
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

TGB-SEQ BENCHMARK: CHALLENGING TEMPORAL
GNNS WITH COMPLEX SEQUENTIAL DYNAMICS

Anonymous authors
Paper under double-blind review

ABSTRACT

Future link prediction is a fundamental challenge in various real-world dynamic
systems. To address this, numerous temporal graph neural networks (temporal
GNNs) and benchmark datasets have been developed. However, these datasets
often feature excessive repeated edges and lack complex sequential dynamics, a
key characteristic inherent in many real-world applications such as recommender
systems and “Who-To-Follow” on social networks. This oversight has led existing
methods to inadvertently downplay the importance of learning sequential dynamics,
focusing primarily on predicting repeated edges.
In this study, we demonstrate that existing methods, such as GraphMixer and DyG-
Former, are inherently incapable of learning simple sequential dynamics, such as
“a user who has followed OpenAI and Anthropic is more likely to follow AI at Meta
next.” Motivated by this issue, we introduce the Temporal Graph Benchmark with
Sequential Dynamics (TGB-Seq), a new benchmark carefully curated to minimize
repeated edges, challenging models to learn sequential dynamics and generalize to
unseen edges. TGB-Seq comprises large real-world datasets spanning diverse do-
mains, including e-commerce interactions, movie ratings, business reviews, social
networks, citation networks and web link networks. Benchmarking experiments
reveal that current methods usually suffer significant performance degradation and
incur substantial training costs on TGB-Seq, posing new challenges and opportu-
nities for future research. The datasets and benchmarking code are available at
https://anonymous.4open.science/r/TGB-Seq-3F23.

1 INTRODUCTION

Future link prediction (Divakaran & Mohan, 2020) is a fundamental challenge in various real-world
dynamic systems, such as social networks (Daud et al., 2020), e-commerce (Bai et al., 2020), financial
systems (Rajput & Singh, 2022). For instance, an online shopping website must decide which items
to recommend to users based on their click history, while a social networking platform needs to
identify which users may be interested in connecting based on their existing relationships. Among
the various approaches for future link prediction, temporal Graph Neural Networks (GNNs) are
particularly notable for their flexibility in modeling diverse applications and their representation
learning capabilities (Zheng et al., 2024; Skarding et al., 2021; Kazemi et al., 2020). Recently, several
temporal GNN methods (Yu et al., 2023) have demonstrated impressive performance in future link
prediction on existing benchmarks (Poursafaei et al., 2022). However, most existing datasets are
not derived from real-world recommender systems, despite recommendations being a natural and
essential application of future link prediction.

Observations. To assess the capability of current temporal GNNs in recommendation tasks, we
evaluate their performance on future link prediction using two widely used recommendation datasets,
including the user-product interaction network Taobao (Zhu et al., 2018) and the business review
network Yelp 1. Figure 1 presents the performance of three state-of-the-art temporal GNN approaches
across these datasets, including EdgeBank (Poursafaei et al., 2022), GraphMixer (Cong et al.,
2023) and DyGFormer (Yu et al., 2023). We split these datasets chronologically and randomly
sample 100 negative destination nodes for each positive instance, utilizing the Mean Reciprocal
Rank (MRR) as the evaluation metric. Besides, we also include SGNN-HN (Pan et al., 2020),

1https://www.yelp.com/dataset
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Figure 2: The MRR scores of eight popular temporal GNNs for predicting repeated historical edges
on four previously established datasets. “Unseen” denotes the performance of unseen edges.
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Figure 1: The MRR scores of three selected
temporal GNNs and SGNN-HN on two existing
datasets (Wikipedia, Reddit) and two recommen-
dation datasets (Yelp and Taobao).

one of the state-of-the-art methods for sequen-
tial recommendation to compare with tempo-
ral GNNs. Intuitively, these recommendation
datasets are comparable to existing datasets (e.g.,
Wikipedia and Reddit), as all represent typical
dynamic systems, and thus, temporal GNNs are
expected to perform in a similar trend on these
recommendation datasets. However, Figure 1
shows that temporal GNN methods present sig-
nificant performance degradation compared to
their strong results on two previously established
datasets and present a substantial performance
gap compared with SGNN-HN, which contra-
dicts our intuition. This observation raises a critical question: Why do existing temporal GNN methods,
which demonstrate superior performance on established temporal graph datasets, fail to perform
well in a typical downstream application, i.e., recommendation?

We conjecture that this is because existing datasets, e.g., Wikipedia and Reddit, contain excessive
repetitions of historical edges compared to these evaluated recommendation datasets. Consequently,
temporal GNNs tend to predict these repeated historical edges via memorizing or aggregating histori-
cal edges and perform well on existing datasets. To validate our assumption, we use existing temporal
GNNs to predict both repeated and unseen edges and report their MRR scores separately across
four widely used datasets: Wikipedia, Reddit, Social Evo. and Enron, following the experimental
settings of Figure 1. The results in Figure 2 indicate a substantial prediction performance gap between
historical and unseen edges, with differences reaching up to eightfold. This phenomenon implies that
existing methods are effective on graphs dominated by repeated edges but fail to generalize to those
that emphasize unseen edges. The underlying reason is probably that existing methods tend to rely
on the information of historical neighbors, which limits their generalizability. Thus, they can only
associate query nodes with their historical neighbors but fail on unseen edges.

Motivations. However, future links are typically not simple repetitions of historical ones in many
real-world dynamic systems. Instead, the evolution of many dynamic systems often exhibits intricate
sequential dynamics. For example, on an e-commerce platform, an entity (i.e., a customer) who has
purchased a smartphone and a phone case is likely to buy a screen protector next. In this context,
future interactions of entities typically involve new purchases rather than simply repeating past ones.
Therefore, a model must capture the inherent sequential dynamics in these systems to accurately
predict future links. Capturing sequential dynamics involves modeling the evolution of the intentions
of entities based on their historical interactions and forecasting unseen interactions. However, we
find that existing temporal GNNs struggle to effectively capture even simple sequential dynamics
that exclude repeated edges, despite these dynamic patterns being frequently present in the training
set. The observed cases are provided in later Section 3 and Figure 3. On the other hand, existing
datasets often contain an excessive number of repeated edges, which undermines the critical aspect
of complex sequential dynamics. Evaluating temporal GNN models solely based on these datasets
cannot adequately assess their ability to capture complex sequential dynamics.

Contributions. To address this gap, we present the Temporal Graph Benchmark with Sequential
Dynamics (TGB-Seq), a collection of new benchmark datasets designed to evaluate the systems’
ability to capture complex sequential dynamics. TGB-Seq includes four widely-used recommendation
datasets and four non-bipartite datasets derived from typical future link prediction scenarios that
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inherently exhibit complex sequential dynamics, including a movie rating network (ML-20M), an
e-commerce interaction network (Taobao), two business review networks (Yelp and GoogleLocal),
two “Who-To-Follow” social networks (Flickr and YouTube), a citation network (Patent) and a web
link network (WebLink). The TGB-Seq datasets are carefully curated to minimize repeated edges.
Only Yelp and Taobao contain a small number of repeated edges with the natural behavior that users
potentially review or click items multiple times. All TGB-Seq datasets are ensured with medium to
large scale toward the practical situation, comprising millions to tens of millions of edges. Overall,
we make the following contributions in this paper:

• We demonstrate that existing temporal GNNs fail to capture sequential dynamics in temporal
graphs, limiting their generalizations to various real-world scenarios.

• We propose TGB-Seq, a collection of eight benchmark datasets for future link prediction, carefully
curated from diverse application domains with intricate sequential dynamics. TGB-Seq focuses on
evaluating temporal GNNs’ capability to capture sequential dynamics and generalize to unseen
edges, addressing the limitations of existing datasets that contain excessive repetitions of edges and
overlook the intricate sequential dynamics present in real-world dynamic systems.

• Comprehensive evaluations on TGB-Seq reveal that existing temporal GNNs experience substantial
performance declines compared to their impressive results on existing benchmarks. This observation
underscores the limited ability of existing methods to capture complex sequential dynamics and
demonstrate the distinguishing functionality of TGB-Seq in evaluating such ability.

2 RELATED WORK

Temporal Graph Datasets and Benchmarks. Several studies (Poursafaei et al., 2022; Huang
et al., 2024b) pointed out that existing benchmarks for dynamic graph learning lead to overly
optimistic assessments of current approaches (Yu et al., 2023; Poursafaei et al., 2022; Huang et al.,
2024b; Yu, 2023). Specifically, commonly used datasets, such as Reddit (Kumar et al., 2019),
Wikipedia (Kumar et al., 2019), MOOC (Kumar et al., 2019), and LastFM (Kumar et al., 2019), suffer
from inconsistent preprocessing and simplistic negative sampling, resulting in inflated performance
metrics and unreliable comparisons. To address these issues, BenchTeMP (Huang et al., 2024a)
provides a unified evaluation framework with consistent datasets and comprehensive performance
metrics. Poursafaei et al. (Poursafaei et al., 2022) construct six dynamic graph datasets across diverse
fields, such as politics, economics, and transportation, and introduce two negative sampling strategies
to make the evaluations more challenging. TGB (Huang et al., 2024b) introduces several large-
scale datasets for future link prediction, establishing a comprehensive benchmark with reproducible
evaluation protocols to fairly assess several machine learning models on temporal graphs across
multiple domains. Different from previous work that emphasizes expanding dataset diversity, scale,
and evaluation protocols, we construct a collection of challenging benchmark datasets that originate
from typical application scenarios of future link prediction, challenging the existing temporal GNNs
with complex sequential dynamics inherently in these applications.

Temporal Graph GNNs for future link prediction. Future link prediction is a critical task in various
dynamic systems, which aim to predict future interactions or relationships between entities based on
historical data. To capture the evolution pattern, memory-based methods such as TGN (Rossi et al.,
2020), Jodie (Kumar et al., 2019), DyRep (Trivedi et al., 2019), and APAN (Wang et al., 2021c), use
dynamic memory modules to store and update node information during interactions, allowing for
more effective modeling. On the other hand, approaches like TGAT (Xu et al., 2020), CAWN (Wang
et al., 2021d), TCL (Wang et al., 2021a), GraphMixer (Cong et al., 2023), and DyGFormer (Yu
et al., 2023), aggregate historical neighbor information directly during prediction without memory
modules. These methods employ contrastive learning and Transformer-based techniques to capture
evolving node interactions and temporal dependencies. The Hawkes process (Hawkes, 1971; Mei
& Eisner, 2017) is another widely used technique for capturing the impacts of historical events on
current events. TREND (Wen & Fang, 2022) utilizes the Hawkes process to model the exciting
effects between sequential interactions and captures both individual and collective characteristics of
events by integrating event and node dynamics. In contrast to prior methods that emphasize intricate
module designs for modeling dynamic evolutions, SimpleDyG (Wu et al., 2024) draws inspiration
from natural language processing (NLP) studies and models dynamic graphs as a sequence modeling
problem, using a simple Transformer architecture without complex modifications. Poursafaei et al.
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(2022) observe that edges reoccur over time in the existing datasets and propose a simple memory-
based heuristic approach, EdgeBank, without any learnable components. This method predicts edges
based solely on past observations, yet it demonstrated remarkable performance in current evaluations.
This further highlights the need for more comprehensive benchmarks that assess models’ ability to
generalize to unseen edges, thereby ensuring robust performance in real-world scenarios.

Repeat and Exploration Behaviors in Recommender Systems. Repeat and exploration behaviors
of users have been extensively studied in the context of recommender systems. Repeat behavior refers
to users consistently engaging with items they have previously interacted with (i.e., the reoccurrence
of seen edges in temporal graphs), while exploration behavior involves users discovering new items
they have not interacted with before (i.e., the appearance of unseen edges for the first time in
temporal graphs). Existing studies reveal an imbalance in accuracy and difficulty between repetition
and exploration in sequential recommendation tasks (Li et al., 2023b). Several methods have been
proposed to better address repeat and exploration behaviors, particularly in session-based or sequential
recommendation (Ren et al., 2019; Chang et al., 2024), as well as next-basket recommendation (Li
et al., 2024; 2023a). However, while repeat and exploration behaviors have been extensively studied
in recommendation scenarios, their conclusions may not directly apply to the future link prediction
task in temporal graphs due to differences in model design and task settings. For example, many
recommendation methods are tailored for bipartite graphs without features or interaction timestamps,
whereas temporal GNNs often focus on general graphs that may include single or multiple node
types and fully leverage temporal graph information such as features and interaction timestamps.
Therefore, it is essential to investigate repeat and exploration behaviors in the context of future link
prediction tasks on temporal graphs and to comprehensively evaluate the performance of existing
temporal GNNs in handling these challenges.

3 TASK FORMULATION AND CURRENT PITFALLS

Temporal graphs represent entities in the dynamic systems as nodes and interactions among entities
as edges. Each edge is labeled with a timestamp to indicate the time of interaction occurred. Existing
studies mainly categorize temporal graphs into two types: continuous-time temporal graphs and
discrete-time temporal graphs. In this paper, we focus on continuous-time temporal graphs since they
better reflect how dynamic graphs form incrementally in real-world scenarios and discrete-time tempo-
ral graphs can be directly converted to continuous-time temporal graphs without information loss. For-
mally, a continuous-time temporal graph can be denoted as G = (V, E), where the edge set E can be
represented as a stream of timestamped edges, i.e., E = {(s0, d0, t0), (s1, d1, t1), · · · , (sT , dT , tT )}
with si, di ∈ V representing the source and destination nodes, respectively. The ti denotes the
timestamp of the i-th edge with t0 ≤ t1 ≤ · · · ≤ tT .

3.1 FUTURE LINK PREDICTION FORMULATION AND EVALUATION

Future Link Prediction. The task of future link prediction is formulated as predicting the existence
of a link between two nodes at a given timestamp in literature (Kumar et al., 2019). Specifically, given
a temporal graph G, a query edge (s, d, t), and all edges appeared before time t, the model is required
to predict the likelihood of the edge (s, d) appearing at time t. However, in real-world applications,
the fundamental objective is to determine which entities the query entity is most likely to interact
with. For instance, in the “Who-To-Follow” scenario within social networks, the task is to predict
which users the query user is likely to follow next. The users with the highest predicted likelihood are
then recommended to the query user. Given the high computational costs associated with calculating
the likelihood of all potential entities in a large-scale graph, current literature in recommendation
and knowledge graphs He et al. (2017); Kang & McAuley (2018); Teru et al. (2020) treats the future
link prediction task as a ranking problem among multiple negative samples. Specifically, given
a query edge (s, d, t), the model needs to rank the positive destination node d higher among the
sampled k negative destinations based on the likelihood. The current temporal graph benchmark
study, TGB (Huang et al., 2024b), adopts these settings and sets k to 20. In this work, we set k to 100
in our evaluation setting for a more robust evaluation.

Negative Sampling Strategies. Previous studies (Poursafaei et al., 2022; Huang et al., 2024b)
leverage historical edges as negative samples to increase the difficulty for the models to predict the
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training edges

test edges

training nodes
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Figure 3: Toy example of sequential dynamics in a temporal graph. The bipartite graph consists
of users and items. The first user in group u, u0, interacts sequentially with items {ik}k=4

k=0 at time
{tk}k=4

k=0, respectively. Similarly, the first user in group v, v0, interacts sequentially with items
{ik}k=9

k=5 at the same timestamps {tk}k=4
k=0 as u0. The second users, u1 and v1, follow a similar

interaction pattern but interact with items at different times compared to the first users. All other
users interact with items in a comparable sequential manner. A test sample queries whether the test
node will interact with i4 or i9 at time tT , based on its four previous interactions from tT−4 to tT−1.

potential link, based on the assumption that the positive edges are likely to be repetitions of historical
edges. However, this is not always the case in the domains of our TGB-Seq datasets. Because
historical edges are not likely to reoccur again in the future time. Thus, we randomly sample the
negative destination nodes from all possible nodes, i.e., all nodes in non-bipartite datasets and all
items in bipartite recommendation datasets.

Evaluation Metrics. Most existing studies leverage Area Under the Receiver Operating Characteristic
curve (AUROC) and Average Precision (AP) for link prediction performance evaluation with a single
negative sample, while Yang et al. (2015); Huang et al. (2024b) argue that they are not proper metrics
for link prediction with multiple negative samples. Thus, we deploy the commonly used ranking
metric, Mean Reciprocal Rank (MRR), to evaluate future link prediction, following (Cong et al.,
2023; Huang et al., 2024b). The MRR score is defined as the average of the reciprocal ranks of the
positive destination nodes among the negative destination nodes, and thus emphasizes the relative
high likelihood of the positive edge among the candidate edges.

3.2 CURRENT PITFALLS IN TEMPORAL GNNS

In this section, we aim to demonstrate that existing temporal GNNs are unable to capture
even simple sequential dynamics. Figure 3 illustrates a toy example of sequential dynam-
ics in a temporal graph. To empirically evaluate whether existing temporal GNNs can learn
the simple sequential dynamics, we construct a dataset that mirrors the dynamics depicted
in Figure 3. Specifically, the dataset consists of items {ik}k=9

k=0 and multiple nodes in both
group u and group v, as in the toy example. To ensure that the sequential dynamics can
be effectively modeled, the number of nodes in both group u and group v is set to 500.

Table 1: The AP metric on the
toy example dataset. ℓ indi-
cates the length of the tempo-
ral random walk of CAWN.

Method AP (%)

JODIE 51.19 ± 0.32
DyRep 51.30 ± 0.27
TGAT 51.06 ± 0.23
TGN 51.25 ± 0.48

CAWN (ℓ = 2) 50.00 ± 0.00
CAWN (ℓ = 3) 52.80 ± 0.05

EdgeBank 50.00 ± 0.00
TCL 50.00 ± 0.00

GraphMixer 50.00 ± 0.00
DyGFormer 50.66 ± 0.50

SGNN-HN 100.00 ± 0.00

Each uk interacts sequentially with items {ik}k=4
k=0, while each vk

interacts sequentially with items {ik}k=9
k=5. Note that each uk and

vk always interact at the same timestamps as stated in the caption
of Figure 3. Both nodes and edges lack features. The dataset is
chronologically split into training set, validation set, and test set. The
training set contains the complete interactions of 70% of the users in
both group u and group v. Given the four historical interactions, i.e,
{ik}k=3

k=0 or {ik}k=8
k=5, a temporal GNN model is required to predict

the interaction likelihood of the query user with i4 and i9. Despite
these straightforward sequential dynamics appearing commonly in
the training set and thus considered as simple patterns, existing
methods cannot correctly predict item i4 instead of i9 given that
a test node has interacted with {ik}k=3

k=0 sequentially. We use the
AP metric to evaluate nine temporal GNNs and SGNN-HN. All
temporal GNNs achieve an AP score of approximately 50% as shown
in Table 1, indicating that they cannot distinguish between i4 and i9.
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The shortcomings of current temporal GNNs in capturing sequential dynamics might relate to the
functionality of their structures. Generally, the temporal GNN models can be partitioned into two
components: i) a memory module to represent the interaction history of the nodes, and ii) an
aggregation module to aggregate neighborhood information when predicting future interactions.
Among the existing studies, the designed temporal GNN models might contain both or either of these
two components. The limitations of each component in capturing sequential dynamics to distinguish
items i4 and i9 are discussed as follows.

Notations. We denote the node feature of u as Fn(u), the edge feature of (u, v) as Fe(u, v), and
the time difference between the interaction (u, v) and the query time as ∆t. Mem(u) and Emb(u)
denote the memory and embedding of node u, respectively. N k

t (u) denotes the set of k-hop historical
neighbors of node u before time t. In memory module, we use Nb(u) to denote the set of u’s
neighbors within a batch.

Memory module. The memory module is designed to memorize the interaction history of nodes
using a low-dimensional representation, called memory. Formally, a node s’s memory is updated
when processing a batch of incoming edges that involves s:

Mem(s) = fmem (Mem(s),Fn(s), {(Mem(d),Fe(s, d),∆t) | d ∈ Nb(s)}) , (1)

where fmem is typically an RNN model such as LSTM and GRU (Cho et al., 2014; Graves & Graves,
2012). The memory and feature of s, Mem(s) and Fn(s), are treated as the hidden state of the RNN.
The information of incoming edges in the batch, {(Mem(d),Fe(s, d),∆t) | d ∈ Nb(s)}, serve as
the input to RNN. Typically, only the last edge for each node in the batch is considered. In the toy
example, items i4 and i9 always interact at the same timestamps and lack distinguishing features,
resulting in identical memories for both items. Therefore, the memory module could not distinguish
the difference between item i4 and i9 by only utilizing the information of historical edges.

Aggregation module. Given a prediction request for potential edges (s, d, t), the aggregation module
aggregates the information from the historical neighbors of node s and d before time t to generate
their current embeddings. The aggregation for node s is formulated as:

Emb(s) = fagg
(
Fn(s),

{
(Fn(d),Fe(s, d),∆t) | d ∈ N k

t (s)
})

, (2)

where fagg is commonly implemented as a Transformer (Vaswani, 2017) (e.g., in DyGFormer)
or its variants, an MLP-mixer (Tolstikhin et al., 2021) (e.g., in GraphMixer), or time projection
function (e.g., in JODIE). Note that if the memory is available, Fn(s) is replaced by a combination
of the memory and node feature. In addition to interaction information, several studies compute
the correlations between the neighborhoods of s and d to capture their structural and temporal
dependencies:

Co(s, d) = fco
(
N k

t (s),N k
t (d)

)
. (3)

In DyGFormer, fco computes the number of common neighbors between s and d, i.e., the co-
occurrence frequency between N k

t (s) and N k
t (d), while in CAWN, fco leverages anonymous

temporal random walk to establish the correlation between network motifs of s and d. For computa-
tional efficiency, aggregation modules typically consider only one-hop neighbors, i.e., k = 1 in both
Equation (2) and Equation (3).

Such aggregation modules are insufficient in capturing the sequential dynamics in our toy dataset.
The underlying issue is similar to that of memory modules: a node is represented solely by its features
and interaction timestamps. However, i4 and i9, their one-hop neighbors {uk} and {vk}, interact in a
similar manner at identical timestamps, respectively. As a result, the aggregation modules generate
the same embeddings for i4 and i9, as well as for {uk} and {vk}, respectively. While computing
correlations between the source and destination nodes may seem helpful, both DyGFormer and
CAWN fail in the toy example. DyGFormer’s fco is ineffective since the source and destination
nodes have no common neighbors. Though CAWN’s fco employ a sophisticated anonymous random
walk technique, it fails to distinguish between i4 and i9 because their one-hop neighborhoods mirror
each other. Therefore, the aggregation modules cannot capture even the simple sequential dynamics
in the toy example.

Aggregation module with high-order historical neighbors. Leveraging high-order historical neigh-
bor information can modestly enhance the capture of sequential dynamics. For example, extending
the length of the temporal random walk from 2-hop to 3-hop in CAWN enables the incorporation of

6
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Table 2: Statistics of TGB-Seq datasets.

Dataset Nodes (users/items) Edges Timestamps Repeat ratio(%) Density(%) Bipartite Domain

ML-20M 100,785/9,646 14,365,034 9,864,096 0 1.48× 100 ✓ Movie rating
Taobao 760,617/863,016 16,447,721 124,412 16 2.51× 10−3 ✓ E-commerce interaction
Yelp 1,338,688/405,081 18,727,939 13,627,978 26 3.45× 10−3 ✓ Business review
GoogleLocal 206,244/267,336 1,870,421 1,727,614 0 3.39× 10−3 ✓ Business review
Flickr 105,974 6,084,535 111 0 5.42× 10−2 × Who-To-Follow
YouTube 388,066 3,288,028 203 0 2.18× 10−3 × Who-To-Follow
Patent 1,810,841 10,818,819 1,468 0 3.30× 10−4 × Citation
WikiLink 1,358,870 34,163,774 2,198 0 1.85× 10−3 × Web link

higher-order temporal and structural entangled information, resulting in a slight performance improve-
ment from 50.00% to 52.80%. The limited gain arises because an increased number of high-order
neighbors introduces excessive noise. Consequently, CAWN is unable to effectively differentiate
the subtle differences between the local structures of (uk, i4) and (uk, i9). Furthermore, utilizing
high-order information results in substantial computational resource consumption (Besta et al., 2024).
CAWN encounters memory issues on a GPU with 80GB of memory when the walk length is extended
to four, even on this small graph. Therefore, effectively capturing intricate sequential dynamics
through high-order neighbors appears to be feasible; nonetheless, it remains an open problem.

In summary, neither the memory module nor the aggregation module can distinguish items i4 and i9
in the toy example. Consequently, temporal GNNs that incorporate either or both of these modules
are unable to effectively capture the simple sequential dynamics, resulting in suboptimal performance
on the toy dataset. These findings suggest that current methods are insufficient for future link
prediction tasks that involve complex sequential dynamics. This highlights the urgent need to develop
robust temporal Graph Neural Networks (GNNs) and establish new benchmark datasets to effectively
evaluate the ability of temporal GNNs to capture sequential dynamics.

4 PROPOSED DATASETS

Our proposed TGB-Seq aims to challenge temporal GNNs with intricate sequential dynamics that are
inherently exhibited in various real-world dynamic systems. TGB-Seq comprises eight temporal graph
datasets, including four bipartite datasets derived from recommender systems and four non-bipartite
datasets curated from diverse application domains. All TGB-Seq datasets focus on interactions
between entities and exclude node and edge features. Table 2 presents the statistics of TGB-Seq
datasets. Besides, we also provide a selected list of datasets used for continuous-time temporal graph
learning in Table 5 for comparison.

The most distinguishable feature of TGB-Seq datasets is the low repeat ratio, where only the Yelp and
Taobao datasets contain repeated edges due to the natural behavior of users who may review or click
on items multiple times. The repeat ratio r is defined as the portion of the number of repeated edges
to the total number of edges in the dataset, i.e., r = |Eseen|

|E| , where an edge ei = (si, di, ti) ∈ Eseen if
there exists an edge ej = (sj , dj , tj) and satisfies that si = sj , di = dj , tj < ti.

Remark. The phenomenon of existing datasets that contain excessive repeated edges and its impact
on overly optimistic evaluations has been highlighted in previous studies. To address the issues, these
studies challenge the existing temporal GNNs with new evaluation protocols and new datasets from
diverse domains. Specifically, Poursafaei et al. (2022) proposes a historical negative sampling strategy
to challenge existing methods with hard negative samples, and Huang et al. (2024b) further employs
multiple negative sampling strategies. Both of them propose new datasets from diverse domains and
of diverse scales. However, most of the proposed datasets still contain numerous repeated edges as
shown in Table 5. In contrast, we address this issue by proposing new challenging datasets curated
to minimize repeated edges. Our TGB-Seq datasets emphasize the intricate sequential dynamics,
a key characteristic of many real-world applications. Consequently, TGB-Seq datasets provide a
robust benchmark for evaluating the ability of temporal GNNs to capture sequential dynamics and
generalize to unseen edges, a capability that is often lacking in existing benchmark datasets.

In addition to the low repeat ratio, another notable feature of the TGB-Seq datasets is their origin
in diverse domains that represent typical real-world applications of future link prediction. Besides
classical applications like recommendations, the proposed non-bipartite datasets also represent
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Figure 4: Distribution of node degree on our TGB-Seq datasets.

fundamental applications in real-world contexts. As a crucial task for online social networking
platforms, “Who-To-Follow” aims to recommend a list of users that a given user may be interested
in following (Gupta et al., 2013). Effective prediction of relevant connections between users can
significantly enhance user experience by fostering engagement and interaction within the platform.
Moreover, future link prediction in citation networks and web link networks can be applied to
knowledge graph completion, thereby enriching knowledge representations and enabling more
comprehensive information retrieval (Wang et al., 2021b).

Furthermore, the TGB-Seq datasets exhibit several key attributes of real-world networks. Figure 4
illustrates the node degree distribution of the TGB-Seq datasets, all of which follow a power-law
distribution, a common characteristic of real-world networks (Barabási, 2013). This power-law
behavior indicates that while a few hub nodes have a high degree of connections, the majority of
nodes possess significantly fewer connections. Consequently, TGB-Seq is highly sparse, exhibiting
low density, as shown in Table 2. Each TGB-Seq dataset is of medium to large scale and contains
millions or tens of millions of edges, which aligns with typical real-world networks.

Dataset preprocessing. We split the datasets chronologically into training, validation, and test sets
with a ratio of 70%/15%/15%. In the training sets, we retain only nodes with a degree of at least
three. Besides, only nodes appearing in the training set are included in the validation and test sets.
These settings are designed to mitigate the effects of cold-start nodes and the high sparsity of the
datasets on the evaluation. Descriptions of TGB-Seq datasets are shown below.

ML-20M 2 is a widely used benchmark dataset in recommendation research, derived from the
MovieLens website. It contains movie rating data, where each record includes the rating score of
a user, ranging from 1 to 5, for a specific movie along with the timestamp of the rating. While the
ratings represent explicit feedback, we transform this data into implicit feedback for our analysis,
following He et al. (2017). Consequently, the ML-20M network is represented as a bipartite graph
where users and movies serve as nodes, and an edge represents a user’s rating of a movie at a given
time. The task of ML-20M and the following recommendation datasets is to predict whether a given
user will interact with a given item at a given time.

Taobao 3 (Zhu et al., 2018; 2019; Zhuo et al., 2020) is a user behavior dataset derived from the
e-commerce platform Taobao. It contains user click data on products from November 25, 2017, to
December 3, 2017. The dataset is a bipartite graph where users and products are nodes, and an edge
represents a user’s click on a product at a given time.

Yelp 4 is a business review dataset sourced from Yelp, a prominent platform for business recommen-
dations, including restaurants, bars, and beauty salons. It contains user reviews of businesses from

2https://grouplens.org/datasets/movielens/20m/
3https://tianchi.aliyun.com/dataset/dataDetail?dataId=649
4https://www.yelp.com/dataset
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2018 to 2022. The dataset is a bipartite graph where users and businesses are nodes, and an edge
represents a user’s review of a business at a given time.

GoogleLocal (Li et al., 2022; Yan et al., 2023) is a business review dataset derived from Google
Maps, with a smaller scale compared to Yelp. It contains user reviews and ratings of local businesses.
Following the settings for the ML-20M dataset, we treat these ratings as implicit feedback. Similar to
the Yelp dataset, the GoogleLocal dataset is a bipartite graph where users and businesses are nodes,
and an edge indicates a user’s review of a business at a given time.

Flickr (Cha et al., 2009) is a “Who-To-Follow” social network dataset derived from Flickr, a photo-
sharing platform with social networking features. The dataset was crawled daily from November 2 to
December 3, 2006, and from February 3 to March 18, 2007 by Cha et al. (2009). It is estimated to
represent 25% of the entire Flickr network. The Flickr dataset is a non-bipartite graph where users
are nodes, and an edge represents the friendship established between users at a given time. The task
for the “Who-To-Follow” datasets, including Flickr and YouTube, is to predict whether a given user
will follow another specified user at a particular time.

YouTube (Mislove et al., 2007) is another “Who-To-Follow” social network dataset derived from
YouTube, a video-sharing platform that includes a user subscription network. Similar to Flickr, the
YouTube dataset is a non-bipartite graph where users are nodes, and an edge indicates the subscription
of a user to another user at a given time.

Patent (Hall et al., 2001) is a citation network dataset of U.S. patents, capturing the citation relation-
ships between patents from 1963 to 1999. The dataset is organized as a non-bipartite graph where
patents are nodes, and an edge represents a citation made by one patent to another at the time of
publication. The task for the Patent dataset is to predict whether a given patent will cite another given
patent, given several of their established citations.

WikiLink (Boldi et al., 2004; 2011; Boldi & Vigna, 2004) is a web link network dataset derived
from Wikipedia, containing the hyperlink relationships between Wikipedia pages. This dataset is
a non-bipartite graph, where pages are nodes and edges indicate hyperlinks established from one
page to another at a given time. The task for WikiLink is to predict whether a given page will link to
another given page at a given time.

5 EXPERIMENTS

In this section, we evaluate the performance of existing temporal GNNs on the TGB-Seq datasets. The
selected temporal GNN models includes JODIE (Kumar et al., 2019), DyRep (Trivedi et al., 2019),
TGAT (Xu et al., 2020), TGN (Rossi et al., 2020), CAWN (Wang et al., 2021d), EdgeBank (Poursafaei
et al., 2022), TCL (Wang et al., 2021a), GraphMixer (Cong et al., 2023), and DyGFormer (Yu et al.,
2023). The descriptions of these methods are provided in Appendix C. We employ the DyGLib Yu
et al. (2023) framework to conduct the experiments. We limit the running time of each method to 48
hours and omit the methods that require more than 24 hours to finish one training epoch, which are
denoted as OOT (out of time). Each result is the average of three runs with different random seeds
with reported standard deviation.

Implementation details. We follow Rossi et al. (2020) to set a relatively small batch size to ensure
timely updates for the memory module. Specifically, we set the batch size to 200 for the GoogleLocal
dataset across all methods. For larger datasets, however, a batch size of 200 is too small and would
incur unacceptable training costs for most methods. Thus, we increase the batch size to 400 for all
other datasets to accelerate the training process. Following DyGFormer, we use a learning rate of
1e-4 across all methods and datasets. A grid search is performed to tune the hyper-parameters of each
method on the validation set. Detailed configurations are provided in Appendix B.1.

5.1 FUTURE LINK PREDICTION PERFORMANCE

Performance on recommendation datasets. Table 3 presents the results on four recommendation
datasets, ML-20M, Taobao, Yelp, and GoogleLocal. We can find that existing temporal GNNs
underperform on these datasets, with a large margin compared to SGNN-HN, one of the state-of-the-
art methods for sequential recommendation. Such a phenomenon highlights the limitations of current
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Table 3: MRR of nine popular temporal GNN methods and SGNN-HN on four recommendation
datasets and two previously established datasets (e.g., Wikipedia and Reddit). “OOT” denotes that
the method failed to complete one epoch of training within 24 hours.

Datasets ML-20M Taobao Yelp GoogleLocal Wikipedia Reddit

JODIE (Kumar et al., 2019) OOT OOT OOT 36.84 ± 1.87 59.18 ± 1.90 72.39 ± 2.53
DyRep (Trivedi et al., 2019) OOT OOT OOT 28.77 ± 3.93 53.82 ± 1.57 72.39 ± 0.96
TGAT (Xu et al., 2020) 13.27 ± 0.56 30.29 ± 0.20 20.57 ± 0.47 19.49 ± 0.22 70.37 ± 0.24 75.25 ± 0.13
TGN (Rossi et al., 2020) OOT OOT OOT 51.59 ± 0.62 78.36 ± 0.99 79.00 ± 0.93
CAWN (Wang et al., 2021d) 17.04 ± 0.30 41.70 ± 0.30 25.87 ± 0.42 18.96 ± 0.06 88.16 ± 0.22 88.65 ± 0.11
EdgeBank (Poursafaei et al., 2022) 0.99 ± 0.00 20.24 ± 0.00 7.66 ± 0.00 0.99 ± 0.00 83.98 ± 0.00 92.97 ± 0.00
TCL (Wang et al., 2021a) 17.20 ± 0.04 38.65 ± 0.66 18.05 ± 1.61 18.90 ± 0.17 72.83 ± 0.68 70.82 ± 2.02
GraphMixer (Cong et al., 2023) 21.69 ± 0.37 32.36 ± 0.09 31.12 ± 0.24 20.32 ± 0.23 69.85 ± 0.46 68.42 ± 0.31
DyGFormer (Yu et al., 2023) OOT OOT 21.17 ± 0.21 18.89 ± 0.02 88.04 ± 0.33 89.34 ± 0.15

SGNN-HN (Pan et al., 2020) 34.80 ± 0.04 63.37 ± 0.06 69.34 ± 0.09 64.59 ± 0.23 83.83 ± 0.55 89.01 ± 0.17

Table 4: MRR score of nine popular temporal GNNs on four non-bipartite datasets.

Datasets Flickr Youtube Patent WikiLink

JODIE (Kumar et al., 2019) 43.38 ± 0.47 OOT OOT OOT
DyRep (Trivedi et al., 2019) 38.56 ± 0.31 OOT OOT OOT
TGAT (Xu et al., 2020) 15.44 ± 1.37 46.10 ± 2.30 9.40 ± 1.87 12.30 ± 2.41
TGN (Rossi et al., 2020) 44.64 ± 2.25 OOT OOT OOT
CAWN (Wang et al., 2021d) 15.87 ± 2.84 43.21 ± 1.02 11.11 ± 0.42 18.51 ± 6.90
EdgeBank (Poursafaei et al., 2022) 0.99 ± 0.00 0.99 ± 0.00 0.99 ± 0.00 0.99 ± 0.00
TCL (Wang et al., 2021a) 24.25 ± 2.38 46.68 ± 0.17 10.33 ± 0.25 40.00 ± 0.69
GraphMixer (Cong et al., 2023) 30.24 ± 0.49 54.16 ± 0.03 17.12 ± 0.39 47.63 ± 0.05
DyGFormer (Yu et al., 2023) 17.21 ± 3.20 41.59 ± 2.06 11.94 ± 0.75 39.59 ± 0.29

temporal GNNs in capturing intricate sequential dynamics present in various real-world applications,
which may be attributed to their model architecture that heavily relies on historical edges.

Moreover, we observe that the performance of these methods varies significantly from that of existing
datasets. For instance, DyGFormer achieves the best performance on Wikipedia, but underperforms
all other methods except for EdgeBank on GoogleLocal. EdgeBank is a heuristic method that
memorizes historical edges, achieving the best performance on Reddit. However, it struggles with
datasets that exclude repeated edges, such as ML-20M and GoogleLocal. TGN shows a significant
performance gap compared to the best method on Wikipedia and Reddit, yet it achieves the highest
performance on GoogleLocal. These observations suggest that TGB-Seq effectively evaluates the
capabilities of temporal GNNs across different dimensions, rather than focusing on a specific ability.

Furthermore, the performance of these methods varies significantly across different datasets. TCL
outperforms other methods on Taobao, but suffers a large performance degradation on ML-20M
and Yelp. GraphMixer achieves the best performance on ML-20M and Yelp, but exhibits a large
performance gap with TCL on Taobao. These significant variations indicate that existing methods
cannot effectively predict future links for various real-world applications and emphasize the necessity
of TGB-Seq datasets that evaluate the ability of temporal GNNs to capture the sequential dynamics.

Performance on non-bipartite datasets. Table 4 presents the results on four non-bipartite datasets,
Flickr, YouTube, Patent, and WikiLink. Compared to the recommendation datasets, the performance
of temporal GNNs on these non-bipartite datasets is even worse. For example, on the Patent dataset,
none of these methods achieves an MRR score higher than 20%. Moreover, the performance of
any specific method varies significantly across these datasets. For instance, GraphMixer achieves
an MRR score of approximately 54% on YouTube, but only 17.12% on the Patent dataset. These
observations underscore the necessity of a diverse range of benchmark datasets from various domains
to effectively evaluate temporal GNNs, particularly for applications involving complex sequential
dynamics. This aligns with our objectives in proposing TGB-Seq.

5.2 TRAINING COST

To comprehensively study the efficiency of existing temporal GNNs, we select three datasets with
various sizes of edge sets and report the average training cost per epoch of the corresponding approach.
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Figure 5: The average training cost per epoch of nine popular temporal GNN methods on GoogleLocal,
Patent, and Yelp datasets, which consist of 1.87M, 10M, and 18.7M edges, respectively.

Figure 5 illustrates the results on the GoogleLocal, Patent, and Yelp datasets, where the methods that
cannot finish one epoch in 24 hours are omitted.

We find that the training time of memory-based methods (JODIE, DyRep, and TGN) is significantly
longer than that of aggregation-only methods (the remaining). The memory-based methods can
only finish training on the GoogleLocal dataset, a relatively smaller dataset among TGB-Seq. This
limitation might be attributed to the time-consuming memory updates. TGAT and CAWN are more
efficient than JODIE, DyRep, and TGN, but one epoch on the Patent and Yelp datasets still requires
a long time to finish. This is because their complex aggregation modules require computing multi-
hop neighbor embeddings with self-attention mechanisms and temporal random walk, respectively.
DyGFormer is more efficient than the above methods since it does not require the memory module and
only aggregates the information of the first-hop neighbors. However, calculating the co-occurrence
frequency of neighbors in DyGFormer is costly, taking 3.5 hours to finish a single epoch on the Yelp
dataset. Among the investigated approaches, TCL and GraphMixer are the most efficient methods, as
they only require simple aggregation operations.

These observations indicate that the memory and complex aggregation modules would significantly
increase the training cost of existing temporal GNNs. As shown in Table 3 and Table 4, simple
methods like TCL and GraphMixer can be more efficient in training, but they cannot achieve
comparable performance with memory-based methods. This investigation suggests that achieving
both efficiency and effectiveness in temporal GNNs simultaneously remains an open problem,
underscoring the distinctive capability of TGB-Seq for comprehensive evaluations of these models.

6 CONCLUSION

In this paper, we demonstrate that current temporal GNNs struggle to capture intricate sequential
dynamics that are inherently present in real-world dynamic systems, thereby limiting their abilities
to generalize across various real-world applications of future link prediction. However, existing
datasets often feature excessively repeated edges and thus are inadequate for evaluating such abilities
of temporal GNNs. To address this gap, we propose TGB-Seq, a new challenging benchmark for
temporal graph neural networks. TGB-Seq comprises eight datasets meticulously curated from diverse
application domains characterized by complex sequential dynamics. Comprehensive evaluations on
TGB-Seq reveal that existing temporal GNNs experience significant performance declines compared
to their strong results on established benchmarks. This finding underscores the limitations of current
methods’ abilities in capturing intricate sequential dynamics and highlights the distinctive value of
TGB-Seq in assessing these capabilities.
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Figure 6: The variation of the number of edges in each discretized timestamp in the proposed TGB-
Seq datasets.

A DATASETS

We provide a selected list of commonly used datasets for continuous-time temporal graph learning
in Table 5 for reference. We also present the variation in the number of edges over discretized
timestamps in the TGB-Seq datasets, as shown in Figure 6. Most datasets exhibit an increasing
trend in the number of edges as time progresses, while the Taobao dataset demonstrates periodic
fluctuations, with phases of increase and decrease. These fluctuations are likely attributed to shopping
festivals and other popularity-driven factors. The Flickr and YouTube datasets contain periods without
any edges appearing due to the crawling process of the original datasets.

Preprocessing of the Patent dataset. In the Patent dataset, all citations of one patent are labeled
with the same timestamp, specifically the publication time of the patent. To address this, we carefully
select test samples to ensure that each patent has prior citations, allowing temporal GNNs to leverage
these historical edges for future link prediction. Specifically, we choose not to validate or test the first
50% of citations for the patents included in the validation and test sets; these citations serve solely as
historical edges and are not used for model training. The remaining 50% of citations are then evenly
divided into validation and test samples. Although the citations of a patent occur simultaneously
at the publication time, temporal GNNs can utilize the relative publication times of these patents
and their neighbors to capture inherent research trends, thereby enhancing future link prediction
performance. The preprocessing code for the Patent dataset, along with other datasets, is provided in
https://anonymous.4open.science/r/TGB-Seq-3F23.

A.1 DATASET LICENSES AND DOWNLOAD LINKS

In this section, we provide dataset licenses and download links as follows.

ML-20M: The data set may be used for any research purposes under the following conditions: (a) The
user may not state or imply any endorsement from the University of Minnesota or the GroupLens
Research Group. (b) The user must acknowledge the use of the data set in publications resulting
from the use of the data set. (c) The user may not redistribute the data without separate permission.
(d) The user may not use this information for any commercial or revenue-bearing purposes without
first obtaining permission from a faculty member of the GroupLens Research Project at the University
of Minnesota. (e) The executable software scripts are provided ”as is” without warranty of any kind,
either expressed or implied, including, but not limited to, the implied warranties of merchantability
and fitness for a particular purpose. The entire risk as to the quality and performance of them is with
you. Should the program prove defective, you assume the cost of all necessary servicing, repair or
correction. (f) In no event shall the University of Minnesota, its affiliates or employees be liable
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Table 5: A selected list of datasets used for continuous-time temporal graph learning.
Dataset Nodes (users/items) Edges Timestamps Repeat ratio(%) Density(%) Bipartite Domain

ML-20M 100,785/9,646 14,365,034 9,864,096 0 1.48× 100 ✓ Movie rating
Taobao 760,617/863,016 16,447,721 124,412 16 2.51× 10−3 ✓ E-commerce interaction
Yelp 1,338,688/405,081 18,727,939 13,627,978 26 3.45× 10−3 ✓ Business review
GoogleLocal 206,244/267,336 1,870,421 1,727,614 0 3.39× 10−3 ✓ Business review
Flickr 105,974 6,084,535 111 0 5.42× 10−2 × Who-To-Follow
YouTube 388,066 3,288,028 203 0 2.18× 10−3 × Who-To-Follow
Patent 1,810,841 10,818,819 1,468 0 3.30× 10−4 × Citation
WikiLink 1,358,870 34,163,774 2,198 0 1.85× 10−3 × Web link

Wikipedia 8,227/1,000 157,474 152,757 88 1.91× 100 ✓ Social
Reddit 10,000/984 672,447 669,065 88 6.83× 100 ✓ Social
MOOC 7,047/97 411,749 345,600 57 6.02× 101 ✓ Interaction
LastFM 980/1,000 1,293,103 1,283,614 88 1.32× 102 ✓ Interaction
Enron 184 125,235 22,632 98 3.70× 102 × Social
Social Evo. 74 2,099,519 565,932 99 3.83× 104 × Proximity
UCI 1,899 59,835 58,911 66 1.66× 100 × Social
Flights 13,169 1,927,145 122 79 1.11× 100 × Transport
Contact 692 2,426,279 8,064 97 5.07× 102 × Proximity

tgbl-wiki 8,227/1,000 157,474 152,757 88 1.91× 100 ✓ Interaction
tgbl-review 352,636/298,590 4,873,540 6,865 3 4.63× 10−3 ✓ Rating
tgbl-coin 638,486 22,809,486 1,295,720 83 5.60× 10−3 × Transaction
tgbl-comment 994,790 44,314,507 30,998,030 20 4.48× 10−3 × Social
tgbl-flight 18,143 67,169,570 1,385 97 2.04× 101 × Transport

Bitcoin-Alpha 3,783 24,186 24,186 0 1.69× 10−1 × Finance
Bitcoin-OTC 5,881 35,592 35,592 0 1.03× 10−1 × Finance

to you for any damages arising out of the use or inability to use these programs (including but not
limited to loss of data or data being rendered inaccurate). The original dataset can be found here.

Taobao: CC BY-NC-SA 4.0 license (Creative Commons Attribution-NonCommercial-ShareAlike 4.0
International). The original dataset can be found here.

Yelp: MIT license. The original dataset can be found here.

GoogleLocal: The original dataset can be found here.

Flickr: CC BY-SA license (Creative Commons Attribution-ShareAlike). The original dataset can be
found here.

YouTube: CC BY-SA license (Creative Commons Attribution-ShareAlike). The original dataset can
be found here.

Patent: MIT license. The original dataset can be found here.

WikiLink: CC BY-SA license (Creative Commons Attribution-ShareAlike). The original dataset can
be found here.

B EXPERIMENTS DETAILS

B.1 EXPERIMENTAL CONFIGURATIONS

We conduct a grid search to identify the optimal settings for key hyperparameters, with the search
ranges and corresponding methods presented in Table 6. The final hyperparameter configurations of
determined by the grid search for various methods are detailed in Table 7. For the configurations of
the dropout rate and neighbor sampling strategies of different methods, most methods achieve the
best performance with a dropout rate of 0.1 and the recent neighbor sampling strategy. However,
TGAT performs well with a dropout rate of 0.3 on the ML-20M dataset. Meanwhile, GraphMixer
achieves the best performance with a dropout rate of 0.3 on the ML-20M and the Yelp datasets, as
well. Moreover, the best configurations of neighbor sampling strategies of CAWN and TCL on the
ML-20M dataset are both uniform strategies.

For the ML-20M and the Flickr datasets, experiments are conducted on an Ubuntu machine equipped
with Intel(R) Xeon(R) Gold 6240R CPU @ 2.40GHz. The GPU device is NVIDIA A100 with 80
GB memory. For the Taobao dataset, experiments are conducted on an Ubuntu machine equipped
with Intel(R) Xeon(R) Gold 5218 CPU @ 2.30GHz. The GPU device is NVIDIA A100-SXM4 with
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80 GB memory. For the Yelp dataset, experiments are conducted on an Ubuntu machine equipped
with Intel(R) Xeon(R) Gold 6226R CPU @ 2.90GHz. The GPU device is NVIDIA RTX A6000
with 40 GB memory. For the GoogleLocal, the Patent, and the WikiLink datasets, experiments are
conducted on an Ubuntu machine equipped with Hygon C86 7390 32-core Processor. The GPU
device is NVIDIA A800 with 80 GB memory. For the YouTube dataset, experiments are conducted
on an Ubuntu machine equipped with Intel(R) Xeon(R) Platinum 8369B CPU @ 2.90GHz. The GPU
device is A100-SXM4 with 80 GB memory.

Table 6: Searched ranges of hyperparameters and the related methods.
Hyperparameters Searched Ranges Related Methods

Number of
Sampled Neighbors [20, 30, 40, 50, 60] DyRep, TGAT, TGN, CAWN,

TCL, GraphMixer

Dropout Rate [0.0, 0.1, 0.2,
0.3, 0.4, 0.5]

JODIE, DyRep, TGAT, TGN, CAWN,
TCL, GraphMixer, DyGFormer

Neighbor Sampling
Strategies [recent, uniform] DyRep, TGAT, TGN, CAWN,

TCL, GraphMixer
Length of Input

Sequences &
Patch Size

[32 & 1, 64 & 2] DyGFormer

Table 7: Configurations of the number of sampled neighbors and the length of input sequences & the
patch size of different methods.

Datasets DyRep TGAT TGN CAWN TCL GraphMixer DyGFormer

ML-20M 40 50 40 60 60 60 32 & 1
Taobao 40 50 40 60 60 60 32 & 1

Yelp 40 60 40 60 60 60 32 & 1
GoogleLocal 20 60 20 60 60 20 64 & 2

Flickr 40 40 40 40 50 40 32 & 1
YouTube 40 40 40 50 40 50 32 & 1

Patent 40 40 40 40 40 40 64 & 2
WikiLink 40 40 40 40 60 50 64 & 2

C TEMPORAL GRAPH LEARNING METHODS

JODIE (Kumar et al., 2019) uses two coupled recurrent neural networks to dynamically update
the states of users and items during interactions. It includes a novel projection operation that
predicts future representation trajectories of both users and items, allowing the model to anticipate
future behaviors. This architecture not only captures the evolution of user-item interactions but also
facilitates the learning of representations that can be used for downstream tasks like recommendation
and link prediction.

DyRep (Trivedi et al., 2019) introduces a dynamic representation learning framework that updates
node states in real-time with each interaction. It leverages a recurrent neural network to capture node
interactions and utilizes a temporal-attentive aggregation module to focus on evolving graph structures
over time. DyRep is particularly effective in modeling dynamic relationships by considering both
node communication and structural events, thus providing a comprehensive understanding of temporal
graph changes.

TGAT (Xu et al., 2020) incorporates self-attention mechanisms to simultaneously model both the
structural and temporal properties of dynamic graphs. Its design includes a time encoding function
that uniquely represents temporal information, enabling the model to handle complex, evolving
interactions among nodes. This combination allows TGAT to capture intricate temporal patterns and
efficiently aggregate information from temporal-topological neighbors.

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

TGN (Rossi et al., 2020) introduces a memory-based approach for dynamic graph learning, where
each node maintains an evolving memory that is updated through various interactions. Using a
combination of message functions, aggregators, and memory updaters, TGN generates temporal
node representations. The embedding module is crucial in capturing the temporal dynamics of
nodes, which makes TGN adaptable for various dynamic graph tasks like link prediction and node
classification.

CAWN (Wang et al., 2021d) performs random walks on continuous-time dynamic graphs and employs
an attention mechanism to selectively focus on crucial segments of these walks. This allows it to
capture both temporal relationships and causal dependencies in the network. By learning these
patterns, CAWN is capable of generating relative node identities, making it effective for temporal
graph tasks such as anomaly detection and node classification.

EdgeBank (Poursafaei et al., 2022) is a memory-centric approach tailored for transductive dynamic
link prediction without relying on trainable parameters. It memorizes observed interactions and uses
various strategies to update its memory. EdgeBank predicts future interactions based on whether the
interaction is stored in its memory. Its simplicity lies in its rule-based decision-making, making it a
lightweight yet competitive approach for link prediction in dynamic networks.

TCL (Wang et al., 2021a) employs contrastive learning on temporal graphs to learn robust node
embeddings. Maximizing the agreement between node pairs that are temporally similar captures
both temporal dependencies and topological structures. TCL uses a graph transformer to incorporate
both graph topology and temporal information, along with cross-attention mechanisms to model
interactions between nodes over time.

GraphMixer (Cong et al., 2023) focuses on enhancing node embeddings in dynamic graphs by mixing
both temporal and structural features. It uses a fixed time encoding function rather than a trainable
one, incorporating it into a link encoder based on MLP-Mixer to learn temporal links effectively.
GraphMixer also includes a node encoder with neighbor mean-pooling to aggregate node features,
offering a comprehensive method for dynamic graph analysis.

DyGFormer (Yu et al., 2023) adopts a Transformer-based approach to capture long-term temporal
dependencies in dynamic graphs. It introduces neighbor co-occurrence encoding and patching
techniques, which help in modeling both the local and global structure of evolving interactions. This
allows DyGFormer to effectively capture complex patterns in dynamic environments, making it
suitable for various temporal graph tasks.
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