2018 3h 0.1156

Table 4: Neighborhood distributions on real-world datasets

Intra-graph homophily πs
vi Inter-graph homophily πT

vi
ps qp qn ps qp qn

Metr-LA 0.2273 0.4732 0.2995 0.3325 0.4920 0.1755
PeMS-Bay 0.1073 0.5912 0.3015 0.2399 0.6863 0.0738
KnowAir 0.2481 0.3945 0.3574 0.3190 0.4030 0.2780
Temperature 0.1156 0.6980 0.1864 0.1418 0.5538 0.3044

embedding. This research line pays more attention to individual embedding rather than the holistic
graph. Node-level regressions such as traffic forecasting (Yu et al., 2018; Guo et al., 2019; Miao
et al., 2022) and smart grid predictions (Lin et al., 2021; Chen et al., 2021b), aim to aggregate rel-
evant nodes for approaching future observations. To capture the dynamic topology, recent works
devise various adaptive topology learning strategies, including dynamic similarity (Yan et al., 2021;
Zhou et al., 2020; Bai et al., 2020) and attention mechanism (Guo et al., 2019), to quantify weights
of different nodes. Actually, dynamic graph learning tends to be more challenging than static graphs,
as these node values are often time-varying and naturally induce the edge diversity over time (Chen
et al., 2020; Yan et al., 2021). In addition, the imbalanced local structures over nodes (Chen et al.,
2021a; Wu et al., 2021) further pose challenges to high-order propagation and topology refinement.
Although there are studies respectively focus on dynamic relation embedding (Deng et al., 2020),
and personalized receptive field construction (Xiao et al., 2021), there are two issues have been
significantly neglected. 1) None of them take the temporal evolution into account to capture their
influences on their potential dynamic topology and 2) Considering the potential topology-task dis-
cordance discussed above, none of them investigate the node-level multi-relations over graphs to
facilitate regression tasks.

A.3 ADDITIONAL EXPERIMENTAL DETAILS AND RESULTS

A.3.1 STATISTICS OF DATASETS

As this work studies the node-wise proximity over dynamic graphs and investigates how the prox-
imity of both homophily and heterophily enhances dynamic graph regressions. We thus present the
statistics of node numbers, total temporal steps and intra-graph homophily of each real-world dy-
namic graph in Table 3. Also, the numerical neighborhood distributions of each node are averaged
into ps, qp and qn regarding both two types of homophily, i.e., intra- and inter-graph homophily in
Table 4. Noted that the reported numerical homophily is derived with the well-set homophily crite-
ria ε, i.e., 0.08, 0.1, 0.1 and 0.12 corresponding to four dynamic graph datasets. Due to the inheret
dynamics in these graphs, we can observe that these graphs suffer serious heterophily issue and
the inter-graph homophily tends to be higher than that of intra-graph. We especially observe that
datasets of KnowAir and Temperature are with higher negative heterophily qn, and experimental
results in Table 1 also demonstrate a more significant improvement on KnowAir and Temperature.
These statistics can verify the intuition that modeling homophily and heterophily can disentangle
the target-oriented homophily and boost both aggregation and representation capacity in GNNs.
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A.3.2 DETAILS OF COMPARED BASELINE MODELS

Classic GNNs: (1) GCN: The classical graph convolution neural network (Kipf & Welling,
2016). (2) GAT: An attention-based graph method capturing global dependence on the whole
graph (Veličković et al., 2018). (3) GraphSAGE: A representative spatial method of GNNs to re-
alize graph-based inductive learning (Hamilton et al., 2017). Topology-refined models: (4) Su-
perGAT: A self-supervised GAT designed for noisy graphs, which learns expressive attention in
distinguishing mislinked neighbors (Kim & Oh, 2020). (5) EGConv: It is a lightweight GCN that
designs spatially-varying adaptive filters (Tailor et al., 2021). Heterophily GNN: (6) H2GCN: It is
a framework for node-level classification on graph with homophily and heterophily components by
three effective designs (Zhu et al., 2020). Spatiotemporal Networks: (1) STGCN: A graph-based
spatiotemporal framework with a sandwich structure of temporal-spatial-temporal learning archi-
tecture (Yu et al., 2018). (2) MTGNN: Multivariate time-series forecasting model which is capable
of adaptively learning uni-directed relations among variables with a graph learning module (Wu
et al., 2020b). (3) GraphWaveNet (GWN): A state-of-the-art graph-based traffic prediction model
that integrates TCNs and GCNs (Wu et al., 2019). (4) DCRNN: A diffusion convolutional recur-
rent neural network, which combines diffusion graph convolutions with RNNs (Li et al., 2018). (5)
ASTGNN: An attention-based spatiotemporal network for capturing dynamic ST correlations (Guo
et al., 2019).

Error metric: MAPE (Right Y-Axis) (Right Y-Axis)

(Right Y-Axis) (Right Y-Axis)

Figure 7: Parameter sensitivity analysis

A.3.3 ADDITIONAL DETAILED COMPARISON RESULTS

In this subsection, we perform a series of experiments to test the model performance stability with
different initializations, model robustness on temporal resolutions and the high temporal node de-
grees.

Stability comparisons of different models. To explore the performance stability of different mod-
els, we train our models with 10 different initialization random seeds, and select three matching
baselines, MTGNN, GraphWaveNet (GWN) and DCRNN as the compared baselines. We record the
standard deviation of RMSE and MAPE for these models on four datasets and report them in Ta-
ble 5. Among the four models, our GReTo reveals comparable and identical stability almost on all
datasets with other baselines, verifying there is no stability issues in our solution.

Robustness on temporal resolutions. Our solution is independent on the length of time intervals
as the evolution trend should be captured regardless of the interval length. To confirm this intuition,
we perform a case experiment by aggregating the time intervals from 5 min into 30 min on MetrLA
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Table 5: Performances with standard deviations

Metr-LA (5-min) PeMS-Bay (5-min) KnowAir Temperature
MAPE RMSE MAPE RMSE MAPE RMSE MAPE RMSE

MTGNN 0.0526±0.0008 3.8153±0.0168 0.0170±0.0002 1.5759±0.0110 0.2271±0.0029 12.9091±0.0134 0.1682±0.0051 0.9034±0.0303
GWN 0.0528±0.0004 3.8434±0.0359 0.0163±0.0002 1.5482±0.0087 0.2288±0.0027 12.8495±0.0123 0.1607±0.0072 0.9112±0.0297
DCRNN 0.0532±0.0006 3.8798±0.0459 0.0161±0.0003 1.6229±0.0092 0.2392±0.0024 13.0389±0.0317 0.1351±0.0057 0.9715±0.0803
GReTo 0.0500±0.0004 3.6552±0.0356 0.0162±0.00006 1.4813±0.0025 0.1708±0.0025 11.0369±0.0670 0.1341±0.0023 0.8704±0.0031

Table 6: Performances on aggregated 30-min intervals of two datasets

Metr-LA (30-min) PeMS-Bay (30-min)
Models MAPE RMSE MAPE RMSE
MTGNN 0.0950±0.0017 40.6671±0.6227 0.0287±0.0002 18.0767±0.0785
GWN 0.0952±0.0022 40.7782±0.5130 0.0281±0.0003 17.7177±0.0832
DCRNN 0.0989±0.0010 41.5420±0.5594 0.0292±0.0003 17.8241±0.0863
GReTo 0.0936±0.0004 39.2014±0.3306 0.0273±0.0002 17.5980±0.0619

and PeMS-Bay. The results illustrated in Table 6 show that our solution can also have a 1.6% and
2.8% improvement on these two well-studied datasets when compared with best baseline, where the
performance gains are comparable to 5-min setting. Thus, we exactly demonstrate the independence
of our solution on temporal resolutions. Noted that the greater magnitude of errors and larger vari-
ations of 30-min datasets is probably attributed to the larger magnitude of node observation values
on aggregated datasets.

Robustness on graphs with higher temporal node degrees. The graphs with higher temporal node
degrees are corresponding to the scenarios that nodes in adjacent/different graphs possess more inter-
connections, i.e., graphs with higher inter-graph homophily. As illustrated in Table 4, this scenario
occurs on two datasets, Metr-LA and KnowAir, as both datasets reveal higher inter-graph homophily
i.e., larger ps (0.3325 on Metr-LA and 0.3190 on KnowAir). On their performances, the reduced
errors away from best baselines on both datasets, from 0.0526 to 0.0507 on Metr-LA and from
0.2271 to 0.1708 on KnowAir, can imply the robustness of our GReTo on higher temporal degree
nodes.

A.3.4 INTERPRETABLE INTERMEDIATE RESULTS

To present an intuitive understanding on aggregation process of our GReTo, Figure 8 demonstrates
a case study of our GReTo on Metr-LA. Some important central nodes associated with their neigh-
borhoods and the intermediate results of layer-wise importance are visualized. It is observed that
nodes in graph usually reveal distributed centers and different centers also tend to be connected.
For layer-wise importance, it shows that nodes with lower degrees (e.g., Node 7 and 107) tend to
propagate farther than nodes with higher degrees (e.g., Node 28 and 78) where the learnable results
can verify the intuition of our layer propagation principle and the effectiveness of our GReTo for
high-order propagations.

A.3.5 PARAMETER SENSITIVITY ANALYSIS

We investigate the three hyperparameters in GReTo to test the model parameter sensitivity. We illus-
trate the optimal parameter searching process on all four datasets in Figure 7. We have the following
three observations. First, we must strike a balance on the edge connections between the lower graph
connectivity and reduced graph topology, corresponding to lower and higher connectivity of δ and ε.
Second, it can observed that the larger-scale of graphs tend to require a larger propagation order K,
indicating more neurons can accommodate better fitting capacity towards to adapt more intensive
data. Third, although different graphs have their intrinsic property and corrspond to their optimal pa-
rameters, we can still find our solution can be stable across different parameters and discover some
regularity on parameter tuning.
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Figure 8: Case study of GReTo on Metr-LA

Table 7: Model training time for each epoch (unit: seconds)

Datasets Metr-LA PeMS-Bay KnowAir Temperature
GreTo 58 122 16 16
GCN 35 87 11 11

A.3.6 COMPLEXITY ANALYSIS

Complexity of GReTo. As model complexity plays an important role in both training and inference
stages, we here analyze the additional computation to existing GNNs of our GReTo. For one step
t ∈ |T |, the major computation costs lie in two aspects, (1) in the data-preparation stage, spatial
homophily and transition homophily should be pre-calculated, which leads to O(N ∗N), (2) in the
training and inference stages, real-time spatial homophily computation, a binary judgement for ma-
trix sign disentanglement, additionalK-times computation for high-order neighborhood distribution
as well as matrix product, finally the MLP for LiM, which lead to O(2 ∗K + 1+ 1) = O(2K + 2)
times atomic operation (element-wise matrix product or addition). Since the data-preparation stage
does not occupy training resources and can be computed only once while the computation during
training and inference is linearly increasing with maximal layer number K, the additional compu-
tation is tolerable for the whole architecture. Besides, we also investigate the training complexity
and parameter volumes of the proposed model empirically. The comparison of model training time
compared with vanilla GCN is illustrated in Table 7, while the parameter volume comparisons with
other comparable dynamic graph learning models are shown in Table 8, where both of them can
support the acceptable computations.

Complexity of GReTo on large-scale graphs. More specifically, readers may concern about the
efficiency issue when the graphs become larger. Here we present the efficiency analysis over very
large graphs. In this case, we can force the spatial proximity only to be computed on spatially
neighboring nodes. Assuming there are averagely Ns neighbors of each node (Ns ≪ N ), the total
computation on a large graph is N × Ns. By adding the computations of temporal evolution, the
whole graph homophily calculation only requires totally N × (Ns + 1) times of computation that
is linearly increasing with node numbers, while LIM in the neural network still needs (2K + 1)
computation. Further, we can also construct the matrix describing the ego-net neighbors to allow the

Table 8: Parameter volumes on different models (unit: million (M))

Models GReTo MTGNN GWN DCRNN
Metr-LA 0.38M 0.41M 0.28M 0.37M

PeMS-Bay 0.38M 0.57M 0.37M 0.28M
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computation to run parallelly. Therefore, with these slight modifications, our solution can be easily
generalized to large-scale graphs.

A.3.7 FURTHER DISCUSSIONS ON EMPIRICAL RESULTS

Influences of dataset property on module performances. The ablation studies have illustrated
how the model performances vary when each component is individually removed. We find that the
improvements induced by designed modules are sensitive to the property of datasets. Since tradi-
tional GNNs only aggregate homophily compositions in the current graph for smoothness while our
target-oriented message passing explicitly considers the target influences on topology to perform ag-
gregations, the datasets with higher intra-graph heterophily (large qn of intra-graph) or inter-graph
heterophily (large qn of inter-graph) are more prone to receive more benefits. In fact, more significant
performance improvements on KnowAir and Temperature can correspondingly verify our intuition.
Therefore, when the property of datasets varies, the performances will change accordingly. Besides,
the interactions between two modules may bring in additional bonus where the topology remedi-
ation can work cooperatively with the personalized high-order propagation. Concretely, the topol-
ogy remediation will be meaningless in the high-order neighborhood aggregations if the layer-wise
importance measure module is removed, and the ablations on V-ULW (aggregation with uniform
layer-wise weight rather than personalized aggregations) exactly confirm this argument.

Model scalability on different scenarios. The theoretical analysis and experimental results can ver-
ify that our solution is easily generalized to different scenarios. Here, we will analyze the scalability
issue on three aspects, i.e., temporal resolution, homophily property and large-scale graph adapta-
tion. First, we argue that our solution is actually independent on the length of time intervals as it
only requires to calculate the current graph homophily and captures the potential evolution trend
in a data-driven manner. The additional empirical results (Sec. A.3.2) reveal similar improvements
on both 5-min and 30-min intervals also demonstrate the independence on the interval length. And
for multi-step prediction, as shown in Figure 3 (b), the 6-step prediction results are comparable to
other baselines that tailored for multi-step time series predictions (i.e., MTGNN) but with a smaller
improvement margin than single step prediction does. This can inspire us to explore an extended
version of GReTo-M that is tailored for multi-step prediction. A new GReTo-M can concentrate on
how to guide the learning of trends by considering the homophily, context-factors to generalize to a
high-quality multi-step prediction. These interesting works will be left as our future work. Therefore,
our solution is generally robust to different temporal resolutions. Second, for homophily property,
we have illustrated the statistics of neighborhood distribution in Table 4. We find that datasets with
different inter-graph homophily and intra-graph homophily exactly reveal various prediction perfor-
mances. Specifically, our solution explicitly considers the target evolution direction to capture the
target-homophily nodes that can potentially involve both heterophily and homophily in one graph.
Therefore, our solution can adapt to the high intra-heterophily scenarios such as Temperature, and
high inter-graph heterophily scenario such as KnowAir. Actually, the performances on these two
datasets have a large margin than baselines that validates our intuitions. Finally, our GReTo can
also be easily generalized to large-scale graphs as we are only required to calculate the intra-graph
homophily within spatial neighborhoods and inter-graph homophily within node itself. The sim-
plified operations will lead to a linearly increasing computation with node number N that can be
satisfactory for model deployment (demonstrated in Sec. A.3.6). To conclude, our newly developed
GReTo model is with good scalability on various scenarios probably with slight modifications, and
we believe our work can be an advance in both spatiotemporal learning and graph learning theory.

B PROOF OF THEOREMS

B.1 PROOF OF THEOREM 1

Proof. To prove Theorem 1, we first provide several notations on graph G and node vi to facilitate the
analysis. (1) di serves as the degree of node vi while the feature value xi is bounded byB, (2) ρ(W)
denotes the largest singular value in learnable parameters W, (3) the ratio of intra-graph spatial
homophily πs

ij is fixed to pi, while the ratio of other node-level relations is qi, where qi = 1 − pi,
(4) assume a target coefficient γi quantifies the relationship between the targeted step T + 1 and
current step t by xT+1

i = γix
t
i. We omit the non-linear activation layer for simplification, as it will
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not intervene this theoretical analysis. Based on above assumptions, we can introduce the following
Lemma 1 to demonstrate the representation hi will finally converge to its expectation.

Lemma 1 Acorrding to Hoeffding’s Inequality (Bentkus, 2004), the aggregated representation hi
will converge to its expectation E[hi] with their differences bounded by,

P(||hi − E[hi]||2 ≥ t) ≤ 2l exp(− dit
2

2ρ2(W)B2F
) (19)

Lemma 1 has been exactly proved in literature (Ma et al., 2021) on classification tasks. Considering
GNNs share the same process of neighborhood aggregation and node representation updates on both
classification and regression tasks, Lemma 1 can be extended to regression tasks.

After then, we can derive the expectation E[hti] of hti to complete following analysis. For simplifica-
tion, we only consider the evolution from the one step T to the targeted step T +1, i.e., xTi → xT+1

i ,
where we assume xT+1

i = γix
T
i . If only the nodes of intra-graph homophily can be aggregated,

each aggregated neighbor vj ∈ N (vi) satisfies xj < (1± ε)xi. Let xj = (1± ε̃)xi, where ε̃ satisfy
ε̃ < ε < 1. Therefore, we can calculate the expectation E[hTi ] after once convolution, i.e.,

E[hTi ] =
xi + dipi(1± ε̃)xi

di + 1
(20)

where dipi interprets the expectation number of the spatial homophily nodes in the whole graph.

Given the target coefficient γi, a successful aggregation can be equivalent to finding a valid di to
construct an appropriate neighborhood field for achieving targets. Therefore, we can continue to
derive the relationship between di, γi, and pi.

The difference between E[hTi ] and the targeted value xT+1
i = γix

T
i can be written as,

||E[hTi ]− xT+1
i ||= ||1 + dipi(1± ε̃)− γi(di + 1)

di + 1
xi|| (21)

Consider that the differences will converge to 0 as the optimized points are obtained, we can derive
the closed solution of di,

di =
γi − 1

pi(1± ε̃)− γi
≈ γi − 1

pi − γi
=

1− γi
γi − pi

= −1 +
1− pi
γi − pi

(p𝑖,0)
𝜸𝒊

𝒅𝒊

𝑑𝑖=-1

Figure 9: Relationship between the target
coefficient γi and substructure degree di.

By analyzing the above inverse proportional function
in Figure 9, we achieve the conditional relationship
among the substructure di, the target coefficient γi and
intra-graph homophily pi,

di =


(−∞,−1), γi < pi
∞, γi = pi
[0,+∞), pi < γi ≤ 1
(−1, 0), γi > 1

Based on above analysis, we have theoretically
demonstrated that we cannot obtain the optimized di
when γi < pi and γi > 1, corresponding to the discor-
dance between topology and tasks. □

B.2 PROOF OF THEOREM 2

Proof. To faciliate the analysis on more complex mes-
sage passing, we introduce the following notations and
settings. Given node vi, the spatial homophily still
keeps as pi while heterophily ratio keeps as qi, diqi
is the expectation number of heterophily neighbors to
vi, and α adjusts the aggregation proportions between
homophily and heterophily.

23



Published as a conference paper at ICLR 2023

We consider the expectation values of positive and negative heterophily neighbors respectively as
xi

λ1
and λ2xi where (λ1, λ2) satisfying 0 < λ1, λ2 < 1 are the scalar factors. By formulating a

seperated aggregation strategy, we can derive the difference between the expectation of current-
graph representation and target as,

||E[hTi ]− xT+1
i ||=||

xi + dipi(1± ε)xi + diqi(
α
λ1
spxi + (1− α)λ2sqxi)

di + 1

− γixi(di + 1)

di + 1
||

(22)

with {
di ∈ Z+

0 < qi < 1
0 < λ1, λ2 < 1

Let the difference be 0, we have the following equation,

1 + dipi(1± ε) + diqi(
α

λ1
− (1− α)λ2)− γi(di + 1) = 0 (23)

Ignoring the relatively small ε, we can arrive the optimzed closed form of di,

di =
γi − 1

pi + qi(
α
λ1

− (1− α)λ2)− γi

To find an optimized di ∈ N+, the parameter tuple (pi, qi, α, γi, λ1, λ2) must conform to the fol-
lowing inequality by simplifying sp = 1, sq = −1,

0 < pi + qi(
α

λ1
− (1− α)λ2)− γi < γi − 1 (24)

Without loss of generality, we denote τ∗ = α
λ1

− (1 − α)λ2 and substitute qi with 1 − pi, then we
can simplify Equation 23 into,

γi < pi + (1− pi)τ
∗ < 2γi − 1 (25)

Then we can derive the condition that τ∗ must satisfy as,

γi − pi
1− pi

< τ∗ <
2γi − pi − 1

1− pi
(26)

Since the node-wise aggregation process are parameterized by both signed kernels and learnable pa-
rameters, it can be viewed as encapsulating learnable W into our pre-defined parameters (λ1, λ2, α)
and hence we can always find the optimal τ∗ to satisfy above inequality. We will further present a
detailed analysis of above inequality for verifying the existence of such solution.

Let τ∗=t− 1
t , we have,

γi − pi
1− pi

< t− 1

t
<

2γi − pi − 1

1− pi
(27)

Then we can resolve the inequality and derive the exact t by,

γi−pi
1−pi

+
√

( γi−pi
1−pi

)
2
+ 4

2
< t <

2γi−(pi+1)
1−pi

+
√

( 2γi−pi−1
1−pi

)
2
+ 4

2
(28)

Ultimately, a set of possible solution (λ1, λ2, α) to the directional message passing should satisfy
the following inequality,

γi−pi
1−pi

+
√

( γi−pi
1−pi

)
2
+ 4

2
<

α

λ1
=

1

(1− α)λ2
<

2γi−(pi+1)
1−pi

+
√

( 2γi−pi−1
1−pi

)
2
+ 4

2
(29)

Given that λ1 and λ2 respectively imply the neighborhood of intra-graph positively heterophily
and negative heterophily, in the following section, we will continue to analyze what conditions
will λ satisfy when γi tends to approach respectively 0 or +∞. This will provide insights into the
evaluations of predictability and GNN success on the given datasets.
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1) when γi → 0, we have,

lim
γi→0

di =
γi − 1

pi + qi(
α
λ1

− (1− α)λ2)− γi
(30)

To ensure the a valid di with 1 ≤ di ≤ +∞, we derive,

γi − 1 < pi + qi(
α

λ1
− (1− α)λ2) < γi (31)

We can obtain the constraints of λ2,

α

λ1(1− α)
< λ2 <

1

λ1
+

pi − γi
(1− α)qi

(32)

Thus, for γi → 0, the successful aggregation can be achieved when compositions of negatively het-
erophily neighbors dominate the neighborhoods, i.e., we have a large λ1 but small λ2 satisfying
Eq. 31.

2) when γi → +∞, we have,

lim
γi→+∞

di =
γi − 1

pi + qi(
α
λ1

− (1− α)λ2)− γi
(33)

To ensure the 1 ≤ di ≤ +∞, we derive,

0 ≤ pi + qi(
α

λ1
− (1− α)λ2)− γi ≤ γi (34)

As the assumption of γi → +∞ but 0 < α, λ2, pi, qi < 1, we can directly neglect the components
of both pi and (1− α)λ2qi. We then have,{ qiα

2γi−pi+qi(1−α)λ2
< λ1 ⩽ qiα

γi−pi+qi(1−α)λ2

λ2 >
α

(1−α)λ1

(35)

Thus, for γi → +∞, the successful aggregation can be achieved when compositions of positively
heterophily neighbors dominate the neighborhoods, i.e., we have a small λ1 but large λ2 satisfying
Eq. 34.

Therefore, we conclude that extending the aggregation to signed message passing with separately
aggregating different types of neighborhoods can exactly enhance the aggregation capacity. □

Remark. In Theorem 2, we demonstrate the required conditions of expected neighbors that poten-
tially lead to successful aggregations under signed message passing. With these derived conditions,
we can roughly estimate whether the GNN can success or not to aggregate the neighborhoods for
achieving targets if the dataset is given. Based on Theorem 2, we can remedy the task-topology
discordance by disentangling the neighborhood relationships and performing signed bi-directional
message passing.

B.3 PROOF OF THEOREM 3

Intuitive demonstration. As illustrated in Figure 10, we can observe that non-identical neighbor-
hood environments can directly result in different optimized aggregation steps (orders) on each
neighboring direction. In other words, the neighborhood topology and the target-heterophily nodes
determine the stopping step of aggregation along each route. We demonstrate the detailed proof
regarding their quantitative relationship as below.

Proof. Due to the mixed compositions of intra-graph homophily and heterophily in one graph,
there must be target-heterophily edges. Intuitively, the target-oriented neighboring nodes, i.e., target-
homophily are more beneficial to the aggregation process leading to targets. With the notations and
basic setting in Theorem 3, we can analyze the expected number of total target-homophily neighbors.
To simplify the proof, we leverage local dependence assumption in Graph Information Bottleneck
(GIB) theory (Wu et al., 2020a) in our analysis, which assumes nodes in a same k-order EgoNet
share the same neighborhood distributions and environments. Also, herein we only consider a two-
layer propagation (k=2) and let the two-order neighborhood share the same local neighborhood
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environments (di, p, qp, qn) specified by a central node vi (we will not impose the node index sub-
script to (p, qp, qn) as we make the local dependence assumption in the local fields).

We first consider the scenairo of a large γi in a consecutive transition xT+1
i = γix

T
i > xTi (γi > 1),

and there are two cases that nodes are beneficial to aggregate. The beneficial nodes are distributed
hierarchically and carefully depicted in Figure 11(a), i.e., (1) in the first-order propagation, the pos-
itively intra-graph heterophily neighbors to central node (circle colored in green), (2) in the second-
order propagation, the positively intra-graph heterophily compositions neighboring to first-order
homophily neighbors (left ellipse colored in blue), and the intra-graph homophily and positive het-
erophily compositions neighboring to first-order neighbors that are positively heterophily composi-
tions to vi (right ellipse colored in blue). Let N+(vi) be the expected number of target-homophily
neighbors of vi, we can derive the following equation,

N+(vi) = qpdi + pqpd
2
i + (pqp + q2p)d

2
i

= d2i q
2
p + qp(2pd

2
i + di)

(36)

Denoting the expected feature values of first-order target-oriented neighborhood as xo1 and fea-
ture observations of the second-order neighborhood as xo2, the expected aggregation observations
normalized by the degree di can be derived as,

E[h2i ] =
1

di
× qpdi × xo1 +

1

d2i
(2pqp + q2p)d

2
ixo2

= qpxo1 + (2pqp + q2p)xo2

(37)

Therefore, we consider the information aggregated from target-oriented nodes as the probability that
beneficial nodes are exactly selected for aggregation. In this way, the difference of such probability
between the second layer and the first layer ∆P (N+)|1−2 is computed by,

∆P (N+)|1−2 = P (N+)2 − P (N+)1

= 2pqp + q2p − qp

= 2(1− qp − qn)qp + q2p − qp

= (−1− 2η)q2p + qp

(38)

We consider the quadratic function of qp, where the function describes the compositions of target-
homophily.
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Figure 10: Illustration of node-specific per-
sonalized receptive field

1) If 0 < qp <
1

1+2η , we have ∆P (N+) > 0. It refers
to that when it is with a small target-homophily, the
second-layer can gain more information than the first-
layer does, i.e., we have INFO(h2i ) > INFO(h1i ).
Similar conclusion can be extended to INFO(h4i ) >
INFO(h3i ) for 3-rd and 4-th layer propagation, and
further higher-order propagations if they share simi-
lar neighborhood environments. This numerical result
can support the intuitive understanding that the smaller
target-homophily is, the larger layer propagation steps
are required to gain more informative target-related
messages.

2) If qp > 1
1+2η , we have ∆P (N+) < 0. This inter-

prets that a large target-homophily can encourage the
first-layer to gain more information than the second
one, i.e., we have INFO(h1i ) > INFO(h2i ), and sim-
ilarly INFO(h3i ) > INFO(h4i ) achieves. An intuitive
understanding can be achieved that the larger target-homophily, the fewer propagation steps are
demanded to balance the propagation efficiency and information gains.

For the scenario of small γ, the negatively intra-graph heterophily compositions are encouraged to
aggregate, as illustrated in Figure 11(b). Now the proportion of target-oriented composition becomes
qn in the first-order propagation. LetN−(vi) be the expected number of target-homophily neighbors
of vi, we have,

N−(vi) = qnd+ pqnd
2 + (qnd(p+ qn)d) (39)
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Similar to above analysis, the probability difference of aggregating the nodes that are target-oriented
(intra-graph negatively heterophily) between the second and first layers can be derived as,

∆P (N−)|1−2= (−1− 2η)q2n + qn (40)

Eq. 39 is highly analogous to Eq. 37, hence the symmetric results can be achieved when we have a
small γi satisfying γi < 1.
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Figure 11: Example of target-homophily node selection process. The highlighted circles in green
represent the target-oriented neighborhood in first propagation order while the circles in blue indicate
the target-oriented neighborhood in the second order. Homo, Hetero+ and Hetero- respectively refer
to target-homophily, postively target-heterophily and negatively target-heterophily.

We can finally complete the proof of the quantitative relationship between the informativeness of
layer-wise node representation and the target-oriented homophily ratio. □

B.4 BROADER IMPACTS AND ETHICS ISSUE

Scalability and broader impacts. In general, this paper proposes a novel GNN architecture, GReTo,
for dynamic graph regressions via remedying the topology-task discordance. Our work provides
a new perspective that exploits both original topology and targets to investigate topology refine-
ment and reconstruction, i.e., the topology in structured data must be an informative knowledge
for message passing while the aggregations may not involve all connected nodes but only the target-
beneficial neighborhoods. This research delves into how fine-grained analysis of neighborhood com-
positions facilitates dynamic graph regressions and can promisingly inspire better modeling and
analysis on various graph-structured data with complex explicit or implicit correlations. In detail,
it not only can be a good baseline for multivariate series prediction such as smart grid prediction,
numerical weather forecasting, and economic growths, but it can also be generalized to resolve var-
ious classification tasks on dynamic graphs including link predictions in social networks, citation
networks, and recommendation systems.

Limitations and future works. The limitation of our work can be summarized as 1) limited di-
rection expressivity for multi-step predictions, 2) lacking individual-level node analysis and inter-
pretability on controllable message passing, i.e., dissecting how each composition of neighborhood
affect the representation, deviating or approaching targets? Therefore, for future works, we are go-
ing to comprehensively study 1) how to exploit homophily theory to improve more general dynamic
graph learning tasks such as link predictions or edge-type predictions, 2) how the node-level rela-
tions and neighborhood compositions affect the node representations, which potentially can control
the message passing in a robust and anti-noise manner.

Fairness and ethic issues. Our work performs extensive analysis and experiments on datasets in-
cluding traffics on two cities and climate datasets concerning air quality and temperature, without
any personal identity and privacy issues. Therefore, our work is with no ethics and privacy issues. In
addition, all baselines and methods are compared with fairness.
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